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On realization of conformally-projectively flat statistical
manifolds and the divergences
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Abstract. We give a necessary and sufficient condition for a statistical manifold to be
realized by a nondegenerate centroaffine immersion of codimension two. We also show
that if a statistical manifold is realized as above, then so is the dual statistical manifold
Moreover, we construct a canonical contrast function on a simply connected conformally-
projectively flat statistical manifold, using a geometric method.

Key words: centroaffine immersions, statistical manifolds, conformally flatness, diver-
gences.

Introduction

An n-dimensional manifold M with a torsion-free affine connection \nabla

and a pseud0-Riemannian metric h is called a statistical manifold if \nabla h is
symmetric. From the statistical point of view, Amari suggested that the
following embedding problem in his writings: Find the condition when a
statistical manifold can be realized in affine spaces. Kurose [7] determined
the statistical manifolds realized by affine immersions of codimension one.
The main purpose of this paper is to find the condition when statistical
manifolds are realized by centroaffine immersions of codimension two.

The notion of centroaffine immersions of codimension two was intr0-
duced by Walter [11], and applied to the hypersurface theory in the real
projective space P^{n+1} by Nomizu and Sasaki [9]. To state the condition for
embedding problem, we introduce in Section 2 the notion of the conformally-
projectively flatness of statistical manifolds, which is a generalization of the
1-conformally flatness defined by Kurose [6] in affine geometry, the projec-
tive flatness in projective geometry and the conformally flatness in confor-
mal geometry. In section 3, we prove:

Main theorem Let \{f, \xi\} : Marrow R^{n+2} be a nondegenerate equiaffiffiffine
centroaffiffiffine immersion, and denote by \nabla the induced connection and by h

the affiffiffine fundamental form. Then (M, \nabla, h) is a conformally-projectively
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flat statistical manifold.
Conversely, suppose that (M, \nabla, h) is a simply connected conformally-

projectively flat statistical manifold of dimension n . Then there exists a
nondegenerate equiaffiffiffine centroaffiffiffine immersion \{f, \xi\} : M – R^{n+2} with
induced connection \nabla and affiffiffine fundamental form h . Provided that n\geq 3 ,
such an immersion is uniquely determined up to an affiffiffine transformation
of R^{n+2} .

This theorem can be regarded as a generalization of Radon’s the0-
rem for centroaffine immersion of codimension two (cf. Dillen, Nomizu and
Vrancken [3] ) . We note that Abe [1] studied Amari’s embedding problem
in a different formulation.

For a given statistical manifold, we always have its dual statistical man-
ifold (see Section 2). In Section 4, for a realizable statistical manifold, we
study the embedding problem of its dual. Kurose [6] showed that the dual
statistical manifold is realized by an affine immersoin of codimension one
if and only if it has constant curvature. In contrast to the codimension
one case, we show that if a statistical manifold is realized by a centroaffine
immersion of codimension two, then so is the dual.

In Section 5, as an application of the main theorem, we give a geomet-
ric way to construct a contrast function which induces a given conformally-
projectively flat statistical manifold. We note that our result is a generaliza-
tion of Nagaoka and Amari’s construction for flat statistical manifolds (cf.
[2] ) and Kurose’s construction for 1-conformally flat statistical manifolds
(cf. [8]).

1. Preliminaries

In this section, we recall the notion of centroaffine immersions of codi-
mension two. For more details, see Nomizu and Sasaki [9].

We assume that all the objects are smooth throughout this paper.
Let M be an n-dimensional manifold and f an immersion of M into

R^{n+2} . Let D be the standard flat affine connection of R^{n+2} and \eta the radial
vector field of R^{n+2}-\{0\} . ( \eta=\sum_{i=1}^{n+2}x^{i}\partial/\partial x^{i} , where \{x^{1}, \ldots, x^{n+2}\} is an
affine coordinate system.)

Definition 1.1 An immersion f : M – R^{n+2} is called a centroaffiffiffine
immersion of codimension two if there exists, at least locally, a vector field
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\xi along f such that, at each point x\in M , the tangent space T_{f(x)}R^{n+2}

is decomposed as the direct sum of the span R\{\eta_{f(x)}\} , the tangent space
f_{*}(T_{x}M) and the span R\{\xi_{x}\} :

T_{f(x)}R^{n+2}=R\{\eta_{f(x)}\}\oplus f_{*}(T_{x}M)\oplus R\{\xi_{x}\} ,

where R\{\eta\} and R\{\xi\} mean 1-dimensional subspaces spanned by \eta and \xi ,
respectively. We call \xi a transversal vector field.

According to this decomposition, the vector fields D_{X}f_{*}Y and D_{X}\xi ,
where X and Y are vector fields on M , have the following expressions:

D_{X}f_{*}Y=T(X, Y)\eta+f_{*}(\nabla_{X}Y)+h(X, Y)\xi , (1.1)

D_{X}\xi=\mu(X)\eta-f_{*}(SX)+\tau(X)\xi , (1.2)

where \nabla is a torsion-free affine connection, T , h are symmetric (0,2) -tensor
fields, \mu , \tau are 1-forms, and S is a (1,1) -tensor field on M . The torsion-
free affine connection \nabla , the symmetric (0, 2) -tensor field h and l-form
\tau are called the induced connection, the affiffiffine fundamental form and the
transversal connection form, respectively.

Since the connection D is flat, we have fundamental equations for cen-
troaffine immersions of codimension two.

Gauss:

R(X, Y)Z=h(Y, Z)SX-h(X, Z)SY – T(Y, Z)X+T(X, Z)Y.

(1.3)
Codazzi:

(\nabla_{X}T)(Y, Z)+\mu(X)h(Y, Z)=(\nabla_{Y}T)(X, Z)+\mu(Y)h(X, Z) ,

(\nabla_{X}h)(Y, Z)+\tau(X)h(Y, Z)=(\nabla_{Y}h)(X, Z)+\tau(Y)h(X, Z) , (1.4)
(\nabla_{X}S)(Y)-\tau(X)SY+\mu(X)Y=(\nabla_{Y}S)(X)-\tau(Y)SX+\mu(Y)X ,

Ricci:
T(X, SY)-T(Y, SX)=(\nabla_{X}\mu)(Y)-(\nabla_{Y}\mu)(X)

+\tau(Y)\mu(X)-\tau(X)\mu(Y) ,
h(X, SY)-h(Y, SX)=(\nabla_{X}\tau)(Y)-(\nabla_{Y}\tau)(X) .

The objects \nabla , T , h , S , \tau and \mu depend on the choice of \xi . We shall
examine the dependence on the change of transversal vector field for later
use.
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Lemma 1.2 Let a be a function, \phi a nonzero function and U a vector
field on M. Suppose that we change a transversal vector field \xi for

\tilde{\xi}=\phi^{-1}(\xi+a\eta+f_{*}U) .

Then the induced connection, the affiffiffine fundamental form and the transver-
sal connection form change as follows:

\tilde{\nabla}_{X}Y=\nabla_{X}Y-h(X, Y)U, (1.5)

\tilde{h}(X, Y)=\phi h(X, Y) , (1.6)

\tilde{\tau}(X)=\tau(X)-X (log \phi ) +h(X, U) . (1.7)

Equation (1.6) means that the conformal class of h is independent of
the choice of \xi . If h is nondegenerate everywhere, we say that the immersion

f is nondegenerate. When h is nondegenerate, we can take a transversal
vector field \xi such that \tau vanishes because of equation (1.7). We say that
\xi (or that the pair of \{f , \xi\} ) is equiaffiffiffine if \tau vanishes. In this case, \nabla h is
symmetric because of equation (1.4). As we shall see in the next section,
this implies that the triplet (M, \nabla, h) is a statistical manifold.

We take a positive function \psi on M. and change an immersion f for
g=\psi f . We can consider the relationship between f and g .

Lemma 1.3 We obtain the following formulas with respect to the immer-
sion \{f, \xi\} and \{g, \xi\} :

\overline{\nabla}_{X}Y=\nabla_{X}Y+d(\log\psi)(Y)X+d (log \psi ) (X)Y. (1.5)

\overline{h}(X, Y)=\psi h(X, Y) , (1.9)

\overline{\tau}(X)=\tau(X) . (1.10)

The equation (1.9) shows that the conformal class of h is preserved and
the equation (1.10) implies that, if \{f, \xi\} is equiaffine, then so is \{g, \xi\} .

Consider two immersions f^{i} : M – R^{n+2}-\{0\} , (i=1,2) , with
transversal vector fields \xi^{i} . We say that f^{1} and f^{2} are affiffiffinely equivalent if
f^{1}=Af^{2} for a general linear transformation A in GL(n+2, R) . The fol-
lowing lemma shows the rigidity of centroaffine immersions of codimension
two. (cf. [9, Proposition 5.5])

Lemma 1.4 Let n\geq 3 . Suppose \nabla:=\nabla^{1}=\nabla^{2} and h:=h^{1}=h^{2} . If h
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is nondegenerate, then f^{1} and f^{2} are affiffiffinely equivalent.

2. Statistical manifolds

Let \nabla be a torsion-free affine connection and h a pseud0-Riemannian
metric on M . We call (M, \nabla, h) a statistical manifold if \nabla h is symmetric.
For a statistical manifold (M, \nabla, h) , we can define another torsion-free affine
connection \nabla^{*} by

Xh(Y, Z)=h(\nabla_{X}Y, Z)+h(Y, \nabla_{X}^{*}Z) ,

where X. Y and Z are arbitrary vector fields on M . It is straightforward to
show that (M, \nabla^{*}, h) is also a statistical manifold. We say that \nabla^{*} is the
dual connection of \nabla with respect to h and (M, \nabla^{*}, h) the dual statistical
manifold of (M, \nabla, h) .

We note that statistical manifolds play a very important role of the
geometric theory of statistics, because each family of probability density
functions has the statistical manifolds structure which is naturally deter-
mined by the family. (See Amari [2].)

We recall the notion of \alpha-conformality formulated by Kurose [7]. For a
given \alpha\in R , two statistical manifolds (M, \nabla, h) and (M,\tilde{\nabla},\tilde{h}) are said to
be \alpha -conformally equivalent if there exists a positive function \phi on M such
that

\tilde{h}(X, Y)=\phi h(X, Y) ,

h( \tilde{\nabla}_{X}Y, Z)=h(\nabla_{X}Y, Z)-\frac{1+\alpha}{2}d(\log\phi)(Z)h(X, Y)

+ \frac{1-\alpha}{2} {d(\log\phi)(X)h(Y, Z)+d(log \phi)(Y)h(X , Z) }.

We remark that two statistical manifolds (M, \nabla, h) and (M,\tilde{\nabla},\tilde{h}) are \alpha-

conformally equivalent, if and only if the dual statistical manifolds
(M, \nabla^{*}, h) and (M,\tilde{\nabla}^{*},\tilde{h}) are (-\alpha) -conformally equivalent.

We say that a statistical manifold (M, \nabla, h) is flat if the affine con-
notion \nabla is flat, that is, the curvature tensor R of \nabla vanishes. We say
that a statistical manifold (M, \nabla, h) is \alpha -conformally flat if (M, \nabla, h) is \alpha-

conformally equivalent to a flat statistical manifold in a neighbourhood of
an arbitrary point of M .

Suppose that \{f, \xi\} is a nondegenerate equiaffine centroaffine immersion
of codimension two, then the triplet (M, \nabla, h) is a statistical manifold,
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where \nabla is the induced connection and h the affine fundamental form.
The following propositions follow easily from Lemmas 1.2 and 1.3.

Proposition 2.1 Assume that a statistical manifold (M, \nabla, h) is realized
in R^{n+2} by a centroaffiffiffine immersion \{f, \xi\} . If we take a transversal vector
ffield \xi\sim:=\phi^{-1}\{\xi+a\eta+\phi^{-1}f_{*}grad_{h}\phi\} , where a is a function, \phi a positive
function on M and grad_{h}\phi the gradient vector field of \phi with respect to h .
Then the statistical manifold (M,\tilde{\nabla},\tilde{h}) realized by \{f,\tilde{\xi}\} is l-conformally
equivalent to (M, \nabla, h) .

Proposition 2.2 Assume that a statistical manifold (M, \nabla, h) is realized
in R^{n+2} by a centroaffiffiffine immersion \{f, \xi\} . If we change an immersion f
for g=\psi f . where \psi is a positive function on M. Then the statistical mani-
fold (M,\overline{\nabla},\overline{h}) realized by \{g, \xi\} is 1-conformally equivalent to (M, \nabla, h) .

In order to discuss statistical manifolds that are obtained by centroaffine
immersions of codimension two, we need to define more generalized confor-
mally equivalence relation.

Definition 2.3 Two statistical manifolds (M, \nabla, h) and (M,\tilde{\nabla},\tilde{h}) are
said to be conformally-projectively equivalent if there exist two positive func-
tions \phi and \psi on M such that

\tilde{h}(X, Y)=\phi\psi h(X, Y) , (2.1)

h(\tilde{\nabla}_{X}Y, Z)=h(\nabla_{X}Y, Z)-d (log \phi ) (Z)h(X, Y)
+d(\log\psi)(X)h(Y, Z)+d(\log\psi)(Y)h(X, Z) . (2.2)

We remark that if \phi=\psi in equation (2.1) then it is a well known conformally
equivalence relation in Euclidean differential geometry, if \phi is constant then
equation (2.2) implies that \nabla and \tilde{\nabla} are projectively equivalent, and if \psi is
constant then \nabla and \tilde{\nabla} are dual-projectively equivalent (cf. [5]).

Proposition 2.4 Two statistical manifolds (M, \nabla, h) and (M,\tilde{\nabla},\tilde{h}) are
conformally-projectively equivalent if and only if the dual statistical mani-
folds (M, \nabla^{*}, h) and (M,\tilde{\nabla}^{*},\tilde{h}) are also conformally-projectively equivalent.

Proof. Suppose that two statistical manifolds (M, \nabla, h) and (M,\tilde{\nabla},\tilde{h})

are conformally-projectively equivalent. By definition, there exist positive
functions \phi and \psi on M . Hence we have

\tilde{h}(Y,\tilde{\nabla}_{X}^{*}Z)=X\tilde{h}(Y, Z)-\tilde{h}(\tilde{\nabla}_{X}Y, Z)
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=X(\psi)\phi h(Y, Z)+\psi X(\phi)h(Y, Z)+\tilde{h}(\nabla_{X}Y, Z)

+\tilde{h} (Y. \nabla_{X}^{*}Z ) – \tilde{h}(\tilde{\nabla}_{X}Y, Z)

=d(\log\psi)(X)\tilde{h}(Y, Z)+d(\log\phi)(X)\tilde{h}(Y, Z)

+\tilde{h}(\nabla_{X}Y, Z)+\tilde{h} (Y. \nabla_{X}^{*}Z )

-\{\tilde{h}(\nabla_{X}Y, Z)-d(\log\phi)(Z)\tilde{h}(X, Y)

+d(\log\psi)(X)\tilde{h}(Y, Z)+d (log \psi ) (Y)\overline{h}(X, Z)\}

=\tilde{h}(Y, \nabla_{X}^{*}Z)-d (log \psi ) (Y)\tilde{h}(X, Z)

+d(log \phi ) (X)\tilde{h}(Y, Z)+d(\log\phi)(Z)\tilde{h}(X, Y) .

By exchanging Y and Z , and dividing \phi\psi , we obtain

h(\tilde{\nabla}_{X}^{*}Y, Z)=h(\tilde{\nabla}_{X}Y, Z)-d(\log\psi)(Z)h(X, Y)

+d(\log\phi)(X)h(Y, Z)+d(\log\phi)(Y)h(X, Z) .

\tilde{h}(X, Y)=\psi\phi h(X, Y) is automatically satisfied by the assumption. \square

We shall now define conformally-projectively flatness of statistical
manofold.

Definition 2.5 A statistical manifold (M, \nabla, h) is said to be conformally-
projectively flat if (M, \nabla, h) is conformally-projectively equivalent to a flat
statistical manifold in a neighbourhood of an arbitrary point of M .

3. Proof of main theorem

Proof of main theorem. Suppose that \{f, \xi\} : Marrow R^{n+2} is a nonde-
generate equiaffine centroaffine immersion. By equation (1.4), the triplet
(M, \nabla, h) , where \nabla is the induced connection and h the affine fundamen-
tal form, is a statistical manifold. For arbitrary point p\in M , there exists
a positive function \psi defined in some neighbourhood U_{p} of p such that
g=\psi f is contained in the affine hyperplane spanned by f_{*}(T_{p}M) and \xi_{p} .
By Lemma 1.3, we have

\overline{\nabla}_{X}Y=\nabla_{X}Y+d(\log\psi)(Y)X+d(\log\psi)(X)Y, (3.1)

\overline{h}=\psi h . (3.2)

We take a transversal vector field \tilde{\xi}_{x} which is equal to \xi_{p} everywhere
on U_{p} . Since \eta_{g(x)} , g_{*}(T_{x}M) and \xi_{x} are linearly independent, we have
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a positive function \phi , a function a and a tangent vector field V on U_{p}

such that \phi\tilde{\xi}_{x}=\xi_{x}+a\eta_{g(x)}+g_{*}V The distribution g is contained in the
affine hyperplane spanned by g_{*}(T_{p}M) and \xi_{p} , we obtain \tilde{T}=0 , and from
Lemma 1.2, we have

\tilde{\nabla}_{X}Y=\overline{\nabla}_{X}Y-\overline{h}(X, Y)V, (3.3)
\tilde{h}=\phi\overline{h} . (3.4)

Since the transversal vector field \tilde{\xi} is parallel around p, then D_{X}\xi=0 .
Hence we obtain

\tilde{\mu}=0 , \tilde{S}=0 and \tilde{\tau}=0 .

From equation (1.1), \tilde{\nabla} is a flat affine connection since \tilde{S}=0 and \tilde{T}=0 .
Then the triplet (U_{p},\tilde{\nabla},\tilde{h}) is a flat statistical manifold.

Since \xi_{x} and \tilde{\xi}_{x} are equiaffine transversal vector fields, we have

\overline{h}(X, V)=X (log \phi ) =d(\log\phi)(X) ,

from equation (1.7)1 in Lemma 1.2. Hence, we obtain

V=\overline{\phi\psi}^{grad_{h}\phi} ’ (3.5)
where grad_{h}\phi is the gradient vector field of \phi with respect to h .

By equations (3.1)-(3.5), we have

\tilde{h}=\phi\psi h ,
h(\tilde{\nabla}_{X}Y, Z)=h(\nabla_{X}Y, Z)-d(\log\phi)(Z)h(X, Y)

+d(\log\psi)(X)h(Y, Z)+d(\log\psi)(Y)h(X, Z) .

Therefore, the flat statistical manifold (U_{p},\tilde{\nabla},\tilde{h}) induced by the centroaffine
immersion \{g,\tilde{\xi}\} is conformally-projectively equivalent to the original
(U_{p}, \nabla|_{U_{p}}, h|_{U_{p}}) . This implies that (M, \nabla, h) is a conformally-projectively
flat statistical manifold.

We prove the converse. Suppose that (M, \nabla, h) is a simply connected
conformally-projectively flat statistical manifold. For an arbitrary point
p\in M , there exist a neighbourhood U_{p} of p , a flat statistical manifold
(U_{p},\tilde{\nabla},\tilde{h}) and positive functions \phi and \psi on U_{p} such that (U_{p}, \nabla|_{U_{p}}, h|_{U_{p}})

is conformally-projectively equivalent to (U_{p},\tilde{\nabla},\tilde{h}) .
Since (U_{p},\tilde{\nabla},\tilde{h}) is flat, it can be realized in an affine hypreplane of R^{n+2}

by a graph immersion \{g,\tilde{\xi}\} (See [6]). By translating it if necessary, we may
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assume that the affine hyperplane does not go through the origin.
We change an immersion g for f:=\psi^{-1}g and take a transversal vec-

tor field \xi:=\phi\tilde{\xi}-\phi^{-1}f_{*}grad_{h}\phi . From Lemmas 1.2 and 1.3, the cen-
troaffine immersion \{f, \xi\} realizes the statistical manifold (U_{p}, \nabla|_{U_{p}}, h|_{U},,)

into R^{n+2}-\{0\} .
Hence, (M, \nabla, h) can be realized in R^{n+2} since such immersions are

unique by Lemma 1.4 and M is simply connected. \square

We remark that our main theorem implies that the universal cover of an
arbitrary conformally-projectively flat statistical manifold can be realized
by a centoaffine immersion of codimension two.

4. Dual maps

We study the embedding problem for the dual statistical manifold. In
[6], Kurose proved the following theorem.

Theorem 4.1 Let (M, \nabla, h) be a statistical manifold realized in R^{n+1}

by an affiffiffine immersion. If (M, \nabla, h) has constant curvature, then the dual
statistical manifold (M, \nabla^{*}, h) is also realized in the dual affiffiffine space R_{n+1} .

We generalize Kurose’s theorem for centroaffine immersions of codimen-
sion two.

We recall the definition of the dual map of a given centroaffine im-
mersion of codimension two. Let \{f, \xi\} : Marrow R^{n+2} be a centroaffine
immersion and the objects \nabla , T , h , \mu and \tau defined by equations (1.1) and
(1.2). Let R_{n+2} be the dual vector space of R^{n+2} , \eta^{*} the radial vector field
of R_{n+2}-\{0\} , and \langle

-
\rangle the pairing of R_{n+2} and R^{n+2} . We assume that h

is nondegenerate. For \{f, \xi\} , we define two maps v and w : M – R_{n+2} as
follows: for each x\in M , v(x) and w(x) satisfy

\langle v(x), \xi_{x}\rangle=1 , \langle w(x), \xi_{x}\rangle=0 , (4.1)
\langle v(x), \eta_{f(x)}\rangle=0 , \langle w(x), \eta_{f(x)}\rangle=1 ,
\langle v(x), f_{*}X_{x}\rangle=0 , \langle w(x), f_{*}X_{x}\rangle=0 ,

for an arbitrary vector field X on M The derivatives of the maps v and w
are given as follows:

\langle v_{*}X, \xi\rangle=-\tau(X) , \langle w_{*}X, \xi\rangle=-\mu(X) ,
\langle v_{*}X, \eta\rangle=0 , \langle w_{*}X, \eta\rangle=0 ,
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\langle v_{*}X, f_{*}Y\rangle=-h(X, Y) , \langle w_{*}X, f_{*}Y\rangle=-T(X, Y) .

Since h is nondegenerate, v is an immersion. By the definitions of v and
w , v(x) and w(x) are linearly independent at each point x of M . Hence,
\{v, w\} is a centroaffine immersion of M into R_{n+2} . We call the pair \{v, w\}

the dual map of \{f, \xi\} .
For the dual map \{v, w\} , the objects \nabla^{*} , T^{*} , h^{*} , S^{*} . \mu^{*} and \tau^{*} are

defined by

D_{X}v_{*}Y=T^{*}(X, Y)\eta^{*}+v_{*}(\nabla_{X}^{*}Y)+h^{*}(X, Y)w ,

D_{X}w=\mu^{*}(X)\eta^{*}-v_{*}(S^{*}X)+\tau^{*}(X)w .

By definition, we can easily prove the following lemma.

Lemma 4.2 The following equations hold.

h^{*}(X, Y)=h(X, Y) , (4.2)

Zh(X, Y)=h(\nabla_{Z}X, Y)+h(X, \nabla_{Z}^{*}Y)+\tau(Y)h(X, Z) , (4.3)

\tau^{*}(X)=0 . (4.4)

Proof. See Nomizu and Sasaki [9].
If a transversal vector field \xi is equia fRne, then equation (4.3) implies

that two connections \nabla and \nabla^{*} are mutually dual with respect to h . \square

Theorem 4.3 If a statistical manifold is realized in R^{n+2} by a cen-
troaffiffiffine immersion \{f, \xi\} , then the dual statistical manifold is realized in
R_{n+2} by the dual map \{v, w\} of \{f, \xi\} .

Proof. Suppose that a statistical manifold (M, \nabla, h) is realized in R^{n+2} by
a centroaffine immersion \{f, \xi\} . Since \{f, \xi\} is nondegenerate and equia fRne,
we have the dual map \{v, w\} of \{f, \xi\} . Equations (4.2)-(4.4) imply that the
dual statistical manifold (M, \nabla^{*}, h) is realized by the dual map. \square

Let (M, \nabla, h) be a simply connected conformally-projectively flat sta-
tistical manifold of dimension n\geq 3 . By Proposition 2.4, the dual statistical
manifold (M, \nabla^{*}, h) is also conformally-projectively flat. By the main the0-
rem, we have the unique centroaffine immersions \{f, \xi\} : (M, \nabla, h)arrow R^{n+2}

and \{v, w\} : (M, \nabla^{*}, h) – R^{n+2} . We can then regard \{v, w\} as the dual
map of \{f, \xi\} identifying R^{n+2} with R_{n+2} .
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5. Geometric divergences

Let M be an n-dimensional manifold and \rho a function on M\cross M

Identifying the tangent space T_{(p,q)}(M\cross M) with the direct sum of T_{p}M\oplus

T_{q}M , we use the following notation:

\rho[X_{1 }. ^{X_{i}}|Y_{1 }. . ^{Y_{j}}](p):=(X_{1},0)\ldots (X_{i}, 0)(0, Y_{1}) . . (0, Y_{j})\rho|_{(p,p)} ,

where p\in M and X_{1} , \ldots , X_{i} , Y_{1} , \ldots , Y_{j}(i, j\geq 0) are arbitrary vector fields
on M . We call \rho a contrast function of M if

1) \rho(p, p)=0 for an arbitrary point p\in M ,

2) h(X, Y):=-\rho[X|Y] is a pseud0-Riemannian metric on M.

(See Eguchi [4].)
For a contrast function \rho of M , we can define a torsion-free affine con-

nection \nabla on M as follows:

h(\nabla_{X}Y, Z)=-\rho[XY|Z] ,

where X , Y and Z are arbitrary vector fields on M1 It is easy to show
that the triplet (M, \nabla, h) is a statistical manifold. We call (M, \nabla, h) the
statistical manifold induced by the contrast function \rho .

Conversely Kurose [8] showed that simply connected 1-conformally flat
statistical manifolds are induced by contrast functions called geometric di-
vergences, which are constructed from affine immersions of codimension one
and their dual maps. In this section, we construct such functions for the
larger class of statistical manifolds.

Let (M, \nabla, h) be a simply connected conformally-projectively flat sta-
tistical manifold of dimension n . Let \{f, \xi\} be a nondegenerate equiaffine
centroaffine immersion of (M, \nabla, h) into R^{n+2} and \{v, w\} the dual map of
\{f, \xi\} .

Definition 5.1 We define a function \rho on M\cross M for \{f, \xi\} by

\rho(p, q):=\langle v(q), f(p)-f(q)\rangle ,

where p and q are arbitrary points in M . We call the function \rho the ge0-
metric divergence of \{f, \xi\} .

If we change an immersion f for g:=\psi f and a transversal vector field
\xi for \tilde{\xi}:=\phi^{-1}\{\xi+a\eta+\phi^{-1}f_{*}grad_{h}\phi\} , where a is a function, \phi and \psi are
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positive functions on M and grad_{h}\phi is the gradient vector field of \phi with
respect to h , then the geometric divergence \tilde{\rho} of \{g,\tilde{\xi}\} is given by

\tilde{\rho}(p, q)=\psi(p)\phi(q)\rho(p, q)

for (p, q) in M\cross M

The geometric divergence induces a statistical manifold (M, \nabla, h) . In
fact, we have the following proposition.

Proposition 5.2 The geometric divergence \rho equals zero at each diagonal
point in M\cross M and

\rho[X|]=0 ,

\rho[X|Y]=-h(X, Y) ,

\rho[XY|Z]=-h(\nabla_{X}Y, Z) .

Proof. By the definition of geometric divergences, we have

(X, 0)\rho(p, q)=(X, 0) \langle v(q), f(p)-f(q)\rangle

=\langle v(q), f_{*}X_{p}\rangle ,

(X, 0) (0, Y)\rho(p, q)=\langle v_{*}Y_{q}, f_{*}X_{p}\rangle ,

(X, 0) (Y, 0)(0, Z)\rho(p, q)=\langle v_{*}Z_{q} , T(X, Y)\eta_{f(p)}

+f_{*}(\nabla_{X}Y)_{p}+h(X, Y)\xi_{p}\rangle .

Setting p=q, we obtain the required equalities from the definition of the
conormal map and the equations of (4.2)-(4.2). \square

As an application of the main theorem, we obtain the following.

Theorem 5.3 Suppose that (M, \nabla, h) is a simply connected conformally-
projectively flat statistical manifold and dim M\geq 3 . Then there exists a
contrast function \rho which induces given (M, \nabla, h) .

Proof. By the main theorem, there exists a nondegenerate equiafflne
centroaffine immersion \{f, \xi\} which realizes the given statistical manifold
(M, \nabla, h) . Let \rho be the geometric divergence of \{f, \xi\} . From Proposi-
tion 5.2, the function \rho is a contrast function which induces the given sta-
tistical manifold (M, \nabla, h) . \square



Centroaffiffiffine immersions and divergences 421

We remark that the geometric divergence is uniquely determined by a
statistical manifold, because the realization of that is unique. The function
\rho(p, \cdot) for fixed p in R^{n+2} is known as the affine support function of \{f, \xi\}

from the point p , but the affine support function is an extrinsic object.
If a given statistical manifold is 1-conformally flat, then the geomet-

ric divergence obtained by Theorem 5.3 coincides with Kurose’s geometric
divergence in [8] up to the third order.
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