A class of univalent functions

Milutin Obradović

(Received January 28, 1997; Revised July 28, 1997)

$$
\begin{aligned}
& \text { Abstract. In this paper we consider starlikeness of the class of functions } f(z)=z+ \\
& a_{2} z^{2}+\cdots \text { which are analytic in the unit disc and satisfy the condition } \\
& \qquad\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}-1\right|<\lambda, \quad 0<\mu<1, \quad 0<\lambda<1
\end{aligned}
$$

Key words: univalent, starlike, starlike of order β.

1. Introduction and preliminaries

Let H denote the class of functions analytic in the unit disc $U=\{z$: $|z|<1\}$ and let $A \subset H$ be the class of normalized analytic functions f in U such that $f(0)=f^{\prime}(0)-1=0$. Further, let

$$
S^{*}(\beta)=\left\{f \in A: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, 0 \leq \beta<1, z \in U\right\}
$$

denote the class of starlike functions of order β. We put $S^{*} \equiv S^{*}(0)$ (the class of starlike functions). It is well-known that these classes belong to the class of univalent functions in U (see, for example [2]). Also, it is known that the class

$$
\begin{equation*}
B_{1}(\mu)=\left\{f \in A: \operatorname{Re}\left\{f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right\}>0, \mu>0, z \in U\right\} \tag{1}
\end{equation*}
$$

is the class of univalent functions in $U([1])$.
Recently, Ponnusamy ([5]) has shown that the stronger condition than in (1) given by

$$
\begin{equation*}
\left|f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-1\right|<\lambda, \quad \mu>0, z \in U \tag{2}
\end{equation*}
$$

and appropriate $0<\lambda<1$, implies starlikeness in U.
In this paper we consider starlikeness of the class of functions $f \in A$
defined by the condition

$$
\begin{equation*}
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}-1\right|<\lambda, \quad 0<\mu<1,0<\lambda<1, z \in U \tag{3}
\end{equation*}
$$

i.e. for $-1<\mu<0$ in (2).

For our results we need the following lemmas.
Lemma A ([3]). Let ω be a nonconstant and analytic function in U with $\omega(0)=0$. If $|\omega|$ attains its maximum value on the circle $|z|=r$ at z_{0}, we have $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geq 1$.

Lemma $\mathbf{B}([6]) . \quad$ Let $0<\lambda_{1}<\lambda<1$ and let \mathcal{Q} be analytic in U satisfying

$$
\mathcal{Q}(z) \prec 1+\lambda_{1} z, \quad \mathcal{Q}(0)=1
$$

(a) If $p \in H, p(0)=1$ and satisfies

$$
\mathcal{Q}(z)[\beta+(1-\beta) p(z)] \prec 1+\lambda z
$$

where

$$
\beta=\left\{\begin{array}{l}
\frac{1-\lambda}{1+\lambda_{1}}, \quad 0<\lambda+\lambda_{1} \leq 1 \tag{4}\\
\frac{1-\left(\lambda^{2}+\lambda_{1}^{2}\right)}{2\left(1-\lambda_{1}^{2}\right)}, \quad \lambda^{2}+\lambda_{1}^{2} \leq 1 \leq \lambda+\lambda_{1}
\end{array},\right.
$$

then $\operatorname{Re}\{p(z)\}>0, z \in U$.
(b) If $\omega \in H, \omega(0)=0$ and

$$
\mathcal{Q}(z)[1+\omega(z)] \prec 1+\lambda z
$$

then

$$
\begin{equation*}
|\omega(z)| \leq \frac{\lambda+\lambda_{1}}{1-\lambda_{1}}=r \leq 1, \quad \lambda+2 \lambda_{1} \leq 1 \tag{5}
\end{equation*}
$$

The value of β given by (4) and the bound (5) are the best possible.

2. Results and consequences

In the beginning we prove the following

Lemma 1 Let $p \in H, p(0)=1$ and satisfy the condition

$$
\begin{equation*}
p(z)-\frac{1}{\mu} z p^{\prime}(z) \prec 1+\lambda z, \quad 0<\mu<1, \quad 0<\lambda \leq 1 . \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
p(z) \prec 1+\lambda_{1} z, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{1}=\lambda \frac{\mu}{1-\mu} . \tag{8}
\end{equation*}
$$

Proof. Let's put

$$
\begin{equation*}
p(z)=1+\lambda_{1} \omega(z) \tag{9}
\end{equation*}
$$

where λ_{1} is given by (8). We want to show that $|\omega(z)|<1, z \in U$. If not, by Lemma A there exists a $z_{0},\left|z_{0}\right|<1$, such that $\left|\omega\left(z_{0}\right)\right|=1, z_{0} \omega^{\prime}\left(z_{0}\right)=$ $k \omega\left(z_{0}\right), k \geq 1$. If we put $\omega\left(z_{0}\right)=e^{i \theta}$, then we get

$$
\begin{aligned}
\left|p\left(z_{0}\right)-\frac{1}{\mu} z_{0} p^{\prime}\left(z_{0}\right)-1\right| & =\left|\lambda_{1} \omega\left(z_{0}\right)-\frac{1}{\mu} \lambda_{1} z_{0} \omega^{\prime}\left(z_{0}\right)\right| \\
& =\left|\lambda_{1} e^{i \theta}-\frac{\lambda_{1}}{\mu} k e^{i \theta}\right|=\lambda_{1}\left|1-\frac{k}{\mu}\right| \\
& \geq \lambda_{1}\left(\frac{1}{\mu}-1\right)=\lambda
\end{aligned}
$$

which is a contradiction to (6). Now, it means that $|\omega(z)|<1, z \in U$, and by (9) we have (7).

Theorem 1 If $f \in A$ satisfies the condition (3) with $0<\mu<1$ and $0<\lambda \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}$, then $f \in S^{*}$.

Proof. If we put $\mathcal{Q}(z)=\left(\frac{z}{f(z)}\right)^{\mu}$, then by some transformations and (3) we get

$$
\mathcal{Q}(z)-\frac{1}{\mu} z \mathcal{Q}^{\prime}(z)=f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu} \prec 1+\lambda z .
$$

From there by Lemma 1 we obtain

$$
\begin{equation*}
\mathcal{Q}(z) \prec 1+\lambda_{1} z, \quad \lambda_{1}=\lambda \frac{\mu}{1-\mu} . \tag{10}
\end{equation*}
$$

From the conditions (3) and (10) we have

$$
\left|\arg f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}\right|<\operatorname{arctg} \frac{\lambda}{\sqrt{1-\lambda^{2}}}
$$

and

$$
\left|\arg \left(\frac{f(z)}{z}\right)^{\mu}\right|=\left|\arg \left(\frac{z}{f(z)}\right)^{\mu}\right|<\operatorname{arctg} \frac{\lambda_{1}}{\sqrt{1-\lambda_{1}^{2}}}
$$

which give

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| & \leq\left|\arg f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}\right|+\left|\arg \left(\frac{f(z)}{z}\right)^{\mu}\right| \\
& \leq \operatorname{arctg} \frac{\lambda}{\sqrt{1-\lambda^{2}}}+\operatorname{arctg} \frac{\lambda_{1}}{\sqrt{1-\lambda_{1}^{2}}} \\
& =\operatorname{arctg} \frac{\frac{\lambda}{\sqrt{1-\lambda^{2}}}+\frac{\lambda_{1}}{\sqrt{1-\lambda_{1}^{2}}}}{1-\frac{\lambda \lambda_{1}}{\sqrt{1-\lambda^{2}} \sqrt{1-\lambda_{1}^{2}}}} \leq \frac{\pi}{2}
\end{aligned}
$$

since $1-\frac{\lambda \lambda_{1}}{\sqrt{1-\lambda^{2}} \sqrt{1-\lambda_{1}^{2}}} \geq 0\left(\Leftrightarrow \lambda \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}\right)$ is true by hypothesis. It means that $f \in S^{*}$.

Especially for $\mu=1 / 2$ we have
Corollary 1 Let $f \in A$ satisfy the condition

$$
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\frac{3}{2}}-1\right|<\frac{\sqrt{2}}{2}, \quad z \in U
$$

then $f \in S^{*}$.
By using Lemma B for $0<\mu<1 / 2$ we can get a better result as the following theorem shows.

Theorem 2 Let $f \in A$ satisfy the condition (3) for $0<\mu<1 / 2$. If λ_{1} is given by (8), then
(a) $f \in S^{*}(\beta)$, where

$$
\beta=\left\{\begin{array}{l}
\frac{1-\lambda}{1+\lambda_{1}}, \quad 0<\lambda \leq 1-\mu \\
\frac{1-\left(\lambda^{2}+\lambda_{1}^{2}\right)}{2\left(1-\lambda_{1}^{2}\right)}, \quad 1-\mu \leq \lambda \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}
\end{array}\right.
$$

(b) $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<r, \quad z \in U$,
where

$$
r=\frac{\lambda}{1-\mu-\lambda \mu} \leq 1, \quad 0<\lambda \leq \frac{1-\mu}{1+\mu}
$$

Proof. Let's put $\mathcal{Q}(z)=\left(\frac{z}{f(z)}\right)^{\mu}, p(z)=\frac{z f^{\prime}(z)}{f(z)}, \omega(z)=\frac{z f^{\prime}(z)}{f(z)}-1$. Then by (10) of Theorem 1 we have $\mathcal{Q}(z) \prec 1+\lambda_{1} z$, where $0<\lambda_{1}=\lambda \frac{\mu}{1-\mu}<\lambda<1$ since $0<\mu<1 / 2$. Also, since the condition (3) is equivalent to

$$
\mathcal{Q}(z)\left[\beta+(1-\beta) \frac{p(z)-\beta}{1-\beta}\right] \prec 1+\lambda z
$$

where β is given by (4) and as

$$
\mathcal{Q}(z)[1+\omega(z)] \prec 1+\lambda z
$$

then the statements of the theorem directly follows from Lemma B.
Theorem 3 Let $f \in A$ satisfy the condition (3) and let

$$
\begin{equation*}
F(z)=z\left[\frac{c-\mu}{z^{c-\mu}} \int_{0}^{z}\left(\frac{t}{f(t)}\right)^{\mu} t^{c-\mu-1} d t\right]^{-\frac{1}{\mu}}, \tag{11}
\end{equation*}
$$

where $c-\mu>0$. Then
(a) $F \in S^{*}$ for $\frac{(c-\mu) \lambda}{1+c-\mu} \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}, 0<\mu<1$.
(b) $F \in S^{*}(\beta)$, where

$$
\beta=\left\{\begin{array}{l}
\frac{1-\lambda_{1}}{1+\lambda_{2}}, \quad 0<\lambda_{1}<1-\mu \\
\frac{1-\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)}{2\left(1-\lambda_{2}^{2}\right)}, \quad 1-\mu \leq \lambda_{1} \leq \frac{1-\mu}{\sqrt{(1-\mu)^{2}+\mu^{2}}}
\end{array}\right.
$$

and $\lambda_{1}=\frac{(c-\mu) \lambda}{1+c-\mu}, \lambda_{2}=\lambda_{1} \frac{\mu}{1-\mu}, 0<\mu<\frac{1}{2}$.
(c) $\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|<r, \quad z \in U$, where $r=\frac{\lambda_{1}}{1-\mu-\lambda_{1} \mu} \leq 1, \lambda_{1}=\frac{c-\mu}{1+c-\mu}, 0<\lambda_{1} \leq \frac{1-\mu}{1+\mu}, 0<\mu<\frac{1}{2}$.
Proof. If we put $\mathcal{Q}(z)=F^{\prime}(z)\left(\frac{z}{F(z)}\right)^{1+\mu}$, then from (11) and (3), after some transformations we obtain

$$
\mathcal{Q}(z)+\frac{1}{c-\mu} z \mathcal{Q}^{\prime}(z)=f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu} \prec 1+\lambda z
$$

and from there, similar as in Lemma 1, we have that

$$
\mathcal{Q}(z) \prec 1+\lambda_{2} z, \quad \lambda_{2}=\frac{(c-\mu) \lambda}{1+c-\mu}
$$

(also see the proof of Theorem 1] in [5]). The statements of the theorem now easily follows from Theorem 1 and Theorem 2 .

In connection with the previous results we can pose the following
Questions For the limit cases, i.e. for $\mu=0$ or $\mu=1$ and $\lambda=1$ we have the classes of functions defined by the conditions $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1$, and $\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1$, respectively. The first class is the subclass of S^{*}, the second is the class of univalent functions in U (see [4]).

Does the condition $\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}-1\right|<1,0<\mu<1, z \in U$ imply univalence in U ? Generally speaking, can we find the region E in the complex plain such that $f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu} \in E, z \in U, 0<\mu<1$, provides univalence in the unit disc U ?

Acknowledgment This work was supported by Grant No. 04 M 03 of MNTRS through Math. Institute SANU.

References

[1] Bazilevič I.E., On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 37(79) (1955), 471-476 (Russian).
[2] Duren P.L., Univalent functions. Springer-Verlag, 1983.
[3] Jack I.S., Functions starlike and convex of order α. J. London Math. Soc. (2)3 (1971), 469-474.
[4] Ozaki M.O. and Nunokawa M., The Schwarzian derivative and univalent functions. Proc. Amer. Math. Soc. 33(2) (1972), 392-394.
[5] Ponnusamy S., Polya-Schoenberg conjecture by Caratheodory functions. J. London Math. Soc. (2)51 (1995), 93-104.
[6] Ponnusamy S. and Sing V., Convolution properties of some classes of analytic functions. SPIC Science Foundation (1991).

Department of Mathematics
Faculty of Technology and Metallurgy
4 Kamegijeva Street, 11000 Belgrade
Yugoslavia
E-mail: obrad@elab.tmf.bg.ac.yu

