Periodic points of disk homeomorphisms having a pseudo-Anosov component

Takashi Matsuoka
(Received March 17, 1997; Revised June 30, 1997)

Abstract

We consider an orientation-preserving homeomorphism f of the disk. The braid type is one of the topological invariants defined for finite invariant sets of f. We show that if f has a finite invariant set S whose braid type contains a pseudo-Anosov component, then there are at least $2 n+3$ periodic points of period $\leq n$ for any n with $n \geq \operatorname{per}(S)$, where $\operatorname{per}(S)$ is the maximum of the periods of the points in S.

Key words: braid, periodic point, pseudo-Anosov homeomorphism, disk homeomorphism.

1. Introduction

Let M be a compact connected orientable surface possibly with boundary, and $f: M \rightarrow M$ an orientation-preserving homeomorphism. Given a finite set S which is contained in the interior of M and is invariant under the map f, its braid type $\operatorname{bt}(S, f)$ is defined as the isotopy class of f relative to the set $S[3]$ (see Section 2 below). From the Nielsen-Thurston classification theory of isotopy classes for surface homeomorphisms [6, 22], braid types are classified into three classes: pseudo-Anosov, periodic, and reducible. Moreover, in the reducible case, any braid type is decomposed into a finite number of irreducible components, each of which is either pseudo-Anosov or periodic.

This classification for braid types has great significance in the theory of 2 -dimensional dynamical systems: If f has a finite invariant set S whose braid type $\mathrm{bt}(S, f)$ contains a pseudo-Anosov component, then f must have dynamical complexity, e.g. positive topological entropy and an infinite number of periodic points. Also, the following results have been obtained on the existence and the number of periodic points: The growth rate of the number of periodic points of period n, as n tends to infinity, is positive. (This follows from Jiang [16, Theorem 3.8]. See also [15].) There exist infinitely many period doubling sequences of periodic orbits (Guaschi [12, Theorem 4]). f has a periodic point with any sufficiently large period, provided that

[^0]$\mathrm{bt}(S, f)$ is pseudo-Anosov [9].
Moreover, some further results on periodic points have been obtained in the special case where M is the closed disk D and the braid type $\operatorname{bt}(S, f)$ is pseudo-Anosov. A result of the author [20, Theorem 2] on embeddings of the plane immediately implies that f has a periodic point of every period greater than three, provided S has three points and f is differentiable. (The same result is valid for the plane as well.) Following an example of Gambaudo et al. [10], Kolev [18] has proved that f has periodic points of all periods if S is a periodic orbit of period 3. Guaschi [11] generalized Kolev's result to the case of invariant sets having 3 or 4 points. Results of Franks and Misiurewicz (Propositions 13.2 and 13.4 in [8]) imply that if S is a periodic orbit, then either f has periodic points of all periods greater than $n-3$ or f has periodic points of all periods divisible by n, where n is the period of S.

In this paper, we also restrict ourselves to the case of the disk. However, we allow $\mathrm{bt}(S, f)$ to be reducible. Our main theorem gives an estimate for the number of periodic points with period not exceeding a given number. Let $\operatorname{per}(S)$ denote the maximum of the periods of all periodic points contained in S.

Theorem 1 Let $f: D \rightarrow D$ be an orientation-preserving homeomorphism on the closed disk, and S a finite invariant set of f in the interior of D. Suppose the braid type $\operatorname{bt}(S, f)$ has a pseudo-Anosov component. Then, for every integer $n \geq \operatorname{per}(S)$, f has at least $2 n+3$ periodic points whose periods are less than or equal to n.

The above estimate can be improved if we assume some transversality condition. Let n be a positive integer. We say f is n-transversal if f is differentiable and for any positive integer $m \leq n$, the differential of f^{m} at each fixed point of f^{m} does not have eigenvalue one.

Theorem 2 Assume the hypotheses of Theorem 1. Suppose n is an integer such that $n \geq \operatorname{per}(S)$ and f is n-transversal. Then, f has at least $3 n+6$ periodic points whose periods are less than or equal to n.

In the special case of $\operatorname{per}(S)=n=1$, Theorem 2 has been obtained and also shown to be the best possible estimate by the author [21] (Remark, pp. 461-462). When S has three or four points, one can derive sharper estimates than Theorems 1 and 2 for large n from Guashi's result
[11] mentioned above. The author does not know whether our theorems give the best possible estimates in the remaining case.

The author wishes to thank the referee for providing many helpful suggestions and corrections.

2. Preliminaries

Here we recall the definition of a braid type and the classification theory for braid types. Also, we prove some results which are necessary for the proof of Theorem 1.

Let M be a compact connected orientable surface possibly with boundary ∂M. Let $f: M \rightarrow M$ be an orientation-preserving homeomorphism. A point x in M is a fixed point of f if $f(x)=x . x$ is called a periodic point of f if it is a fixed point of f^{n} for some positive integer n. The least such n is called the period of the periodic point and denoted by $\operatorname{per}(x, f)$. A periodic point of period n will also be called an n-periodic point. Let $\operatorname{Fix}(f)$ denote the set of fixed points of f. Let $P(f)$ denote the set of all periodic points of f, and $P_{n}(f)$ the set of periodic points of period n. Let

$$
P^{n}(f)=\bigcup_{m \leq n} P_{m}(f)
$$

Namely, $P^{n}(f)$ is the set of periodic points whose periods are less than or equal to n. Clearly $P^{1}(f)=P_{1}(f)=\operatorname{Fix}(f)$. The aim of this paper is to give lower bounds for the cardinality of this set $P^{n}(f)$ in the case of $M=D$.

A subset S of M is called an invariant set of f if $f(S)=S$. Suppose $f, g: M \rightarrow M$ are homeomorphisms. Suppose S is a finite set in the interior Int M of M and it is an invariant set for both f and g. We say f and g are isotopic relative to S if there exist homeomorphisms $h_{t}: M \rightarrow M$ for $0 \leq t \leq 1$ such that $h_{0}=f, h_{1}=g, h_{t}(x)$ is continuous in x and t, and $h_{t}(S)=S$ for any t. An equivalence class under this relation is called an isotopy class relative to S.

Definition 1 Suppose $f: M \rightarrow M$ is an orientation-preserving homeomorphism, and S is a finite invariant set of f in Int M. Define the braid type $\operatorname{bt}(S, f)$ of the set S with respect to f to be the isotopy class of $f: M \rightarrow M$ relative to S.

Braid types can be classified according to the Nielsen-Thurston classification theory on surface homeomorphisms up to isotopy. We give a
brief account of this theory. (We shall mainly follow [4, Section 7].) Let $\phi: M \rightarrow M$ be a homeomorphism. ϕ is said to be periodic if $\phi^{m}=\mathrm{id}$ for some positive integer m, where id denotes the identity map. Let S be a finite invariant set of ϕ in $\operatorname{Int} M . \phi$ is said to be pseudo-Anosov relative to S, if the following conditions hold:
(a) There exists a pair of transverse foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ on M, carrying transverse measures which are uniformly expanded and contracted by ϕ respectively.
(b) Each foliation has a finite number of singularities which coincide in the interior $\operatorname{Int} M$ and alternate on the boundary ∂M. Any singularity is p-pronged for some positive integer $p, p \neq 2$.
(c) Any singularity on ∂M is 3 -pronged. (We consider segments of the boundary to be prongs.)
(d) 1-prongs are permitted only at points of S.

In the case where S is empty, ϕ is simply said to be pseudo-Anosov. ϕ is called a generalized pseudo-Anosov homeomorphism if it is pseudo-Anosov relative to some non-empty finite invariant set (see [6]). We say ϕ is reducible relative to S if there exists a disjoint union $\Sigma=\Sigma_{1} \cup \cdots \cup \Sigma_{k}$ of simple closed curves, called reducing curves, in Int $M-S$ such that
(a) Σ is an invariant set of ϕ, and
(b) each connected component of $M-(\Sigma \cup S)$ has negative Euler characteristic.

Theorem 3 (Nielsen-Thurston Classification Theorem) Let f:M $\rightarrow M$ be a homeomorphism, and S a finite invariant set of f in Int M. Then f is isotopic relative to S to a homeomorphism ϕ which is periodic, pseudoAnosov relative to S, or reducible relative to S. In the reducible case, ϕ can be chosen to have an invariant open tubular neighborhood $A(\Sigma)$ of Σ such that on each connected component N of the complement of $A(\Sigma)$, $\phi^{\mu}: N \rightarrow N$ is either periodic or pseudo-Anosov relative to $S \cap N$, where μ is the least positive integer such that $\phi^{\mu}(N)=N$.

The map ϕ in the above theorem is called a canonical homeomorphism (or a canonical form) relative to S. In the case where S is empty, ϕ is simply called a canonical homeomorphism. Each component N is called a component of ϕ. Also, each connected component of $A(\Sigma)$ is called a reducing annulus. This classification theorem leads to the following definition:

Definition 2 A braid type $\operatorname{bt}(S, f)$ is called periodic, pseudo-Anosov, or reducible if a canonical homeomorphism $\phi: M \rightarrow M$ in the isotopy class of f relative to S is periodic, pseudo-Anosov relative to S, or reducible relative to S, respectively. We say $\mathrm{bt}(S, f)$ contains a pseudo-Anosov component if so does ϕ.

Now let $\phi: M \rightarrow M$ be an orientation-preserving pseudo-Anosov homeomorphism relative to S. Let \mathcal{F} be one of the associated foliations \mathcal{F}^{u} and \mathcal{F}^{s}. For $x \in M$, let $p(x)$ denote the number of prongs of \mathcal{F} at x. (If x is a regular point of \mathcal{F}, we regard the two half leaves emanating from x as the prongs at x, and thus set $p(x)=2$.) Let $\operatorname{Sing}(\mathcal{F})$ denote the set of singularities of \mathcal{F}. Then we have the following Euler-Poincaré formula [6, p. 75]:

$$
\begin{equation*}
\sum_{x \in \operatorname{Sing}(\mathcal{F})}(2-p(x))=2 \chi(M) \tag{1}
\end{equation*}
$$

where $\chi(M)$ denotes the Euler characteristic of M.
Let $x \in \operatorname{Int} M$ be an n-periodic point of ϕ. Then ϕ^{n} induces a permutation on the prongs at x of the foliation \mathcal{F}. Let l, a be positive integers. We say x has type (l, a) if
(a) l is the least period of a prong at x under the permutation ϕ^{n}, and
(b) $p(x)=a l$.

This definition makes sense, since the prongs at x have the same period under ϕ^{n} and $l, p(x)$ do not depend on the choice of \mathcal{F}. Note also that l always divides $p(x)$ and hence $p(x)$ is written in the form (b) above. For example, if x is a one-pronged singularity, then it has type (1,1). If x is a regular point of \mathcal{F}, then it has type $(1,2)$ or $(2,1)$.

We recall some facts about the index for a periodic point. Let $f: M \rightarrow$ M be a continuous map. Given a fixed point x of f, let ind (x, f) denote its fixed point index. If x is an n-periodic point, we define its index to be $\operatorname{ind}\left(x, f^{n}\right)$. It is easy to see that if x is a periodic point of ϕ in $\operatorname{Int} M$ which has period n and type (l, a), then for any $q \geq 1$, we have

$$
\operatorname{ind}\left(x, \phi^{n q}\right)= \begin{cases}1-a l & \text { if } q \text { is a multiple of } l \tag{2}\\ 1 & \text { otherwise }\end{cases}
$$

Namely, for an interior fixed point x of an iterate $\phi^{m}, \operatorname{ind}\left(x, \phi^{m}\right)=1$ if
ϕ^{m} rotates the prongs at x, and $\operatorname{ind}\left(x, \phi^{m}\right)=1-p(x)$ if ϕ^{m} preserves each (equivalently some) prong. In particular, the index of an interior periodic point is zero if and only if it is a one-pronged singularity. If x is a periodic point in ∂M, then it must be a singularity of \mathcal{F}^{s} or \mathcal{F}^{u}, and

$$
\operatorname{ind}\left(x, \phi^{m}\right)=\left\{\begin{array}{rll}
-1 & \text { if } & x \in \operatorname{Sing}\left(\mathcal{F}^{s}\right) \tag{3}\\
0 & \text { if } & x \in \operatorname{Sing}\left(\mathcal{F}^{u}\right),
\end{array}\right.
$$

for any m such that ϕ^{m} fixes x.
Two fixed points x_{0} and x_{1} of a continuous map $f: M \rightarrow M$ are said to be f-Nielsen equivalent (or Nielsen equivalent, shortly) if there exists a path $\gamma:[0,1] \rightarrow M$ such that $\gamma(0)=x_{0}, \gamma(1)=x_{1}$, and $f \circ \gamma$ is homotopic to γ fixing end points. (See $[2,14]$.) An equivalence class under this relation is called an f-Nielsen class or a Nielsen class. The Nielsen class represented by x is denoted by $N C(x, f)$.

Two invariant sets K_{0} and K_{1} of f are called f-related if there exists a path $\gamma:[0,1] \rightarrow M$ such that $\gamma(0) \in K_{0}, \gamma(1) \in K_{1}$, and $f \circ \gamma$ and γ are homotopic via a homotopy $\left\{\gamma_{t}\right\}_{0 \leq t \leq 1}$ of paths in M such that $\gamma_{t}(0) \in K_{0}$ and $\gamma_{t}(1) \in K_{1}$ for any t. (See [17, p. 70].) In general, this is not an equivalence relation among invariant subsets. When K_{0} and K_{1} are single points, it reduces to the Nielsen equivalence relation between fixed points of f.

Suppose $g: M \rightarrow M$ is a continuous map homotopic to f. Let $H=$ $\left\{h_{t}\right\}: M \rightarrow M(0 \leq t \leq 1)$ be a homotopy from f to g. Then $x \in \operatorname{Fix}(f)$ and $y \in \operatorname{Fix}(g)$ are said to be H-related if there exists a path α in M such that $\alpha(0)=x, \alpha(1)=y$, and two paths α and $h_{t}(\alpha(t))$ are homotopic fixing end points.

Lemma 1 Suppose K is a subset of M such that $h_{t}(K)=K$ for any t. Suppose $x \in \operatorname{Fix}(f)$ and $y \in \operatorname{Fix}(g)$ are H-related and y is g-related to K. Then x is f-related to K.

Proof. Given paths ω, ω^{\prime} in M which have the same initial point and whose terminal points are both contained in K, we write $\omega \sim \omega^{\prime}$ if there is a homotopy $\left\{\omega_{t}\right\}$ of paths in M with $\omega_{0}=\omega, \omega_{1}=\omega^{\prime}, \omega_{t}(0)=\omega(0)$, $\omega_{t}(1) \in K$ for any t. Since y and K are g-related, there is a path γ in M such that $\gamma(0)=y, \gamma(1) \in K$, and $\gamma \sim g \circ \gamma$. Since x and y are H-related, there is a path α in M from x to y such that α and $\bar{\alpha}$, where $\bar{\alpha}$ is given by
$\bar{\alpha}(t)=h_{t}(\alpha(t))$, are homotopic fixing end points. Thus we have that

$$
\begin{equation*}
\alpha \gamma \sim \bar{\alpha}(g \circ \gamma) . \tag{4}
\end{equation*}
$$

Define a homotopy $\left\{\beta_{t}\right\}(0 \leq t \leq 1)$ of paths in M by

$$
\beta_{t}(s)= \begin{cases}h_{2 s(1-t)}(\alpha(2 s)) & s \leq \frac{1}{2} \\ h_{1-t}(\gamma(2 s-1)) & s \geq \frac{1}{2}\end{cases}
$$

Then $\beta_{t}(0)=x$ and $\beta_{t}(1) \in K$ for each t, and $\beta_{0}=\bar{\alpha}(g \circ \gamma), \beta_{1}=(f \circ$ $\alpha)(f \circ \gamma)=f \circ(\alpha \gamma)$. Therefore, $\bar{\alpha}(g \circ \gamma) \sim f \circ(\alpha \gamma)$ and hence by (4), $\alpha \gamma \sim f \circ(\alpha \gamma)$. This means that x is f-related to K.

The following lemma is closely related to Lemma 3.4 of Jiang and Guo [17] and Proposition 1.5 of Boyland [5].

Lemma 2 Let M be a compact surface obtained from the disk D by removing finitely many disjoint open disks in D. Let $\psi: M \rightarrow M$ be a canonical homeomorphism. Suppose ψ has a pseudo-Anosov component N such that $\psi(N)=N$. Let K_{0} and K_{1} be disjoint connected invariant sets of ψ. Suppose either
(a) K_{0} and K_{1} are contained in different connected components of $M-\operatorname{Int} N$, or
(b) K_{0} or K_{1} is a single point contained in $\operatorname{Int} N$. Then K_{0} and K_{1} are not ψ-related.

Proof. The method of the proof here is different from those in [5, 17] which use the covering space technique. Instead, we use the hypothesis that M is a subspace of the disk. Let X_{1}, \ldots, X_{k} be all of the connected components of $M-\operatorname{Int} N$ and let $C_{i}=N \cap X_{i}$. Then, since N is a component of a canonical homeomorphism of ψ, we see that either $X_{i}=C_{i}$ or X_{i} is a compact surface which has C_{i} as one of its boundary circles. We can assume, by rearranging indices if necessary, that $X_{i}=C_{i}$ if $i<q$, and X_{i} is a compact surface if $i \geq q$, where $1 \leq q \leq k+1$. Also, we can assume that ψ preserves each X_{i}, by taking its iterate if necessary, because ψ-related subsets are ψ^{m}-related for any $m \geq 1$. If $i \geq q$, then C_{i} is isotopic to some reducing curve and hence X_{i} has at least two other boundary circles $C_{i, 1}, \ldots, C_{i, b_{i}}$, where $b_{i} \geq 2$. Let \hat{M} be a compact surface obtained from M by collapsing each $C_{i, j}$ to a point, where $i \geq q, 2 \leq j \leq b_{i}$. Denote by $\pi: M \rightarrow \hat{M}$ the projection map, and
let $\hat{X}_{i}=\pi\left(X_{i}\right)$. Since π is injective on N, we can regard N as a subspace of \hat{M}. Then $\hat{M}-\operatorname{Int} N=\hat{X}_{1} \cup \cdots \cup \hat{X}_{k}$. For $i<q$, we have $\hat{X}_{i}=C_{i}$. If $i \geq q$, then \hat{X}_{i} is a closed annulus whose boundary circles are C_{i} and $C_{i, 1}$. Thus N is a strong deformation retract of \hat{M}, i.e., there exists a homotopy $r_{t}: \hat{M} \rightarrow \hat{M}$ such that

$$
r_{0}=\mathrm{id}, \quad r_{1}(\hat{M})=N,\left.\quad r_{t}\right|_{N}=\mathrm{id}
$$

for any t. Moreover, we can choose r_{t} so that the image of $\hat{M}-\operatorname{Int} N$ under r_{t} is disjoint from Int N for any t. Let $r=r_{1}: \hat{M} \rightarrow N$. Let $\hat{\psi}: \hat{M} \rightarrow \hat{M}$ be a homeomorphism induced by ψ. Then $\hat{\psi} \circ \pi=\pi \circ \psi, r\left(\hat{X}_{i}\right)=C_{i}$ for any i, and $\hat{\psi}=\psi$ on N. Also, $\hat{\psi}\left(\hat{X}_{i}\right)=\hat{X}_{i}$ since ψ is assumed to preserve X_{i}.

Suppose K_{0} and K_{1} were ψ-related. Then there is a path γ in M such that $\gamma(0) \in K_{0}, \gamma(1) \in K_{1}$, and γ is homotopic to $\psi \circ \gamma$ via a homotopy $\left\{\gamma_{t}\right\}$ of paths in M such that $\gamma_{t}(0) \in K_{0}, \gamma_{t}(1) \in K_{1}$ for any t. Define a path ω in N by $\omega=r \circ \pi \circ \gamma$. We shall make a homotopy $\left\{\omega_{t}\right\}$ of paths in N between ω to $\psi \circ \omega$. Define two homotopies $\left\{\omega_{t}^{\prime}\right\},\left\{\omega_{t}^{\prime \prime}\right\}$ of paths in N by

$$
\omega_{t}^{\prime}=r \circ \pi \circ \gamma_{t}, \quad \omega_{t}^{\prime \prime}=r \circ \hat{\psi} \circ r_{t} \circ \pi \circ \gamma
$$

Then $\omega_{0}^{\prime}=\omega, \omega_{1}^{\prime}=\omega_{0}^{\prime \prime}, \omega_{1}^{\prime \prime}=r \circ \hat{\psi} \circ \omega=\psi \circ \omega$, since ω is a path in N and $r \circ \psi=\psi$ on N. Therefore if we denote by $\left\{\omega_{t}\right\}$ the product of two homotopies $\left\{\omega_{t}^{\prime}\right\}$ and $\left\{\omega_{t}^{\prime \prime}\right\}$, (i.e., $\omega_{t}=\omega_{2 t}^{\prime}$ if $t \leq 1 / 2$ and $\omega_{t}=\omega_{2 t-1}^{\prime \prime}$ if $t \geq 1 / 2)$ then it gives the desired homotopy. Note that if $K_{\epsilon} \subset X_{i}$, where $\epsilon=0,1$, then $\omega_{t}^{\prime}(\epsilon) \in r\left(\hat{X}_{i}\right)=C_{i}, \omega_{t}^{\prime \prime}(\epsilon) \in r\left(\hat{\psi}\left(\hat{X}_{i}\right)\right)=C_{i}$, and hence $\omega_{t}(\epsilon) \in C_{i}$.

Suppose first that the condition (a) holds. Then $K_{0} \subset X_{i_{0}}, K_{1} \subset X_{i_{1}}$, where $i_{0} \neq i_{1}$, and hence $\omega_{t}(\epsilon) \in C_{i_{\epsilon}}$ for $\epsilon=0,1$ and any t. This means that different boundary components $C_{i_{0}}, C_{i_{1}}$ of N are related under the pseudoAnosov homeomorphism $\left.\psi\right|_{N}$. This is a contradiction. (See e.g. Jiang and Guo [17, Lemma 2.2] and Boyland [5, Lemma 1.1 (b) (iii)].)

Suppose next the condition (b) holds. We can assume that K_{0} consists of a single point, say x_{0}, in Int N. Then clearly $\omega_{t}(0)=x_{0}$. Also, since K_{1} is a connected invariant set disjoint from $\left\{x_{0}\right\}, K_{1}$ is contained in some X_{i} or is a single point in $\operatorname{Int} N$. These imply that the fixed point x_{0} in the interior of N is $\left.\psi\right|_{N}$-related to another interior fixed point or some boundary circle C_{i} of N. This also contradicts the results of $[5,17]$ cited above. Hence we complete the proof.

Suppose $f, g: M \rightarrow M$ are homotopic continuous maps, and $H=\left\{h_{t}\right\}:$ $M \rightarrow M$ is a homotopy from f to g. For a subset E of M, define a subset $\Delta_{H}(E)$ of $\operatorname{Fix}(g)$ by

$$
\Delta_{H}(E)=\{y \in \operatorname{Fix}(g) \mid \text { some } x \in E \cap \operatorname{Fix}(f) \text { is } H \text {-related to } y\} .
$$

Note that if $x \in \operatorname{Fix}(f)$ is H-related to $y \in \operatorname{Fix}(g)$ and y is g-Nielsen equivalent to another $y^{\prime} \in \operatorname{Fix}(g)$, then x is also H-related to y^{\prime}. As a consequence, $\Delta_{H}(E)$ is empty or a union of g-Nielsen classes. For a point $x \in M$, let $\Delta_{H}(x)=\Delta_{H}(\{x\})$. This is a single Nielsen class or an empty set. We say Nielsen classes F of f and G of g are H-related if $\Delta_{H}(F)=G$, i.e., every $x \in F$ and every $y \in G$ (equivalently some $x \in F$ and some $y \in G)$ are H-related. It is known that H-related Nielsen classes have the same fixed point index (see e.g. [2]). In particular, if F is essential (i.e., if its index is nonzero), then $\Delta_{H}(F)$ is also essential and hence not empty.

Proposition 1 Let $f: D \rightarrow D$ be an orientation-preserving homeomorphism with a finite invariant set S in $\operatorname{Int} D$. Let $\phi: D \rightarrow D$ be a canonical homeomorphism relative to S which is isotopic to f. Assume ϕ has a pseudo-Anosov component. Let L be the union of all pseudo-Anosov components of ϕ. Then
(a) There exists an injective map $\tau: P(\phi) \cap(\operatorname{Int} L-S) \rightarrow P(f)-S$ which is period-preserving, i.e. $\operatorname{per}(x, \phi)=\operatorname{per}(\tau(x), f)$ for every x.
(b) $\sharp P^{n}(f) \geq \sharp\left(P^{n}(\phi) \cap(S \cup \operatorname{Int} L)\right)$ for any $n \geq 1$, where \sharp denotes the cardinality.

Proof. (a) We need the notion of the blow-up of a homeomorphism. Let D_{S} be the surface obtained from $D-S$ by attaching a boundary circle at each point of S. Let Γ be the union of the attached boundary circles, and $\pi_{S}: D_{S} \rightarrow D$ the projection. Then we have $D_{S}=(D-S) \cup \Gamma$ and $\Gamma=\pi_{S}^{-1}(S)=\partial D_{S}-\partial D$. If $g: D \rightarrow D$ is a homeomorphism with $g(S)=S$ and its restriction to $D-S$ is extendable to a homeomorphism $G: D_{S} \rightarrow D_{S}$, then we call G the blow-up of g at S. It is known that any homeomorphism which is smooth at S and whose differential at each point in S is non-singular has the blow-up at $S[1, \mathrm{p} .24]$. Also, it is not difficult to see that any canonical homeomorphism relative to S has the blow-up at S. The blow-up of a homeomorphism which is pseudo-Anosov relative to S becomes a pseudo-Anosov homeomorphism on D_{S}.

Now we begin the proof. Let $\phi_{S}: D_{S} \rightarrow D_{S}$ be the blow-up of ϕ at S.

For each $x \in S$, we choose an open disk W^{x} centered at x so that these disks are mutually disjoint. Also, for $x \in S$ and $m \geq 1$, choose open disks V_{m}^{x} centered at x so that $V_{m}^{x} \subset W^{x}$ and $f^{m}\left(V_{m}^{x}\right) \subset W^{f^{m}(x)}$. Let $V_{m}=\bigcup_{x \in S} V_{m}^{x}$, and $\left(V_{m}\right)_{S}=\left(V_{m}-S\right) \cup \Gamma$. Then $\left(V_{m}\right)_{S}$ is an open neighborhood of Γ in D_{S}. We isotope f, relative to S, to a homeomorphism $f_{m}: D \rightarrow D$ which is smooth at S and has the non-singular differential at every point in S. Furthermore, f_{m} can be chosen so that its m-th iterate $\left(f_{m}\right)^{m}$ coincides with f^{m} away from V_{m}. It follows from the assumption on V_{m}^{x} that the blow-up $\left(f_{m}\right)_{S}$ of f_{m} at S has the property that every fixed point of its m-th iterate $\left(f_{m}\right)_{S}^{m}$ in $\left(V_{m}\right)_{S}$ is $\left(f_{m}\right)_{S}^{m}$-related to Γ. Since ϕ^{m} and $\left(f_{m}\right)^{m}$ are isotopic relative to S, there is an isotopy $H_{m}=\left\{H_{m, t}\right\}: D_{S} \rightarrow D_{S}$ from ϕ_{S}^{m} to $\left(f_{m}\right)_{S}^{m}$.

We shall define the map τ. Suppose x is a periodic point of ϕ in $\operatorname{Int} L-S$. Then x is also a periodic point of ϕ_{S}. Let $m=\operatorname{per}(x, \phi)$. Write f_{S} and V_{S} for $\left(f_{m}\right)_{S}$ and $\left(V_{m}\right)_{S}$ respectively for the sake of simplicity. Since $x \notin S$, it follows from (2) that x has nonzero index, and hence $\{x\}$ is an essential ϕ_{S}^{m}-Nielsen class. This implies that the f_{S}^{m}-Nielsen class $\Delta_{H_{m}}(x)$ is essential and hence not empty. Choose an element from this class, and denote it by $\tau(x)$. Namely, $\tau(x)$ is a fixed point of f_{S}^{m} satisfying

$$
\begin{equation*}
N C\left(\tau(x), f_{S}^{m}\right)=\Delta_{H_{m}}(x) \tag{5}
\end{equation*}
$$

We show that the orbit of $\tau(x)$ under f_{S} is contained in $D_{S}-V_{S}$. Suppose to the contrary that $f_{S}^{j}(\tau(x)) \in V_{S}$ for some j. This implies that $f_{S}^{j}(\tau(x))$ is f_{S}^{m}-related to Γ by the property of f_{S}, and hence $\tau(x)$ is f_{S}^{m}-related to Γ. Since x and $\tau(x)$ are H_{m}-related, it follows from Lemma 1 that x is ϕ_{S}^{m}-related to Γ. This contradicts Lemma 2. Hence the orbit of $\tau(x)$ is contained in $D_{S}-V_{S}=D-V_{m}$. Since f^{m} and $\left(f_{m}\right)^{m}$ coincide on $D-V_{m}$, $\tau(x)$ is a fixed point of f^{m} in $D-S$. Thus we have defined the map τ.

We show τ is period-preserving. Let $x \in P(\phi) \cap(\operatorname{Int} L-S)$, and let m, m^{\prime} be the periods of $x, \tau(x)$ respectively. Since $\phi_{S}^{m^{\prime}}(x)$ is H_{m}-related to $f_{S}^{m^{\prime}}(\tau(x))$, we have by (5)

$$
\Delta_{H_{m}}\left(\phi_{S}^{m^{\prime}}(x)\right)=N C\left(f_{S}^{m^{\prime}}(\tau(x)), f_{S}^{m}\right)=N C\left(\tau(x), f_{S}^{m}\right)=\Delta_{H_{m}}(x)
$$

Then x and $\phi_{S}^{m^{\prime}}(x)$ are ϕ_{S}^{m}-Nielsen equivalent, and so they are identical. Therefore m^{\prime} must be a multiple of m. On the other hand, since $\tau(x) \in$ $\operatorname{Fix}\left(f_{S}^{m}\right), m$ is a multiple of m^{\prime}. Therefore $m=m^{\prime}$.

We show τ is injective. Suppose $x, y \in P(\phi) \cap(\operatorname{Int} L-S)$ have the same
image under τ. Then, since τ is period-preserving, they have the same period, say m, and (5) implies x and y are ϕ_{S}^{m}-Nielsen equivalent. Then by Lemma 2, x and y must be equal.
(b) By (a), we have

$$
\begin{aligned}
\sharp P^{n}(f) & =\sharp\left(P^{n}(f)-S\right)+\sharp\left(P^{n}(f) \cap S\right) \\
& \geq \sharp\left(P^{n}(\phi) \cap(\operatorname{Int} L-S)\right)+\sharp\left(P^{n}(\phi) \cap S\right) \\
& =\sharp\left(P^{n}(\phi) \cap(S \cup \operatorname{Int} L)\right) .
\end{aligned}
$$

Let g be a homeomorphism of the closed annulus $A=S^{1} \times[0,1]$ isotopic to the identity. Let \tilde{g} be a lift of g to the universal cover $\tilde{A}=\mathbf{R} \times[0,1]$. The projection onto the first factor is denoted by $\pi_{1}: \tilde{A} \rightarrow \mathbf{R}$.

Given $x \in A$, choose a lift $\tilde{x} \in \tilde{A}$ and define its rotation number under \tilde{g} as

$$
\rho(x, \tilde{g})=\lim _{n \rightarrow \infty} \frac{\pi_{1}\left(\tilde{g}^{n}(\tilde{x})\right)-\pi_{1}(\tilde{x})}{n}
$$

if this limit exists. It is clear that the rotation number does not depend on the choice of the lift \tilde{x}. The set of all rotation numbers under \tilde{g} is denoted by $\rho(\tilde{g})$. On each boundary circle Γ of the annulus A, every point has the same rotation number, since the restriction of g to Γ is an orientation-preserving circle homeomorphism. We denote this rotation number by $\rho(\Gamma, \tilde{g})$. The following theorem is an immediate consequence of Franks [7, Cor. 2.4].

Theorem 4 ([7]) Let $g: A \rightarrow A$ be a generalized pseudo-Anosov homeomorphism of the annulus isotopic to the identity. Let $\tilde{g}: \tilde{A} \rightarrow \tilde{A}$ be a lift of g. Suppose α, β are distinct numbers contained in $\rho(\tilde{g})$. Then for every rational number p / q between α and β, where p and q are relatively prime, g has a periodic point of period q and rotation number p / q.

Let $\phi: D \rightarrow D$ be an orientation-preserving generalized pseudo-Anosov homeomorphism. Let x_{0} be a fixed point of ϕ in Int D. Let $g: A \rightarrow A$ be a homeomorphism obtained by blowing up ϕ at the fixed point x_{0}. Then g is a generalized pseudo-Anosov homeomorphism on A isotopic to the identity. Let $\tilde{g}: \tilde{A} \rightarrow \tilde{A}$ be a lift of g. We have the following lemma:

Lemma 3 Suppose l and n are positive integers, and x is a periodic point of ϕ in $D-\left\{x_{0}\right\}$. Assume the following conditions:
(a) $\operatorname{per}(x, \phi)<l \operatorname{per}\left(x, \phi^{l}\right)$.
(b) $\rho(\tilde{g}) \ni k / l$ for some integer k prime to l.
(c) $n \geq 2 l+\operatorname{per}(x, \phi)$.

Then ϕ has at least $2 n+3$ periodic points of period $\leq n$ in the interior of D.

Proof. We first show that $\rho(x, \tilde{g}) \neq k / l$. Assume $\rho(x, \tilde{g})$ were equal to k / l. Then $\operatorname{per}(x, \phi)$ must be a multiple of l, and hence $\operatorname{per}\left(x, \phi^{l}\right)=\operatorname{per}(x, \phi) / l$. This contradicts the hypothesis (a). Thus $\rho(x, \tilde{g}) \neq k / l$.

We assume $\rho(x, \tilde{g})>k / l$, the other case being similar. Write $\rho(x, \tilde{g})$ as $\rho(x, \tilde{g})=k^{\prime} / l^{\prime}$, where k^{\prime} / l^{\prime} is expressed in lowest terms. Let I be the interval $\left[k / l, k^{\prime} / l^{\prime}\right]$. Let \mathcal{F}_{n} be the Farey series of order n, i.e. the ascending series of rational numbers between 0 and 1 whose denominators do not exceed n. Write $\mathcal{F}_{n} \cap I$ as

$$
\mathcal{F}_{n} \cap I=\left\{k_{1} / l_{1}, \ldots, k_{\beta} / l_{\beta}\right\}
$$

where $k_{1} / l_{1}=k / l, k_{\beta} / l_{\beta}=k^{\prime} / l^{\prime}, k_{i} / l_{i}<k_{i+1} / l_{i+1}$ and k_{i} / l_{i} is expressed in lowest terms for every i.

The assumption (c) implies $\beta \geq 4$. In fact, since $2 l+l^{\prime} \leq 2 l+\operatorname{per}(x, \phi) \leq$ n, the set $\mathcal{F}_{n} \cap I$ contains, besides $k / l, k^{\prime} / l^{\prime}$, two distinct rationals $(k+$ $\left.k^{\prime}\right) /\left(l+l^{\prime}\right),\left(2 k+k^{\prime}\right) /\left(2 l+l^{\prime}\right)$.

Since $\rho(\tilde{g})$ contains k / l by (b) and also contains $\rho(x, \tilde{g})=k^{\prime} / l^{\prime}$, we see by Theorem 4 that, for any i with $1 \leq i \leq \beta, g$ has an l_{i}-periodic point $x_{i} \in A$ with rotation number k_{i} / l_{i}. A result of Guaschi [11, Theorem 3] says that, for a generalized pseudo-Anosov homeomorphism on the closed annulus, there are periodic points in the interior whose rotation numbers are those of the boundaries. Hence, we can take all of the periodic points x_{i} to be contained in the interior of A. Hence, they become periodic points of ϕ in $\operatorname{Int} D-\left\{x_{0}\right\}$. Since the orbit of x_{i} consists of l_{i} points, this implies ϕ has at least $l_{1}+\cdots+l_{\beta}$ periodic points of period $\leq n$ except for x_{0}. Since $\beta \geq 4$ and the sum of denominators of any consecutive two numbers in \mathcal{F}_{n} is greater than n (see e.g. [13, Theorem 30]), $l_{1}+\cdots+l_{\beta} \geq 2(n+1)$. Hence we have the proof.

Let $\psi: S^{2} \rightarrow S^{2}$ be an orientation-preserving generalized pseudoAnosov homeomorphism of a sphere S^{2}. Given positive integers n, l, a, let $P_{n}(l, a)$ denote the set of n-periodic points of ψ of type (l, a). Let P_{n}^{+} be the set of n-periodic points of ψ with index one. We have the following formula on these numbers:

Proposition 2

$$
\sharp P_{n}^{+}=\sum_{a \geq 1}\left(\sum_{\substack{l>1 \\ l \mid n}} a l \sharp P_{\frac{n}{l}}(l, a)+(a-1) \sharp P_{n}(1, a)\right)+\epsilon_{n},
$$

where $l \mid n$ means that l is a divisor of n, and $\epsilon_{n}=0$ or 2 according to $n>1$ or $n=1$.

Proof. Let q be a positive integer. Since $\operatorname{Fix}\left(\psi^{q}\right)$ is the disjoint union of $P_{n}(l, a)$ for all positive integers l, a and all n with $n \mid q$, we have by (2)

$$
\begin{aligned}
2 & =\chi\left(S^{2}\right)=\sum_{x \in \operatorname{Fix}\left(\psi^{q}\right)} \operatorname{ind}\left(x, \psi^{q}\right) \\
& =\sum_{n \mid q} \sharp P_{n}(\psi)-\sum_{a \geq 1} \sum_{l, n} a l \sharp P_{n}(l, a) .
\end{aligned}
$$

Note that for each a,

$$
\sum_{\substack{l, n \\ l n \mid q}} a l \sharp P_{n}(l, a)=\sum_{\substack{l, m \\ l|m| q}} a l \sharp P_{\frac{m}{l}}(l, a)=\sum_{\substack{l, n \\ l|n| q}} a l \sharp P_{\frac{n}{l}}(l, a) .
$$

Therefore if we define an integer Ω_{n} for any $n \geq 1$ by

$$
\Omega_{n}=\sharp P_{n}(\psi)-\sum_{a \geq 1} \sum_{l \mid n} a l \sharp P_{\frac{n}{l}}(l, a),
$$

then we have $\sum_{n \mid q} \Omega_{n}=2$ for any $q \geq 1$. In the case of $q=1$, this means $\Omega_{1}=2$. Hence we have $\sum_{n>1, n \mid q} \Omega_{n}=0$ for any $q>1$. Therefore we can easily prove that $\Omega_{n}=0$ for $n>1$ by induction on n. Thus we have proved that

$$
\begin{equation*}
\Omega_{n}=\epsilon_{n} \text { for any } n \geq 1 . \tag{6}
\end{equation*}
$$

Since $P_{n}(l, a) \subset P_{n}^{+}$if and only if $l \geq 2, P_{n}(\psi)$ is the disjoint union of P_{n}^{+} and $\bigcup_{a} P_{n}(1, a)$ and hence $\sharp P_{n}^{+}=\sharp P_{n}(\psi)-\sum_{a} \sharp P_{n}(1, a)$. Therefore by (6), the proof is completed.

3. Proof of Theorem 1

Let $\phi: D \rightarrow D$ be a canonical homeomorphism which is isotopic to f relative to S. Since $\mathrm{bt}(S, f)$ contains a pseudo-Anosov component, so
does ϕ. Let L be the union of all pseudo-Anosov components of ϕ. By Proposition 1, it suffices for the proof to show that

$$
\begin{equation*}
\sharp\left(P^{n}(\phi) \cap(S \cup \operatorname{Int} L)\right) \geq 2 n+3 \tag{7}
\end{equation*}
$$

for every $n \geq \operatorname{per}(S)$. We shall fix an integer n with $n \geq \operatorname{per}(S)$. The proof is divided into two parts (I), (II).
(I) Here we consider the case where $\mathrm{bt}(S, f)$ is pseudo-Anosov, that is, the canonical homeomorphism ϕ is pseudo-Anosov relative to S. Note that, in this case, $S \cup \operatorname{Int} L=\operatorname{Int} D$ and the inequality (7) is equivalent to

$$
\begin{equation*}
\sharp\left(P^{n}(\phi) \cap \operatorname{Int} D\right) \geq 2 n+3 . \tag{8}
\end{equation*}
$$

Since the Euler characteristic of the disk is one, ϕ has a fixed point x_{1} in Int D of index 1 . Choose a singularity x_{2} of \mathcal{F}^{s} in ∂D. By (3), x_{2} is a periodic point with index -1 . Let $\left(l_{1}, a_{1}\right)$ denote the type of x_{1}, and l_{2} the period of x_{2}. Note that $l_{1}>1$ since x_{1} has index 1 , but l_{2} may be 1 .

We claim that ϕ has an l_{1}-periodic point y_{1} and an l_{2}-periodic point y_{2} in Int $D-\left\{x_{1}\right\}$ which have index 1 and belong to different orbits. Let $\psi: S^{2} \rightarrow S^{2}$ be the generalized pseudo-Anosov homeomorphism of the sphere induced by ϕ by collapsing the boundary of D to a point denoted by ∞. Then ∞ is a fixed point of ψ of type $\left(l_{2}, a_{2}\right)$ for some $a_{2} \geq 1$. By Proposition 2, we have

$$
\sharp P_{n}^{+} \geq \begin{cases}\sum_{a} a n \sharp P_{1}(n, a) & \text { if } n>1 \tag{9}\\ 2 & \text { if } n=1 .\end{cases}
$$

Since $P_{1}\left(l_{1}, a_{1}\right) \ni x_{1}$, this implies that $\sharp P_{l_{1}}^{+} \geq a_{1} l_{1} \sharp P_{1}\left(l_{1}, a_{1}\right)>0$. Therefore, there exists an l_{1}-periodic point y_{1} of ψ with index 1 . Since $l_{1}>1$, we see $y_{1} \neq \infty$ and y_{1} is a periodic point of $\phi \operatorname{in} \operatorname{Int} D-\left\{x_{1}\right\}$. Let Y_{1} be the orbit of y_{1} under the map ϕ, and let $Q=P_{l_{2}}^{+}-\left(Y_{1} \cup\left\{x_{1}, \infty\right\}\right)$. To show the existence of the desired l_{2}-periodic point y_{2}, it suffices to see that $\sharp Q>0$. Consider first the case of $l_{2} \neq l_{1}$. If $l_{2} \geq 2$, then $Q=P_{l_{2}}^{+}$. Therefore, since $P_{1}\left(l_{2}, a_{2}\right) \ni \infty$, we have $\sharp Q>0$ by (9). If $l_{2}=1$, then the fixed point ∞ has index $1-a_{2} \leq 0$. Therefore Q is equal to $P_{1}^{+}-\left\{x_{1}\right\}$ and hence $\sharp Q>0$ by (9). Consider next the case of $l_{2}=l_{1}$. Then $\bigcup_{a} P_{1}\left(l_{2}, a\right) \supset\left\{x_{1}, \infty\right\}$, and $l_{2}>1$. Hence $\sharp Q=\sharp\left(P_{l_{2}}^{+}-Y_{1}\right) \geq a_{1} l_{1}+a_{2} l_{2}-l_{1}>0$. Thus we have verified the existence of y_{2}. Let Y_{2} be the orbit of y_{2}. For $i=1,2$, let $\left(m_{i}, b_{i}\right)$ be the type of y_{i}. Since y_{i} has index $1, m_{i} \geq 2$.

Arguing similarly as above, we can show that for $i=1,2, \phi$ has an $l_{i} m_{i}$-periodic point z_{i} in $\operatorname{Int} D-\left(Y_{1} \cup Y_{2}\right)$ of index 1 such that z_{1} and z_{2} belong to different orbits. Let Z_{i} be the orbit of z_{i}. It is clear that $\left\{x_{1}\right\}$, $Y_{1}, Y_{2}, Z_{1}, Z_{2}$ are mutually disjoint.

There are two cases to consider:
(1) $n \geq l_{1}\left(m_{1}+2\right)$ or $n \geq l_{2}\left(m_{2}+2\right)$.
(2) $n<l_{i}\left(m_{i}+2\right)$ for $i=1$ and 2 .

Case (1): In this case $n \geq l_{i_{0}}\left(m_{i_{0}}+2\right)$, where $i_{0}=1$ or 2 . To simplify the notation, let $l=l_{i_{0}}, a=a_{i_{0}}, m=m_{i_{0}}, b=b_{i_{0}}$. Let A be the annulus obtained from D by blowing up the point $y_{i_{0}}$ into a circle Γ. Let $g: A \rightarrow A$ be the blow-up of ϕ^{l} at $y_{i_{0}}$. Since x_{1} is a fixed point of $g, \rho\left(x_{1}, \tilde{g}\right)$ is an integer. By choosing an appropriate lift \tilde{g} of g, we can assume $\rho\left(x_{1}, \tilde{g}\right)=0$. Since $y_{i_{0}}$ has type $(m, b), \rho(\Gamma, \tilde{g})=d / m$ for some integer d prime to m. These imply that $\rho(\tilde{g})$ contains 0 and d / m, and hence it contains $[0,1 / m]$ or $[-1 / m, 0]$. We assume $\rho(\tilde{g}) \supset[0,1 / m]$, the other case being similar. Then, by Theorem 4, for any $s>m, g$ has an s-periodic point u_{s} with $\rho\left(u_{s}, \tilde{g}\right)=1 / s$. Since $s>m, u_{s} \notin \Gamma$ and hence u_{s} is an s-periodic point of ϕ^{l} and so $\operatorname{per}\left(u_{s}, \phi\right)$ is a divisor of $l s$.

There are two subcases:
(i) $\operatorname{per}\left(u_{s}, \phi\right)<l s$ for some s with $m<s \leq n / l$.
(ii) $\operatorname{per}\left(u_{s}, \phi\right)=l s$ for every s with $m<s \leq n / l$.

Case (i): Choose an s such that $m<s \leq n / l$ and $\operatorname{per}\left(u_{s}, \phi\right)<l s$. Let A^{\prime} be the annulus obtained by blowing up the point x_{1} to a circle Γ^{\prime}, and $g^{\prime}: A^{\prime} \rightarrow A^{\prime}$ the blow-up of ϕ at x_{1}. Let $\tilde{g}^{\prime}: \tilde{A}^{\prime} \rightarrow \tilde{A}^{\prime}$ be a lift of g^{\prime} to the universal cover \tilde{A}^{\prime} of A^{\prime}. We show that the hypotheses (a), (b), (c) of Lemma 3 are satisfied if we replace x_{0}, x, g there by x_{1}, u_{s}, g^{\prime} respectively.
(a) This is the assumption of Case (i).
(b) If $i_{0}=2$, then $\rho\left(\tilde{g}^{\prime}\right) \ni \rho\left(\partial D, \tilde{g}^{\prime}\right)=k / l$, where k is an integer prime to l. If $i_{0}=1$, then since x_{1} is of type $(l, a), \rho\left(\tilde{g}^{\prime}\right) \ni \rho\left(\Gamma^{\prime}, \tilde{g}^{\prime}\right)=k / l$ for some k prime to l.
(c) Since $\operatorname{per}\left(u_{s}, \phi\right)$ is a proper divisor of $l s$, it does not exceed $l s / 2$. Therefore, since $m \geq 2$ and the inequality $n \geq l(m+2)$ is assumed,

$$
2 l+\operatorname{per}\left(u_{s}, \phi\right) \leq \frac{l(m+2)}{2}+\frac{l s}{2} \leq \frac{n}{2}+\frac{n}{2}=n .
$$

Thus, all the hypotheses of Lemma 3 have been verified, and hence (8)
holds.
Case (ii): Let $\alpha=[n / l]$, where [] denotes the Gauss symbol, i.e. α is the greatest integer which does not exceed n / l. The hypothesis $n \geq l(m+2)$ implies that $\alpha \geq m+2 \geq 4$. Since $\sharp\left(P^{n}(\phi) \cap \operatorname{Int} D\right)$ is equal to the sum of periods of all interior periodic orbits with period $\leq n$, we have

$$
\begin{aligned}
\sharp\left(P^{n}(\phi) \cap \operatorname{Int} D\right) \geq & \operatorname{per}\left(x_{1}, \phi\right)+\operatorname{per}\left(y_{i_{0}}, \phi\right)+\operatorname{per}\left(z_{i_{0}}, \phi\right) \\
& +\sum_{s=m+1}^{\alpha} \operatorname{per}\left(u_{s}, \phi\right) \\
\geq & 1+l+\sum_{s=m}^{\alpha} l s \geq 1+l+\sum_{s=\alpha-2}^{\alpha} l s \\
\geq & 3 \alpha l-2 l+1 .
\end{aligned}
$$

Since $\alpha l \geq n-l+1$ and $\alpha \geq 4$, we have $3 \alpha l-2 l+1 \geq 2(n-l+1)+(\alpha-2) l+1 \geq$ $2 n+3$. Therefore (8) holds.

Case (2): Let \mathcal{S} (resp. \mathcal{S}_{1}) be the set of singularities (resp. one-pronged singularities) of \mathcal{F}^{s}. Note that \mathcal{S}_{1} is a subset of S by the definition of a pseudo-Anosov homeomorphism relative to S. Also, \mathcal{S}_{1} has no intersectin with the disjoint union of $\left\{x_{1}\right\}, Y_{1}, Y_{2}, Z_{1}, Z_{2}$, since every point in \mathcal{S}_{1} has index zero. Clearly $P^{n}(\phi) \cap \operatorname{Int} D$ contains x_{1}. Also it contains \mathcal{S}_{1}, since n is taken to satisfy $n \geq \operatorname{per}(S)$. Note that $P^{n}(\phi) \cap \operatorname{Int} D \supset Y_{i}$ (resp. Z_{i}) if $n \geq l_{i}$ (resp. $n \geq l_{i} m_{i}$). Therefore, if we let $\delta(k)=1$ or 0 according to whether $k \leq n$ or $k>n$, then we have

$$
\begin{equation*}
\sharp\left(P^{n}(\phi) \cap \operatorname{Int} D\right) \geq 1+\sharp \mathcal{S}_{1}+\sum_{i=1,2}\left(l_{i} \delta\left(l_{i}\right)+l_{i} m_{i} \delta\left(l_{i} m_{i}\right)\right) . \tag{10}
\end{equation*}
$$

Since the number of prongs at x_{1}, x_{2}, y_{i}, and any point in \mathcal{S}_{1} are $a_{1} l_{1}, 3$, $b_{i} m_{i}, 1$ respectively, the formula (1) implies the following:

$$
-2=\sum_{x \in \mathcal{S}}(p(x)-2) \geq\left(a_{1} l_{1}-2\right)+a_{2} l_{2}+\sum_{i=1,2} l_{i}\left(b_{i} m_{i}-2\right)-\sharp \mathcal{S}_{1}
$$

Hence

$$
\begin{equation*}
\sharp \mathcal{S}_{1} \geq \sum_{i=1,2} l_{i}\left(m_{i}-1\right) . \tag{11}
\end{equation*}
$$

Let

$$
\mu_{i}=l_{i}\left(m_{i}-1\right)+l_{i} \delta\left(l_{i}\right)+l_{i} m_{i} \delta\left(l_{i} m_{i}\right)
$$

Then we have by (10), (11),

$$
\begin{equation*}
\sharp\left(P^{n}(\phi) \cap \operatorname{Int} D\right) \geq \mu_{1}+\mu_{2}+1 . \tag{12}
\end{equation*}
$$

We have by the definition of μ_{i} :

$$
\mu_{i}= \begin{cases}l_{i}\left(m_{i}-1\right) & \text { if } n<l_{i} \\ l_{i} m_{i} & \text { if } l_{i} \leq n<l_{i} m_{i} \\ 2 l_{i} m_{i} & \text { if } l_{i} m_{i} \leq n<l_{i}\left(m_{i}+2\right)\end{cases}
$$

Since $l_{i}\left(m_{i}-1\right) \geq l_{i}$ and $2 l_{i} m_{i} \geq l_{i}\left(m_{i}+2\right)>n$, this implies that $\mu_{i} \geq n+1$. Hence (12) implies (8).
(II) We consider here the case where $\operatorname{bt}(S, f)$ is reducible and contains a pseudo-Anosov component. Choose a pseudo-Anosov component of ϕ and denote it by N. Let μ be the least positive integer such that $\phi^{\mu}(N)=N$. Let d be the number of boundary circles of N. Since N is homeomorphic to a disk possibly with finitely many open disks removed, N has a boundary circle C_{0} such that all the other boundary circles (called the inner boudary circles) lie inside of C_{0}. Denote the inner boundary circles of N by C_{1}, \ldots, C_{d-1}. Let D^{\prime} be the disk obtained from N by collapsing each $C_{i}(i=1, \ldots, d-1)$ to a point, which we denote by c_{i}. Let $S^{\prime}=(S \cap N) \cup\left\{c_{i}\right\}_{i=1}^{d-1}$. Let $\phi^{\prime}: D^{\prime} \rightarrow D^{\prime}$ be a pseudo-Anosov homeomorphism relative to S^{\prime} induced by $\phi^{\mu}: N \rightarrow N$.

Let $n^{\prime}=[n / \mu]$. We show $n^{\prime} \geq \operatorname{per}\left(S^{\prime}\right)$, where $\operatorname{per}\left(S^{\prime}\right)=\max _{x \in S^{\prime}}$ $\operatorname{per}\left(x, \phi^{\prime}\right)$. If $x \in S \cap N$, clearly $\operatorname{per}\left(x, \phi^{\prime}\right)=\operatorname{per}(x, \phi) / \mu \leq \operatorname{per}(S) / \mu$. Let X_{i} be the disk bounded by the simple closed curve C_{i}. Then $S \cap X_{i}$ has at least two points, since C_{i} is isotopic to a reducing curve in $D-S$. Choose a point w_{i} in $S \cap X_{i}$. Then C_{i} must go back to itself under per $\left(w_{i}, \phi\right)$ times iterate of ϕ. Hence $\operatorname{per}\left(c_{i}, \phi^{\prime}\right) \leq \operatorname{per}\left(w_{i}, \phi\right) / \mu \leq \operatorname{per}(S) / \mu$. Therefore we have $\operatorname{per}\left(S^{\prime}\right) \leq[\operatorname{per}(S) / \mu] \leq n^{\prime}$.

Thus, replacing ϕ, D, n in the estimate (8) by $\phi^{\prime}, D^{\prime}, n^{\prime}$ respectively, we have $\sharp\left(P^{n^{\prime}}\left(\phi^{\prime}\right) \cap \operatorname{Int} D^{\prime}\right) \geq 2 n^{\prime}+3$. Since $\operatorname{Int} N=\operatorname{Int} D^{\prime}-\left\{c_{i}\right\}_{i=1}^{d-1}$, this implies $\sharp\left(P^{n^{\prime}}\left(\phi^{\mu}\right) \cap \operatorname{Int} N\right) \geq 2 n^{\prime}+4-d$. Therefore, letting \bar{N} be the disjoint union of $N, \phi(N), \ldots, \phi^{\mu-1}(N)$, we have the following: (Note that
$\sharp\left(P^{n}(\phi) \cap \phi^{i}(\operatorname{Int} N)\right)$ is independent of i.)

$$
\begin{aligned}
\sharp\left(P^{n}(\phi) \cap \operatorname{Int} \bar{N}\right) & =\mu \sharp\left(P^{n}(\phi) \cap \operatorname{Int} N\right) \geq \mu \sharp\left(P^{n^{\prime}}\left(\phi^{\mu}\right) \cap \operatorname{Int} N\right) \\
& \geq \mu\left(2 n^{\prime}+4-d\right) .
\end{aligned}
$$

Therefore, since $L \supset \bar{N}, S \subset P^{n}(\phi)$, and $\sharp(S-\operatorname{Int} \bar{N}) \geq \mu \sum_{i=1}^{d-1} \sharp\left(S \cap X_{i}\right) \geq$ $2 \mu(d-1)$, we have

$$
\begin{aligned}
\sharp\left(P^{n}(\phi) \cap(S \cup \operatorname{Int} L)\right) & \geq \sharp\left(P^{n}(\phi) \cap \operatorname{Int} \bar{N}\right)+\sharp(S-\operatorname{Int} \bar{N}) \\
& \geq \mu\left(2 n^{\prime}+4-d\right)+2 \mu(d-1) \\
& \geq \mu\left(2 n^{\prime}+3\right) .
\end{aligned}
$$

Since $n^{\prime} \geq(n-\mu+1) / \mu$, we have $\mu\left(2 n^{\prime}+3\right) \geq 2 n+\mu+2 \geq 2 n+3$. Thus (7) is proved and the proof is completed.

4. Transversal homeomorphisms

We prove here some results on n-transversal homeomorphisms on the disk which will be needed to prove Theorem 2. Let S be a finite set in Int D. Let $\phi: D \rightarrow D$ be a canonical homeomorphism relative to S with a pseudoAnosov component. Let L be the union of all pseudo-Anosov components of ϕ.

Given a periodic point $x \in L$ of ϕ with period m, define integers $\nu^{n}(x, \phi)$ for $n \geq 1$ by

$$
\nu^{n}(x, \phi)= \begin{cases}\max _{1 \leq k \leq n / m}\left|\operatorname{ind}\left(x, \phi^{m k}\right)\right| & \text { if } n \geq m \text { and } x \notin \mathcal{S}_{1} \\ 2 & \text { if } n \geq m \text { and } x \in \mathcal{S}_{1} \\ 0 & \text { if } n<m\end{cases}
$$

Note that if x is in $\operatorname{Int} L-\mathcal{S}_{1}$ and has type (l, a), then by $(2), \nu^{n}(x, \phi)=a l-1$ if $n \geq m l$ and $\nu^{n}(x, \phi)=1$ if $m \leq n<m l$.

We can assume without loss of generality that ϕ has no periodic points on the open tubular neighborhood $A(\Sigma)$, and moreover that ϕ sends every point in $A(\Sigma)-\Sigma$ to a point having a greater distance from Σ. Then any singular point of \mathcal{F}^{s} (resp. \mathcal{F}^{u}) on ∂L has index -1 (resp. 0) as a periodic point of ϕ. This implies that if x is an m-periodic point in ∂L, then for any $n \geq m$, we have $\nu^{n}(x, \phi)=1$ or 0 according to whether $x \in \operatorname{Sing}\left(\mathcal{F}^{s}\right)$ or $x \in \operatorname{Sing}\left(\mathcal{F}^{u}\right)$.

We extend the definition of $\nu^{n}(x, \phi)$ for all points in L by setting
$\nu^{n}(x, \phi)=0$ for every non-periodic point x. For a subset E of L, let

$$
\nu^{n}(E, \phi)=\sum_{x \in E} \nu^{n}(x, \phi) .
$$

This sum can be defined, since $P^{n}(\phi)$ has finitely many points and so $\nu^{n}(x, \phi)=0$ except for finitely many x. To simplify the notation, we shall write $\nu^{n}(x), \nu^{n}(E)$ for $\nu^{n}(x, \phi), \nu^{n}(E, \phi)$ respectively. We have:

Proposition 3 Let n be a positive integer. Suppose $f: D \rightarrow D$ is an orientation-preserving n-transversal homeomorphism with $f(S)=S$ and $\operatorname{per}(S) \leq n$. Suppose f is isotopic to ϕ relative to S. Let N be a pseudoAnosov component of ϕ. Let μ be the least positive integer such that $\phi^{\mu}(N)=N$. Then we have

$$
\sharp P^{n}(f) \geq \mu\left(\nu^{n}(N)+2 d_{0}-d_{1}\right)
$$

where d_{0} (resp. d_{1}) is the number of inner boundary circles C of N which satisfy the condition that the common period of the periodic points on C is greater than n (resp. less than or equal to n).

Proof. Let $\bar{N}=\bigcup_{j=0}^{\mu-1} \phi^{j}(N)$. Let d be the number of boundary circles of N. Let C_{0} be the outer boundary circle of N, and C_{1}, \ldots, C_{d-1} the inner boundary circles. Let $\bar{C}_{0}=\bigcup_{j=0}^{\mu-1} \phi^{j}\left(C_{0}\right)$. Let X_{0} be the outer connected component of $D-\operatorname{Int} \bar{N}$, i.e., the connected component of $D-\operatorname{Int} \bar{N}$ which contains ∂D. Then $C_{0}=X_{0} \cap N$, and either $X_{0}=C_{0}=\partial D$ or X_{0} is a compact surface with boundary $\bar{C}_{0} \cup \partial D$. For $1 \leq i \leq d-1$, let X_{i} be the connected component of $D-\operatorname{Int} \bar{N}$ whose boundary circle is C_{i}. Namely, X_{i} is a disk bounded by the simple closed curve C_{i}. Clearly, for every $i>0$, X_{i} lies inside of C_{0}.

Let D_{S} be the compactification of $D-S, \pi_{S}: D_{S} \rightarrow D$ the projection, and Γ the union of the attached boundary circles. For $x \in S$, let $\Gamma_{x}=$ $\pi_{S}^{-1}(x)$. Let $N_{S}=\pi_{S}^{-1}(N) . N_{S}$ is a compact surface whose boundary circles are $C_{0}, C_{1}, \ldots, C_{d-1}, \Gamma_{x}(x \in S \cap N)$. Let $Y_{i}=\pi_{S}^{-1}\left(X_{i}\right)$ for $0 \leq i \leq d-1$. For $i>0, Y_{i}$ is a compact surface whose boundary is the union of C_{i} and $\Gamma_{x}, x \in S \cap X_{i}$.

Let $\phi_{S}: D_{S} \rightarrow D_{S}$ be the blow-up of ϕ at S. Let \mathcal{E} be the collection of the following subsets of D_{S} :

$$
\{x\}(x \in \operatorname{Int} N-S), \quad \Gamma_{x}(x \in S \cap N), \quad Y_{i}(1 \leq i \leq d-1)
$$

Let

$$
\overline{\mathcal{E}}=\left\{Y_{0}\right\} \cup\left\{\phi_{S}^{j}(E) \mid E \in \mathcal{E}, 0 \leq j \leq \mu-1\right\}
$$

Then D_{S} is the disjoint union of the sets in $\overline{\mathcal{E}}$.
An important property of $\overline{\mathcal{E}}$ is that for any $m>0$, every ϕ_{S}^{m}-Nielsen class is contained in exactly one of the elements of $\overline{\mathcal{E}}$. This follows easily from Lemma 2. Furthermore, if two invariant sets of ϕ_{S}^{m} are ϕ_{S}^{m}-related, then they are contained in the same element of $\overline{\mathcal{E}}$.

For $x \in S$ and $m \geq 1$, let V_{m}^{x} be the open disk centered at x introduced in the proof of Proposition 1. Since f is n-transversal, any fixed point of f^{m} is isolated for all $m \leq n$. Hence we can assume that x is the only point in the set $P^{n}(f) \cap V_{m}^{x}$. Let

$$
\begin{aligned}
V^{x} & =\bigcap_{m=1}^{n} V_{m}^{x}, \quad V=\bigcup_{x \in S} V^{x}, \quad V_{S}^{x}=\left(V^{x}-\{x\}\right) \cup \Gamma_{x} \\
V_{S} & =(V-S) \cup \Gamma
\end{aligned}
$$

These sets are open neighborhoods of x, S, Γ_{x} and Γ respectively. Perturbing f in a sufficiently small neighborhood of S contained in V, we obtain a homeomorphism $f^{\prime}: D \rightarrow D$ which is isotopic to f relative to S and has the blow-up, which we denote by f_{S}, at S. We can also require that for all $m \leq n, f^{m}$ and $\left(f^{\prime}\right)^{m}$ coincide away from V. Then for all $m \leq n$, we have $\left(f^{\prime}\right)^{m}\left(V^{x}\right)=f^{m}\left(V^{x}\right) \subset W^{f^{m}(x)}$ and hence every fixed point of f_{S}^{m} in V_{S}^{x} is f_{S}^{m}-related to Γ_{x}. Note also that $P^{n}\left(f_{S}\right)-V_{S}=P^{n}(f)-V$. Let $H=\left\{H_{t}\right\}: D_{S} \rightarrow D_{S}$ be the isotopy from ϕ_{S} to f_{S}.

For $E \in \overline{\mathcal{E}}$ and $m \geq 1$, define a subset $\Delta_{m}(E)$ of $\operatorname{Fix}\left(f_{S}^{m}\right)$ by

$$
\Delta_{m}(E)=\Delta_{H^{m}}(E)\left(=\Delta_{H^{m}}\left(E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right)\right)\right)
$$

where $H^{m}=\left\{H_{t}^{m}\right\}$. If E, E^{\prime} are distinct elements of $\overline{\mathcal{E}}$, then $\Delta_{m}(E)$ and $\Delta_{m^{\prime}}\left(E^{\prime}\right)$ are disjoint for any m, m^{\prime}. In fact, if they have an intersection for some m, m^{\prime}, then some $x \in E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right)$ and some $x^{\prime} \in E^{\prime} \cap \operatorname{Fix}\left(\phi_{S}^{m^{\prime}}\right)$ are $H^{m m^{\prime}}$-related to the same point, and hence x and x^{\prime} are $\phi_{S}^{m m^{\prime}}$-Nielsen equivalent. This contradicts the property of $\overline{\mathcal{E}}$ stated above.

Let E be an element of $\overline{\mathcal{E}}$. Since $E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right)$ is empty or a union of $\phi_{S^{-}}^{m}$ Nielsen classes and $\Delta_{H^{m}}$ preserves the fixed point index for each ϕ_{S}^{m}-Nielsen class, we have

$$
\begin{equation*}
\operatorname{ind}\left(\Delta_{m}(E), f_{S}^{m}\right)=\operatorname{ind}\left(E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right), \phi_{S}^{m}\right) \tag{13}
\end{equation*}
$$

For $m \geq 1$, let $\Theta_{m}(E)$ be the set of fixed points x of f_{S}^{m} satisfying the condition that x is f_{S}^{m}-related to some f_{S}^{m}-invariant, connected component of $\Gamma \cap E$. Note that $\Theta_{m}(E)-\Delta_{m}(E)$ is a union of f_{S}^{m}-Nielsen classes, and moreover all of these Nielsen classes are inessential. In fact, suppose F is an essential f_{S}^{m}-Nielsen class contained in $\Theta_{m}(E)$. If we denote by F^{\prime} the unique ϕ_{S}^{m}-Nielsen class satisfying $\Delta_{m}\left(F^{\prime}\right)=F$, then F^{\prime} is ϕ_{S}^{m}-related to $\Gamma \cap E$ by Lemma 1 and so $F^{\prime} \subset E$. This implies $F \subset \Delta_{m}(E)$, and hence $\Theta_{m}(E)-\Delta_{m}(E)$ contains no essential Nielsen classes. Thus the set $\Delta_{m}(E) \cup \Theta_{m}(E)$ has the same fixed point index under f_{S}^{m} as the set $\Delta_{m}(E)$. Note also that $\Delta_{m}(\Gamma \cap E) \subset \Theta_{m}(E)$. If E is a single point in $\operatorname{Int} N-S$, then $\Theta_{m}(E)$ is empty for every m, since $\Gamma \cap E$ is empty in this case. Let $V_{S}^{E}=\bigcup_{x} V_{S}^{x}$, where the union is taken over all $x \in S$ with $\Gamma_{x} \subset E$. It is clear that if E is a single point in $\operatorname{Int} N-S$, then V_{S}^{E} is empty. Also, if E is Γ_{x}, where $x \in S$, then $V_{S}^{E}=V_{S}^{x}$. We show that

$$
\begin{equation*}
\left(\Delta_{m}(E) \cup \Theta_{m}(E)\right) \cap V_{S} \subset V_{S}^{E} \tag{14}
\end{equation*}
$$

Suppose first that y is a point in $\Delta_{m}(E) \cap V_{S}$. Then there is a point $x \in E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right)$ which is H^{m}-related to y. Also, $y \in V_{S}^{z}$ for some $z \in S$. It follows from the property of V^{z} that y and Γ_{z} are f_{S}^{m}-related. Therefore by Lemma 1, x and Γ_{z} are ϕ_{S}^{m}-related, and hence by the property of $\overline{\mathcal{E}}$, they are contained in the same element of $\overline{\mathcal{E}}$. Since $x \in E$, this element must be E and hence $\Gamma_{z} \subset E$. Thus, $y \in V_{S}^{E}$. Suppose next that $y \in \Theta_{m}(E) \cap V_{S}$. Then $y \in V_{S}^{z}$ for some z, which implies y is f_{S}^{m}-related to Γ_{z}. On the other hand, $y \in \Theta_{m}(E)$ implies y is f_{S}^{m}-related to a component of $\Gamma \cap E$. These imply Γ_{z} is f_{S}^{m}-related, and so ϕ_{S}^{m}-related, to $\Gamma \cap E$. Hence $\Gamma_{z} \subset E$ and $y \in V_{S}^{E}$. Thus (14) is proved.

For $E \in \overline{\mathcal{E}}$, define a subset $F^{n}(E)$ of $P^{n}\left(f_{S}\right)-V_{S}$ by

$$
F^{n}(E)=\bigcup_{m=1}^{n}\left(\Delta_{m}(E) \cup \Theta_{m}(E)\right)-V_{S}
$$

Then it follows from the property of $\overline{\mathcal{E}}$ that $F^{n}(E), E \in \overline{\mathcal{E}}$, are disjoint subsets of $P^{n}(f)-S$. We can assume that $V^{f^{j}(x)} \subset f^{j}\left(V^{x}\right)$ for every $x \in S$ inside C_{0} and for all positive integers $j<\mu$. Then, for any $E \in \mathcal{E}$ and every positive $j<\mu$, we have $F^{n}\left(\phi_{S}^{j}(E)\right) \supset f_{S}^{j}\left(F^{n}(E)\right.$) and hence $\sharp F^{n}\left(\phi_{S}^{j}(E)\right) \geq \sharp F^{n}(E)$. Thus we obtain the following inequality:

$$
\begin{equation*}
\sharp P^{n}(f) \geq \mu \sum_{E \in \mathcal{E}} \sharp F^{n}(E)+\sharp F^{n}\left(Y_{0}\right)+\sharp S . \tag{15}
\end{equation*}
$$

We now estimate each term in the right-hand side of this inequality. Suppose m is a positive integer with $m \leq n$. Since f is n-transversal, any fixed point x of f^{m} has index 1 or -1 if $x \in \operatorname{Int} D$ (see 3.2 (2) in [14, p. 12]), and index $1,-1$, or 0 if $x \in \partial D$. Therefore, for any set K of fixed points of f_{S}^{m} in $D_{S}-V_{S}$, we have

$$
\begin{equation*}
\sharp K \geq\left|\operatorname{ind}\left(K, f_{S}^{m}\right)\right| \tag{16}
\end{equation*}
$$

Also, since for any $x \in S,\left(f^{\prime}\right)^{m}$ and f^{m} have the same fixed point index on V^{x} and $\operatorname{Fix}\left(f^{m}\right) \cap V^{x}=\{x\}$, we have for any $x \in \operatorname{Fix}\left(f^{m}\right) \cap S$, that

$$
\begin{equation*}
\operatorname{ind}\left(\operatorname{Fix}\left(f_{S}^{m}\right) \cap V_{S}^{x}, f_{S}^{m}\right)=\operatorname{ind}\left(x, f^{m}\right)-1=0 \text { or }-2 \tag{17}
\end{equation*}
$$

By (16), we see that if $\Delta_{m}(E)$ is disjoint from V_{S}, then

$$
\begin{equation*}
\sharp \Delta_{m}(E) \geq\left|\operatorname{ind}\left(\Delta_{m}(E), f_{S}^{m}\right)\right|=\left|\operatorname{ind}\left(E \cap \operatorname{Fix}\left(\phi_{S}^{m}\right), \phi_{S}^{m}\right)\right| \tag{18}
\end{equation*}
$$

Suppose $x \in \operatorname{Int} N-S$. We show

$$
\begin{equation*}
\sharp F^{n}(\{x\}) \geq \nu^{n}(x) . \tag{19}
\end{equation*}
$$

If $x \notin P^{n}(\phi)$, then clearly $F^{n}(\{x\})$ is empty and hence $\sharp F^{n}(\{x\})=0=$ $\nu^{n}(x)$. Suppose $x \in P^{n}(\phi)$. Let $m=\operatorname{per}(x, \phi)$. By (14), $\Delta_{j}(\{x\}) \cap V_{S}=\emptyset$ for any $j>0$, and hence $F^{n}(\{x\}) \supset \bigcup_{k \leq n / m} \Delta_{m k}(\{x\})$. Also, by (18) we have

$$
\sharp \Delta_{m k}(\{x\}) \geq\left|\operatorname{ind}\left(x, \phi_{S}^{m k}\right)\right|=\left|\operatorname{ind}\left(x, \phi^{m k}\right)\right|
$$

for any k. Therefore

$$
\sharp F^{n}(\{x\}) \geq \max _{k \leq \frac{n}{m}}\left|\operatorname{ind}\left(x, \phi^{m k}\right)\right|=\nu^{n}(x) .
$$

Thus (19) is proved.
Suppose $x \in S \cap N$. Let (l, a) be its type with respect to ϕ and $m=$ $l \operatorname{per}(x, \phi)$. Then m is the period of the periodic points of ϕ_{S} on Γ_{x}. Let $Q=\Delta_{m}\left(\Gamma_{x}\right) \cup \Theta_{m}\left(\Gamma_{x}\right), Q^{\prime}=Q \cap V_{S}^{x}$. Since $Q \cap V_{S} \subset Q^{\prime}$ by (14), we have $Q-V_{S} \supset Q-Q^{\prime}$ and hence by (16),

$$
\sharp F^{n}\left(\Gamma_{x}\right) \geq \delta(m) \sharp\left(Q-V_{S}\right) \geq \delta(m)\left|\operatorname{ind}\left(Q, f_{S}^{m}\right)-\operatorname{ind}\left(Q^{\prime}, f_{S}^{m}\right)\right|,
$$

where $\delta(m)$ is the number defined in I, Case (2) of Section 3. Since ϕ_{S}^{m} has al fixed points of index -1 on Γ_{x}, we see by (13) that

$$
\operatorname{ind}\left(Q, f_{S}^{m}\right)=\operatorname{ind}\left(\Delta_{m}\left(\Gamma_{x}\right), f_{S}^{m}\right)=\operatorname{ind}\left(\Gamma_{x} \cap \operatorname{Fix}\left(\phi_{S}^{m}\right), \phi_{S}^{m}\right)=-a l
$$

Since $Q^{\prime}=\operatorname{Fix}\left(f_{S}^{m}\right) \cap V_{S}^{x}$, we have by (17) that if $m \leq n$ then $\operatorname{ind}\left(Q^{\prime}, f_{S}^{m}\right)=$ $0,-2$. As a consequence, if $x \notin \mathcal{S}_{1}$, then $\sharp F^{n}\left(\Gamma_{x}\right) \geq \delta(m)(a l-2) \geq \nu^{n}(x)-1$. Suppose $x \in \mathcal{S}_{1}$. Then since $m=\operatorname{per}(x, \phi) \leq \operatorname{per}(S) \leq n$, we have $\delta(m)=1$. Also ind $\left(Q, f_{S}^{m}\right)=-a l=-1$. Therefore we have $\sharp F^{n}\left(\Gamma_{x}\right) \geq 1=\nu^{n}(x)-1$. Thus, in either case, we have proved that

$$
\begin{equation*}
\sharp F^{n}\left(\Gamma_{x}\right) \geq \nu^{n}(x)-1 \tag{20}
\end{equation*}
$$

Let i be an integer with $0 \leq i \leq d-1$. Let n_{i} denote the period of a periodic point of ϕ on C_{i}. Note that n_{i} does not depend on the choice of a periodic point. Note also that d_{0} (resp. d_{1}) is equal to the number of integers i such that $1 \leq i \leq d-1$ and $n<n_{i}$ (resp. $n \geq n_{i}$). Let $u_{i}=\sharp\left(\operatorname{Sing}\left(\mathcal{F}^{s}\right) \cap C_{i}\right)$, i.e., the cardinality of the set of periodic points of ϕ_{S} on C_{i} with index -1 . Then $u_{i}>0$, since \mathcal{F}^{s} has at least one singularity on each boundary circle. Let λ_{i} be the number of points in $S \cap X_{i}$ which are fixed by $\phi^{n_{i}}$ (or equivalently by $\cdot f^{n_{i}}$). Then λ_{i} is equal to the number of connected components of $\Gamma \cap Y_{i}$ which are invariant under $\phi_{S}^{n_{i}}$. Therefore, since $\Theta_{n_{i}}\left(Y_{i}\right) \cap V_{S}$ is identical to $\operatorname{Fix}\left(f_{S}^{n_{i}}\right) \cap V_{S}^{Y_{i}}$, which is the union of $\operatorname{Fix}\left(f_{S}^{n_{i}}\right) \cap V_{S}^{x}$ for all $x \in S \cap X_{i} \cap \operatorname{Fix}\left(f^{n_{i}}\right)$, we have by (17) that if $n \geq n_{i}$ then

$$
\begin{equation*}
0 \geq \operatorname{ind}\left(\Theta_{n_{i}}\left(Y_{i}\right) \cap V_{S}, f_{S}^{n_{i}}\right) \geq-2 \lambda_{i} \tag{21}
\end{equation*}
$$

Consider the case of $i>0$. Let A_{i} be the reducing annulus which is contained in Y_{i} and is adjacent to N. Let Σ_{i} be the reducing curve lying in A_{i}. Let A_{i}^{\prime} be the connected components of $A_{i}-\Sigma_{i}$ which is adjacent to N, and let $Y_{i}^{0}=Y_{i}-A_{i}^{\prime}$. Then, Y_{i}^{0} is a compact surface which has Σ_{i} as a boundary circle, and $\phi_{S}^{n_{i}}$ maps Y_{i}^{0} onto itself. Let η be the restriction of $\phi_{S}^{n_{i}}$ to Y_{i}^{0}. Since ϕ is assumed to have no periodic points on $A_{i}, \operatorname{ind}\left(\left(Y_{i}-C_{i}\right) \cap \operatorname{Fix}\left(\phi_{S}^{n_{i}}\right), \phi_{S}^{n_{i}}\right)$ is equal to $\operatorname{ind}\left(Y_{i}^{0} \cap \operatorname{Fix}\left(\phi_{S}^{n_{i}}\right), \eta\right)=$ $\operatorname{ind}(\operatorname{Fix}(\eta), \eta)$, and hence equal to the Lefschetz number of η. Since this Lefschetz number is easily seen to be $1-\lambda_{i}$, we have by (13)

$$
\begin{aligned}
\operatorname{ind}\left(\Delta_{n_{i}}\left(Y_{i}\right), f_{S}^{n_{i}}\right)= & \operatorname{ind}\left(Y_{i} \cap \operatorname{Fix}\left(\phi_{S}^{n_{i}}\right), \phi_{S}^{n_{i}}\right) \\
= & \operatorname{ind}\left(C_{i} \cap \operatorname{Fix}\left(\phi_{S}^{n_{i}}\right), \phi_{S}^{n_{i}}\right) \\
& +\operatorname{ind}\left(\left(Y_{i}-C_{i}\right) \cap \operatorname{Fix}\left(\phi_{S}^{n_{i}}\right), \phi_{S}^{n_{i}}\right) \\
= & -u_{i}+\left(1-\lambda_{i}\right)
\end{aligned}
$$

Therefore, since $\left(\Delta_{n_{i}}\left(Y_{i}\right) \cup \Theta_{n_{i}}\left(Y_{i}\right)\right) \cap V_{S}=\Theta_{n_{i}}\left(Y_{i}\right) \cap V_{S}$, and since $\Delta_{n_{i}}\left(Y_{i}\right) \cup$
$\Theta_{n_{i}}\left(Y_{i}\right)$ has the same fixed point index as $\Delta_{n_{i}}\left(Y_{i}\right)$, we see by (16), (21) that if $n \geq n_{i}$ then

$$
\begin{aligned}
& \sharp\left(\Delta_{n_{i}}\left(Y_{i}\right) \cup \Theta_{n_{i}}\left(Y_{i}\right)-V_{S}\right) \geq \operatorname{ind}(\left.\Theta_{n_{i}}\left(Y_{i}\right) \cap V_{S}, f_{S}^{n_{i}}\right) \\
&-\operatorname{ind}\left(\Delta_{n_{i}}\left(Y_{i}\right), f_{S}^{n_{i}}\right) \\
& \geq u_{i}-\lambda_{i}-1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sharp F^{n}\left(Y_{i}\right) \geq \delta\left(n_{i}\right)\left(u_{i}-\lambda_{i}-1\right)=\nu^{n}\left(C_{i}\right)-\delta\left(n_{i}\right)\left(\lambda_{i}+1\right) \tag{22}
\end{equation*}
$$

Now consider the case of $i=0$. Then, in the same way as in the case of $i>0$, we can prove that

$$
\begin{aligned}
\operatorname{ind}\left(\Delta_{n_{0}}\left(Y_{0}\right), f_{S}^{n_{0}}\right)= & \operatorname{ind}\left(\bar{C}_{0} \cap \operatorname{Fix}\left(\phi_{S}^{n_{0}}\right), \phi_{S}^{n_{0}}\right) \\
& +\operatorname{ind}\left(\left(Y_{0}-\bar{C}_{0}\right) \cap \operatorname{Fix}\left(\phi_{S}^{n_{0}}\right), \phi_{S}^{n_{0}}\right) \\
= & -\mu u_{0}+\left(1-\mu-\lambda_{0}\right)
\end{aligned}
$$

Hence, if $n \geq n_{0}$, then by (16), (21), $\sharp\left(\Delta_{n_{0}}\left(Y_{0}\right) \cup \Theta_{n_{0}}\left(Y_{0}\right)-V_{S}\right) \geq-2 \lambda_{0}-$ $\left(-\mu u_{0}+1-\mu-\lambda_{0}\right) \geq \mu u_{0}-\lambda_{0}$. Therefore

$$
\begin{align*}
\sharp F^{n}\left(Y_{0}\right) \geq \delta\left(n_{0}\right)\left(\mu u_{0}-\lambda_{0}\right) & \geq \mu \nu^{n}\left(C_{0}\right)-\delta\left(n_{0}\right) \lambda_{0} \\
& \geq \mu \nu^{n}\left(C_{0}\right)-\lambda_{0} . \tag{23}
\end{align*}
$$

Since S has at least $\max \left\{\lambda_{i}, 2\right\}$ points in X_{i},

$$
\sharp S \geq \mu \sharp(S \cap N)+\mu \sum_{i>0} \max \left\{\lambda_{i}, 2\right\}+\lambda_{0} .
$$

This implies that

$$
-\lambda_{0}+\sharp S \geq \mu\left(\sharp(S \cap N)+\sum_{i>0} \delta\left(n_{i}\right)\left(\lambda_{i}+1\right)+2 d_{0}-d_{1}\right),
$$

since $\max \left\{\lambda_{i}, 2\right\}-\delta\left(n_{i}\right)\left(\lambda_{i}+1\right) \geq 2$ or -1 according to $n<n_{i}$ or $n \geq n_{i}$. Thus by (15), (19), (20), (22), (23),

$$
\begin{aligned}
\sharp P^{n}(f) \geq \mu(& \sum_{x \in \operatorname{Int} N-S} \nu^{n}(x)+\sum_{x \in S \cap N}\left(\nu^{n}(x)-1\right) \\
& \left.+\sum_{i>0}\left(\nu^{n}\left(C_{i}\right)-\delta\left(n_{i}\right)\left(\lambda_{i}+1\right)\right)\right)+\mu \nu^{n}\left(C_{0}\right)-\lambda_{0}+\sharp S
\end{aligned}
$$

$$
\begin{aligned}
& \geq \mu\left(\nu^{n}(N)-\sharp(S \cap N)-\sum_{i>0} \delta\left(n_{i}\right)\left(\lambda_{i}+1\right)\right)-\lambda_{0}+\sharp S \\
& \geq \mu\left(\nu^{n}(N)+2 d_{0}-d_{1}\right) .
\end{aligned}
$$

In the rest of this section, we return to the situation of Lemma 3 in Section 2, i.e. $\phi: D \rightarrow D$ is an orientation-preserving generalized pseudoAnosov homeomorphism, $x_{0} \in \operatorname{Int} D$ a fixed point of $\phi, g: A \rightarrow A$ the blow-up of ϕ at x_{0}, and $\tilde{g}: \tilde{A} \rightarrow \tilde{A}$ a lift of g. Given a positive integer n and an integer k prime to n, let

$$
P_{n, k}(g)=\left\{x \in P_{n}(g) \mid \rho(x, \tilde{g})=k / n\right\} .
$$

Each $P_{n, k}(g)$ is identical to some g^{n}-Nielsen class. Since g is homotopic to the identity map, every g^{n}-Nielsen class has index zero. Therefore, we have:

$$
\begin{equation*}
\operatorname{ind}\left(P_{n, k}(g), g^{n}\right)=0 \tag{24}
\end{equation*}
$$

Lemma 4 Assume all the hypotheses of Lemma 3. Then $\nu^{n}(D) \geq 3 n+8$.
Proof. Let $k_{1} / l_{1}, \ldots, k_{\beta} / l_{\beta}$ be the rational numbers and $\left\{x_{i}\right\}_{i=1}^{\beta}$ the interior periodic points of g in the proof of Lemma 3. Let X_{i} denote the orbit of x_{i}. Then X_{i} is a periodic orbit of ϕ in $\operatorname{Int} D-\left\{x_{0}\right\}$ with period $l_{i} \leq n$. If $X_{i} \subset \mathcal{S}_{1}$, then $\nu^{n}\left(X_{i}\right)=2 l_{i}$ by the definition of ν^{n}. Suppose X_{i} is not contained in \mathcal{S}_{1}. Since $x_{i} \in P_{l_{i}, k_{i}}(g)$ and by (2) $\operatorname{ind}\left(x_{i}, g^{l_{i}}\right) \neq 0$, it follows from (24) that there is another l_{i}-periodic point x_{i}^{\prime} in A with nonzero index and rotation number k_{i} / l_{i}. Let X_{i}^{\prime} be the orbit of x_{i}^{\prime}. Since x_{i} and x_{i}^{\prime} have nonzero index, $\nu^{n}\left(X_{i}\right), \nu^{n}\left(X_{i}^{\prime}\right) \geq l_{i}$. Let Γ be the boundary circle of A corresponding to x_{0}. Divide $\{1, \ldots, \beta\}$ into three subsets J_{1}, J_{2}, J_{3} given by

$$
\begin{aligned}
& J_{1}=\left\{i \mid X_{i} \subset \mathcal{S}_{1}\right\}, \quad J_{2}=\left\{i \notin J_{1} \mid X_{i}^{\prime} \cap \Gamma=\emptyset\right\}, \\
& J_{3}=\left\{i \notin J_{1} \mid X_{i}^{\prime} \subset \Gamma\right\} .
\end{aligned}
$$

Since $X_{i}^{\prime} \subset \Gamma$ implies $k_{i} / l_{i}=\rho(\Gamma, \tilde{g})$, it is impossible that J_{3} contains more than one element. Therefore, J_{3} is empty or consists of a single integer, say i_{0}. Consider first the case of $J_{3}=\left\{i_{0}\right\}$. Then x_{0} has type $\left(l_{i_{0}}, a\right)$ for some $a \geq 1$. Since $n \geq l_{i_{0}}$, this implies that $\nu^{n}\left(x_{0}\right) \geq l_{i_{0}}-1$. Therefore, since

$$
\begin{aligned}
& l_{1}+\cdots+l_{\beta} \geq 2 n+2 \\
& \qquad \begin{aligned}
\nu^{n}(D) & \geq \sum_{i \in J_{1}} \nu^{n}\left(X_{i}\right)+\sum_{i \in J_{2}} \nu^{n}\left(X_{i} \cup X_{i}^{\prime}\right)+\nu^{n}\left(X_{i_{0}}\right)+\nu^{n}\left(x_{0}\right) \\
& \geq 2 \sum_{i \neq i_{0}} l_{i}+l_{i_{0}}+\left(l_{i_{0}}-1\right) \geq 4 n+3
\end{aligned}
\end{aligned}
$$

Since the assumption (a) implies $l \geq 2$, we have $n \geq 5$ by (c) and hence $4 n+3 \geq 3 n+8$. Thus we have the proof in this case. The proof for the case of J_{3} empty is easier.

5. Proof of Theorem 2

The proof is divided into two parts (I), (II).
(I) Consider the case where $\mathrm{bt}(S, f)$ is pseudo-Anosov. Then the canonical homeomorphism ϕ isotopic to f is pseudo-Anosov relative to S, and we have $\sharp P^{n}(f) \geq \nu^{n}(D)$ by Proposition 3. Therefore, it is enough to show that

$$
\begin{equation*}
\nu^{n}(D) \geq 3 n+6 \tag{25}
\end{equation*}
$$

Let $x_{i}, y_{i}, z_{i}(i=1,2)$ be the periodic points of ϕ introduced in Section 3. x_{1} is a fixed point of index 1 , and its type is denoted by $\left(l_{1}, a_{1}\right) . x_{2}$ is one of the periodic points on ∂D with index -1 ; its period is l_{2} and there are $a_{2} l_{2}$ periodic points on ∂D with index $-1 . y_{i}$ is an l_{i}-periodic point of index 1 , and its type is $\left(m_{i}, b_{i}\right) . z_{i}$ is an $l_{i} m_{i}$-periodic point of index 1. Let X_{i}, Y_{i}, Z_{i} be the orbits of x_{i}, y_{i}, z_{i} respectively.

We have two cases to consider:
(1) $n \geq l_{i_{0}}\left(m_{i_{0}}+2\right)$, where i_{0} is 1 or 2 .
(2) $n<l_{i}\left(m_{i}+2\right)$ for $i=1$ and 2 .

Case (1): Let $l=l_{i_{0}}, m=m_{i_{0}}$. Let $g: A \rightarrow A$ be the blow-up of ϕ^{l} at $y_{i_{0}}$. Let Γ be a circle corresponding to $y_{i_{0}}$, and $\alpha=[n / l]$. For s with $m<s \leq \alpha$, let $U_{s}=P_{s, 1}(g) \cup P_{s,-1}(g)$. We have shown in Section 3 that U_{s} is not empty for any s, if we choose the lift \tilde{g} appropriately.

Consider first the case where, for some s, U_{s} contains an element u with $\operatorname{per}(u, \phi)<l s$. Then, as has been shown in Case (1), (i) of Section 3, all the hypotheses of Lemma 3 are satisfied if x_{0}, x are replaced by x_{1}, u respectively. Thus by Lemma 4, (25) is proved.

Consider next the case where $\operatorname{per}(u, \phi)=l s$ for any s and any $u \in U_{s}$.

Let $W=X_{i_{0}} \cup Y_{i_{0}} \cup \operatorname{Fix}(\phi)$. Since $\rho(\Gamma, \tilde{g})=d / m$ for some d prime to m, we see $U_{s} \cap \Gamma$ is empty. Therefore U_{s} can be thought of as a subset of D. Moreover, $\left\{U_{s}\right\}_{s>m}, Z_{i_{0}}$, and W are mutually disjoint subsets of D. Thus

$$
\begin{equation*}
\nu^{n}(D) \geq \sum_{s=m+1}^{\alpha} \nu^{n}\left(U_{s}\right)+\nu^{n}\left(Z_{i_{0}}\right)+\nu^{n}(W) \tag{26}
\end{equation*}
$$

Note that $\nu^{n}\left(Z_{i_{0}}\right) \geq l m$. We show $\nu^{n}\left(U_{s}\right) \geq 2 l s$. In fact, if $U_{s} \subset \mathcal{S}_{1}$, then by the definition of $\nu^{n}, \nu^{n}\left(U_{s}\right) \geq 2 l s$. Also if U_{s} is disjoint from \mathcal{S}_{1}, then every point in U_{s} has nonzero index, and hence by (24), U_{s} contains at least two $l s$-periodic orbits with nonzero index. Thus $\nu^{n}\left(U_{s}\right) \geq 2 l s$. Therefore, since $n \geq l(m+2)$ and hence $\alpha-1 \geq m+1$, we have

$$
\sum_{s=m+1}^{\alpha} \nu^{n}\left(U_{s}\right) \geq \sum_{s=\alpha-1}^{\alpha} 2 l s \geq 2 l(2 \alpha-1)
$$

We show $\nu^{n}(W) \geq 2 l+\epsilon$, where $\epsilon=1,-1$ according to $l=1$ or $l \geq 2$. If $l \geq 2$, then

$$
\nu^{n}(W) \geq \nu^{n}\left(X_{i_{0}}\right)+\nu^{n}\left(Y_{i_{0}}\right) \geq(a l-1)+l(b m-1) \geq 2 l-1
$$

In the case of $l=1$, we have $\nu^{n}(W) \geq 3$. In fact, $l=1$ is possible only if $i_{0}=2$. Then x_{2} is a fixed point of ϕ on ∂D with index -1 . Therefore, since $\chi(D)=1$, there must be a fixed point of nonzero index different from x_{1} and x_{2}. Thus, $\nu^{n}(W) \geq \nu^{n}(\operatorname{Fix}(\phi)) \geq 3$.

The above estimates together with (26) imply $\nu^{n}(D) \geq 4 l \alpha+l m+\epsilon$. Since $l \alpha \geq n-l+1$ and $n \geq l(m+2)$, this implies $\nu^{n}(D)-(3 n+6) \geq$ $2 l(m-1)-2+\epsilon>0$. Hence (25) holds.

Case (2): Let

$$
\begin{aligned}
\nu_{1} & =2 l_{1}\left(m_{1}-1\right)+\left(2 l_{1}-2\right) \delta\left(l_{1}\right)+2 l_{1}\left(m_{1}-1\right) \delta\left(l_{1} m_{1}\right)+1 \\
\nu_{2} & =2 l_{2}\left(m_{2}-1\right)+2 l_{2} \delta\left(l_{2}\right)+2 l_{2}\left(m_{2}-1\right) \delta\left(l_{2} m_{2}\right)
\end{aligned}
$$

For $i=1,2$, let $Q_{i}=X_{i} \cup Y_{i} \cup Z_{i}$. Then we have:
Lemma $5 \quad \nu^{n}\left(\mathcal{S}_{1} \cup Q_{1} \cup Q_{2}\right) \geq \nu_{1}+\nu_{2}$.
Proof. \quad Since $\operatorname{ind}\left(x_{1}, \phi^{l_{1}}\right)=1-a_{1} l_{1}, \operatorname{ind}\left(x_{2}, \phi^{l_{2}}\right)=-1, \operatorname{ind}\left(y_{i}, \phi^{l_{i} m_{i}}\right)=$
$1-b_{i} m_{i}$, we have

$$
\begin{array}{ll}
\nu^{n}\left(X_{1}\right)=1+\left(a_{1} l_{1}-2\right) \delta\left(l_{1}\right), & \nu^{n}\left(X_{2}\right)=a_{2} l_{2} \delta\left(l_{2}\right) \tag{27}\\
\nu^{n}\left(Y_{i}\right)=l_{i} \delta\left(l_{i}\right)+l_{i}\left(b_{i} m_{i}-2\right) \delta\left(l_{i} m_{i}\right), & \nu^{n}\left(Z_{i}\right) \geq l_{i} m_{i} \delta\left(l_{i} m_{i}\right)
\end{array}
$$

Also by (11), we have $\nu^{n}\left(\mathcal{S}_{1}\right)=2 \sharp \mathcal{S}_{1} \geq 2 \sum_{i=1}^{2} l_{i}\left(m_{i}-1\right)$. Therefore, since $\mathcal{S}_{1}, Q_{1}, Q_{2}$ are mutually disjoint, we have the lemma.

Lemma 6

$$
\begin{aligned}
& \nu_{1} \geq \begin{cases}2 n+3 & \text { if } n \leq l_{1} \\
2 n+1 & \text { if } n<3 l_{1} \text { or } m_{1} \geq 3 \\
n+4 & \text { for any } n \geq 1,\end{cases} \\
& \nu_{2} \geq \begin{cases}2 n+2 & \text { if } n<3 l_{2} \text { or } m_{2} \geq 3 \\
n+5 & \text { if } n \geq l_{2} \geq 2 \\
n+3 & \text { if } \quad l_{2}=1\end{cases}
\end{aligned}
$$

Proof. These follow from the following, which can be easily verified:

$$
\begin{aligned}
& \nu_{1}= \begin{cases}2 l_{1}\left(m_{1}-1\right)+1 \geq 2 l_{1}+1 & \text { if } n<l_{1} \\
2 l_{1} m_{1}-1 & \text { if } l_{1} \leq n<l_{1} m_{1} \\
4 l_{1} m_{1}-2 l_{1}-1 & \text { if } l_{1} m_{1} \leq n<l_{1}\left(m_{1}+2\right),\end{cases} \\
& \nu_{2}= \begin{cases}2 l_{2}\left(m_{2}-1\right) \geq 2 l_{2} & \text { if } n<l_{2} \\
2 l_{2} m_{2} & \text { if } l_{2} \leq n<l_{2} m_{2} \\
l_{2}\left(4 m_{2}-2\right) & \text { if } l_{2} m_{2} \leq n<l_{2}\left(m_{2}+2\right) .\end{cases}
\end{aligned}
$$

Let Λ be the set of pairs (l, m) of integers which satisfy $n<3 l$ or $m \geq 3$. There are four subcases.
(i) $\left(l_{2}, m_{2}\right) \in \Lambda$.
(ii) $\left(l_{1}, m_{1}\right) \in \Lambda,\left(l_{2}, m_{2}\right) \notin \Lambda$, and $l_{2} \geq 2$.
(iii) $\left(l_{1}, m_{1}\right) \in \Lambda,\left(l_{2}, m_{2}\right) \notin \Lambda$, and $l_{2}=1$.
(iv) $\left(l_{1}, m_{1}\right),\left(l_{2}, m_{2}\right) \notin \Lambda$.

Case (i): By Lemma 6, $\nu_{1} \geq n+4$ and $\nu_{2} \geq 2 n+2$. Then Lemma 5 implies (25).

Case (ii): Since $\left(l_{2}, m_{2}\right) \notin \Lambda$, we have $n \geq 3 l_{2}$. Therefore, by Lemma 6, $\nu_{1} \geq 2 n+1$ and $\nu_{2} \geq n+5$, and so (25) holds.

Case (iii): This case is possible only if $n=3$. In fact, since $n \geq 3 l_{2}$, $m_{2}=2$, and the inequality $n<l_{2}\left(m_{2}+2\right)$ is assumed, the hypothesis $l_{2}=1$ implies $n=3$. Note that by (11) we see that \mathcal{S}_{1} has at least three points. There are three subcases:

$$
\begin{array}{ll}
\text { (iii-a) } & l_{1} \geq 3 . \\
\text { (iii-b) } & l_{1}=2 \text { and } \sharp \mathcal{S}_{1} \geq 4 . \\
\text { (iii-c) } & \sharp \mathcal{S}_{1}=3 .
\end{array}
$$

Case (iii-a): Since $n=3 \leq l_{1}$, by Lemma 6, $\nu_{1} \geq 2 n+3$. Therefore, $\nu_{2} \geq n+3$ implies (25).

Case (iii-b): By (27), we have $\nu^{3}\left(X_{1} \cup X_{2}\right)=a_{1} l_{1}-1+a_{2} l_{2} \geq 2, \nu^{3}\left(Y_{1} \cup\right.$ $\left.Y_{2}\right) \geq l_{1}+l_{2}=3$, and $\nu^{3}\left(Z_{2}\right) \geq l_{2} m_{2}=2$. Therefore, since $\nu^{3}\left(\mathcal{S}_{1}\right) \geq 8$, we see $\nu^{3}\left(\mathcal{S}_{1} \cup Q_{1} \cup Q_{2}\right) \geq 15=3 n+6$.

Case (iii-c): Let ψ be the homeomorphism on the sphere S^{2} induced by ϕ by collapsing ∂D to a point ∞. Then ψ is pseudo-Anosov relative to the invariant set $\mathcal{S}_{1} \cup\{\infty\}$. Since this invariant set has four points, ψ^{q} has $\operatorname{tr} A^{q}$ fixed points on S^{2} for every $q \geq 1$, where A is a 2×2 matrix whose entries are all positive integers and $\operatorname{tr} A \geq 3$. (See [19, Theorem 2.4] or [20, p. 70].) This implies $\sharp \operatorname{Fix}\left(\psi^{3}\right) \geq \operatorname{tr} A^{3} \geq 18$, and hence the set $\operatorname{Fix}\left(\phi^{3}\right) \cap \operatorname{Int} D$ has at least 17 points. Since $\nu^{3}(x)>0$ for any x in this set, we have $\nu^{3}(D) \geq 17$ and (25) holds.

Case (iv): The hypotheses imply that $m_{i}=2$ and

$$
\begin{equation*}
3 l_{i} \leq n<l_{i}\left(m_{i}+2\right)=4 l_{i} \tag{28}
\end{equation*}
$$

for $i=1$ and 2 . Note that, since $l_{1} \geq 2$, (28) implies $l_{2} \geq 2$ and Q_{2} contains no fixed points. Therefore, if we let $R=\operatorname{Fix}(\phi)-\left(\mathcal{S}_{1} \cup X_{1}\right)$, then R is disjoint from $\mathcal{S}_{1}, Q_{1}, Q_{2}$. Since $l_{1} m_{1}=2 l_{1}<n \leq 4 l_{1}-1$ by (28), we have $\nu^{n}\left(Q_{1}\right) \geq 4 l_{1}-1 \geq n$ by (27). Similarly $\nu^{n}\left(Q_{2}\right) \geq 4 l_{2} \geq n+1$. Therefore

$$
\begin{equation*}
\nu^{n}\left(\mathcal{S}_{1} \cup Q_{1} \cup Q_{2} \cup R\right) \geq 2 \sharp \mathcal{S}_{1}+2 n+1+\nu^{n}(R) . \tag{29}
\end{equation*}
$$

There are three subcases.
(iv-a) $\quad l_{2} \geq 2$ and $\sharp \mathcal{S}_{1} \geq 2 l_{2}+2$.
(iv-b) $l_{2}=2$ and $\sharp \mathcal{S}_{1}=5$.

$$
\text { (iv-c) } \quad l_{2} \geq 3 \text { and } \sharp \mathcal{S}_{1} \leq 2 l_{2}+1 \text {, or } l_{2}=2 \text { and } \sharp \mathcal{S}_{1} \leq 4 .
$$

Case (iv-a): In this case, $2 \sharp \mathcal{S}_{1} \geq 4 l_{2}+4 \geq n+5$. Therefore (25) follows from (29).

Case (iv-b): Let $\mathcal{S}^{\prime}=\mathcal{S}-\left(\mathcal{S}_{1} \cup \partial D\right)$. Then by (1) the sum $\sum_{x \in \mathcal{S}^{\prime}}(2-p(x))$ is equal to $2-\sharp \mathcal{S}_{1}+a_{2} l_{2}=2 a_{2}-3$, and hence equal to -1 or a positive number. Since $2-p(x)$ is negative for any $x \in \mathcal{S}^{\prime}$, this sum must be -1 . This means that there is one and only one singularity in \mathcal{S}^{\prime} and moreover it must be 3 -pronged. We denote this singurality by x_{0}. Then, since x_{0} is 3 -pronged, $\operatorname{ind}\left(x_{0}, \phi\right)=1$ or -2 . Since $l_{2}=2, l_{1}=2$ by (28) and hence x_{1} is a regular point of \mathcal{F}^{s}. This implies $x_{0} \neq x_{1}$, and so $x_{0} \in R$. Since x_{1} has index one and any point of \mathcal{S}_{1} has index zero, R has fixed point index zero. Therefore, R has a fixed point of nonzero index different from x_{0}. This implies $\nu^{n}(R) \geq 2$. Therefore, since $n=6$ or 7 by (28), we have $2 \sharp \mathcal{S}_{1}+\nu^{n}(R) \geq 12 \geq n+5$. Thus (25) follows from (29).

Case (iv-c): Let $g: A \rightarrow A$ be the blow-up of $\phi^{l_{2}}$ at y_{2}. Since y_{2} has type $\left(m_{2}, b_{2}\right)=\left(2, b_{2}\right)$, we see $\rho(\Gamma, \tilde{g})=d / 2$, where Γ is a boundary circle corresponding to y_{2} and d is odd. Also, $\rho(\partial D, \tilde{g})$ is an integer. Therefore, we can assume that $\rho(\tilde{g})$ contains $[0,1 / 2]$ or $[-1 / 2,0]$. We assume $\rho(\tilde{g}) \supset$ $[0,1 / 2]$, the other case being similar. Then by Theorem 4, there is a 3 periodic point of g with rotation number $1 / 3$. Choose such a point w. It is easy to see that w is an interior periodic point of ϕ and $w \in \operatorname{Fix}\left(\phi^{3 l_{2}}\right)-$ $\operatorname{Fix}\left(\phi^{l_{2}}\right)$. Hence $\operatorname{per}(w, \phi)$ is written as $\operatorname{per}(w, \phi)=3 l_{2} / r$, where r is a divisor of l_{2} and $r \neq 3$.

If $r \geq 4$, then $\operatorname{per}(w, \phi)<l_{2} \leq l_{2} \operatorname{per}\left(w, \phi^{l_{2}}\right)$. Also by (28), $2 l_{2}+$ $\operatorname{per}(w, \phi)<3 l_{2} \leq n$. Let $g^{\prime}: A^{\prime} \rightarrow A^{\prime}$ be the blow-up of ϕ at x_{1}. Then $\rho\left(\tilde{g}^{\prime}\right)$ contains $\rho\left(x_{2}, \tilde{g}^{\prime}\right)$ which is equal to k / l_{2} for some k prime to l_{2}. Therefore by Lemma 4, (25) holds.

Assume $r \leq 2$. Consider first the case of $w \in \mathcal{S}_{1}$. Then its orbit $\operatorname{Orb}(w)$ under ϕ is contained in \mathcal{S}_{1}. By a hypothesis, $\sharp \mathcal{S}_{1} \leq 2 l_{2}+\epsilon$, where $\epsilon=1$ or 0 according to $l_{2} \geq 3$ or $l_{2}=2$. In the present case, we have $r=2$, because if $r=1$, the number $\operatorname{per}(w, \phi)=3 l_{2}$ could exceed the cardinality of \mathcal{S}_{1}. Thus $\operatorname{per}(w, \phi)=3 l_{2} / 2$. By (11) and (28), $\sharp \mathcal{S}_{1} \geq l_{1}+l_{2}>7 l_{2} / 4$. Therefore, we have

$$
\frac{l_{2}}{4}<\sharp\left(\mathcal{S}_{1}-\operatorname{Orb}(w)\right)=\sharp \mathcal{S}_{1}-\operatorname{per}(w, \phi) \leq\left(2 l_{2}+\epsilon\right)-\frac{3}{2} l_{2}
$$

$$
=\frac{l_{2}}{2}+\epsilon<l_{2} .
$$

This implies that there is a periodic point $y \in \mathcal{S}_{1}$ of ϕ with period less than l_{2}. Then $\operatorname{per}(y, \phi)<l_{2} \operatorname{per}\left(y, \phi^{l_{2}}\right)$, and $2 l_{2}+\operatorname{per}(y, \phi)<3 l_{2} \leq n$. Also we showed above that $\rho\left(\tilde{g}^{\prime}\right) \ni k / l_{2}$. Hence by Lemma 4, we have (25).

Consider the case of $w \notin \mathcal{S}_{1}$. Then $\operatorname{ind}\left(w, g^{3}\right) \neq 0$, since any periodic point of index zero is contained in \mathcal{S}_{1} or ∂D. Therefore by (24), there is another 3-periodic point $w^{\prime} \notin \mathcal{S}_{1}$ of g with $\rho\left(w^{\prime}, \tilde{g}\right)=1 / 3$. We show w, $w^{\prime} \notin Q_{1} \cup Q_{2}$. In fact, if $w \in Q_{2}$, then $\operatorname{per}(w, \phi)=l_{2}$ or $2 l_{2}$, since x_{2}, y_{2}, z_{2} have periods $l_{2}, l_{2}, 2 l_{2}$ respectively. Then $3 l_{2} / r=l_{2}$ or $2 l_{2}$, which contradicts that $r=1,2$. Suppose $w \in Q_{1}$. Then $3 l_{2} / r=\operatorname{per}(w, \phi)=l_{1}$ or $2 l_{1}$. Therefore since $r=1,2$ and $3 l_{2}<4 l_{1}$ by (28), we have $3 l_{2}=l_{1}$ or $2 l_{1}$. This contradicts that $3 l_{1}<4 l_{2}$. In the same way, we can verify $w^{\prime} \notin Q_{1} \cup Q_{2}$.

Let W, W^{\prime} be the orbits of w, w^{\prime} respectively. We can assume that $\operatorname{per}\left(w^{\prime}, \phi\right) \geq \operatorname{per}(w, \phi)$ without loss of generality. Then, $\nu^{n}(W), \nu^{n}\left(W^{\prime}\right) \geq$ $3 l_{2} / 2$. Therefore, we have by Lemma 5,

$$
\begin{equation*}
\nu^{n}\left(\mathcal{S}_{1} \cup Q_{1} \cup Q_{2}\right)+\nu^{n}(W)+\nu^{n}\left(W^{\prime}\right) \geq \nu_{1}+\nu_{2}+3 l_{2} . \tag{30}
\end{equation*}
$$

Since $n \geq 3 l_{2}$ and $m_{2}=2$, we have $\nu_{2}=6 l_{2}$ by the definition of ν_{2}. Also, by Lemma 6, $\nu_{1} \geq n+4$. Therefore, since $W, W^{\prime}, \mathcal{S}_{1} \cup Q_{1} \cup Q_{2}$ are mutually disjoint, we have $\nu^{n}(D) \geq n+4+9 l_{2}$ by (30). Since $4 l_{2} \geq n+1$, this implies (25).
(II) Here we consider the general case; namely, the case where $\mathrm{bt}(S, f)$ is reducible and contains a pseudo-Anosov component. We shall use the same notations as in (II) of Section 3. Since $\phi^{\prime}: D^{\prime} \rightarrow D^{\prime}$ is pseudo-Anosov relative to S^{\prime} and $n^{\prime} \geq \operatorname{per}\left(S^{\prime}\right)$, applying the result in (I) of this section to ϕ^{\prime}, we have $\nu^{n^{\prime}}\left(D^{\prime}, \phi^{\prime}\right) \geq 3 n^{\prime}+6$. Let n_{i} (resp. u_{i}) be the period (resp. the number) of periodic points of ϕ on C_{i}. Note that $\nu^{n^{\prime}}\left(c_{i}, \phi^{\prime}\right)=1$ or $u_{i}-1$ according to whether $n^{\prime}<n_{i} / \mu$ (equivalently $n<n_{i}$) or $n^{\prime} \geq n_{i} / \mu$. Hence we have $\nu^{n}\left(C_{i}, \phi\right)=\nu^{n^{\prime}}\left(c_{i}, \phi^{\prime}\right)-1+2 \delta\left(n_{i}\right)$. Therefore, we have

$$
\begin{aligned}
\nu^{n}(N) & =\nu^{n}\left(N-\bigcup_{i=1}^{d-1} C_{i}\right)+\sum_{i=1}^{d-1} \nu^{n}\left(C_{i}\right) \\
& =\nu^{n^{\prime}}\left(D^{\prime}-\left\{c_{i}\right\}_{i=1}^{d-1}, \phi^{\prime}\right)+\sum_{i=1}^{d-1}\left(\nu^{n^{\prime}}\left(c_{i}, \phi^{\prime}\right)-1+2 \delta\left(n_{i}\right)\right)
\end{aligned}
$$

$$
=\nu^{n^{\prime}}\left(D^{\prime}, \phi^{\prime}\right)-d_{0}+d_{1}
$$

Therefore by Proposition 3,

$$
\begin{aligned}
\sharp P^{n}(f) & \geq \mu\left(\nu^{n}(N)+2 d_{0}-d_{1}\right) \geq \mu\left(\nu^{n^{\prime}}\left(D^{\prime}, \phi^{\prime}\right)+d_{0}\right) \\
& \geq \mu\left(3 n^{\prime}+6\right) .
\end{aligned}
$$

Since $\mu n^{\prime} \geq n-\mu+1$, this shows $\sharp P^{n}(f) \geq 3 n+6$, and the proof is completed.

References

[1] Bowen R., Entropy and the fundamental group. The Structure of Attractors in Dynamical Systems, Lecture Notes in Math. 668, Springer-Verlag, Berlin, Heidelberg, New York, 1978, 21-29.
[2] Brown R., The Lefschetz Fixed Point Theorem. Scott-Foresman, Chicago, 1971.
[3] Boyland P., Braid types and a topological method of proving positive entropy. preprint.
[4] Boyland P., Topological methods in surface dynamics. Topology and its Appl. 58 (1994), 223-298.
[5] Boyland P., Isotopy stability of dynamics on surfaces. preprint.
[6] Fathi A., Laudenbach F. and Poénaru V., Travaux de Thurston sur les surfaces. Astérisque 66-67 (1979).
[7] Franks J., Recurrence and fixed points of surface homeomorphisms. Ergod. Th. and Dynam. Sys. 8* (1988), 99-107.
[8] Franks J. and Misiurewicz M., Cycles for disk homeomorphisms and thick trees. Nielsen Theory and Dynamical Systems, Contemp. Math. 152, Amer. Math. Soc., Providence, 1993, 69-139.
[9] Gambaudo J.M. and Llibre J., A note on the periods of surface homeomorphisms. J. Math. Anal. Appl. 177 (1993), 627-632.
[10] Gambaudo J.M., van Strien S. and Tresser C., Vers un ordre de Sarkovskii pour les plongements du disque préservant l'orientation. C.R. Acad. Sci. Paris Sér. I 310 (1990), 291-294.
[11] Guaschi J., Pseudo-Anosov braid types of the disc or sphere of low cardinality imply all periods. J. London Math. Soc. 50 (1994), 594-608.
[12] Guaschi J., Lefschetz numbers of periodic orbits of pseudo-Anosov homeomorphisms. Math. Proc. Camb. Phil. Soc. 115 (1994), 121-132.
[13] Hardy G.H. and Wright E.M., An Introduction to the Theory of Numbers. Fifth Edition. Oxford Univ. Press, Oxford, 1979.
[14] Jiang B., Lectures on Nielsen Fixed Point Theory. Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
[15] Jiang B., Nielsen theory for periodic orbits and applications to dynamical systems. Nielsen Theory and Dynamical Systems, Contemp. Math. 152, Amer. Math. Soc.,

Providence, 1993, 183-202.
[16] Jiang B., Estimation of the number of periodic orbits. Pacific J. Math. 172, (1996), 151-185.
[17] Jiang B. and Guo J., Fixed points of surface diffeomorphisms. Pacific J. Math. 160 (1993), 67-89.
[18] Kolev B., Periodic orbits of period 3 in the disc. Nonlinearity 7 (1994), 1067-1071.
[19] Llibre J. and MacKay R.S., Pseudo-Anosov homeomorphisms on a sphere with four punctures have all periods. Math. Proc. Camb. Phil. Soc. 112 (1992), 539-549.
[20] Matsuoka T., Braids of periodic points and a 2-dimensional analogue of Sharkovskii's ordering. Dynamical Systems and Nonlinear Oscillations (ed. G. Ikegami), World Sci. Adv. Ser. in Dynam. Sys. 1, World Sci., Singapore, 1986, 58-72.
[21] Matsuoka T., Braid type of the fixed point set for orientation-preserving embeddings on the disk. Tokyo J. Math. 18 (1995), 457-472.
[22] Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. 19 (1988), 417-431.

Department of Mathematics
Naruto University of Education
Takashima, Naruto 772-0051, Japan
E-mail: matsuoka@naruto-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : 58F20.

