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Existence and nonexistence of global solutions to
quasilinear parabolic equations with convection

Ryuichi SUZUKI
(Received October 8, 1996; Revised March 24, 1997)

Abstract. We consider nonnegative solutions to the Cauchy problem for the quasilinear
parabolic equations u_{t}=\triangle u^{m}+a\cdot\nabla u^{q}+u^{p} where m\geq 1 , p , q>1 , a\in R^{N} and a\neq 0 .
In this paper we show: (a) if q>m-1 and \max\{m, q\}\leq p<\min\{m+2/N , m+2(q-m+
1)/(N+1)\} or m+2/N\geq q\geq m+1/N and p=m+2/N , then all nontrivial solutions do
not exist globally in time; (b) if p>m+2/N , then there are nontrivial global solutions.
Further, in case (b) we study the asymptotic behavior of the global solutions. We also
study the asymptotic behavior of the global solutions of u_{t}=\triangle u^{m}+a\cdot\nabla u^{q} .

Key words: asymptotic behavior, blow-up, Cauchy problem, convection, critical exponent,
global solution, L^{\infty}-L^{\ell} estimate, quasilinear parabolic equation.

1. Introduction

In this paper we shall consider the Cauchy problem

\partial_{t}u=\triangle u^{m}+a(\nabla u^{q}+u^{p} (x, t)\in R^{N}\cross(0, T) , (1.1)

u(x, 0)=u_{0}(x) x\in R^{N} , (1.2)

where m\geq 1 , p , q>1 , a\in R^{N} , a\neq 0 , u_{0}(x)\geq 0 and u_{0}(x)\in BC(R^{N})

(bounded continuous functions). It is well known that if T>0 is small
enough then a nonnegative continuous weak solution of (1.1) (1.2) exists
(see [19], [26], [4]). The definition of a weak solution of (1.1) (1.2) is given
in Section 2.

We use the following notation: L^{p}(1\leq p\leq\infty) is the usual space of all
L^{p_{-}}functions in R^{N} with norm ||f||_{p}\equiv||f||_{L^{p}(R^{N})} .

When a=0, the following results are known to hold:
(I) If 1<p\leq m+2/N then all nontrivial nonnegative weak solutions

of (1.1) (1.2) blow up in finite time. Namely, \lim_{t\uparrow T}||u(t)||_{\infty}=\infty for some
T\in(0, \infty) .

(II) If p>m+2/N , then global solutions of (1.1) (1.2) exist when
the initial data are sufficiently small.
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We note that in case (II) solutions of (1.1) (1.2) also blow up in finite
time when the initial data are large enough (see [15] etc.).

Case (I) is called the blow-up case; (II) is called the global existence
case. The cut off number

p_{m}^{*}=m+2/N (1.3)

is called the critical exponent.
In case p\neq p_{m}^{*} , these results are due to Fujita [9] for m=1 and

Galaktionov et al. [11] for m>1 . In case p=p_{m}^{*} , these results are due to
Hayakawa [13] and Weissler [30] for m=1 and Galaktionov [10], Kawanago
[17] and Mochizuki-Suzuki [24] independently for m>1 . We note that
similar results were obtained in the exterior domain case. Namely, when
N\geq 2 Mochizuki-Suzuki [24] showed that p_{m}^{*} is the critical exponent and
when N\geq 3 Suzuki [29] showed that p=p_{m}^{*} is in the blow-up case.

Especially, when p>m+2/N (=p_{m}^{*}) , Kawanago [17] obtained a precise
L^{\infty}-decay estimates of global solutions u(t)=u(x, t) of (1.1) (1.2) with
a=0 as follows: If ||u_{0}||_{p0} is sufficiently small, then

||u(t)||_{\infty}\leq Kt^{-1/(p-1)}=Kt^{-N/[N(m-1)+2po]} for t\geq 0

where K is some constant and

p_{0}= \frac{N(p-m)}{2} . (1.4)

Furthermore, he obtained that if u_{0}(x)\in L^{1}(R^{N}) then the solution u(t)
converges to the heat kernel (when m=1) and the Barenblatt solution
(when m>1 ) with the convergence rate t^{-N/\{N(m-1)+2\}} .

Our aim in this paper is to extend these results to case a\neq 0 .
In the blow-up case, we get the following theorem. Put

p_{m,q}^{*}= \min\{m+\frac{2}{N} , m+ \frac{2(q-m+1)}{N+1}\} (1.5)

Theorem 1 Let q>m-1 . If
\max\{m, q\}\leq p<p_{m,q}^{*} , (1.6)

then all nonnegative nontrivial weak solutions u(x, t) of (1.1) (1.2) do not
exist globally in time. Furthermore, if 2q\geq m+1 and u_{0}(x)\in L^{1}(R^{N}) ,
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then

\lim_{t\uparrow T}||u(t)||_{\infty}=\infty (1.7)

for some T\in(0, \infty) .

The methods of the proof of Theorem 1 are the same as those of Aguirre-
Escobedo [1].

In the global existence case, we obtain the following L^{\infty}-estimates for
the solution of (1.1) (1.2).

Theorem 2 Let p>m+2/N Assume that u_{0}\in L^{p0}(R^{N}) with p_{0}\equiv

N(p-m)/2(>1) . Then there exists some constant \delta_{0}=\delta_{0}(N, m, p)>0

such that if ||u_{0}||_{p0}<\delta_{0} then (1.1) (1.2) has a weak solution u(x, t) with
T=\infty satisfying

||u(t)||_{\infty}\leq K_{1}t^{-1/(p-1)}=K_{1}t^{-N/\{N(m-1)+2po\}} for t>0 , (1.7)

where K_{1}=K_{1}(N, m, p, \delta_{0}) .

Further, we assume that u_{0}\in L^{1}(R^{N}) .

Theorem 3 Let p>m+2/N . Assume that u_{0}\in L^{1}(R^{N})\cap L^{p0}(R^{N}) .
Then there exists some constant \delta_{1}=\delta_{1}(N, m, p) such that if ||u_{0}||_{p0}<\delta_{1}

then (1.1) (1.2) has a weak solution u(t)=u(x, t) with T=\infty satisfying

||u(t)||_{\infty}\leq K_{2} min \{t^{-N/\{N(m-1)+2po\}} , t^{-N/\{N(m-1)+2\}}\}

for t>0 (1.9)

and

\sup_{t>0}||u(t)||_{1}\leq K_{3} (1.10)

where K_{2}=K_{2}(N, m, p, ||u_{0}||_{1}, \delta_{1}) and K_{3}=K_{3}(N,p, m, ||u_{0}||_{1}, \delta_{1})<\infty .
Moreover, if q>m+1/N , then the weak solution u(t) of (1.1) (1.2) is
unique and satisfies that

t^{N/\{N(m-1)+2\}}|u(x, t)-V_{m}(x, t, M_{\infty})|arrow 0 as tarrow\infty (1. 1)

uniformly on the set {x\in R^{N} ; |x| \leq bt^{1/\{N(m-1)+2\}}\}(b>0) where
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V_{m}(x, t, L) is a unique weak solution of

\{

v_{t}=\triangle v^{m} (x, t)\in R^{N}\cross(0, \infty)

v(x, O)=L\delta(x) x\in R^{N}
(1.13)

with Dirac ’s \delta -function \delta(x) and a positive constant L , and

M_{\infty}= \int_{R^{N}}u_{0}(x)dx+\int_{0}^{\infty}\int_{R^{N}}u^{p} dxdt (<\infty) . (1.13)

We note that (1.8), (1.9) and (1.10) also hold for the equation with
convection term a\cdot\nabla u^{q} replaced by more general K(x)\cdot\nabla u^{q} where K(x)=
(k_{1}(x), \ldots, k_{N}(x)) with k_{i}(x)\in C^{1}(R^{N})\cap L^{\infty}(R^{N})(0\leq i\leq N) and \nabla

K(x)=0 in R^{N} .
Our proof of Theorem 2 and 3 is based on the energy estimates due

to Kawanago [17] which treats the case a=0. He showed these theorems
with a=0 using L^{\infty}-L^{\ell} estimates for solutions which are obtained by
virtue of L^{\infty}-L^{\ell} estimates for solutions of a semilinear equation. But, it
seems that his methods can not be directly applied to equation (1.1) with
a\neq 0 . Therefore, we need the other L^{\infty}-L^{\ell} estimates for solutions to
prove Theorem 2 and 3. And in order to get these estimates we directly
apply the Moser’s iteration method to equation (1.1).

Theorem 1 and 2 show that when m+2/N>q>m+1/N (which is
called the weak convection case), the number p_{m,q}^{*}(=m+2/N) is a critical
exponent. In case p=p_{m,q}^{*} , we get the following theorem.

Theorem 4 If p\geq q\geq m+1/N and p=p_{m,q}^{*}(=m+2/N) , then all non-
negative nontrivial weak solutions u(x, t) of (1.1) (1.2) do not exist globally
in time. Furthermore, if u_{0}(x)\in L^{1}(R^{N}) , then

\lim_{t\uparrow T}||u(t)||_{\infty}=\infty . (1.14)

for some T\in(0, \infty) .

The methods of the proof are the same as those of the proof of R. Suzuki
[29] and Mochizuki-Mukai [23] in the critical case. Namely, we use the L^{1}

-

estimate and some transformation for the solutions. See also J. Aguirre-
M. Escobedo [1].

We note that in case p>p_{m,q}^{*} solutions u(x, t) of (1.1) (1.2) do not
exist globally in time either when the initial data are large enough (see [21]
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and [16] ) .
Here we must mention the interesting work of J. Aguirre-M. Escobedo

[1] concerning with the blow-up or global existence of solutions of (1.1)
(1.2) when m=1 . Roughly speaking, they showed that if p\geq q , then p_{1,q}^{*}

is the critical exponent and p=p_{1,q}^{*} belongs to the blow-up case. Therefore
it seems that our results are not complete in the strong convection case
q<m+1/N . Because, we can not see whether p belongs to the blowup
up case or global existence case when m-1<q<m+1/N and p_{m,q}^{*}

(=m+2(q-m+1)/(N+1))\leq p\leq m+2/N . However, in case m=1
and q>1+1/N . our results refine their results. Because, their sufficient
condition on the existence of global solution need the smallness of ||u_{0}||_{\infty}

and ||u_{0}||_{L^{1}} and we further obtain a precise L^{\infty} -decay estimate of global
solutions.

Finally, we note that the methods of the proof of Theorem 3 can be
applied to the following problem:

v_{t}=\triangle v^{m}+a\cdot\nabla v^{q} , (1.15)

v(x, 0)=v_{0}(x) , (1.16)

where m\geq 1 , q>1 , v_{0}(x)\geq 0 and v_{0}(x)\in BC(R^{N}) . We obtain the
following theorem which is used in the proof of Theorem 4.

Theorem 5 Let v_{0}(x)\in L^{1}(R^{N}) . Then there exists a weak solution of
(1.15) (1.16) satisfying

M= \int_{R^{N}}v(x, t)dx=\int_{R^{N}}v_{0}(x)dx t\geq 0 (1.17)

and

||v(t)||_{\infty}\leq K_{4}t^{-N/[N(m-1)+2]} for t\geq 0 (1.18)

where K_{4}=K_{4}(m, N, M) . Moreover, if q>m+1/N , then the weak
solution v(t) of (1.15) (1.16) is unique and satisfies that

t^{N/\{N(m-1)+2\}}|v(x, t)-V_{m}(x, t, M)|arrow 0 as tarrow\infty (1.19)

uniformly on set \{x\in R^{N}||x|\leq bt^{1/\{N(m-1)+2\}}\}(b>0) where V_{m}(x, t, L)

is as in Theorem 3.

When m=1 , these results were obtained by EscobedO-Zuazua [6].
In their results, the convergence in (1.19) is uniform convergence in R^{N} .
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Furthermore, they showed that if q=1+1/N, then the L^{1} -valued solution
of (1.15) (1.16) with m=1 converges to the self-similar solution of (1.15)
with convergence rate t^{-N/\{N(m-1)+2\}} . But, we can not extend this result
to case m>1 . We note that in case m=1 and 1<q<1+1/N , EscobedO-
V\’azquez-Zuazua [5] obtained the interesting results which show that the
solution u(t) of (1.15) (1.16) converges to some self-similar solution of the
reduced equation u_{t}=\triangle’u+a \nabla u^{q} as t – \infty where \triangle’ is the (N-1)-
dimensional Laplacian in the hyperplane orthogonal to a .

Remark 1.1. In case q=1 , noting the suitable linear change of variables
we can transform equation (1.1) or (1.15) into (1.1) or (1.15) with a=0
respectively and so we obtain the similar results to those with a=0.

Now, we state some related papers to those problems. There are several
papers in one dimension case. When m=1 , Friedman-Lacey [8] studied
the blow-up conditions and the asymptotic behavior of blow-up solutions for
(1.1) in bounded intervals. Levine et al. [21] also studied the stability and
instability for the solutions of (1.1) in bounded intervals. For quasilinear
equation, R. Suzuki [28] and Imai-Mochizuki-Suzuki [16] studied the blowup
up condition and existence of single point blow-up solutions in bounded
intervals or R. In larger dimension case N>1 , we do not know the paper
which treat (1.1) with a\neq 0 but Aguirre-Escobedo [1]. For equation (1.15)
Hui [14] studied the uniqueness and existence of solutions and discussed the
asymptotic behaviour of solutions as qarrow\infty .

We refer to the review article [20] for a lot of literature on blow-up
theorems for problems related to (1.1).

The rest of the paper is organized as follows. In the next Section 2, we
define a weak solution of (1.1) and prepare the fundamental propositions
and several preliminary lemmas. In Section 3, we consider the blow-up
cases and prove Theorem 2. In section 4, we give the L^{\infty}-L^{\ell} estimates
for the solutions of (1.1) (1.2) in order to show Theorem 3 which is proved
in Section 5. Also, in Section 5, we prepare the several lemmas in order to
obtain the L^{\infty}-L^{\ell} estimates for the solution when u_{0}(x)\in L^{1}(R^{N}) and
in section 6 we show these estimates. In Section 7, using them we prove
Theorem 3 and Theorem 5. In Section 8 we consider the critical case and
prove Theorem 4. Finally, in Appendix we show the comparison theorem
for the solutions.
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2. Definition and preliminary

We begin with the definition of weak solutions of (1.1) (1.2).

Definition 2.1 By a weak solution of equation (1.1) in R^{N}\cross[0, T) , we
mean a function u(x, t) in R^{N}\cross[0, T) such that

(i) u(x, t)\geq 0 in R^{N}\cross[0, T)and\in BC(R^{N}\cross[0, \tau]) (bounded con-
tinuous) for each 0<\tau<T

(ii) For any 0<\tau<T and nonnegative \varphi(x, t)\in C_{0}^{\infty}(R^{N}\cross[0, T)) ,

\int_{R^{N}}u(x, \tau)\varphi(x, \tau)dx-\int_{R^{N}}u(x, 0)\varphi(x, 0)dx

= \int_{0}^{\tau}\int_{R^{N}}\{u\partial_{t}\varphi+u^{m}\triangle\varphi-u^{q}a\cdot\nabla\varphi+u^{p}\varphi\}dxdt . (2.1)

A supersolution [ or subsolution] is similarly defined with equality of
(2. 1) replaced by \geq[or\leq] .

The following comparison theorem holds.

Proposition 2.2 (comparison theorem) Assume 2q\geq m+1 . Let v and
u be weak solutions of (1.1) in R^{N}\cross[0, T) , and suppose that v(x, 0) and
u(x, 0) belong to L^{1}(R^{N}) . If v(x, O)\geq u(x, 0) in R^{N} . then we have v\geq u

in the whole R^{N}\cross[0, T) .

Proof. This proposition immediately follows from Corollary 9.2, since in
equation (1.1) condition 2q\geq m+1 is equivalent to condition (A1) of this
corollary. \square

Next we construct a weak solution of (1.1) (1.2) as follows: First, we
assume

u_{0}(x)\leq Ce^{-|x|/m} for some C>0 . (2.2)

Let

u_{0,n}(x)=\{
\max\{u_{0}(x), e^{-n/m}\} in x\in B_{n}

e^{-n/m} in x\not\in B_{n}

(2.3)

and u_{n}(x, t) be the classical solution of the initial boundary value problem

u_{t}=\triangle u^{m}+a\nabla u^{q}+u^{p} (x, t)\in B_{n}\cross(0, T) (2.4)

u(x, 0)=u_{0,n}(x) x\in B_{n} (2.5)
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u(x, t)=e^{-n/m} |x|=n , t>0 , (2.6)

where

B_{R}\equiv\{x\in R^{N}||x|<R\} .

Let

y(t;M)=(M^{-(p-1)}-(p-1)t)^{-1/(p-1)} (2.7)

and

T(M)= \frac{1}{p-1}M^{-(p-1)} . (2.8)

Then, we obtain the local existence theorem for solutions by the follow-
ing two propositions.

Proposition 2.3 If T=T(||u_{0,n}||_{\infty}) , then there exists a unique solution
u_{n}(x, t) of (2.4) (2.5) (2.6) satisfying

||u_{n}(x, t)||_{\infty}\leq y(t;||u_{0,n}||_{\infty}) for t\in[0, T) . (2.9)

Proof. The proof is obvious. See Kawanago [17]. \square

Proposition 2.4 (existence I) (Ref. [26], [14]) Assume (2.2) and assume
that for some subsequence \{n’\}\subset\{n\} ,

sup ||u_{n’}(t)||_{\infty}\leq C’ for large n’ . (2.10)
[0,T]

Then, there exists a weak solution u(x, t) of (1.1) (1.2) such that for some
subsequence \{n’\}\subset\{n’\}

u_{n}\prime\prime(x, t) - u(x, t) as n’arrow\infty (2.11)

uniformly in R^{N}\cross[0, T] ,

\nabla u_{n}^{(\ell+m-1)/2},,arrow\nabla u^{(\ell+m-1)/2} as n’ - \infty (2. 2)

weak in L_{loc}^{2}(R^{N}\cross[0, T]) for each \ell>1 and

\int_{B_{n’}}u_{n}\prime\prime(x, t)^{\ell}dxarrow\int_{R^{N}}u(x, t)^{\ell}dx as n’arrow\infty (2.13)

uniformly in [0, T] for each \ell\geq 1 . Here we extended u_{n} to 0 in B_{n}^{c}\cross[0, T] .
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Furthermore, u(x, t) satisfies that

u(x, t)\leq C’e^{-|x|/m} in R^{N}\cross[0, T] (2.14)

for some constant C’>0 ,

u(x, t) is uniformly continuous in R^{N}\cross[0, T] with the
(2.15)

modulo of continuity depending only on \sup_{[0,T]}||u(t)||_{\infty} ,

\int_{R^{N}}u(x, t)^{\ell}dx is continuous in t\in[0, T] (2.16)

for each \ell\geq 1 and

\int_{0}^{T}\int_{R^{N}}|\nabla u^{(\ell+m-1)/2}|^{2} dxdt

\leq,\lim_{narrow\infty} inf \int_{0}^{T}\int_{B_{n}}

,
|\nabla u_{n}^{(\ell+m-1)/2},|^{2} dxdt (2.17)

for each \ell>1 .

Proof It is enough to show that

u_{n}(x, t)\leq C’e^{-|x|/m} in B_{n}\cross[0, T] (2.18)

where C’>0 is a constant depending only on C and C’- Because, if (2.18)
holds, then by the methods of [26], the equicontinuity of the solution of (2.4)
(see DiBenedetto [4]) and the next lemma we can prove this proposition
easily.

Put v=u_{n}^{m} . Then v is a solution of the problem

\{

v_{t}=mv^{(m-1)/m}\triangle v+qv^{(q-1)/m}a\nabla v+mv^{(p-1)/m}v

(x, t)\in B_{n}\cross[0, T]

v(x, 0)=u_{0,n}^{m} x\in B_{n}

v(x, t)=e^{-n} |x|=n .

(2.19)

We note that

v(x, 0)\leq Le^{-|x|} for x\in B_{n} , (2.20)

where L=C^{m} .
Put

\tilde{v}(x, t)=Le^{\overline{C}t}e^{-|x|} (2.21)
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where

\tilde{C}=m(M^{(m-1)/m}+|a|qM^{(q-1)/m}/m+M^{(p-1)/m}) (2.22)

with M=\{C’\}^{m} . Then, by the simple calculation we get

mv^{(m-1)/m}\triangle\tilde{v}+qv^{(q-1)/m}a\nabla\tilde{v}+mv^{(p-1)/m}\tilde{v}

=m \{v^{(m-1)/m}(\frac{\partial^{2}}{\partial r^{2}}+\frac{N-1}{r}\frac{\partial}{\partial r})e^{-r}

+v^{(q-1)/m}qa\cdot x\partial
\overline{m}\overline{|x|}\overline{\partial r}e^{-r}+v^{(p-1)/m}e^{-r}\}\cross Le^{\overline{C}t}

\leq\tilde{C}Le^{\overline{C}t}e^{-r}=\tilde{v}_{t}

with r=|x| and

\tilde{v}(x, t)=Le^{\overline{C}t}e^{-n} on |x|=n . (2.23)

Hence, using the comparison theorem for the classical solution of a semilin-
ear equation we have

v(x, t)\leq\tilde{v}(x, t) in B_{n}\cross[0, T] ,

and so we obtain (2.18). The proof is complete. \square

This solution u_{n}(x, t) of (2.4) (2.5) (2.6) satisfies the following usual
energy inequality which is used in the proof of the previous proposition and
after this section.

Lemma 2.5 For each \ell\geq 1 ,

\frac{\partial}{\partial t}\int_{B_{n}}u_{n}^{\ell}dx+\frac{4m\ell(\ell-1)}{(m+\ell-1)^{2}}\int_{B_{n}}|\nabla u_{n}^{(m+\ell-1)/2}|^{2}dx

\leq\ell\int_{B_{n}}u_{n}^{p+\ell-1}dx (2.24)

Proof. By the comparison theorem we see that u_{n}\geq e^{-n/m} and so \frac{\partial u}{\partial n}\leq 0

on |x|=n where n denotes the outer unit normal to the boundary. Hence,
multiplying the both sides by u_{n}^{\ell} and integrating by parts over B_{n} we get
(2.24). \square

Next, we consider the Cauchy problem (1.1) (1.2) in the case

u_{0}(x)\in L^{\infty}(R^{N}) . (2.25)
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Let \{u_{0,n}(x)\} be a sequence of continuous functions in R^{N} such that

0\leq u_{0,n}(x)\leq C(n)e^{-|x|/m} in R^{N} (2.26)

for some C(n)>0 and

u_{0,n}(x)arrow u_{0}(x) as narrow\infty (2.27)

locally uniformly in R^{N} .

Proposition 2.6 (existence II) Assume (2.25). Let u_{n}(x, t) be a classical
solution of (1.1) (1.2) with u_{0}(x) replaced by u_{0,n}(x) where u_{0,n}(x) satisfies
(2.26) and (2.27). If (2.10) holds for some subsequence \{n’\}\subset\{n\} , then
there exists a weak solution u(x, t) of (1.1) (1.2) such that for some subse-
quence \{n’\}\subset\{n’\} ,

u_{n}\prime\prime(x, t)arrow u(x, t) as n’arrow\infty (2.28)

locally uniformly in R^{N}\cross[0, T] .

Proof. The proof is the same as that of Proposition 2.4. \square

Finally, we state some versions of the GagliardO-Nirenberg inequality.
They are the essential inequality in the proof of Theorem 2 and 3. First,

we recall the GagliardO-Nirenberg inequality (c.f. Ladyzenskaja et al. [19],

Ohara [25] ) :

Lemma 2.7 For any f\in C_{0}^{\infty}(R^{N}) ,

||f||_{\overline{r}}\leq C\tilde{r}||f||_{r}^{1-\theta}||\nabla f||_{2}^{\theta} (2.29)

where

\theta=\frac{r^{-1}-\tilde{r}^{-1}}{N^{-1}-2^{-1}+r^{-1}} ,

C is a constant independent of r,\tilde{r} and \theta , and:
(1) for N>2,0<r \leq\max\{1, r\}<\tilde{r}<2N/(N-2) ;

(2) for N=2,0<r \leq\max\{1, r\}<\tilde{r}<\infty ;
(3) for N=1,0<r \leq\max\{1, r\}<\tilde{r}\leq\infty .

Proof. When r\geq 1 , the inequality is well known. When 0<r<1 , using

the H\"older inequality we can get it easily (see [25] and [19]). \square

Inequality (2.29) is reduced to the following two inequalities:
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Lemma 2.8 (see (4.12) and (4.13) in Kawanago [17]) For any u \in

C_{0}^{\infty}(R^{N}) , the following two inequalities hold:

\int_{R^{N}}u^{p+\ell-1}dx\leq A_{\ell}||u||_{p0}^{p-m}||\nabla u^{(m+\ell-1)/2}||_{2}^{2} (2.30)

where A_{\ell}>0 is a constant and \ell>\max\{0, p_{0}-p+1\} ;

||u(t)||_{\ell}\leq C||u(t)||_{\beta}^{\beta[N(m-1)+2\ell]/\ell[\beta(2-N)+N(m+\ell-1)]}

\cross||\nabla u^{(m+\ell-1)/2}||_{2}^{2N(\ell-\beta)/\ell[\beta(2-N)+N(m+\ell-1)]} (2.31)

where C>0 is a constant and 0<\beta\leq\ell .

Proof. If we put f=u^{(m+\ell-1)/2} , r=N(p-m)/(m+\ell-1),\tilde{r}=2(p+\ell-

1)/(m+\ell-1) or f=u^{(m+\ell-1)/2} , r=2\beta/(m+\ell-1),\tilde{r}=2\ell/(m+\ell-1)

in (2.29), then (2.30) or (2.31) follows respectively. \square

Lemma 2.9 For any f\in C_{0}^{\infty}(R^{N}\cross[0, T]) and \ell>p-1 ,

[ \int_{0}^{T1/k}\int_{R^{N}}f^{\overline{r}}dxdt]\leq C[[\sup_{t\in 0,T]}\int_{R^{N}}f^{r}dx+\int_{0}^{T}\int_{R^{N}}|\nabla f|_{2}^{2}dxdt]

(2.32)

where r=2(\ell-p+1)/(\ell+m-p),\tilde{r}=2(r/N+1) , k=1+2/N and C is
some constant independent of T

Proof. For any f\in C_{0}^{\infty}(R^{N}\cross[0, T]) , inequality (2.29) leads to

\int_{0}^{T}||f||_{\tilde{r}}^{\overline{r}}dt\leq(\tilde{r}C)^{\tilde{r}}\int_{0}^{T}||f||_{r}^{(1-\theta)\overline{r}}||\nabla f||_{2}^{\theta\tilde{r}}dt

\leq(\tilde{r}C)^{\overline{r}} sup ||f||_{r}^{(1-\theta)\overline{r}} \int_{0}^{T}||\nabla f||_{2}^{\theta\overline{r}}dt . (2.33)
[0,T]

Let s>1 . By the H\"older inequality we get

[ \int_{0}^{T}||f||\overline{\frac{r}{r}}dt]1/s

\leq(\tilde{r}C)^{\overline{r}/s}\{\frac{1}{s},\sup_{0[,T]}||f||_{r}^{(1-\theta)\overline{r}s’/s}+\frac{1}{s}\int_{0}^{T}||\nabla f||_{2}^{\theta\overline{r}}dt\} , (2.34)

where s’ is the conjugate number of s .
Now, we choose numbers r=2(\ell-p+1)/(\ell-p+m)\in(0,2),\tilde{r}=



Existence and nonexistence of global solutions with convection 159

2(1+r/N) and s=k=1+2/N in (2.34). Then, since r,\tilde{r} and s satisfy
the above conditions (1) (2) (3), and \theta=2/\tilde{r} , we have

[ \int_{0}^{T}||f||_{\tilde{r}}^{\overline{r}}dt]1/k\leq(\tilde{r}C)^{\overline{r}/k}\{\frac{1}{k}, \sup||f||_{r}^{r}+\frac{1}{k}\int_{0}^{T}[0,T]||\nabla f||_{2}^{2}dt\}

Thus, noting \tilde{r}\leq 2(1+2/N) we get (2.32). The proof is complete. \square

Remark 2.10 When r=1 , similar result was obtained by D. Lortz-
R. Meyer-Spasche- E. W. Stredunlinsky [22] in a bounded domain.

3. Blow-up cases I

In this section we prove Theorem 1. The methods of the proof are
similar to those of Aguirre-Escobedo [1] and Mochizuki-Suzuki [24].

First of all, there is no loss of generality if we make a linear change of
variables to transform equation (1.1) into

\partial_{t}u=\triangle u^{m}+a\frac{\partial}{\partial x_{1}}u^{q}+u^{p} (3.1)

with a\in R/\{0\} . As usual we let x=(x_{1}, x’) with x’\in R^{N-1} .
We fix a positive function s(x)\in C^{2}(R^{N}) with s , \nabla s and \triangle s\in L^{1}(R^{N})

such that

s(0)=1 , \triangle s(x)\geq-s(x) and | \frac{\partial}{\partial x_{1}}s(x)|\leq Ks(x) (3.2)

for some constant K>0 . Explicit examples were given in [1].
Put

s_{\epsilon}(x)\equiv s(\epsilon x_{1}, \epsilon x)1+\gamma’ (3.3)

where \gamma=0 if q\geq m+1/N and \gamma=\{1-(q-m)N\}/(q-m+1) if
m-1<q<m+1/N . Let u(x, t) be a weak solution of (3.1) (1.2) and set

J(t)= \int_{R^{N}}u(x, t)s_{\epsilon i}(x)dx’\int_{R^{N}}s_{\xi j}(x)dx (3.4)

for each t\geq 0 . Then we establish the following blow-up theorem.

Proposition 3.1 Assume p \geq\max\{m, q\}(>1) . If u_{0} is large enough to
satisfy

J(0)>c_{0}\epsilon^{k_{0}} (3.5)
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for small \epsilon\in(0,1) where

k_{0}= \min\{\frac{2}{p-m} , \frac{1+\gamma}{p-q}\} (3.6)

and

c_{0}= \max\{2^{1/(p-m)} , (2|a|K)^{1/(p-q)}\} ,

then the corresponding weak solution u of (3.1) (1.2) is not global in time.
Here, we defined 2/ (p – m) =\infty and 2^{1/(p-m)}=0 then p=m, and
(1+\gamma)/(p-q)=\infty and (2|a|K)^{1/(p-q)}=0 then p=q .

Proof. The methods of the proof are similar to those of the proof in
Mochizuki-Suzuki [24] and Imai-Mochizuki [15].

Let u(x, t) be a weak solution of (3.1) (1.2) and let \varphi(x)\in C^{2}(R^{N})

satisfy

\int_{R^{N}}\{|\varphi|+|\nabla\varphi|+|\triangle\varphi|\}dx<\infty .

Then, by a limit procedure we have from (2.1) with a \nabla u^{q} replaced by
a \frac{\partial}{\partial x_{1}}u^{q} ,

\int_{R^{N}}u(x, \tau)\varphi(x)dx-\int_{R^{N}}u(x, 0)\varphi(x)dx

= \int_{0}^{\tau}\int_{R^{N}}\{u^{m}\triangle\varphi-u^{q}a\frac{\partial}{\partial x_{1}}\varphi+u^{p}\varphi\} dxdt.

We choose \varphi(x)=s_{\xi j}(x) . Then, since

\triangle s_{\epsilon:}(x)\geq-\epsilon^{2}s_{\epsilon}(x) and |a \frac{\partial}{\partial x_{1}}s_{\epsilon}(x)|\leq|a|K\epsilon^{1+\gamma}s_{\in}(x)

for 0<\epsilon<1 , we have

\int_{R^{N}}u(x, \tau)s_{\epsilon}(x)dx-\int_{R^{N}}u(x, 0)s_{\xi j}(x)dx

\geq\int_{0}^{\tau}\int_{R^{N}}\{-\epsilon^{2}u^{m}-\epsilon^{1+\gamma}|a|Ku^{q}+u^{p}\}s_{\epsilon}(x) dxdt. (3.7)
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We define function \Gamma_{1}(\xi) and \Gamma_{2}(\xi) as follows: When p>m ,

\Gamma_{1}(\xi)=\{

- \epsilon^{2}\xi^{m}+\frac{1}{2}\xi^{p} for \xi\geq(\frac{2m\epsilon^{2}}{p})^{1/(p-m)}

- \frac{p-m}{2m}(\frac{2m\epsilon^{2}}{p})^{p/(p-m)} for 0 \leq\xi<(\frac{2m\epsilon^{2}}{p})^{1/(p-m)}

and when p=m>1

\Gamma_{1}(\xi)=(1/2-\epsilon^{2})\xi^{p} for \xi\geq 0 .

When p>q ,

\Gamma_{2}(\xi)=\{

- \epsilon^{1+\gamma}|a|K\xi^{q}+\frac{1}{2}\xi^{p} for \xi\geq(\frac{2q\epsilon^{1+\gamma}|a|K}{p})^{1/(p-q)}

- \frac{p-q}{2q}(\frac{2q\epsilon^{\perp+\gamma}|a|K}{p})^{q/(p-q)}

for 0 \leq\xi<(\frac{2q\epsilon^{1+\gamma}|a|K}{p})^{1/(p-q)}

and when p=q>1 ,

\Gamma_{2}(\xi)=(1/2-\epsilon^{1+\gamma}|a|K)\xi^{p} for \xi\geq 0 .

Then, if we set \Gamma=\Gamma_{1}+\Gamma_{2} , we get

\int_{R^{N}}u(x, \tau)s_{\in}(x)dx-\int_{R^{N}}u(x, 0)s_{\Xi}(x)dx

\geq\int_{0}^{\tau}\int_{R^{N}}\Gamma(u)s_{\in}(x) dxdt. (3.8)

Since \Gamma_{1} and \Gamma_{2} are convex functions, \Gamma is also a convex function when
\epsilon>0 is small enough. Since \Gamma_{1} or \Gamma_{2} is a positive increasing function in \xi>

(2\epsilon^{2})^{1/(p-m)} or \xi>(2\epsilon^{1+\gamma}|a|K)^{1/(p-q)} respectively, \Gamma=\Gamma_{1}+\Gamma_{2} is a positive
increasing function in \xi>m(\epsilon)=\max\{(2\epsilon^{2})^{1/(p-m)}, (2\epsilon^{1+\gamma}|a|K)^{1/(p-q)}\}

for small \epsilon>0 . We note that c_{0}\epsilon^{k_{0}}\geq m(\epsilon) for small \epsilon>0 . Hence, as
in the proof of Theorem 1.1 of Imai-Mochizuki [15] (see also the proof of
Lemma 5.2), if J(0)>c_{0}\epsilon^{k_{0}} then it follows from (3.8), (3.4) and Jensen’s
inequality that

J( \tau)\geq J(0)+\int_{0}^{\tau}\Gamma(J(t))dt ,
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from which we have

t \leq\int_{J(0)}^{J(t)}\frac{d\xi}{\Gamma(\xi)}\leq\int_{J(0)}^{\infty}\frac{d\xi}{\xi^{p}-\epsilon^{2}\xi^{m}-\epsilon^{1+\gamma}|a|K\xi^{q}}<\infty ,

as long as u(x, t) exists. This leads to contradiction if the solution is global.
\square

The next lemma follows from the above proposition immediately.

Lemma 3.2 Assume p \geq\max\{m, q\}(>1) . Let u(x, t) be a global weak
solution of (3.1) (1.2) in time. Then, we have

\int_{R^{N}}u(x, t)s(\epsilon^{1+\gamma\prime}x_{1}, \epsilon x)dx\leq C(N)\epsilon^{k_{0}-N-\gamma} (3.9)

for any t\geq 0 and 1>>\epsilon>0 , where C(N) is a positive constant depending
only on N. and k_{0} is as in Proposition 3.1.

Proof. Since

\int_{R^{N}}s_{\epsilon}dx=\int_{R^{N}}s(\epsilon x_{1}, \epsilon x)1+\gamma\prime dx=\int_{R^{N}}s(y)dy\cross\epsilon^{-N-\gamma} ,

the blow-up condition (3.5) is reduced to

\int_{R^{N}}u_{0}(x)s(\epsilon^{1+\gamma\prime}x, \epsilon x)dx>c_{0}\epsilon^{k_{0}-N-\gamma}\int_{R^{N}}s(y)dy .

Thus, if C(N)=c_{0} \int_{R^{N}}s(y)dy , every global weak solution u of (1.1) (1.2)
must satisfy the inverse inequality (3.9). \square

Proof of Theorem 1. Let u(x, t) be a global solution of (1.1) (1.2). As is
mentioned-above, without of loss of generality we can assume that u(x, t)
is a global solution of (3.1) (1.2).

We note that if m-1<q\leq p and m\leq p then

k_{0}= \min\{\frac{2}{p-m} , \frac{1+\gamma}{p-q}\}>N+\gamma

is equivalent to

p<p_{m,q}^{*}= \min\{m+\frac{2}{N} , m+ \frac{2(q-m+1)}{N+1}\}

Therefore, when \max\{m, q\}\leq p<p_{m,q}^{*} namely k_{0}>N+\gamma , letting \epsilon\downarrow 0 in
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(3.9), by Fatou’s lemma we get

\int_{R^{N}}u(x, t)dx=0 for any t\geq 0 , (3. 10)

which leads to u(x, t)\equiv 0 . If 2q\geq m+1 and u_{0}(x)\in L^{1}(R^{N}) then
solutions u(x, t) of (3.1) (1.2) are unique by Proposition 2.2, and (1.7) holds
for the maximum existence time T of u , since otherwise u(x, t) exists beyond
the time T by the local existence theorem for the solutions. The proof is
complete. \square

4. L^{\infty}-L^{\ell} estimates for solutions I.

In this section we show the L^{\infty} -estimates for the solutions of (1.1) (1.2)
which play a very important role in the proof of Theorem 2 and Theorem
3. We shall show the following L^{\infty}-L^{\ell} estimates:

Proposition 4.1 Assume p>m+2/N and assume (2.2) for the initial
data u_{0} . Let u(x, t) be a weak solution of (1.1) (1.2) which is constructed
in Proposition 2.4. Suppose that

\sup[0,T]\int_{R^{N}}u^{p0}(x, t)dx=h<\infty (4.1)

and \ell>\alpha\equiv p_{0}+p-1(>p) where p_{0}(>1) is as in (1.4). Let 0<\rho<\tau<T
and \epsilon>0 satisfy

\rho\epsilon^{p-1}\leq 1 . (4.2)

Then

||u(\tau)||_{\infty} (4.3)

\leq C_{1}[\rho^{-N/2}\epsilon^{-(p-1)(N/2+1)}\{\rho^{-1}\int_{\tau-\rho}^{\tau}\int_{R^{N}}u^{\ell}dxdt+\epsilon^{\ell-p0\}]^{1/(\ell-\alpha)}}

where C_{1}=C_{1}(N, m,p, h, \ell) .

Similar results were obtained by D. Lortz, R. Meyer-Spasche and
E.W. Stredulinskly [22] for a linear equation in a bounded domain in virtue
of Moser’s iteration methods. Our methods of the proof are similar to their
ones. However, their methods can not be applied to our quasilinear equation
directly. We must develop them.
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In the proof of Theorem 2 and Theorem 3, we use this proposition in
the following versions.

Proposition 4.2 Let u(x, t) be as in Proposition 4.1. Suppose for some
\ell>\alpha ,

||u(t)||_{\ell} is nonincreasing in t\in[0, T] . (4.4)

Then

||u( \tau)||_{\infty}\leq C_{2}\{\frac{\tau}{2}(\int_{R^{N}}u^{\ell}(\tau/2)dx+(\tau/2)^{-(\ell-po)/(p-1))}\}^{1/(\ell-\alpha)}

(4.5)

for 0<\tau\leq T , where C_{2}=C_{2}(N, m,p, h, \ell) .

Proof. Put \rho=\epsilon^{-(p-1)}=\tau/2 in Proposition 4.1. Then, since

\int_{\tau-\rho}^{\tau}\int_{R^{N}}u^{\ell} dxdt= \int_{\tau/2}^{\tau}\int_{R^{N}}u^{\ell} dxdt \leq\frac{\tau}{2}\int_{R^{N}}u^{\ell}(\tau/2)dx

by (4.4), (4.3) is reduced to (4.5). \square

Proposition 4.3 Let u(x, t) be as in Proposition 4.2. Then

||u( \tau)||_{\infty}\leq C_{3}\{\int_{R^{N}}u^{\ell}(\tau-1)dx\}^{\{1-\frac{p-1}{\ell-p_{0}}(\frac{N}{2}+1)\}\frac{1}{\ell-\alpha}} (4.6)

for any \tau\geq 2 , where C_{3}=C_{3}(N, m,p, h, ||u(1)||_{\ell}, \ell) .

Proof. Put \rho=1 and \epsilon=\{\int_{R}Nu^{\ell}(\tau-1) dx\}^{1/(\ell-po)}/||u(1)||_{\ell}^{\ell/(\ell-po)}(\leq 1)

in Proposition 4.1. Since

\int_{\tau-1}^{\tau}\int_{R^{N}}u^{\ell} dxdt \leq\int_{R^{N}}u^{\ell}(\tau-1) dx ,

we obtain (4.6). \square

We will prove Proposition 4.1 in a series of lemmas. We first show the
following lemma.

Lemma 4.4 Assume p>m+2/N and assume (2.2) for the initial data
u_{0} . Let u(x, t) be a weak solution of (1.1) (1.2) which is constructed in
Proposition 2.4 and satisfies (4.1). Let \ell>\alpha\equiv p_{0}+p-1 . Put I=[\tau, \tau+s]

and I’=[\tau-\sigma, \tau+s] with T>\tau>\sigma>0 and T-\tau>s>0 . Then, for
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any \epsilon>0 satisfying

\sigma\epsilon^{p-1}\leq 1 , (4.7)

\{\int_{I}\int_{R^{N}}u^{(\ell-p+1)k+m-1}dxdt+\frac{s+\sigma}{\epsilon^{p0}}\epsilon^{(\ell-p+1)k+m-1}\}^{1/k}

\leq C_{4}(\ell+1)\frac{\epsilon^{-p+1}}{\sigma}\{\int_{I}

, \int_{R^{N}}u^{\ell}dxdt+\frac{s+\sigma}{\epsilon^{p0}}\epsilon^{\ell}\} (4.8)

where k=i+2/N and C_{4}=C_{4}(N, m, p, h) .

We need the following lemma to prove the above lemma.

Lemma 4.5 Let u_{n}(x, t) be a classical solution of (2.4) (2.5) (2.6) and let
\varphi(t)\geq 0 in [t_{1}, t_{2}] be a C^{1} -function with \varphi(t_{1})=0 . Then, for \ell\geq\ell_{0}>p ,

\varphi(t_{2})\int_{B_{n}}u_{n}^{\ell-p+1}(t_{2})dx+\nu_{0}\int_{t_{1}}^{t_{2}}\varphi(t)\int_{B_{n}}|\nabla u_{n}^{(\ell+m-p)/2}|^{2} dxdt

\leq\int_{t_{1}}^{t_{2}}\varphi’\int_{B_{n}}u_{n}^{\ell-p+1}dxdt+(\ell-p+1)\int_{t_{1}}^{t_{2}}\varphi(t)\int_{B_{n}}u_{n}^{\ell} dxdt

(4.9)

where

\nu_{0}=\min\{\inf_{\ell\geq\ell_{0}}\frac{4m(\ell-p+1)(\ell-p)}{(\ell+m-p)^{2}} , 1\}

Proof. Multiplying (2.24) with \ell replaced by \ell-p+1 by \varphi(t) and inte-
grating by part over (t_{1}, t_{2}) , we obtain (4.9). \square

Proof of Lemma 4.4 Let u_{n}(x, t) be a classical solution of (2.4) (2.5) (2.6).
Choose \hat{t}\in I=[\tau, \tau+s] such that

\max_{I}\int_{B_{n}}u_{n}^{\ell-p+1}(t)dx=\int_{B_{n}}u_{n}^{\ell-p+1}(\hat{t})dx .

In the following, we shall choose suitable \varphi(t) , t_{1} and t_{2} in (4.9).
First, put t_{1}=\tau-\sigma , t_{2}=\hat{t} and

\varphi(t)=\frac{t-\tau+\sigma}{\hat{t}-\tau+\sigma} .
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Then, since 0\leq\varphi’(t)=1/(\hat{t}-\tau+\sigma)\leq 1/\sigma , \varphi\leq 1 and [t_{1}, t_{2}]\subset I’ we have

\max_{I}\int_{B_{n}}u_{n}^{\ell-p+1}(t)dx

\leq\frac{1}{\sigma}\int_{I}

, \int_{B_{n}}u_{n}^{\ell-p+1}dxdt+(\ell-p+1)\int_{I} , \int_{B_{n}}u_{n}^{\ell} dxdt. (4.10)

Next, we put t_{1}=\tau-\sigma , t_{2}=\tau+s and

\varphi=\{

1 t\in I=[\tau, \tau+s]

-\sigma^{-2}(t-\tau)^{2}+1 \tau-\sigma\leq t\leq\tau .

Since 0\leq\varphi’\leq 2/\sigma , \varphi\leq 1 and [t_{1}, t_{2}]=I’ we have

\nu_{0}\int_{I}\int_{B_{n}}|\nabla u_{n}^{(\ell+m-p)/2}|^{2} dxdt

\leq\frac{2}{\sigma}\int_{I}

, \int_{B_{n}}u_{n}^{\ell-p+1}dxdt+(\ell-p+1)\int_{I} , \int_{B_{n}}u_{n}^{\ell} dxdt. (4.11)

Therefore, combining (4. 10) and (4. 11) we get

\max_{I}\int_{B_{n}}u_{n}^{\ell-p+1}(t)dx+I^{y_{0}}\int_{I}\int_{B_{n}}|\nabla u_{n}^{(\ell+m-p)/2}|^{2} dxdt

\leq\frac{3}{\sigma}\int_{I}

, \int_{B_{n}}u_{n}^{\ell-p+1}dxdt+2(\ell-p+1)\int_{I} , \int_{B_{n}}u_{n}^{\ell} dxdt. (4.12)

Hence, letting narrow\infty in (4.12), by Proposition 2.4 we have

\max_{I}\int_{R^{N}}u^{\ell-p+1}(t)dx+\nu_{0}\int_{I}\int_{R^{N}}|\nabla u^{(\ell+m-p)/2}|^{2} dxdt

\leq\frac{3}{\sigma}\int_{I}

, \int_{R^{N}}u^{\ell-p+1}dxdt+2(\ell-p+1)\int_{I} , \int_{R^{N}}u^{\ell} dxdt. (4.13)

We estimate the first term of the right side of (4.13) from above in the
following way: Set

G_{\epsilon}(t)=\{x\in R^{N}|u(x, t)\geq\epsilon\}

for each t>0 and \epsilon>0 . It follows from (4.1) and |I’|=s+\sigma that for each
\ell\geq p_{0}+p-1

\int_{I} , \int_{R^{N}}u^{\ell-p+1} dxdt=( \int_{I} , \int_{G_{\epsilon}(t)}+\int_{I} , \int_{R^{N}/G_{\epsilon}(t)} ) u^{\ell-p+1}

\leq\epsilon^{-p+1}\int_{I} , \int_{G_{\epsilon}(t)}u^{\ell}dxdt+\epsilon^{\ell-p0-p+1}\int_{I} , \int_{R^{N}/G_{\in}(t)}u^{p0} dxdt
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\leq\epsilon^{-p+1}\int_{I} , \int_{R^{N}}u^{\ell}dxdt+(s+\sigma)h\epsilon^{\ell-p0-p+1} . (4.14)

Further, estimating the left side of (4.13) from below by inequality (2.32)
with f=u^{(\ell+m-p)/2} we see that (4.13) is reduced to

\nu_{0}\{\int_{I}\int_{R^{N}}u^{(\ell+m-p)\tilde{r}/2}dxdt\}^{1/k}

\leq C\{\max_{I}\int_{R^{N}}u^{\ell-p+1}(t)dx+\nu_{0}\int_{I}\int_{R^{N}}|\nabla u^{(\ell+m-p)/2}|^{2}dxdt\}

\leq C\{(3\epsilon^{-p+1}\sigma^{-1}+2(\ell-p+1))\int_{I} , \int_{R^{N}}u^{\ell} dxdt

+ \frac{3(\sigma+s)}{\sigma}h\epsilon^{\ell-p0-p+1}\} , (4.15)

since \nu_{0}<1 . Note

\frac{\ell+m-p}{2}\tilde{r}=k(\ell-p+1)+m-1 (since k=1+2/N)

and add C \frac{\sigma+s}{\sigma}h\epsilon^{\ell-p0-p+1} to the both sides of (4.15). Then we obtain

\nu_{0}\{\int_{I}\int_{R^{N}}u^{k(\ell-p+1)+m-1}dxdt\}^{1/k}+C\frac{\sigma+s}{\sigma}h\epsilon^{\ell-p0-p+1}

\leq C\{(3\epsilon^{-p+1}\sigma^{-1}+2(\ell-p+1))\int_{I} , \int_{R^{N}}u^{\ell} dxdt

+ \frac{4(\sigma+s)}{\sigma}h\epsilon^{\ell-p_{0}-p+1}\}

=C \{(3\epsilon^{-p+1}\sigma^{-1}+2(\ell-p+1))\int_{I} , \int_{R^{N}}u^{\ell} dxdt

+4 \epsilon^{-p+1}\sigma^{-1}\frac{h(\sigma+s)\epsilon^{\ell}}{\epsilon^{p0}}\}

\leq 4C(3\epsilon^{-p+1}\sigma^{-1}+2(\ell-p+1))\{\int_{I} ,
\int_{R^{N}}u^{\ell}dxdt+\frac{h(\sigma+s)\epsilon^{\ell}}{\epsilon^{p0}}\} .

(4.16)

Furthermore, we estimate the left side of this inequality from below by using
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inequality

\frac{\sigma+s}{\sigma}h\epsilon^{\ell-p_{0}-p+1}

=h^{1-1/k}( \sigma\epsilon^{p-1})^{-1/k}(\frac{\sigma+s}{\sigma})^{(k-1)/k}\{\frac{h(\sigma+s)}{\epsilon^{p0}}\epsilon^{(\ell-p+1)k+m-1}\}^{1/k}

(Here, we used relation (\ell-p+1)k+m-1
=(\ell-p_{0}-p+1)k+p_{0}+p-1)

\geq h^{1-1/k}\{\frac{h(\sigma+s)}{\epsilon^{p0}}\epsilon^{(\ell-p+1)k+m-1}\}^{1/k}

(for any \epsilon>0 satisfying \sigma\epsilon^{p-1}\leq 1 );

and we estimate the right side of inequality (4.16) from above by using
inequality

3\epsilon^{-p+1}\sigma^{-1}+2(\ell-p+1)\leq\epsilon^{-p+1}\sigma^{-1}(3+2\sigma\epsilon^{p-1}(\ell-p+1))

\leq 5(\ell+1)\epsilon^{-p+1}\sigma^{-1}

(for any \epsilon>0 satisfying \sigma\epsilon^{p-1}\leq 1 ).

Then, we have

\nu_{0}\{\int_{I}\int_{R^{N}}u^{k(\ell-p+1)+m-1}dxdt\}^{1/k}

+Ch^{1-1/k} \{\frac{h(\sigma+s)}{\epsilon^{p0}}\epsilon^{(\ell-p+1)k+m-1}\}^{1/k}

\leq 20C(\ell+1)\epsilon^{-p+1}\sigma^{-1}\{\int_{I} , \int_{R^{N}}u^{\ell}dxdt+\frac{h(\sigma+s)\epsilon^{\ell}}{\epsilon^{p0}}\}

(4.17)

Thus, if we put

C_{4}= \frac{20C}{\min\{_{U_{0},Ch^{1-1/k}}\}}

and use the inequality (a+b)^{1/k}\leq a^{1/k}+b^{1/k} , we obtain (4.8). \square

We can now use Moser’s iteration methods.

Lemma 4.6 Let u be as in Lemma 4.4. Suppose \ell>\alpha=p_{0}+p-1 . Let
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0<\rho<\tau<T , 0<s<T-\tau and \xi j >0 satisfy (4.2). Then

sup ||u(t)||_{\infty} \leq C_{5}\{\rho^{-N/2}\epsilon^{-(p-1)(N/2+1)}\{\rho^{-1}\int_{\tau-\rho}^{\tau+s}\int_{R^{N}}u^{\ell} dxdt
[\tau,\tau+s]

+ \frac{s+2^{-1}\rho}{\rho}\epsilon^{\ell-p0}\}\}^{1/(\ell-\alpha)} (4.18)

where C_{5}=C_{5}(N, m,p, h, \ell) .

Proof. Let \ell>\alpha=p_{0}+p-1 and \{\lambda_{n}\} be the sequence of real numbers
satisfying the following inductive formula:

\{

\lambda_{n}=(\lambda_{n-1}-p+1)k+m-1

\lambda_{1}=\ell .
(4.19)

Then

\lambda_{n}=\alpha+(\ell-\alpha)k^{n-1} (4.20)

and

\lambda_{n}>\ell and \lim_{narrow\infty}\lambda_{n}=\infty . (4.21)

We put \ell=\lambda_{n} in (4.8). Then, since \lambda_{n}\leq\ell k^{n-1} , from (4.19) we have

\{\int_{I}\int_{R^{N}}u^{\lambda_{n+1}}dxdt+\frac{s+\sigma}{\epsilon^{p0}}\epsilon^{\lambda_{n+1}}\}^{1/k}

\leq C_{6}\frac{k^{n-1}\epsilon^{-p+1}}{\sigma}\{\int_{I’}\int_{R^{N}}u^{\lambda_{n}}dxdt+\frac{s+\sigma}{\epsilon^{p0}}\epsilon^{\lambda_{n}}\} (4.22)

where C_{6}=2\ell C_{4} . Let 0<\rho<\tau<T and \epsilon>0 satisfy (4.2). We further
put in (4.22)

I=I_{n+1}\equiv[\tau-2^{-n}\rho, \tau+s]

and

I’=I_{n}\equiv[\tau-2^{-n+1}\rho, \tau+s] .

Namely, we note

\sigma=(\tau-2^{-n}\rho)-(\tau-2^{-n+1}\rho)=2^{-n}\rho (4.23)

and so
\sigma\epsilon^{p-1}\leq\rho\epsilon^{p-1}\leq 1 for n\geq 1 .
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If we set

J_{n}= \int_{I_{n}}\int_{R^{N}}u^{\lambda_{n}}dxdt+\frac{s+2^{-n}\rho}{\epsilon^{p0}}\epsilon^{\lambda_{n}} , (4.24)

then from (4.22) and (4.23) we get

\{J_{n+1}\}^{1/k}\leq C_{7,n}J_{n} (4.25)

where

C_{7,n}=C_{6}\epsilon^{-p+1}\rho^{-1}k^{n-1}2^{n} .

We now use Moser’s iteration methods: Iterating (4.25), we have

\{J_{n+1}\}^{1/k^{n}}\leq C_{8,n}J_{1} (4.26)

where

C_{8,n}= \prod_{i=1}^{n}C_{7,i}^{k^{-(i-1)}}

=\{C_{6}\epsilon^{-p+1}\rho^{-1}2\}^{\Sigma_{i=1}^{n}}k^{-(i-1)}\cross(2k)^{\Sigma_{i}^{n}}=1(i-1)k^{-(i-1)}

and

\lim_{narrow\infty}C_{8,n}=\{2C_{6}\epsilon^{-p+1}\rho^{-1}\}^{N/2+1}(2k)^{k/(k-1)^{2}}

Since

[] \sup_{\tau,\tau+s}||u(t)||_{\infty}^{\ell-\alpha}=\lim_{narrow\infty}\{\int_{\tau}^{\tau+s}\int_{R^{N}}u^{\lambda_{n+1}}dxdt\}^{1/k^{n}}

\leq\lim_{narrow\infty} inf J_{n+1}^{1/k^{n}} ,

if narrow\infty in (4.26) then we have

sup ||u(t)||_{\infty}^{\ell-\alpha}\leq\{2C_{6}\epsilon^{-p+1}\rho^{-1}\}^{N/2+1}(2k)^{k/(k-1)^{2}}J_{1}

[\tau,\tau+s]

and so we get (4.18). \square

Proof of Proposition 4.1 If s\downarrow 0 in (4.18), then by Proposition 2.4 we get
(4.3). The proof is complete. \square
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5. Proof of Theorem 2

In this section, by using Proposition 4.2, we prove Theorem 2. For this
aim, we need the following key lemma which was established by Kawanago
[17] for a classical solution. But, we must prove it for a weak solution
directly.

Lemma 5.1 Assume p>m+2/N and assume (2.2) for the initial data
u_{0} . Let u(x, t) be a weak solution of (1.1) (1.2) which is constructed in
Proposition 2.4. Put

B_{\ell}=[4m(\ell-1)/A_{\ell}(m+\ell-1)^{2}]^{1/(p-m)} (5.1)

where A_{\ell} is in Lemma 2.8. Then, for any \infty>\ell>\max\{1,p_{0}-p+1\} with
p_{0}=N(p-m)/2 , if ||u_{0}||_{p0}< \min\{B_{p0}, B_{\ell}\} then

||u(t)||_{\ell}(\leq||u_{0}||_{\ell}) is nonincreasing in t \geq 0 . (5.2)

Furthermore, if
A\equiv sup ||u(t)||_{\beta}<\infty for some constant \beta\in[1, \ell) , (5.1)

t\in[0,T]

then

||u(t)||_{\ell}^{\ell}\leq C_{9}t^{-N(\ell-\beta)/\{N(m-1)+2\beta\}} for t\in[0, T] (5.1)

where C_{9}=C_{9}(N, m,p, A, \beta, \ell) .

The methods of the proof are similar to those of the proof in Kawanago
[17] and so we only state the outline of the proof. But, in order to show the
above lemma for a weak solution of (1.1) (1.2) directly, we need the next
lemma.

Lemma 5.2 Let q>1 and let h(t)\geq 0 in [0, T] be a continuous function
satisfying

h(s)+C \int_{\tau}^{s}h(t)^{q}dt\leq h(\tau)

where C>0 is a constant. Then,

h(s)\leq\{C(q-1)s\}^{-1/(q-1)}

for 0\leq\tau\leq s\leq T (5.5)

for 0\leq s\leq T (5.6)



172 R. Suzuki

Proof. Let 0<s\leq T be fixed. For 0<\tau<s , we define

\alpha(\tau)\equiv h(s)+C\int_{\tau}^{s}h(t)^{q}dt . (5.7)

Suppose h(s)>0 . Then, since 0<\alpha(\tau)\leq h(\tau) by (5.5), we get

1 \leq\frac{h(\tau)^{q}}{\alpha(\tau)^{q}} . (5.8)

Integrating the both sides over (0, s) and noting d\alpha(\tau)=-Ch(\tau)^{q}d\tau=d\xi ,
we have

s= \int_{0}^{s}\frac{h(\tau)^{q}}{\alpha(\tau)^{q}}d\tau\leq\int_{\alpha(0)}^{h(s)}\frac{1}{\xi^{q}}\cross(-\frac{1}{C})d\xi

\leq\frac{1}{C}\int_{h(s)}^{\infty}\frac{1}{\xi^{q}}d\xi=\frac{1}{C(q-1)}h(s)^{-q+1} ,

that is,

h(s)\leq[C(q-1)s]^{-1/(q-1)} .

When h(s)=0 , (5.6) is obvious. The proof is complete. \square

Proof of Lemma 5.1 Let u(x, t) be a weak solution of (1.1) (1.2) which is
constructed in Proposition 2.4. We use Lemma 2.5. Integrating (2.24) over
[\tau, s] and letting narrow\infty , we have for \ell\geq 1 ,

\int_{R^{N}}u^{\ell}dx|_{\tau}^{s}+\frac{4m\ell(\ell-1)}{(m+\ell-1)^{2}}\int_{\tau}^{s}||\nabla u^{(m+\ell-1)/2}||_{2}^{2}dt

\leq\ell\int_{\tau}^{s}\int_{R^{N}}u^{p+\ell-1}dxds . (5.9)

By (2.30), we obtain

\int_{R^{N}}u^{\ell}dx|_{\tau}^{s} (5.10)

+ \int_{\tau}^{s}(\frac{4m\ell(\ell-1)}{(m+\ell-1)^{2}}-\ell A_{\ell}||u||_{p0}^{p-m)}||\nabla u^{(m+\ell-1)/2}||_{2}^{2}dt\leq 0 .

Put \ell=p_{0}(>1) in the above inequality. Since ||u(t)||_{p0} is continuous in
[0, T] , if ||u_{0}||_{p0}<B_{p0} then ||u(t)||_{p0} is nonincreasing in t\geq 0 . Therefore, if
||u_{0}||_{p0}< \min\{B_{p0}, B_{\ell}\} and \ell>\max\{1, p_{0}-p+1\} , then

\int_{R^{N}}u^{\ell}dx|_{\tau}^{s}+C\int_{\tau}^{s}||\nabla u^{(m+\ell-1)/2}||_{2}^{2}dt\leq 0 (5.11)
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for some C>0 , and so we see that ||u(t)||_{\ell} is nonincreasing in t\geq 0 .
Assume (5.3). Then, it follows from (2.31) and (5.11) that

||u(s)||_{\ell}^{\ell}+C \int_{\tau}^{s}\{||u(t)||_{\ell}^{\ell}\}^{1+\frac{N(m-1)+2\beta}{N(\ell-\beta)}}dt

\leq||u(\tau)||_{\ell}^{\ell} for 0\leq\tau\leq s\leq T (5.12)

Applying Lemma 5.2 to (5.12) we get

||u(s)||_{\ell}^{\ell} \leq\{C\cross\frac{N(m-1)+2\beta}{N(\ell-\beta)}s\}^{-N(\ell-\beta)/\{N(m-1)+2\beta\}}

The proof is complete. \square

Proposition 5.3 Let u(x, t) be as in Lemma 5.1. Then, if ||u_{0}||_{p0}<

\min\{B_{p0}, B_{\ell}\}\equiv\delta_{0} for some \ell>\max\{1,p_{0}+p-1\} ,

||u(t)||_{\infty}\leq K_{1}t^{-1/(p-1)} for t\in[0, T] (5.13)

where K_{1}=K_{1}(N, m, p, \delta_{0}) .

Proof. Let u(x, t) be as in Lemma 5.1. Assume ||u_{0}||_{p0}<B_{p0} . Then, by
Lemma 5.1 we have

||u(t)||_{p0}\leq||u_{0}||_{p0} for t\in[0, T] . (5.14)

It follows from Proposition 4.2 with h=||u_{0}||_{p0}^{p0} and Lemma 5.1 with \beta=p_{0}

that if ||u_{0}||_{p0}< \delta_{0}=\min\{B_{p0} , B_{\ell}\} for some \ell>p_{0}+p-1 then

||u(t)||_{\infty} \leq C_{2}\{(\frac{t}{2}\int_{R^{N}}u^{\ell}(t/2)dx+(t/2)^{-(\ell-po)/(p-1)})\}^{1/(\ell-\alpha)}

\leq C_{2}\{\frac{t}{2}(C_{7}(\frac{t}{2})\frac{-N(\ell-p_{0})}{N(m-1)+2p_{0}}+(\frac{t}{2})^{-\frac{\ell-p_{0}}{p-1}})\}^{1/(\ell-\alpha)}

\leq K_{1}t^{-1/(p-1)} for t\in[0, T] . (5.15)

Here we used the relation

\frac{N}{N(m-1)+2p_{0}}=\frac{1}{p-1} and \alpha=p_{0}+p-1 .

\square

Proof of Theorem 2. We show Theorem 2 in the case that u_{0} satisfies
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(2.2). In the general case, using Proposition 2.6 with adding the assumption
that u_{0,n}arrow u_{0} in L^{p0} we can also show Theorem 2 (See the proof of Theorem
1.2 in Kawanago [17] ) .

Assume (2.2) and ||u_{0}||_{p0}<\delta_{0} where \delta_{0} is as in Proposition 5.3. Let
u_{n}(x, t) be a classical solution of (2.4) (2.5) (2.6). Put T_{1}=T(||u_{0}||_{\infty})/2

and

M_{1}= \max\{y(T_{1} ; ||u_{0}||_{\infty}). K_{1}T_{1}^{-1/(p-1)}+1\} (5.16)

where y(t;M) and T(M) are defined by (2.7) and (2.8) respectively.
We shall show that for any subsequence \{n’\}\subset\{n\} and any T>0 ,

there exists a subsequence \{n’\}\subset\{n’\} such that

sup ||u_{n’}(t)||\leq M_{1} for all n’ (5.16)
[0,T]

Let \{n’\}\subset\{n\} be fixed arbitrarily and set

T’= \sup\{T ; there exists a subsequence \{n’\}\subset\{n’\} such that
sup ||u_{n’}(t)||_{\infty}\leq M_{1} for all n’ }. (5.16)
[0,T]

Then, by Proposition 2.3 and the fact ||u_{0}||_{\infty}=||u_{0,n}||_{\infty} for large n , we
have

T’\geq T_{1} .

Suppose T’<\infty . Then for any T<T’ satisfying T’-T<T(M_{1})/2 , there
exists a subsequence \{n’\}\subset\{n’\} such that

sup ||u_{n’}(t)||_{\infty}\leq M_{1} for all n’ (5.19)
[0,T]

Hence, from Proposition 2.3, we see that u_{n’}(t) exists in [0, T_{2}] with T_{2}=

T+T(M_{1})/2 beyond T’ and satisfies

sup ||u_{n’}(t)||_{\infty}\leq y(T(M_{1})/2;M_{1}) for all n’ (5.20)
[0,T_{2}]

It follows from Proposition 2.4 and 5.3 that for some subsequence \{\tilde{n}\}\subset

\{n’\} ,

u_{\overline{n}}(x, t) – u(x, t) as \tilde{n}arrow\infty (5.21)

uniformly in R^{N}\cross[0, T_{2}] and u(x, t) is a weak solution of (1.1) (1.2) satis-
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fying (5.13). Therefore, if \tilde{n} is large enough, then

||u_{\overline{n}}(t)||_{\infty}\leq K_{1}t^{-1/(p-1)}+1\leq K_{1}T_{1}^{-1/(p-1)}+1\leq M_{1}

for t\in[T_{1}, T_{2}] . (5.22)

This is a contradiction to the definition of T’ and thus we get T=\infty namely
(5. 17) for any T>0 .

Hence, using the diagonal methods, we can choose a subsequence \{n’\}\subset

\{n’\} satisfying that for any T>0 ,

sup ||u_{n’}(t)||_{\infty}\leq M_{1} for large n’
[0,T]

Therefore, by Proposition 2.4 and 5.3 we see that there exists a weak solution
u(x, t) of (1.1) (1.2) in R^{N}\cross[0, \infty) satisfying (1.8). The proof is complete.

\square

The rest of this section, we prepare for the proof of Theorem 3 which
treats the case u_{0}(x)\in L^{1} . The next lemma is proved by Kawanago [17]
for a classical solution of (1.1) (1.2) with a=0.

Lemma 5.4 Assume p>m+2/N and (2.2). Let u(x, t) be a global weak
solution of (1.1) (1.2) which is constructed in Proposition 2.4 and the proof

of Theorem 2. Then, there exists a constant \delta_{2}=\delta_{2}(N, p, m) such that if
||u_{0}||_{p0}<\delta_{2} ,

\int_{2}^{\infty}||u(t)||_{\infty}^{p-1}dt\leq C_{10}<\infty (5.23)

and

\sup_{t\geq 0}||u(t)||_{1}\leq K_{3}
(5.24)

where C_{10}=C_{10}(N, p, m, ||u_{0}||_{1}, \delta_{2}) and K_{3}=K_{3}(N,p, m, ||u_{0}||_{1}, \delta_{2}) .

The methods of the proof are similar to those of the proof in Kawanago
[17] if we use Proposition 4.3. However, we must treat the weak solutions
directly and so we need the next lemma:

Lemma 5.5 Let g(t)\geq 0 in [0, T] and h(t)\geq 0 in [0, T] be continuous

functions. Then, if u satisfies that for some 0<q<1
h( \tau)\leq h(0)+\int_{0}^{\tau}g(t)h^{q}(t)dt for any 0\leq\tau\leq T , (5.25)
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\frac{1}{1-q}h(\tau)^{1-q}\leq\int_{0}^{\tau}g(t)dt+\frac{1}{1-q}h(0)^{1-q} for 0\leq\tau\leq T

(5.26)

Proof. Put

\alpha(t)=h(0)+\int_{0}^{t}g(t)h(t)^{q}dt .

Suppose that there exists t_{0}\in[0, T] such that

\alpha(t)>0 for t\in(t_{0}, T] and \alpha(t_{0})=0 .

By (5.25) we get

h(t)\leq\alpha(t)

and hence we have

\frac{1}{\alpha^{q}(t)}g(t)h^{q}(t)\leq g(t) .

Integrating the both sides over (t_{0}, \tau) and noting d\alpha(t)=g(t)h(t)^{q}dt=d\xi ,
we have

\int_{\alpha(t_{0})}^{\alpha(\tau)}\frac{1}{\xi^{q}}d\xi=\int_{t_{0}}^{\tau}\frac{1}{\alpha^{q}(t)}g(t)h^{q}(t)dt\leq\int_{t_{0}}^{\tau}g(t)dt .

Therefore, noting \alpha(t_{0})=0 we obtain for \tau\in(t_{0}, T]

\frac{1}{1-q}h(\tau)^{1-q}\leq\frac{1}{1-q}\alpha(\tau)^{1-q}\leq\int_{t_{0}}^{\tau}g(t)dt

\leq\int_{0}^{\tau}g(t)dt+\frac{1}{1-q}h(0)^{1-q}

and

h(\tau)\leq\alpha(\tau)\leq\alpha(t_{0})=0 for \tau\in[0, t_{0}] .

Thus we obtain (5.26).
Similarly, we also get (5.26) in case that \alpha(0)=h(0)>0 . The proof is

complete. \square

Proof of Lemma 5.4 (see Kawanago [17]) Assume (2.2) and let u(x, t) be
a global weak solution of (1.1) (1.2) which is constructed in Proposition 2.4
and the proof of Theorem 2.



Existence and nonexistence of global solutions with convection 177

First, we prove (5.23). We choose a small \eta>0 such that p_{0}-\eta>

\max\{1, p_{0}-p+1\} . We use (5.2) with \ell=p_{0}-\eta . Then, if ||u_{0}||_{p0}<

\min\{B_{p0}, B_{p0-\eta}\} ,

\sup_{t\geq 0}||u(t)||_{p_{0}-\eta}\leq||u_{0}||_{p0-\eta}\leq\max\{||u_{0}||_{1}, ||u_{0}||_{p0}\}
. (5.27)

Further, it follows from Proposition 4.3 and (5.4) with \beta=p_{0}-\eta that if
||u_{0}||_{p0}<B_{\ell} for some \ell>p_{0}-\eta then

||u(t)||_{\infty} \leq C_{3}\{\int_{R^{N}}u^{\ell}(t-1)
dx\}^{\{1-\frac{p-1}{\ell-p_{0}}(\frac{N}{2}+1)\}\frac{1}{\ell-\alpha}}

=C(t-1)^{-\ell’} for t\geq 2 , (5.28)

where

\ell’=\frac{N(1-(p_{0}-\eta)/\ell)}{N(m-1)+2(p_{0}-\eta)}\{1-\frac{p-1}{\ell-p_{0}}(N/2+1)\}\frac{\ell}{\ell-\alpha} . (5.29)

Let \eta_{1}\in(0, \eta) . Then, we can choose large \ell such that

\ell’>\frac{N}{N(m-1)+2(p_{0}-\eta_{1})} .

Hence, we have from (5.28),

||u(t)||_{\infty}\leq C(t-1)^{-N/\{N(m-1)+2(p0-\eta_{1})\}} for t\geq 2 , (5.31)

in order to obtain

\int_{2}^{\infty}||u(t)||_{\infty}^{p-1}dt\leq C^{p-1}\frac{N(m-1)+2(p_{0}-\eta_{1})}{2\eta_{1}}<\infty . (5.31)

Next, we show (5.24). It follows from (5.9) with \ell=1 that

\int_{R^{N}}u(t)dx=\int_{R^{N}}u(2)dx+\int_{2}^{t}\int_{R^{N}}u^{p} dxdt

\leq\int_{R^{N}}u(2)dx+\int_{2}^{t}||u(t)||_{\infty}^{p-1}\int_{R^{N}}u dxdt for t\geq 2

which leads to

\int_{R^{N}}u(t)dx\leq\int_{R^{N}}u(2)dx exp ( \int_{2}^{\infty}||u(t)||_{\infty}^{p-1}dt)<\infty

for t\geq 2 . (5.32)
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On the other hand, we use (5.4) with \ell=2Np and \beta=p_{0} . Then, if
||u_{0}||_{p0}< \min\{B_{p0}, B_{2Np}\} , we have by the H\"older inequality,

\int_{R^{N}}udx|_{0}^{t}=\int_{0}^{t}\int_{R^{N}}u^{p} dxdt

\leq\int_{0}^{t}||u||_{2Np}^{2Np(p-1)/(2Np-1)}||u||_{1}^{p(2N-1)/(2Np-1)}dt

\leq C\int_{0}^{t}t^{-\frac{(3p+m)N}{2(2Np-1)}}||u||_{1}^{p(2N-1)/(2Np-1)}dt . (533)

It follows from Lemma 5.5 with h(t)=||u(t)||_{1} and q=p(2N-1)/(2Np-
1)(<1) that

\frac{2Np-1}{p-1}||u(t)||_{1}^{(p-1)/(2Np-1)}

\leq C\int_{0}^{t}t^{\frac{-(3p+m)N}{2(2Np-1)}}dt+\frac{2Np-1}{p-1}||u_{0}||_{1}^{(p-1)/(2Np-1)} (5.34)

=C \frac{2Np-1}{p_{0}-1}t^{(p0-1)/(2Np-1)}+\frac{2Np-1}{p-1}||u_{0}||_{1}^{(p-1)/(2Np-1)} .

Combining this and (5.32) we get (5.24). Thus, if set \delta_{2}=

\min\{B_{p0}, B_{p0-\eta}, B_{\ell}, B_{2Np}\} , then we obtain Lemma 5.4. \square

Let u_{n}(x, t) be a approximate solution of (2.4) (2.5) (2.6) for above
u(x, t) in Lemma 5.4. Then, if we put

v_{n}(x, t)= \exp(-\int_{2}^{t}||u_{n}(t)||_{\infty}^{p-1}dt)\cross u_{n} , (5.35)

v_{n}(x, t) satisfies the following differential inequality:

v_{n.t} \leq\exp((m-1)\int_{2}^{t}||u_{n}||_{\infty}^{p-1}dt)\cross\triangle v_{n}^{m}

+ \exp((q-1)\int_{2}^{t}||u_{n}||_{\infty}^{p-1}dt)\cross a\nabla v_{n}^{q} . (5.36)

As prove (2.24) and (4.9), we have for any \ell\geq m ,

\int_{B_{n}}v_{n}^{\ell-m+1}(s)dx+\nu_{\ell}\int_{\tau}^{s}\int_{B_{n}}|\nabla v_{n}^{\ell/2}|^{2} dxdt

\leq\int_{B_{n}}v_{n}^{\ell-m+1}(\tau)dx for 2\leq\tau\leq s (5.37)
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where

l/ \ell=\frac{4m(\ell-m+1)(\ell-m)}{\ell^{2}} .

If narrow\infty , we get the following lemma.

Lemma 5.6 Let u(x, t) be as in Lemma 5.4 with ||u_{0}||_{p0}<\delta_{2} . Put

v= \exp(-\int_{2}^{t}||u(t)||_{\infty}^{p-1}dt)\cross u . (5.38)

Then v(x, t) satisfies that

\sup_{t\geq 2}||v(t)||_{1}\leq K_{3} (5.39)

where K_{3} is as in Lemma 5.4, and for any \ell\geq\ell_{0}\geq m

\int_{R^{N}}v^{\ell-m+1}(s)dx+\nu_{0}\int_{\tau}^{s}\int_{R^{N}}|\nabla v^{\ell/2}|^{2} dxdt

\leq\int_{R^{N}}v^{\ell-m+1}(\tau)dx for 2\leq\tau\leq s (5.40)

where

\nu_{0}=\inf_{\ell\geq\ell_{0}}\nu_{\ell} .

Hence, we see that

||v(t)||_{\ell} (1\leq\ell\leq\infty) is nonincreasing in t\geq 2 . (5.41)

Proof. (5.39) and (5.40) are obvious by Lemma 5.4 and (5.37). (5.40) is
reduced to (5.41) when 1\leq\ell<\infty . Noting (2.14) we can also show (5.41)
in case \ell=\infty . \square

In the following section, we shall estimate this v(x, t) .

6. L^{\infty}-L^{l} Estimates for solutions II

In this section, we shall show the following L^{\infty} estimate for v(x, t)
which is very important to study the asymptotic behavior of the solution
u(x, t) in case u_{0}(x)\in L^{1}(R^{N}) .

Proposition 6.1 Let v(x, t) in R^{N}\cross[0, \infty) be a nonnegative continuous
function satisfying (5.39), (5.40), (5.41) and (2.14) with u replaced by v .
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Let \ell>m . Then, for any t\geq 4 and \epsilon>0 satisfying

t^{1/2}\epsilon^{1/N+(m-1)/2}\leq 1 , (6.1)

||v(t)||_{\infty}^{\ell} \leq C_{11}(t\epsilon^{m-1})^{-N/2}(\int_{R^{N}}v^{\ell}(t/2)dx+K_{3}\epsilon^{\ell-1}) (6.2)

where C_{11}=C_{11}(N, m, K_{3}, \ell) .

The methods of the proof are similar to those of the proof of Proposition
4.1. That is, we use Moser’s iteration methods (Ref. Kawanago [18]). First
we show the next lemma.

Lemma 6.2 Let v(x, t) in R^{N}\cross[0, \infty) be a nonnegative continuous func-
tion satisfying (5.39), (5.40), (5.41) and (2.14) with u replaced by v . Let
\ell\geq\ell_{0} for some \ell_{0}>m . Then, when N=1 ,

C( \ell_{0})(s-\tau)^{1/2}\epsilon^{(m-1)/2}||v(s)||_{\infty}^{\ell}\leq\int_{R^{N}}v^{\ell}(\tau)dx+\frac{K_{3}}{2}\epsilon^{\ell-1} (6.3)

and, when N>1 , for any 2\leq\tau\leq s\leq t and \epsilon>0 satisfying (6.1),

C( \ell_{0})(s-\tau)^{1/2}\epsilon^{(m-1)/2}\{\int_{R^{N}}v^{\overline{k}\ell}(s)dx+\frac{K_{3}}{\epsilon}\epsilon^{\overline{k}\ell}\}^{1/\overline{k}}

\leq\int_{R^{N}}v^{\ell}(\tau)dx+\frac{K_{3}}{\epsilon}\epsilon^{\ell} (6.4)

where \tilde{k}=\frac{N}{N-1} and C(\ell_{0})=C(N, m, K_{3}, \ell_{0}) .

Proof. We use the GagliardO-Nirenberg inequality (see (2.29))

||f||_{2N/(N-1)}\leq C||\nabla f||_{2}^{1/2}||f||_{2}^{1/2} for f\in C_{0}^{\infty}(R^{N}) (6.5)

where 2N/(N-1)=\infty when N=1 . Let \ell\geq\ell_{0}>m and t\geq s\geq\tau\geq 2 .
Combining this inequality with f=v^{\ell/2} and (5.40) and noting (5.41), we
have

\frac{\nu_{0}}{C^{4}}(s-\tau)\frac{||v^{\ell/2}(s)||_{2N/(N-1)}^{4}}{||v^{\ell/2}(\tau)||_{2}^{2}}

\leq\frac{l^{\prime 0}}{C^{4}}\int_{\tau}^{s}\frac{||v^{\ell/2}||_{2N/(N-1)}^{4}}{||v^{\ell/2}||_{2}^{2}}dt\leq\nu_{0}\int_{\tau}^{s}\int_{R^{N}}|\nabla v^{\ell/2}|^{2} dxdt

\leq\int_{R^{N}}v^{\ell-m+1}(\tau)dx . (6.6)



Existence and nonexistence of global solutions with convection 181

Hence, we obtain

(s- \tau)||v^{\ell/2}(s)||_{2N/(N-1)}^{4}\leq\frac{C^{4}}{\nu_{0}}||v^{\ell/2}(\tau)||_{2}^{2}\int_{R^{N}}v^{\ell-m+1}(\tau)dx ,

that is,

C(s-\tau)^{1/2}||v^{\ell/2}(s)||_{2N/(N-1)}^{2}

\leq\{\int_{R^{N}}v^{\ell}(\tau)dx\}^{1/2}\{\int_{R^{N}}v^{\ell-m+1}(\tau)dx\}^{1/2} (6.7)

for some constant C>0 .
Similarly to the proof of (4.14), we get by (5.39),

\int_{R^{N}}v^{\ell-m+1}(\tau)dx\leq\epsilon^{\ell-m}\int_{R^{N}}v(\tau)dx+\epsilon^{-(m-1)}\int_{R^{N}}v^{\ell}(\tau)dx

\leq\epsilon^{-(m-1)}\{\epsilon^{\ell-1}K_{3}+\int_{R^{N}}v^{\ell}(\tau)dx\} (6.8)

Therefore, it follows from (6.7) and the Schwarz inequality that

C(s-\tau)^{1/2}\epsilon^{(m-1)/2}||v^{\ell/2}(s)||_{2N/(N-1)}^{2}

\leq\{\int_{R^{N}}v^{\ell}(\tau)dx\}^{1/2}\{\epsilon^{\ell-1}K_{3}+\int_{R^{N}}v^{\ell}(\tau)dx\}^{1/2}

\leq\int_{R^{N}}v^{\ell}(\tau)dx+\frac{K_{3}\epsilon^{\ell-1}}{2} (6.9)

which is equal to (6.3) when N=1 . When N>1 , in order to obtain (6.4)
we must add K_{3}\epsilon^{\ell-1}/2 to the both sides of (6.9). Then, putting \tilde{k}=\frac{N}{N-1}

we have

C(s- \tau)^{1/2}\epsilon^{\frac{(m-1)}{2}}\{(\int_{R^{N}}v^{\overline{k}\ell}(s)dx)^{1/k}

+ \frac{K_{3}^{1/N}}{2C\epsilon^{\frac{1}{N}+\frac{m-1}{2}}(s-\tau)^{\frac{1}{2}}}(\frac{K_{3}}{\epsilon}\epsilon^{\overline{k}\ell})^{1/\overline{k}}\}

=C(s- \tau)^{1/2}\epsilon^{(m-1)/2}||v^{\ell/2}(s)||_{2N/(N-1)}^{2}+\frac{K_{3}\epsilon^{\ell-1}}{2}

\leq\int_{R^{N}}v^{\ell}(\tau)dx+\frac{K_{3}}{\epsilon}\epsilon^{\ell} . (6.10)

Let \epsilon>0 satisfy (6.1). Then, since \epsilon^{\frac{1}{N}+\frac{m-1}{2}}(s-\tau)^{\frac{1}{2}}\leq\epsilon^{\frac{1}{N}+\frac{m-1}{2}}t^{\frac{1}{2}}\leq
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1, putting C( \ell_{0})=C\min\{1,2^{-1}C^{-1}K_{3}^{1/N}\} and using the inequality (a+
b)^{1/\overline{k}}\leq a^{1/\overline{k}}+b^{1/\tilde{k}} we obtain (6.4). The proof is complete. \square

Proof of Proposition 6.1 In the case N=1 , if we put s=t and \tau=t/2

in (6.3) we get (6.2).
Next, we consider the case N>1 . Let \ell>m and t^{\frac{1}{2}}\epsilon^{\frac{1}{N}+\frac{m-1}{2}}\leq 1 . For

any t\geq 4 , let \{t_{n}\} be the sequence of numbers satisfying the recurrence
formula

\{

t_{0}=t/2

t_{n}=t/2^{n+1}+t_{n-1} (n\geq 1) .
(6.12)

Then,

t_{n}=\{1-(1/2)^{n+1}\}t (\leq t) (6.12)

and

t_{n}\uparrow t as narrow\infty . (6.13)

Put s=t_{n} and \tau=t_{n-1} in (6.4) with \ell replaced by \tilde{k}^{n-1}\ell(\geq\ell) . We note
that 2\leq\tau\leq s\leq t and (s-\tau)^{1/2}=(t_{n}-t_{n-1})^{1/2}=t^{1/2}(\sqrt{2})^{-(n+1)} . Then,
if we set

J_{n}= \int_{R^{N}}v^{\tilde{k}^{n}\ell}(t_{n})dx+\frac{K_{3}}{\epsilon}\epsilon^{\overline{k}^{n}\ell} , (6.14)

then we have

C(\ell)t^{1/2}\epsilon^{(m-1)/2}(\sqrt{2})^{-(n+1)}\{J_{n}\}^{1/\tilde{k}}\leq J_{n-1} . (6.15)

We now use Moser’s iteration methods. Iterating (6.15) we have

c_{n}\{J_{n}\}^{1/\overline{k}^{n}}\leq J_{0} (6.16)

where

c_{n}= \prod_{i=1}^{n}\{C(\ell)t^{1/2}\epsilon^{(m-1)/2}(\sqrt{2})^{-(i+1)}\}^{\overline{k}^{-(i-1)}}

=\{C(\ell)t^{1/2_{\Xi}(m-1)/2}2^{-1}\}^{\Sigma_{i=1}^{n}\tilde{k}^{-(i-1)}}(\sqrt{2})^{-\Sigma_{i}^{n}}=1(i-1)\tilde{k}^{-(i-1)}

and

\lim_{narrow\infty}c_{n}=\{C(\ell)t^{1/2}\epsilon^{(m-1)/2}2^{-1}\}^{\overline{k}/(\overline{k}-1)}(\sqrt{2})^{-\tilde{k}/(\overline{k}-1)^{2}}
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Since by (2.14)

||v(t)||_{\infty}^{\ell}= \lim_{narrow\infty}\{\int_{R^{N}}v^{\tilde{k}^{n}\ell}(t)dx\}^{1/\tilde{k}^{n}}\leq\lim_{narrow\infty} inf J_{n}^{1/\overline{k}^{n}} ,

if narrow\infty in (6.16), then we have by \tilde{k}=N/(N-1) ,

\{C(\ell)t^{1/2}\epsilon^{(m-1)/2}2^{-1}\}^{N}\sqrt{2}^{-N(N-1)}||v(t)||_{\infty}^{\ell}\leq J_{0} ,

and so we get (6.2). The proof is complete. \square

7. Proof of Theorem 3 and 5

In this section we prove Theorem 3 and 5. We begin with the following
proposition:

Proposition 7.1 Let u(x, t) be a global weak solution of (1.1) (1.2) in
Lemma 5.4 satisfying ||u_{0}||_{p0}<\delta_{2} . Then,

||u(t)||_{\infty}\leq C_{12}t^{-N/[N(m-1)+2]} for t\geq 4 (7.1)

where C_{12}=C_{12}(N, m,p, ||u_{0}||_{1}, \delta_{2}) .

Proof. Let u(x, t) be a global weak solution of (1.1) (1.2) in Lemma 5.4
satisfying ||u_{0}||_{p0}<\delta_{2} . If we put v(x, t)= \exp(-\int_{2}^{t}||u||_{\infty}^{p-1}dt)u then v(x, t)

satisfies (6.2) by Lemma 5.6 and Proposition 6.1. By (5.31) we note that
for some C>0||u(t)||_{\infty}\leq C||v(t)||_{\infty} for t\geq 0 . Hence, we see that u(x, t)

satisfies (6.2) also. Putting \epsilon=t^{-N/[N(m-1)+2]} in (6.2) and using (5.4) with
\beta=1 (see (5.24)), we have (7.1). The proof is complete. \square

Proof of Theorem 3. (Ref. Kawanago [17], R. Suzuki [29] and Friedman-
Kamin [7] ) First, we show (1.9) and (1.10) of Theorem 3 in the case that
u_{0}(x) satisfies (2.2). In the general case, using Proposition 2.6 with adding
the assumption that u_{0,n}arrow u_{0} in L^{1}\cap L^{p0} , we can show (1.9) and (1.10) of
Theorem 3 also.

Suppose (2.2) for the initial data u0(x) and let u(x, t) be a global weak
solution of (1.1) (1.2) which is constructed in Lemma 5.4 with ||u_{0}||_{p0}<

\delta_{1}\equiv\min\{\delta_{0}, \delta_{2}\} where \delta_{0} is in Theorem 2. Then, (1.9) and (1.10) follow
from Theorem 2, Lemma 5.4 and Proposition 7.1 that (1.7) and (1.8) hold.

Next, we shall show (1.11). Assume q>m+1/N and set

u_{k}(x, t)=k^{N}u(kx, k^{N(m-1)+2}t) , k>0 . (7.2)
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Then u_{k} is a unique weak solution of

\{

u_{t}=\triangle u^{m}+k^{-\eta}a\cdot\nabla u^{q}+k^{-\mu}u^{p} in R^{N}\cross(0, \infty) ,

u(x, 0)=k^{N}u_{0}(kx) in R^{N}x(0, \infty) .
(7.3)

where \eta=N(q-m)-1>0 and \mu=N(p-m)-2>0 . Furthermore, by
(1.9) we have

||u_{k}(t)||_{\infty}=k^{N}||u(k^{N(m-1)+2}t)||_{\infty}

\leq Ct^{-N/[N(m-1)+2]} for t >0 . (7.4)

Thus, since u_{k}(x, t) is uniformly bounded on R^{N}\cross[\tau, \infty) , \tau>0 , by Di
Benedetto [4], we see that u_{k}(x, t) is equicontinuous on every compact subset
in R^{N}\cross(0, \infty) . Therefore, there exist a subsequence \{k’\}\subset\{k\} and a
continuous function v(x, t) in R^{N}\cross(0, \infty) such that

u_{k’}(x, t) – v(x, t) (7.5)

uniformly on every compact subset of R^{N}\cross(0, \infty) . In the following, by
using the uniqueness of the solution of (1.12) due to Pierre [27] we shall
show

v(x, t)=V_{m}(x, t, M_{\infty}) (7.6)

where V_{m}(x, t, M_{\infty}) is as in Theorem 3.
Since u_{k}(x, t) is a weak solution of (7.3), it satisfies the integral identity

\int_{R^{N}}u_{k}(x, T)\varphi(x, T)dx

= \int_{0}^{T}\int_{R^{N}}\{u_{k}\partial_{t}\varphi+u_{k}^{m}\triangle\varphi\}dxdt-k^{-\eta}\int_{0}^{T}\int_{R^{N}}u_{k}^{q}a\cdot\nabla\varphi dxdt

+k^{-\mu} \int_{0}^{T}\int_{R^{N}}u_{k}^{p}\varphi dxdt+k^{N}\int_{R^{N}}u_{0}(kx)\varphi(x, 0)dx

\equiv S_{1}+S_{2}+S_{3}+S_{4} (7.7)

for all \varphi\in C_{0}^{\infty}(R^{N}\cross[0, \infty)) .
We shall estimate each S_{i} (i=1,2,3, 4) . First, we consider S_{1} . We note

by (5.24),

\int_{R^{N}}u_{k}(x, t)dx=\int_{R^{N}}u(x, k^{N(m-1)+2}t)dx\leq K_{3} for t\geq 0 . (7.8)
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Hence, since by (7.4) we have

| \int_{0}^{\delta}\int_{R^{N}}\{u_{k}\varphi_{t}+u_{k}^{m}\triangle\varphi\}dxdt|

\leq C\int_{0}^{\delta}\int_{R^{N}}\{u_{k}+u_{k}^{m}\} dxdt

\leq C\int_{0}^{\delta}\{\int_{R^{N}}u_{k}dx+\sup_{x}u_{k}^{m-1}\int_{R^{N}}u_{k}dx\}dt

\leq CK_{3}\{\delta+C\int_{0}^{\delta}t^{-N(m-1)/[N(m-1)+2]}dt\}

=CK_{3}( \delta+\frac{N(m-1)+2}{2}\delta^{2/[N(m-1)+2]})arrow 0 (as \delta\downarrow 0),

(7.9)

we get

S_{1} arrow\int_{0}^{T}\int_{R^{N}}\{v\partial_{t}\varphi+v^{m}\triangle\varphi\}dxdt as k=k’ – \infty . (7.10)

Next, we consider S_{2} . Similarly as above we get

|S_{2}|

\leq Ck^{-1}\int_{0}^{k^{N(m-1)+2}T}\int_{R^{N}}u^{q}dxdt

\leq CK_{3}k^{-1}\{C\int_{1}^{k^{N(m-1)+2}T}t^{-N(q-1)/[N(m-1)+2]}dt+\int_{0}^{1}||u||_{\infty}^{q-1}dt\}

\{

\leq CK_{3}k^{-1}\{C\frac{N(m-1)+2}{N(m-q)+2}[T^{\frac{N(m-q)+2}{N(m-1)+2}}k^{N(m-q)+2}-1]

+ \int_{0}^{1}||u||_{\infty}^{q-1}dt\} (if q\neq m+2/N )

\leq CK_{3}k^{-1}\{C log (k^{N(m-1)+2}T)+ \int_{0}^{1}||u||_{\infty}^{q-1}dt\}

(if q=m+2/N)

arrow 0 (as karrow\infty ) (7.11)

when q>m+1/N .
Next, we consider S_{3} . Since u(x, t) satisfies (1.10) and (2.1), if we choose

the suitable test function \varphi(x, t) and use the limit procedure (see [29]) then
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we get

\int_{0}^{\infty}\int_{R^{N}}u^{p}dxdt+\int_{R^{N}}u_{0}(x)dx=\lim_{Tarrow\infty}\int_{R^{N}}u(x, T)dx\leq K_{3} .

(7.12)

Hence, it follows from the Lebesgue dominated theorem that

S_{3}= \int_{0}^{k^{N(m-1)+2}T}\int_{R^{N}}u(x, t)^{p}\varphi(x/k, t/k^{N(m-1)+2}) dxdt

arrow\varphi(0,0)\int_{0}^{\infty}\int_{R^{N}}u^{p} dxdt as karrow\infty . (7.13)

Similarly, we get

S_{4} arrow\varphi(0,0)\int_{R^{N}}u_{0}(x)dx as karrow\infty . (7.14)

Thus, if k=k_{i}arrow\infty in (7.7), we have

\int_{R^{N}}v(x, T)\varphi(x, T)dx

= \int_{0}^{T}\int_{R^{N}}\{v\varphi_{t}+v^{m}\triangle\varphi\} dxdt

+ \varphi(0,0)\{\int_{R^{N}}u_{0}dx+\int_{0}^{\infty}\int_{R^{N}}u^{p}dxdt\} (7.15)

which shows that v(x, t) is a weak solution of (1.12) with L=M_{\infty} which is
defined by (1.13). Therefore, since

\int_{0}^{T}\int_{R^{N}}\{v+v^{m}\}
dxdt \leq\lim_{karrow\infty} inf \int_{0}^{T}\int_{R^{N}}\{u_{k}+u_{k}^{m}\} dxdt

\leq CK_{3}(T+\frac{N(m-1)+2}{2}T^{2/[N(m-1)+2]})

(7.16)

by (7.9), the uniqueness theorem for solutions of (1.12) due to Pierre [27]
(see also Lemma 2.2 of R. Suzuki [29]) implies (7.6) and so (1.11) (see
Friedman-Kamin [7] and Kawanago [17] ) . The proof is complete. \square

Proof of Theorem 5. The proof is the same as that of Theorem 3. There-
fore, we only state the outline of the proof. We assume that the initial data
v_{0}(x) satisfies (2.2) and we construct a weak solution v(x, t) of (1.15) (1.16)
similarly in Proposition 2.4 (In this case v (x , t ) exists globally in time).
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Then, we have for any \ell\geq 1

\int_{R^{N}}v^{\ell}dx|_{\tau}^{s}+\frac{4m\ell(\ell-1)}{(m+\ell-1)^{2}}\int_{\tau}^{s}||\nabla v^{(m+\ell-1)/2}||_{2}^{2}dt\leq 0 (7.17)

for 0 \leq\tau\leq s . Hence, according to the proof of Lemma 5.1, we get
the assertions of this lemma for v(x, t) without the assumption ||v_{0}||_{p0}<

\min\{B_{p0}, B_{\ell}\} . Furthermore we see that v(x, t) satisfies the assertions of
Proposition 6.1, since v(x, t) satisfies the assumptions of this proposition.
Therefore, combining these lemma and proposition, we have

||v(t)||_{\infty}\leq Ct^{-N/[N(m-1)+2]} for t>0 (7.17)

where C=C(m, N, ||v_{0}||_{1}) (see the proof of Proposition 7.1). The rest of
the assertions of Theorem 5 are also showed by using the similar methods
to those of Theorem 3. The proof is complete. \square

8. Blow up cases II

In this section, we prove Theorem 4 in a series of lemmas. The methods
of the proof are the same as those of R. Suzuki [29].

Lemma 8.1 Assume p\geq q\geq m+1/N and p=p_{m,q}^{*}(=m+2/N) . Let
u(x, t) be a nonnegative global weak solution of (1.1) (1.2). Then, u(\cdot, t)\in

L^{1}(R^{N}) and

\int_{R^{N}}u(x, t)dx\leq C(N) for all t\geq 0 (8.1)

where C(N) is as in Lemma 3.2.

Proof. Let \gamma and k_{0} be as in Lemma 3.2. We note k_{0}=2/(p-m)=N
and \gamma=0 , when p\geq q\geq m+1/N and p=p_{m,q}^{*}(=m+2/N) . Then since
k_{0}-N-\gamma=0 , it follows from Lemma 3.2 that

\int_{R^{N}}u(x, t)s_{\in}(x)dx\leq C(N) for all t\geq 0 . (8.2)

Therefore if \epsilon\downarrow 0 , by Fatou’s lemma we get (8.1). \square

Lemma 8.2 Let u(x, t) be as in Lemma 8.1. Then we have for any T>0 ,

\int_{0}^{T}\int_{R^{N}}u(x, t)^{p} dxdt\leq C(N) . (8.3)
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Proof. By Lemma 8.1 we see that u^{m} , u^{p} , u^{q}, \in L^{1}(R^{N}\cross(0, T)) for any
T>0 . Therefore, from (2.1) of Definition 2.1 we have

\int_{0}^{T}\int_{R^{N}}u^{p} dxdt \leq\int_{R^{N}}u(x, T)dx\leq C(N)

(see (7.12)). The proof is complete. \square

Proof of Theorem 4. Assume that the Cauchy problem (1.1) (1.2) has a
global solution u . Suppose u_{0}(x)\not\equiv 0 . Then, by Lemma 8.1 we get u_{0}(x)\in

L^{1}(R^{N}) . Putting u_{k}(x, t)=k^{N}u(kx, k^{N(m-1)+2}t) we see that it is a global
weak solution of (7.3) with lJ =N(p-m)-2=0, when p=m+2/N.
Furthermore, when q\geq m+1/N we see that |k^{-\eta}a|\leq|a| , since \eta=

N(q-m)-1\geq 0 . Therefore, since (8.3) holds with u=u_{k} for all k\geq 1 ,
we have

\int_{0}^{T}\int_{R^{N}}u_{k}(x, t)^{p} dxdt\leq C(N) for T>0 . (8.4)

Let v(x, t) be a weak solution of (1.15) (1.16) with v_{0}(x)=u_{0}(x) .
Then, if we define v_{k} similarly as u_{k} , we get by the comparison theorem
(Proposition 2.2),

v_{k}(x, t)\leq u_{k}(x, t) in R^{N}\cross(0, \infty) . (8.5)

Here, we note by the proof of (1.19) (see also (7.5) and (7.6)),

v_{k}(x, t) – V_{m}(x, t, M) as k – \infty (8.3)

locally uniformly in R^{N}\cross(0, \infty) where M= \int_{R^{N}}u_{0}(x)dx(>0) . Therefore,
it follows from (8.4), (8.5) and Fatou’s lemma that

\int_{0}^{T}\int_{R^{N}}V_{m}(x, t, M)^{p}
dxdt \leq\lim_{karrow\infty} inf \int_{0}^{T}\int_{R^{N}}v_{k}^{p} dxdt\leq C(N) .

On the other hand, since V_{m}(x, t, M) is the given concrete form (see
Friedman-Kamin [7] and Lemma 2.1 in R. Suzuki [29] ) , we see that if p=
p_{m,q}^{*}(=m+2/N) and M>0 then

\int_{0}^{T}\int_{R^{N}}V_{m}(x, t, M)^{p} dxdt=\infty .

This is a contradiction and so u_{0}(x)\equiv 0 . Therefore, by the uniqueness
of solutions with L^{1} -valued initial data (see Proposition 2.2), we obtain
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u(x, t)\equiv 0 in (x, t)\in R^{N}\cross(0, \infty) . As in the proof of Theorem 1, (1.14) is
obvious by the comparison and existence theorems for solutions. The proof
is complete. \square

9. Appendix

In this appendix, for the convenience of readers we state the comparison
theorem for the weak solution of the Cauchy problem of equation

u_{t}=\triangle\eta(u)+a . \nabla h(u)+k(u) (x, t)\in R^{N}\cross(0, T) (9.1)

where a\in R^{N} , \eta(\xi) , h(\xi) , k(\xi)\in C^{1}([0, \infty)) , \eta’(\xi) , k’(\xi)\geq 0 for \xi\geq 0 and
\eta(0)=h(O)=k(0)=0 . We assume

(A1) |h’(\xi)|\leq C(M)\sqrt{\eta’(\xi)} for 0\leq\xi\leq M

for some positive constant C(M)>0 . We define a supersolution [ or
subsolution] similarly as in Definition 2.1. We shall prove the following
proposition:

Proposition 9.1 Assume (A1). Let v [ or u ] be a supersolution [ or sub-
solution] of (9.1) in R^{N}\cross[0, T) and suppose

sup ||v(\cdot, t)-u(\cdot, t)||_{1}<\infty for any \tau\in(0, T) . (9.2)
[0,\tau]

If v(x, O)\geq u(x, 0) in R^{N} , then we have v\geq u in the whole R^{N}\cross(0, T) .

Corollary 9.2 Assume (A1). Let v and u be weak solutions of (9.1) in
R^{N}\cross[0, T) and suppose that v(x, 0) and u(x, 0) belong to L^{1}(R^{N}) . If
v(x, O)\geq u(x, 0) in R^{N} , then we have v\geq u in the whole R^{N}\cross(0, T) .

Proof By the above proposition, it is enough to show that if u(x, 0)\in

L^{1}(R^{N}) then there exists a nondecreasing function C(t)(<\infty) such that

||u(\cdot, t)||_{1}\leq C(t)||u(x, 0)||_{1} for t\in(0, T) . (9.3)

Let s(x) be a positive bounded C^{2} function with s , \nabla s and \triangle s\in

L^{1}(R^{N}) satisfying

s(0)=1 , |\triangle s(x)|\leq s(x) and |a\nabla s(x)|\leq Ks(x)
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for some constant K>0 (Explicit examples were given in [1]). If we put

s_{\epsilon}(x)=s(\epsilon x)

for each \epsilon\in(0,1) , then

|\triangle s_{\epsilon}(x)|\leq\epsilon^{2}s_{\in}(x) and |a\nabla s_{\epsilon}(x)|\leq\epsilon Ks_{\epsilon i}(x) . (9.4)

Now, we consider s_{\in}(x) as a test function \varphi(x, t) in (2.1) (see Section
3). Then, we have from (9.4),

\int_{R^{N}}u(x, \tau)s_{\in}(x)dx

\leq\int_{R^{N}}u(x, O)s_{\in}(x)dx+\int_{0}^{\tau}\int_{R^{N}}(\epsilon^{2}\eta(u)

+\epsilon Kh(u)+k(u))s_{\epsilon}(x) dxdt for \tau>0 . (9.5)

Hence, if we set

g(t)= \sup_{R^{N}\cross[0,t]}\{(\eta(u)+Kh(u)+k(u))/u\}
(<\infty) (9.6)

for each t\in(0, T) , then for any \epsilon\in(0.1) and \tau\in[0, t] we obtain

\int_{R^{N}}u(x, \tau)s_{\epsilon}(x)dx

\leq\int_{R^{N}}u(x, O)s_{\in}(x)dx+g(t)\int_{0}^{\tau}\int_{R^{N}}s_{\in}(x)u(x, t) dxdt

for \tau\in[0, t] (9.7)

which leads to

\int_{R^{N}}u(x, \tau)s_{\epsilon}(x)dx\leq e^{g(t)\tau}\int_{R^{N}}u(x, 0)s_{\in}(x)dx

for \tau\in[0, t] . (9.8)

Put \tau=t and

C(t)=e^{g(t)t} , (9.9)

and let \epsilon\downarrow 0 in (9.8). Then, noting u(x, 0)\in L^{1}(R^{N}) we get (9.3). The
proof is complete. \square

Remark 9.3 When N=1 , Proposition 9.1 was proved by Gillding [12]
under weaker conditions. They do not need condition (9.2). Our methods
of the proof are different from ones of [12] and similar to ones of [2] and [3].
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Proof of Proposition 9.1 Since v [ or u ] is a supersolution [ or subsolution]
of (9.1), for any test function \varphi\geq 0, \in C_{0}^{\infty}(R^{N}\cross[0, T)) we have

\int_{R^{N}}(u(\tau)-v(\tau))\varphi(\tau)dx-\int\int_{Q_{\tau}}(u-v)(\varphi_{t}+\tilde{\eta}\triangle\varphi-\overline{h}a\nabla\varphi) dxdt

\leq\int_{R^{N}}(u(x, O)-v(x, 0))\varphi(0)dx+\int\int_{Q_{T}}(u-v)\tilde{k} dxdt (9.10)

where Q_{\tau}=R^{N}\cross[0, \tau) and

\tilde{f}(x, t)=\{

\frac{f(u)-f(v)}{u-v} if u\neq v

0 otherwise.

(9.11)

Here we note that

\tilde{\eta},\tilde{h},\tilde{k}\in L^{\infty}(Q_{\tau}) for each 0<\tau<T . (9. 12)

\tilde{\eta},\tilde{k}\geq 0 in Q_{T} (9.13)

and

|\tilde{h}|\leq C(\tau)\sqrt{\tilde{\eta}} for (x, t)\in Q_{\tau} (9.10)

for some constant C(\tau)>0 . Let \chi\in C_{0}^{\infty}(R^{N}) and 0\leq\chi\leq 1 . Let R>0
be so large that supp \chi\subset B_{R/2} . Furthermore, define sequences of smooth
positive functions \{\eta_{n}\} and \{h_{n}\} as follows (see Aronson-Crandall-Peletier
[2] ) :

\frac{1}{n}\leq\eta_{n}\leq||\tilde{\eta}||_{L^{\infty}(Q_{\tau,R})}+\frac{1}{n} , (9.15)

\frac{\eta_{n}-\tilde{\eta}}{\sqrt{\eta_{n}}} –0 in L^{2}(Q_{\tau,R}) as narrow\infty , (9.16)

h_{n}arrow\tilde{h} in L^{2}(Q_{\tau,R}) as narrow\infty (9.17)

and

|h_{n}|\leq C(\tau)\sqrt{\eta_{n}} in Q_{\tau,R} , (9.18)

where Q_{\tau,R}=B_{R}\cross[0, \tau) .
Finally, we define a sequence of smooth functions \{\varphi_{n}\} by a smooth



192 R. Suzuki

solution of

\{

\varphi_{n,t}+\eta_{n}\triangle\varphi_{n}-h_{n}a \nabla\varphi_{n}=\lambda\varphi_{n} in Q_{\tau,R}

\varphi_{n}=0 on \partial B_{R}\cross[0, \tau)

\varphi_{n}(x, \tau)=\chi on B_{R} .

(9.19)

We need the following lemma. \square

Lemma 9.1 If \lambda is large enough, then
(i) 0\leq\varphi_{n}\leq e^{\lambda(t-\tau)} in Q_{\tau,R} ;
(ii) \int\int_{Q_{\tau,R}}\eta_{n}(\triangle\varphi_{n})^{2} dxdt<C ;
(iii) \sup_{0\leq t\leq\tau}\int_{B_{R}}|\nabla\varphi_{n}|^{2}(t)dx<C ,

where C is a constant depending only on \chi .

Proof. (i) is obvious by the comparison theorem.
Next we prove (ii) and (iii). Multiply the both sides of equation (9.19)

by \triangle\varphi_{n} and integrate by parts over B_{R}\cross(t, \tau) . Then

\frac{1}{2}\int_{B_{R}}|\nabla\varphi_{n}|^{2}(t)dx+\int_{t}^{\tau}\int_{B_{R}}\eta_{n}(\triangle\varphi_{n})^{2}dxdt+\lambda\int_{t}^{\tau}\int_{B_{R}}|\nabla\varphi_{n}|^{2} dxdt

\leq\int_{t}^{\tau}\int_{B_{R}}h_{n}a\cdot\nabla\varphi_{n}\triangle\varphi dxdt+\frac{1}{2}\int_{B_{R}}|\nabla\chi|^{2}dx . (9.20)

Since we have

|h_{n}a \nabla\varphi_{n}\triangle\varphi|\leq\frac{1}{2}\eta_{n}(\triangle\varphi_{n})^{2}+\frac{1}{2}C(\tau)^{2}|a|^{2}|\nabla\varphi_{n}|^{2}

by (9. 18), we get

\frac{1}{2}\int_{B_{R}}|\nabla\varphi_{n}|^{2}(t)dx+\frac{1}{2}\int_{t}^{\tau}\int_{B_{R}}\eta_{n}(\triangle\varphi_{n})^{2} dxdt

+( \lambda-C(\tau)^{2}|a|^{2}/2)\int_{t}^{\tau}\int_{B_{R}}|\nabla\varphi_{n}|^{2} dxdt

\leq\frac{1}{2}\int_{B_{R}}|\nabla\chi|^{2}dx

which leads to (ii) and (iii). \square

Proof of Proposition 9.1 (continue) Set \varphi(x, t)=\xi_{R}(x)\varphi_{n}(x, t) as a test
function in (9.10), where \xi_{R}(r)=\xi(|x|/R) and \xi(r)\in C^{\infty}(R) satisfies that
0\leq\xi(r)\leq 1 for r\geq 0 , \xi(r)=0 for r\geq 1 and \xi(r)=1 for 0\leq r\leq 1/2 .
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Then

\int_{R^{N}}(u(\tau)-v(\tau))\chi dx

\leq\lambda\int\int_{Q_{\tau}}(u-v)\varphi_{n}\xi_{R} dxdt

+ \int\int_{Q_{\tau}}(u-v)\xi_{R}\{(\tilde{\eta}-\eta_{n})\triangle\varphi_{n}-(\tilde{h}-h_{n})a\nabla\varphi_{n}\} dxdt

+ \int\int_{Q_{\tau}}(u-v)\{2\tilde{\eta}\nabla\varphi_{n} ^{\nabla\xi_{R}}+\tilde{\eta}\varphi_{n}\triangle\xi_{R}-\tilde{h}a\cdot\nabla\xi_{R}\varphi_{n}\} dxdt

+ \int_{R^{N}}(u(x, 0)-v(x, 0))\xi_{R}\varphi_{n}(0)dx

+ \int\int_{Q_{\tau}}(u-v)\tilde{k}\xi_{R}\varphi_{n} dxdt. (9.21)

We note, by Lemma 9.4,

||(\tilde{\eta}-\eta_{n})\triangle\varphi_{n}||_{L^{1}(Q_{R,\tau})}+||(\tilde{h}-h_{n})a\cdot\nabla\varphi_{n}||_{L^{1}(Q_{\tau,R})}

\leq||(\tilde{\eta}-\eta_{n})/\sqrt{\eta_{n}}||_{L^{2}(Q_{\tau,R})}||\sqrt{\eta_{n}}\triangle\varphi_{n}||_{L^{2}(Q_{\tau,R})}

+|a|||\tilde{h}-h_{n}||_{L^{2}(Q_{\tau,R})}||\nabla\varphi_{n}||_{L^{2}(Q_{\tau,R})}

arrow 0 (as narrow\infty ).

Hence, if narrow\infty in (9.21) we obtain by the Schwarz’s inequality,

\int_{R^{N}}(u(\tau)-v(\tau))\chi dx

\leq\int_{R^{N}}[u(x, 0)-v(x, 0)]^{+}dx+(\lambda+K)\int\int_{Q_{\tau}}[u-v]^{+}dxdt

+ \frac{C}{R}||u-v||_{L^{2}(Q_{\tau})}||\nabla\varphi_{n}||_{L^{2}(Q_{\tau,R})}+\frac{C}{R}||u-v||_{L^{1}(Q_{\tau})}(1+1/R)

(9.22)

where K= \sup_{Q_{\tau}}\tilde{k} and [u]^{+}= \max\{u, 0\} . Here we used (9.12),

| \nabla\xi_{R}(x)|\leq\frac{||\xi’||_{\infty}}{R} (9.23)

and

| \triangle\xi_{R}(x)|\leq\frac{||\xi’||_{\infty}/R+2(N-1)||\xi’||_{\infty}}{R} . (9.24)
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Note u-v\in L^{1}(Q_{\tau})\cap L^{\infty}(Q_{\tau}) . Then, if Rarrow\infty , we get

\int_{R^{N}}(u(\tau)-v(\tau))\chi dx (9.25)

\leq\int_{R^{N}}[u(x, 0)-v(x, 0)]^{+}dx+(\lambda+K)\int\int_{Q_{\tau}}[u-v]^{+}dxdt

for any \chi\in C_{0}^{\infty}(R^{N}) satisfying 0\leq\chi\leq 1 , and hence we have

\int_{R^{N}}[u(t)-v(t)]^{+}dx (9.26)

\leq\int_{R^{N}}[u(x, O)-v(x, 0)]^{+}dx+(\lambda+K)\int_{0}^{t}\int_{R^{N}}[u-v]^{+}dxdt

for t\in[0, \tau] , which leads to

\int_{R^{N}}[u(\tau)-v(\tau)]^{+}dx\leq e^{(\lambda+K)\tau}\int_{R^{N}}[u(x, O)-v(x, 0)]^{+}dx . (9.27)

Thus, when u(x, 0)\leq v(x, 0) , we have [u(\tau)-v(\tau)]^{+}=0 , that is,
u(x, \tau)\leq v(x, \tau) for \tau\in[0, T) . The proof is complete. \square
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