Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values

(Dedicated to Professor Rentaro Agemi on his 60th birthday)

Qing Huang, Kiyoshi Mochizuki and Kentaro Mukai
(Received February 13, 1997; Revised April 22, 1997)

Abstract

We consider the semilinear parabolic system $$
u_{t}=\Delta u+v^{p}, \quad v_{t}=\Delta v+u^{q},
$$ where $x \in \mathbf{R}^{N}(N \geq 1), t>0$ and $p, q \geq 1$. At $t=0$, nonnegative, bounded and continuous initial values $\left(u_{0}(x), v_{0}(x)\right)$ are prescribed. The main results are for the case when $\left(u_{0}, v_{0}\right)$ have polynomial decay near $x=\infty$. Assuming $u_{0} \sim\left(\lambda|x|^{-a}\right)^{1 /(q+1)}$, $v_{0} \sim\left(\lambda|x|^{-a}\right)^{1 /(p+1)}$ with $\lambda>0,0 \leq a<N \min \{p+1, q+1\}$, we answer various questions of global existence and nonexistence, large time behavior or life span of the solutions in terms of simple conditions on λ, a, p, q and the space dimension N.

Key words: blow-up, life span, global existence, asymptotic behavior, semilinear parabolic equation, slowly decaying initial value.

1. Introduction

We consider the initial value problem

$$
\begin{cases}u_{t}=\Delta u+v^{p}, & x \in \mathbf{R}^{N}, t>0 \tag{1}\\ v_{t}=\Delta v+u^{q}, & x \in \mathbf{R}^{N}, t>0 \\ u(x, 0)=u_{0}(x), & x \in \mathbf{R}^{N} \\ v(x, 0)=v_{0}(x), & x \in \mathbf{R}^{N}\end{cases}
$$

where $p, q \geq 1, p q>1, N \geq 1$ and $\left(u_{0}(x), v_{0}(x)\right)$ are nonnegative, bounded and continuous functions. The problem provides a simple example of a reaction-diffusion system. As a model of heat propagation in a two-component combustible mixture, u, v represent the temperatures of the interacting components. It is assumed that thermal conductivity is constant and equal for both substance, and a volume energy release is given by some powers of u and v.

It is well known that problem (1) has a unique, nonnegative and bounded

[^0]solution at least locally in time. We define
\[

$$
\begin{aligned}
T^{*}=T^{*}\left(u_{0}, v_{0}\right)=\sup \{T & >0 ;(u(t), v(t)) \text { is bounded } \\
& \text { and solves } \left.(1) \text { in } \mathbf{R}^{N} \times(0, T)\right\} .
\end{aligned}
$$
\]

T^{*} is called the life span of solutions $(u(t), v(t))$. If $T^{*}=\infty$ the solutions are global. On the other hand, if $T^{*}<\infty$ one has

$$
\begin{equation*}
\limsup _{t \rightarrow T^{*}}\|u(t)\|_{\infty}=\infty \quad \text { or } \quad \limsup _{t \rightarrow T^{*}}\|v(t)\|_{\infty}=\infty \tag{2}
\end{equation*}
$$

since otherwise solutions could be extended beyond T^{*}. When (2) holds we say that the solution blows up in finite time.

The blow-up and the global existence of solutions has been studied by Escobedo-Herrero [3], and the following results are proved there.
(I) Suppose that $1<p q \leq 1+(2 / N) \max \{p+1, q+1\}$. Then $T^{*}<\infty$ for every nontrivial solution $(u(t), v(t))$, and

$$
\begin{equation*}
\limsup _{t \rightarrow T^{*}}\|u(t)\|_{\infty}=\limsup _{t \rightarrow T^{*}}\|v(t)\|_{\infty}=\infty \tag{3}
\end{equation*}
$$

(II) Suppose that $p q>1+(2 / N) \max \{p+1, q+1\}$. Let

$$
u_{0} \in L^{\infty} \cap L^{\alpha_{1}}, \quad v_{0} \in L^{\infty} \cap L^{\alpha_{2}}
$$

where $\alpha_{1}=N(p q-1) / 2(p+1), \alpha_{2}=N(p q-1) / 2(q+1)$. If $\left\|u_{0}\right\|_{\alpha_{1}}+\left\|v_{0}\right\|_{\alpha_{2}}$ is sufficiently small, then $T^{*}=\infty$.
(III) Suppose that $p q>1+(2 / N) \max \{p+1, q+1\}$. Let

$$
u_{0}(x) \geq C e^{-\alpha|x|^{2}}
$$

for some $\alpha>0$ and some $C>0$ large enough. Then $T^{*}<\infty$ and (3) holds.
In this paper we shall study the behavior of solutions $(u(t), v(t))$ while the initial values $\left(u_{0}, v_{0}\right)$ have slow decay near $|x|=\infty$. For instance in case

$$
u_{0} \sim\left(\lambda|x|^{-a}\right)^{1 /(q+1)}, \quad v_{0} \sim\left(\lambda|x|^{-a}\right)^{1 /(p+1)}
$$

with $\lambda>0$ and $0 \leq a<N \min \{p+1, q+1\}$, we are interested in the question of global existence and nonexistence, large time behavior or life span of solutions in terms of λ and a. These problems have been studied by Lee-Ni [8] and Gui-Wang [6] for the Cauchy problem of single equation $u_{t}=\Delta u+u^{p}$. Our results will partly extend theirs to the system of equations (1). Note that similar results can be obtained also for the Cauchy problem of
quasilinear equation $u_{t}=\Delta u^{m}+u^{p}$ with $p>m>1$ (see Mukai-MochizukiHuang [10]).

Throughout the rest of this paper we shall use the following notations. We set $C_{b}\left(\mathbf{R}^{N}\right)$ to be the space of all bounded continuous functions in \mathbf{R}^{N} and, for $\alpha \geq 0$,

$$
\begin{aligned}
& I^{\alpha}=\left\{\xi \in C_{b}\left(\mathbf{R}^{N}\right) ; \xi(x) \geq 0 \text { and } \limsup _{|x| \rightarrow \infty}|x|^{\alpha} \xi(x)<\infty\right\} \\
& I_{\alpha}=\left\{\xi \in C_{b}\left(\mathbf{R}^{N}\right) ; \xi(x) \geq 0 \text { and } \liminf _{|x| \rightarrow \infty}^{\lim }|x|^{\alpha} \xi(x)>0\right\}
\end{aligned}
$$

For two functions $f(r)$ and $g(r)$, we say that $f \sim g$ near $r=0$ (∞ respectively) if there exists two positive constants C_{1}, C_{2} such that $C_{1} f(r) \leq$ $g(r) \leq C_{2} f(r)$ near $r=0$ (∞ respectively). The letter C denotes a positive generic constant which may vary from line to line. We shall use the notation $S(t) \xi$ to represent the solution of the heat equation with initial value $\xi(x)$:

$$
[S(t) \xi](x)=(4 \pi t)^{-N / 2} \int_{\mathbf{R}^{N}} e^{-|x-y|^{2} / 4 t} \xi(y) d y
$$

Especially, we write $[S(t) \xi](x)=W(x, t ; A, \alpha)$ when $\xi(x)=A|x|^{-\alpha}$ with $A>0$ and $0 \leq \alpha<N$. W has the explicit form

$$
W(x, t ; A, \alpha)=A t^{-\alpha / 2} h_{\alpha}\left(x / t^{1 / 2}\right)
$$

where

$$
h_{\alpha}(x)=(4 \pi)^{-N / 2} \int_{\mathbf{R}^{N}} e^{-|y|^{2} / 4}|x-y|^{-\alpha} d y
$$

In the following we assume

$$
\begin{equation*}
q \geq p \geq 1 \quad \text { and } \quad p q>1 \tag{4}
\end{equation*}
$$

We put

$$
\left(u_{0}(x), v_{0}(x)\right)=\left(\lambda^{1 /(q+1)} \varphi(x), \lambda^{1 /(p+1)} \psi(x)\right)
$$

in (1), where $\lambda>0$, and write

$$
T_{\lambda}^{*}=T^{*}\left(\lambda^{1 /(q+1)} \varphi, \lambda^{1 /(p+1)} \psi\right)
$$

Moreover, we let

$$
a^{*}=\frac{2(p+1)(q+1)}{p q-1}
$$

Then our results of this paper will be summarized in the following four theorems.

Theorem 1 Suppose $\psi(x) \in I_{a /(p+1)}$ for some $0 \leq a<\min \left\{a^{*}, N(p+1)\right\}$. Then $T_{\lambda}^{*}<\infty$ for any $\lambda>0$, and for given $\lambda_{0}>0$ there exists $C\left(\lambda_{0}\right)>0$ such that

$$
\begin{equation*}
T_{\lambda}^{*} \leq C\left(\lambda_{0}\right) \lambda^{-2 /\left(a^{*}-a\right)} \quad \text { for } \lambda<\lambda_{0} \tag{5}
\end{equation*}
$$

Theorem 2 Suppose that $\varphi \in I^{a /(q+1)}$ and $\psi \in I^{a /(p+1)} \cap I_{a /(p+1)}$ for some $0 \leq a<\min \left\{a^{*}, N(p+1)\right\}$. Then we have

$$
\begin{equation*}
T_{\lambda}^{*} \sim \lambda^{-2 /\left(a^{*}-a\right)} \quad \text { near } \lambda=0 \tag{6}
\end{equation*}
$$

Theorem 3 Let $p q>1+(2 / N)(q+1)$, or equivalently $a^{*}<N(p+1)$.
(i) Suppose that $\varphi \in I^{a /(q+1)}, \psi \in I^{a /(p+1)}$ for some $a^{*}<a<N(p+$ 1). Then there exists $\lambda_{1}>0$ such that $T_{\lambda}^{*}=\infty$ for $\lambda<\lambda_{1}$, and

$$
\begin{equation*}
\|u(t)\|_{\infty} \leq C t^{-a / 2(q+1)}, \quad\|v(t)\|_{\infty} \leq C t^{-a / 2(p+1)} \tag{7}
\end{equation*}
$$

as $t \rightarrow \infty$.
(ii) Suppose that

$$
\begin{aligned}
& \lim _{|x| \rightarrow \infty}|x|^{a /(q+1)} \varphi(x)=A_{1}>0 \\
& \lim _{|x| \rightarrow \infty}|x|^{a /(p+1)} \psi(x)=A_{2}>0
\end{aligned}
$$

for some $a^{*}<a<N(p+1)$. Then for $\lambda<\lambda_{1}$ we have

$$
\begin{align*}
& t^{a / 2(q+1)}\left|u(x, t)-W\left(x, t ; A_{1} \lambda^{1 /(q+1)}, a /(q+1)\right)\right| \rightarrow 0 \\
& t^{a / 2(p+1)}\left|v(x, t)-W\left(x, t ; A_{2} \lambda^{1 /(p+1)}, a /(p+1)\right)\right| \rightarrow 0 \tag{8}
\end{align*}
$$

as $t \rightarrow \infty$ uniformly in \mathbf{R}^{N}.
Theorem 4 Suppose that $\varphi, \psi \in C_{b}\left(\mathbf{R}^{N}\right)$ and $\varphi(0) \psi(0)>0$. Then there
exists $\lambda_{2} \geq 0$ such that $T_{\lambda}^{*}<\infty$ for any $\lambda>\lambda_{2}$, and

$$
\begin{equation*}
T_{\lambda}^{*} \sim \lambda^{-2 / a^{*}} \quad \text { as } \quad \lambda \rightarrow \infty \tag{9}
\end{equation*}
$$

Comparing Theorem 1 and (II) stated above (or Theorem 3 (i)), we see that the number a^{*} gives another cutoff between the blow-up case and the global existence case. Theorem 3 (ii) is not treated in Lee-Ni [8]. The corresponding results for single equation have been obtained by KaminPeletier [7] in case of the heat equation with absorption. To show the theorems we shall frequently use a standard comparison principle. We refer Protter-Weinberger [11] and Bebernes-Eberly [1] on this principle. The condition $p \geq 1$ which guarantees the uniqueness of solutions to (1) is mainly required to verify this principle. In this paper we did not enter into the case $a \geq N(p+1)$. For single equation, this case is contained in [8], and some of their results can be extended also to our system. Finally, note that the critical exponent $a=a^{*}$ is expected to belong to the global existence case. In fact, if $N \geq 3$ and $p q>1+(2 /(N-2)) \max \{p+1, q+1\}$, the functions

$$
\Phi(x)=A|x|^{-a^{*} /(q+1)}, \quad \Psi(x)=B|x|^{-a^{*} /(p+1)}
$$

become a stationary solution to (1) under suitably chosen positive constants A, B. We shall discuss these results elswhere.

The rest of the paper is organized as follows: Theorems 1 amd 2 are proved in the next $\S 2$, Theorems 3 and 4 are proved in $\S 3$ and $\S 4$, respectively. To show Theorem 2 we construct a super-solution to the system of equations (1). Its special form and estimate will also be used in $\S 3$ and $\S 4$.

2. Proof of Theorems 1 and 2

In order to obtain an estimate of T_{λ}^{*} from above, the following lemma due to Escobedo-Herrero [3; Lemma 4.1] plays a key role in our proof.

Lemma 1 Assume that $q \geq p \geq 1$ and $p q>1$, and let $(u(t), v(t))$ be the solution of (1) in some strip $S_{T}=\mathbf{R}^{N} \times[0, T)$ with $0<T \leq \infty$. Assume also that $u(t)$ and $v(t)$ are bounded in S_{T}. Then there exists a constant $C>0$, depending on p, q but not on u_{0}, v_{0}, nor T, such that

$$
\begin{equation*}
\lambda^{1 /(p+1)} t^{(q+1) /(p q-1)}\|S(t) \psi\|_{\infty} \leq C \quad \text { for any } t \in[0, T) \tag{10}
\end{equation*}
$$

Proof of Theorem 1. Since $\psi \in I_{a /(p+1)}$, we can choose a bounded continuous function $\tilde{\psi}(x)$ in \mathbf{R}^{N} such that

$$
\tilde{\psi}(x)=m|x|^{-a /(p+1)} \text { for }|x|>R \text { and } \tilde{\psi}(x) \leq \psi(x) \text { for } x \in \mathbf{R}^{N},
$$

where $m>0$ is sufficiently small and $R>0$ is sufficiently large. Let $t_{0}=t_{0}(\lambda)>0$ be a small number such that $t_{0}<T_{\lambda}^{*}$. Then we have for $t>t_{0}$,

$$
\begin{aligned}
& S(t) \psi \geq S(t) \tilde{\psi} \geq(4 \pi t)^{-N / 2} \int_{|x-y|>R} e^{-|y|^{2} / 4 t} m|x-y|^{-a /(p+1)} d y \\
& \geq t^{-a / 2(p+1)}(4 \pi)^{-N / 2} m \int_{\left|x t^{-1 / 2}-y\right|>R t_{0}^{-1 / 2}} e^{-|y|^{2} / 4}\left|x / t^{1 / 2}-y\right|^{-a /(p+1)} d y \\
& \quad \equiv t^{-a / 2(p+1)} k_{t_{0}}\left(x / t^{1 / 2}\right)>0 .
\end{aligned}
$$

Therefore,

$$
\|S(t) \psi\|_{\infty} \geq t^{-a / 2(p+1)}\left\|k_{t_{0}}\right\|_{\infty}
$$

Substituting this in (10), we see that the inequality

$$
t^{(q+1) /(p q-1)} t^{-a / 2(p+1)} \leq C \lambda^{-1 /(p+1)}\left\|k_{t_{0}}\right\|_{\infty}^{-1}
$$

holds for any $t \in\left(t_{0}, T_{\lambda}^{*}\right)$.
This proves that $T_{\lambda}^{*}<\infty$ for any $\lambda>0$. Inequality (5) also follows from this since we can choose $t_{0}=t_{0}\left(\lambda_{0}\right)$ for any $0<\lambda \leq \lambda_{0}$.

In order to obtain an estimate of T_{λ}^{*} from below, we shall construct a suitable supersolution of (1).

Let $(x(t), y(t))$ be a solution of the ordinary differential equation

$$
\begin{cases}x^{\prime}=f(t) y^{p}, & t>0 \tag{11}\\ y^{\prime}=f(t) x^{q}, & t>0 \\ x(0)=x_{0}>0, \quad y(0)=y_{0}>0, & \end{cases}
$$

where $p q>1$ and $f(t)>0$ is a bounded continuous function of $t \geq 0$.
Lemma 2 Assume that

$$
\begin{equation*}
(q+1)^{-1} x_{0}^{q+1} \leq(p+1)^{-1} y_{0}^{p+1} \tag{12}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
y(t) \leq\left\{y_{0}^{-(p q-1) /(q+1)}-\frac{p q-1}{q+1}\left(\frac{q+1}{p+1}\right)^{q /(q+1)} \int_{0}^{t} f(s) d s\right\}^{-(q+1) /(p q-1)} \tag{13}
\end{equation*}
$$

Proof. From equation (11) it follows that $x^{q} d x=y^{p} d y$. Integrate both sides from 0 to t. Then by virtue of (12)

$$
x(t) \leq f(t)\left(\frac{q+1}{p+1}\right)^{1 /(q+1)} y(t)^{(p+1) /(q+1)}
$$

Substitute this in the second eqution of (11). Then we have

$$
y^{-q(p+1) /(q+1)} y^{\prime} \leq\left(\frac{q+1}{p+1}\right)^{q /(q+1)} f(t)
$$

Integrating this again from 0 to t, we obtain (13).
We put

$$
\begin{align*}
& W_{1}(x, t)=W\left(x, t+t_{1} ; M_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) \\
& W_{2}(x, t)=W\left(x, t+t_{1} ; M_{2} \lambda^{1 /(p+1)}, a /(p+1)\right) \tag{14}
\end{align*}
$$

where M_{1}, M_{2} and t_{1} are positive constants. Note that for $\varphi \in I^{a /(q+1)}$, $\psi \in I^{a /(p+1)}$ with $0 \leq a<N(p+1)$, we can choose M_{1}, M_{2} large enough to satisfy

$$
\begin{equation*}
W_{1}(x, 0) \geq \lambda^{1 /(q+1)} \varphi(x), \quad W_{2}(x, 0) \geq \lambda^{1 /(p+1)} \psi(x) \tag{15}
\end{equation*}
$$

Lemma 3 (i) $W_{j}(x, t)>0(j=1,2)$ and $|x|^{a /(q+1)} W_{1}(x, t)$, $|x|^{a /(p+1)} W_{2}(x, t)$ are bounded in $\mathbf{R}^{N} \times[0, \infty)$.
(ii) There exists a constant $C>0$ such that for any $t \geq 0$,
$\left\|W_{1}(\cdot, t)\right\|_{\infty} \leq C\left(t+t_{1}\right)^{-a / 2(q+1)}$,
$\left\|W_{2}(\cdot, t)\right\|_{\infty} \leq C\left(t+t_{1}\right)^{-a / 2(p+1)}$.
(iii) There exists a constant $C_{1}>0$ such that for any $t \geq 0$,

$$
\begin{aligned}
&\left\|W_{2}(\cdot, t)^{p} / W_{1}(\cdot, t)\right\|_{\infty} \leq C_{1} \lambda^{2 / a^{*}}\left(t+t_{1}\right)^{-a / a^{*}} \\
&\left\|W_{1}(\cdot, t)^{q} / W_{2}(\cdot, t)\right\|_{\infty} \leq C_{1} \lambda^{2 / a^{*}}\left(t+t_{1}\right)^{-a / a^{*}}
\end{aligned}
$$

Proof. For any $0 \leq \alpha<N$ and $x \in \mathbf{R}^{N}$, we have (cf., Rapnikov-Eidelman [12]) $h_{\alpha}(x)>0$, and

$$
\lim _{|x| \rightarrow \infty}|x|^{\alpha} h_{\alpha}(x)=1
$$

Since $W\left(x, t+t_{0} ; A, \alpha\right)=A\left(t+t_{0}\right)^{-\alpha / 2} h_{\alpha}\left(x\left(t+t_{0}\right)^{-1 / 2}\right)$, these properties of $h_{\alpha}(x)$ prove the assertions of the lemma.

Now, let $(\alpha(t), \beta(t))$ be the solution of

$$
\begin{cases}\alpha^{\prime}=\left\|W_{2}(\cdot, t)^{p} / W_{1}(\cdot, t)\right\|_{\infty} \beta^{p}, & t>0 \tag{16}\\ \beta^{\prime}=\left\|W_{1}(\cdot, t)^{q} / W_{1}(\cdot, t)\right\|_{\infty} \alpha^{q}, & t>0 \\ \alpha(0)=\beta(0)=1 & \end{cases}
$$

and let us define $(\bar{u}(x, t), \bar{v}(x, t))$ as follows:

$$
\begin{equation*}
\bar{u}(x, t)=\alpha(t) W_{1}(x, t), \quad \bar{v}(x, t)=\beta(t) W_{2}(x, t) \tag{17}
\end{equation*}
$$

Lemma 4 (i) $(\alpha(t), \beta(t))$ is a subsolution of (11) with $f(t)=$ $C_{1} \lambda^{2 / a^{*}}\left(t+t_{1}\right)^{-a / a^{*}}$ and $x_{0}=y_{0}=1$.
(ii) Suppose that $\varphi \in I^{a /(q+1)}$ and $\psi \in I^{a /(p+1)}$. Then $(\bar{u}(t), \bar{v}(t))$ gives a supersolution of (1).

Proof. (i) is obvious from Lemma 3 (iii). We have

$$
\begin{aligned}
\bar{u}_{t} & =\alpha^{\prime}(t) W_{1}(x, t)+\alpha(t) W_{1 t}(x, t) \\
& =\left\|W_{2}^{p} / W_{1}\right\|_{\infty} \beta^{p} W_{1}+\alpha \Delta W_{1} \geq \Delta \bar{u}+\bar{v}^{p}
\end{aligned}
$$

Similarly, we have $\bar{v}_{t} \geq \Delta \bar{v}+\bar{u}^{q}$. These inequalities and (15) show the assertion (ii).

Proof of Theorem 2. It follows from Lemma 4 (ii) and a standard comparison argument that

$$
\begin{equation*}
u(x, t) \leq \bar{u}(x, t) \quad \text { and } \quad v(x, t) \leq \bar{v}(x, t) \tag{18}
\end{equation*}
$$

Then we see from (17) that T_{λ}^{*} is not less than the life span of $(\alpha(t), \beta(t))$.
By means of Lemma 4 (i) and a comparison principle, we see from Lemma 2 that

$$
\begin{align*}
\beta(t) \leq\left\{1-\frac{p q-1}{q+1}\right. & \left(\frac{q+1}{p+1}\right)^{q /(q+1)} C_{1} \lambda^{2 / a^{*}} \\
& \left.\times \int_{0}^{t}\left(s+t_{1}\right)^{-a / a^{*}} d s\right\}^{-(q+1) /(p q-1)} \tag{19}
\end{align*}
$$

Remember that we have assumed $0 \leq a<a^{*}$. Then (19) implies that $\beta(t)$ remains finite at least for t satisfying

$$
\frac{C_{1}(p q-1) a^{*}}{(q+1)\left(a^{*}-a\right)}\left(\frac{q+1}{p+1}\right)^{q /(q+1)} \lambda^{2 / a^{*}} t^{\left(a^{*}-a\right) / a^{*}} \leq 1
$$

Integrating the first equation of (16) shows that $\alpha(t)$ is finite in the same interval. Thus, we obtain

$$
T_{\lambda}^{*}>\frac{1}{2} C_{2} \lambda^{-2 /\left(a^{*}-a\right)} \quad \text { for any } \quad \lambda>0
$$

Combining this and (5) of Theorem 1, we conclude the assertion of Theorem 2.

3. Proof of Theorem 3

In this section we restrict ourselves to the case $a^{*}<N(p+1)$, and assume that $a^{*}<a<N(p+1)$.

We see from (19) that $\beta(t)$ is global and bounded in $t \geq 0$ if $\lambda<\lambda_{1}$, where $\lambda_{1}>0$ is given by

$$
\frac{C_{1}(p q-1) a^{*}}{(q+1)\left(a-a^{*}\right)}\left(\frac{q+1}{p+1}\right)^{q /(q+1)} \lambda_{1}^{2 / a^{*}} t_{1}^{-\left(a-a^{*}\right) / a^{*}}=1
$$

Moreover, noting $a>a^{*}$, we see that the right side of the first equation of (16) is integrable in $t \in(0, \infty)$. This implies that $\alpha(t)$ is also global and bounded in $t>0$. Then we have (7) from (17) and Lemma 3 (ii). Theorem 3 (i) is thus complete.

To show Theorem 3 (ii) we put

$$
u_{k}(x, t)=k^{a /(q+1)} u\left(k x, k^{2} t\right), \quad v_{k}(x, t)=k^{a /(p+1)} u\left(k x, k^{2} t\right)
$$

for $k>0$. Then $\left(u_{k}(t), v_{k}(t)\right)$ solves

$$
\left\{\begin{array}{l}
u_{k t}=\Delta u_{k}+k^{-2 a / a^{*}+2} v_{k}^{p} \tag{20}\\
v_{k t}=\Delta v_{k}+k^{-2 a / a^{*}+2} u_{k}^{q} \\
u_{k}(x, 0)=k^{a /(q+1)} \lambda^{1 /(q+1)} \varphi(k x) \\
v_{k}(x, 0)=k^{a /(p+1)} \lambda^{1 /(p+1)} \psi(k x)
\end{array}\right.
$$

It follows from (7) that

$$
\left\|u_{k}(t)\right\|_{\infty} \leq k^{a /(q+1)} C\left(k^{2} t\right)^{-a / 2(q+1)}=C t^{-a / 2(q+1)}
$$

Thus, $\left\{u_{k}(x, t)\right\}$ is uniformly bounded in $\mathbf{R}^{N} \times[\delta, \infty)$ for any δ. As is easily seen, the uniform boundedness implies the equicontinuity of $\left\{u_{k}(x, t)\right\}$ in any bounded set of $\mathbf{R}^{N} \times[\delta, \infty)$. Then using the Ascoli-Arzela theorem and a diagonal sequence method in δ, we see that for any sequence $\left\{k_{j}\right\} \rightarrow \infty$, there exists a subsequence $\left\{k_{j}^{\prime}\right\}$ and a function $w_{1}(x, t) \in C\left(\mathbf{R}^{N} \times(0, \infty)\right)$ such that

$$
u_{k_{j}^{\prime}}(x, t) \rightarrow w_{1}(x, t) \quad \text { as } \quad k_{j}^{\prime} \rightarrow \infty
$$

locally uniformly in $\mathbf{R}^{N} \times(0, \infty)$.
We shall show

$$
\begin{equation*}
w_{1}(x, t)=W\left(x, t ; A_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) \tag{21}
\end{equation*}
$$

It follows from the first equation of (20) that

$$
\begin{align*}
& \int_{\mathbf{R}^{N}} u_{k}(x, t) \zeta(x, t) d x-\int_{\mathbf{R}^{N}} u_{k}(x, 0) \zeta(x, 0) d x \\
& \quad=\int_{0}^{t} \int_{\mathbf{R}^{N}}\left\{u_{k} \zeta_{t}+u_{k} \Delta \zeta+k^{-2 a / a^{*}+2} v_{k}^{p} \zeta\right\} d x d t \tag{22}
\end{align*}
$$

for any $t>0$ and nonnegative $\zeta(x, t) \in C_{0}^{\infty}\left(\mathbf{R}^{N} \times[0, \infty)\right)$. By assumption on the initial values

$$
\begin{aligned}
& \int_{\mathbf{R}^{N}} u_{k}(x, 0) \zeta(x, 0) d x=\int_{\mathbf{R}^{N}} k^{a /(q+1)} \lambda^{1 /(q+1)} \varphi(k x) \zeta(x, 0) d x \\
& \quad \rightarrow A_{1} \lambda^{1 /(q+1)} \int_{\mathbf{R}^{N}}|x|^{-a /(q+1)} \zeta(x, 0) d x \quad \text { as } \quad k=k_{j}^{\prime} \rightarrow \infty
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{N}} k^{-2 a / a^{*}+2} v_{k}^{p} \zeta d x d t \\
&=\int_{0}^{k^{2} t} \int_{\mathbf{R}^{N}} k^{a /(q+1)} v(k x, \tau)^{p} \zeta\left(x, k^{-2} \tau\right) d x d \tau
\end{aligned}
$$

Since $\alpha(t)$ is bounded, it follows from Lemma 3 (i) that

$$
\begin{aligned}
& k^{a /(q+1)} v(k x, \tau)^{p} \leq C k^{a /(q+1)} W_{2}(k x, \tau)^{p} \\
& \quad \leq C\left\{(k|x|)^{a /(p+1)} W_{2}(k x, \tau)\right\}^{(p+1) /(q+1)} \\
& \quad \times|x|^{-a /(q+1)}\left(W_{2}(k x, \tau)\right)^{(p q-1) /(q+1)} \\
& \leq C M_{2}^{p} \lambda^{p /(p+1)}|x|^{-a /(q+1)}\left(\tau+t_{1}\right)^{-a / a^{*}} \\
& \quad \times\left(h_{a /(p+1)}\left(k x /\left(\tau+t_{1}\right)^{1 / 2}\right)\right)^{(p q-1) /(q+1)}
\end{aligned}
$$

Note here that $a /(q+1)<N, a / a^{*}>1$ and

$$
h_{a /(p+1)}\left(k x /\left(\tau+t_{1}\right)^{1 / 2}\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

for $x \neq 0$. Then we can apply the Lebesgue dominated convergence theorem to obtain

$$
\int_{0}^{k^{2} t} \int_{\mathbf{R}^{N}} k^{a /(q+1)} v(k x, \tau)^{p} \zeta\left(x, k^{-2} \tau\right) d x d \tau \rightarrow 0 \text { as } k=k_{j}^{\prime} \rightarrow \infty
$$

Thus, letting $k=k_{j}^{\prime} \rightarrow \infty$ in (22), we obtain

$$
\begin{gathered}
\int_{\mathbf{R}^{N}} w_{1}(x, t) \zeta(x, t) d x-\int_{\mathbf{R}^{N}} A_{1} \lambda^{1 /(q+1)}|x|^{-a /(q+1)} \zeta(x, 0) d x \\
=\int_{0}^{t} \int_{\mathbf{R}^{N}}\left\{w_{1} \zeta_{t}+w_{1} \Delta \zeta\right\} d x d t
\end{gathered}
$$

The uniqueness of solutions of

$$
u_{t}=\Delta u, \quad u(x, 0)=A_{1} \lambda^{1 /(q+1)}|x|^{-a /(q+1)},
$$

then implies (21).
We have thus proved that

$$
\begin{equation*}
u_{k}(x, t) \rightarrow W\left(x, t ; A_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) \quad \text { as } \quad k \rightarrow \infty \tag{23}
\end{equation*}
$$

uniformly in compact sets of $\mathbf{R}^{N} \times(0, \infty)$.

Note again that $(\alpha(t), \beta(t))$ is bounded. Then it follows from (14) and (17) that

$$
u_{k}(x, t) \leq C k^{a /(q+1)} W\left(k x, k^{2} t+t_{1} ; M_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) .
$$

Let $t=1$ in this inequality. Then by use of the selfsimilarity of $W(x, t ; A, \alpha)$:

$$
W(x, t ; A, \alpha)=k^{\alpha} W\left(k x, k^{2} t ; A, \alpha\right),
$$

we have

$$
u_{k}(x, 1) \leq C W\left(x, 1+k^{-2} t_{1} ; M_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) .
$$

This inequality implies with Lemma 3 (i) that for any $\epsilon>0$ there exists an $R>0$ independent of $k>\left(2 t_{1}\right)^{-2}$ such that $\left\{u_{k}(x, 1)\right\}$ are uniformly less than ϵ in $|x|>R$. Therefore, we have from (23) that

$$
u_{k}(x, 1)-W\left(x, 1 ; A_{1} \lambda^{1 /(q+1)}, a /(q+1)\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

uniformly in \mathbf{R}^{N}.
We let $y=k x$ and $s=k^{2}$ in this relation. Then noting again the selfsimilarity of $W(x, t ; A, \alpha)$, we conclude that

$$
s^{a / 2(q+1)}\left|u(y, s)-W\left(y, s ; A_{1} \lambda^{1 /(q+1)}, a /(q+1)\right)\right| \rightarrow 0 \text { as } s \rightarrow \infty
$$

uniformly in \mathbf{R}^{N}.
Relation (8) is now proved for $u(x, t)$. The same argument can be applied also to $v(x, t)$, and Theorem 3 (ii) is complete.

4. Proof of Theorem 4

In this section we consider the case where λ goes to ∞.
In order to obtain an estimate of T_{λ}^{*} from below, we choose $f(t) \equiv 1$ and $x_{0}=\lambda^{1 /(q+1)}\left\|\varphi_{0}\right\|_{\infty}, y_{0}=\lambda^{1 /(p+1)}\left\|\psi_{0}\right\|_{\infty}$ in (11). Then the solution $(x(t), y(t))$ gives a supersolution of (1), and we have from Lemma 2

$$
y(t) \leq\left\{y_{0}^{-(p q-1) /(q+1)}-\frac{p q-1}{q+1}\left(\frac{q+1}{p+1}\right)^{q /(q+1)} t\right\}^{-(q+1) /(p q-1)}
$$

if $(q+1)^{-1} x_{0}^{q+1} \leq(p+1)^{-1} y_{0}^{p+1}$. Similarly, we can have

$$
x(t) \leq\left\{x_{0}^{-(p q-1) /(p+1)}-\frac{p q-1}{p+1}\left(\frac{p+1}{q+1}\right)^{p /(p+1)} t\right\}^{-(p+1) /(p q-1)}
$$

if $(q+1)^{-1} x_{0}^{q+1} \geq(p+1)^{-1} y_{0}^{p+1}$. From these inequalities we conclude

$$
\begin{equation*}
T_{\lambda}^{*} \geq C\left[\max \left\{(q+1)^{-1}\|\varphi\|_{\infty}^{q+1},(p+1)^{-1}\|\psi\|_{\infty}^{p+1}\right\}\right]^{-2 / a^{*}} \lambda^{-2 / a^{*}} \tag{24}
\end{equation*}
$$

for any $\lambda>0$, where $C=a^{*}(p+1)^{p}(q+1)^{q} / 2$.
To obtain an estimate of T_{λ}^{*} from above, we put

$$
\begin{aligned}
& u_{\lambda}(x, t)=\lambda^{-1 /(q+1)} u\left(\lambda^{-1 / a^{*}} x, \lambda^{-2 / a^{*}} t\right) \\
& v_{\lambda}(x, t)=\lambda^{-1 /(p+1)} v\left(\lambda^{-1 / a^{*}} x, \lambda^{-2 / a^{*}} t\right)
\end{aligned}
$$

Then $\left(u_{\lambda}(t), v_{\lambda}(t)\right)$ solves

$$
\left\{\begin{array}{l}
u_{\lambda t}=\Delta u_{\lambda}+v_{\lambda}^{p} \tag{25}\\
v_{\lambda t}=\Delta v_{\lambda}+u_{\lambda}^{q} \\
u_{\lambda}(x, 0)=\varphi_{\lambda}(x)=\varphi\left(\lambda^{-1 / a^{*}} x\right) \\
v_{\lambda}(x, 0)=\psi_{\lambda}(x)=\psi\left(\lambda^{-1 / a^{*}} x\right)
\end{array}\right.
$$

Let \tilde{T}_{λ}^{*} be the life span of $\left(u_{\lambda}(t), v_{\lambda}(t)\right)$. Then obviously

$$
\begin{equation*}
T_{\lambda}^{*}=\lambda^{-2 / a^{*}} \tilde{T}_{\lambda}^{*} \tag{26}
\end{equation*}
$$

We define

$$
F(t)=\int_{\mathbf{R}^{N}} u_{\lambda}(x, t) \rho_{\epsilon}(x) d x, \quad G(t)=\int_{\mathbf{R}^{N}} v_{\lambda}(x, t) \rho_{\epsilon}(x) d x
$$

where $\rho_{\epsilon}(x)=\left(\pi^{-1} \epsilon\right)^{N / 2} e^{-\epsilon|x|^{2}}$ (cf. e.g., Mochizuki-Suzuki [9]). Then by the Jensen inequality, the following inequalities hold for $t>0$.

$$
F^{\prime}(t) \geq-2 N \epsilon F(t)+G^{p}(t), \quad G^{\prime}(t) \geq-2 N \epsilon G(t)+F^{q}(t)
$$

Note that

$$
\lim _{\lambda \rightarrow \infty} F(0)=\varphi(0)>0, \quad \lim _{\lambda \rightarrow \infty} G(0)=\psi(0)>0
$$

Then there exist $\epsilon_{0}>0$ and $\lambda_{0}>0$ such that when $0<\epsilon<\epsilon_{0}$ and $\lambda>\lambda_{0}$,

$$
-2 N \epsilon F(0)+G^{p}(0)>0, \quad-2 N \epsilon G(0)+F^{q}(0)>0
$$

Thus, if we put

$$
\Omega=\left\{(x, y) ;-2 N \epsilon x+y^{p}>0,-2 N \epsilon y+x^{q}>0\right\}
$$

then Ω becomes an invariant set for $(F(t), G(t))$.
As in Galaktionov-Kurdymov-Samarskii [4], [5] (cf., also Caristi-Mitidier [2]), we let $V(t)=F(t) G(t)$, and differentiate it in t. Then by use of the Hölder inequality, we obtain

$$
\begin{equation*}
V^{\prime}(t) \geq-4 N \epsilon V(t)+C(p, q) V(t)^{(p+1)(q+1) /(p+q+2)} \tag{27}
\end{equation*}
$$

where

$$
C(p, q)=\left(\frac{p+q+2}{q+1}\right)^{(p+1) /(p+q+2)}\left(\frac{p+q+2}{p+1}\right)^{(q+1) /(p+q+2)}
$$

Since

$$
\lim _{\lambda \rightarrow \infty} V(0)=\varphi(0) \psi(0)>0
$$

for $0<\epsilon<\epsilon_{0}$, we have from (27)

$$
\limsup _{\lambda \rightarrow \infty} \tilde{T}_{\lambda}^{*} \leq \int_{\varphi(0) \psi(0)}^{\infty}\left\{C(p, q) \xi^{(p+1)(q+1) /(p+q+2)}-4 N \epsilon \xi\right\}^{-1} d \xi
$$

Thus, $V(t)$ blows up in a finite time. Moreover, letting $\epsilon \rightarrow 0$, we have

$$
\limsup _{\lambda \rightarrow \infty} \tilde{T}_{\lambda}^{*} \leq C\{\varphi(0) \psi(0)\}^{-(p q-1) /(p+q+2)}
$$

From this and (26) it follows that

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \lambda^{2 / a^{*}} T_{\lambda}^{*} \leq C\{\varphi(0) \psi(0)\}^{-(p q-1) /(p+q+2)} \tag{28}
\end{equation*}
$$

Combinig (24) and (28), we conclude Theorem 4.

References

[1] Bebernes J. and Eberly D., Mathematicl problems from combustion theory. Springer-Verlag, New York, 1989.
[2] Caristi G. and Mitidieri E., Blow-up estimate of positive solutions of a parabolic system. J. Diff. Eqns 113 (1994), 265-271.
[3] Escobedo M. and Herrero M.A., Boundedness and blow up for a semilinear reaction-diffusion system. J. Diff. Eqns. 89 (1991), 176-202.
[4] Galaktionov V.A., Kurdyumov S.P. and Samarskii A.A., A parabolic system of quasilinear equations I. Differential Equations 19 (1983), 2133-2143.
[5] Galaktionov V.A., Kurdyumov S.P. and Samarskii A.A., A parabolic system of quasilinear equations II. Differential Equations 21 (1985), 1544-1559.
[6] Gui C. and Wang X., Life span of solutions of the Cauchy problem for a semilinear heat equation. J. Diff. Eqns 115 (1995), 166-172.
[7] Kamin S. and Peletier L.A., Large time behaviour of solutions of the heat equation with absorption. Ann. Scu. Norm. Sup. Pisa XII (1985), 393-408.
[8] Lee T. and Ni W., Global existence, largetime behavior and life span on solutions of a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc. 333 (1992), 365-378.
[9] Mochizuki K. and Suzuki R., Critical exponent and critical blow-up for quasilinear parabolic equations. Israel J. Math. 98 (1997), 141-156.
[10] Mukai K., Mochizuki K. and Huang Q., Large time behavior and life span for a quasilinear parabolic equation with slow decay initial values. Nonlinear Anal. TMA, to appear.
[11] Protter M.H. and Weinberger H.F., Maximum principles in differential equations. Springer-Verlag, New York, 1984.
[12] Repnikov V.D. and Eidelman S.D., A new proof of the theorem of the stbilization of the solutions of the Cauchy problem for the heat equation. Math. Sb .73 (1967), 155-159.

Qing Huang
Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo 192-0397, Japan
Kiyoshi Mochizuki
Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo 192-0397, Japan
E-mail: mochizuk@math.metro-u.ac.jp
Kentaro Mukai
Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo 192-0397, Japan

[^0]: 1991 Mathematics Subject Classification : 35K05, 35K15, 35K45 and 35K57.

