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Perfect braided crossed modules and their
mod-q analogues
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Abstract. In this paper, we consider the extension theory of braided crossed modules.
In particular, we prove the braided version of Norrie’s theorem and its mod-q analogues.
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1. Introduction

Crossed modules are known in many areas. For example, in non-Abelian
homological algebra, crossed modules play the role of coeflicients for degree
two cohomology groups (see ) Alternatively, Brown and Spencer [8] ob-
tained certain crossed modules as the fundamental groupoids of topological
groups.

Higher dimensional groupoids are known too. For example, Brown and
Higgins [5] defined the fundamental double groupoid of a pair of spaces, and
Loday developed the point of view to the fundamental cat™-group IIX
of a m-cube of spaces X. Among other results, he proved the equivalence
between cat?-groups and crossed squares, and braided crossed modules ap-
peared as a special case of crossed squares. In the work of Bullejos and
Cegarra [9], braided crossed modules were used as coefficients for certain
degree three non-Abelian cohomology groups. More generally, Breen
considered, as the objects of degree three non-Abelian cohomology groups,
the extensions of the form:

1 g H k,

where G, H are crossed modules and & is a group. Thus it is quite natural to
consider the case where k is also a crossed module, braided crossed module
and so on.

By use of the Brown-Loday non-Abelian tensor product of groups,
Norrie determined the universal central extensions of perfect crossed
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modules. The Brown-Loday non-Abelian tensor product of groups was
extended to mod-q tensor product by D. Conduché and C. Rodriguez-
Fernandez, and Doncel-Judrez and Grandjean L.-Valcarcel used this to ob-
tain the mod-q analogue of Norrie’s theorem.

In this paper, we shall consider the extension theory of braided crossed
modules and prove the braided version of Norrie’s theorem and its mod-q
analogues.

2. Preliminaries

We shall recall some definitions and properties of crossed modules and
braidings on them.

Definition 1 Let N and G be groups together with a homomorphism
0: N — G. This 9 : N — G is called a crossed module if G acts on N
and satisfies the following conditions:

(1) 9(°n) =gd(n)g~', g€ G,neN,

(2) 2™n =nn'n~1 n,n’ € N.

Ezample 1. For a group G, the identity map G — G together with the
action 9¢g = gg/ g~ ! defines a crossed module.

Definition 2 Let (M,P,9), (N,G,d) be crossed modules. A crossed
module morphism (¢,v¢) : (M,P) — (N,G), is a pair of group homo-
morphisms, ¢ : M — N and ¢ : P — @G, such that

(1) 0= e,

(2) #(9n) =¥Wy(n), g€ P,ne M.

When ¢ and 1 are surjective, the morphism is called an extension.

Definition 3 For a non-negative integer g, the g-center of a crossed mod-
ule N — G is the crossed module

(N — Z(G)¥N Stg(N), where
(NG)q ={neN;n?=1,9n=n,g € G}
ZUG) ={9€ Z2(G); ¢* = 1}
In particular, we call the O-center the center of N — G.

Definition 4 An extension of a crossed module is called g-central if the
crossed module kergo — keri is contained in the g-center of the crossed
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module N — G. In particular, we call the O-centeral extension the centeral
extension.

Definition 5 When N — G is a crossed module, the g-commutator
crossed module is defined as a crossed module

DY(N) — (G, "

where Dg; (N) is the subgroup of N generated by
{Inn"'r% g c G,n,r € N}

and [G, G]? is the subgroup of G generated by
{lg, h]k% g,h, k € G}

In particular, we call the 0-commutator crossed module the commutator
crossed module.

Definition 6 A crossed module N — G is called g-perfect if it coincides
with the g-commutator crossed module. In particular, we call the O-perfect
crosed module the perfect crosed module.

Based on the earlier works of Dennis and Miller , Brown and
Loday [6] defined the notion of non-Abelian tensor product M ® N of two
crossed modules. Later, the notion of mod-q exterior product of groups, for
a non-negative integer g, was introduced by Ellis [14], and Brown [3] defined
the mod-¢g non-Abelian tensor product G ®? G of group G.

The following definition of the mod-q non-Abelian tensor product of
crossed modules is due to Conduché and Rodrfguez-Fernéndez .

Definition 7 Let (M,G,9), (N,G,9’) be two crossed modules and ¢ a
non-negative integer. Then the tensor product M ®? N is defined as a
group generated by the symbols

a®iblac M,be N) and {k}(k € M xg N)

with the following relations:
(1) a®7bc = (a®?b)(®a®10),
(2) ab®%c=(*b®?%)(a®?c),
(3) {k}a @i b){k} " = Wa@re®),
(4) [{k}, {RY) = ma (k) 09 mo(n)9,
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(5) {kh} = {k}(II(m1 (k)= @7 (*®) " my(R))¥)){h},
(6) {(aba™1,%bb™ 1)} = (a @7 b)4

where a = 0 o 7y.

Note that the Brown-Loday non-Abelian tensor product M ® N can be
regarded as the special case where the generators are just a®°b (a € M,b €
N) and the relations are just (1) and (2). Besides, it was shown in [6] that,
for a group G, the following identities hold in G ® G:

(a) (a®b)(c®d)(a®b)™ =tcg by
(b) [a,b] ® c = (a®b)(‘a® °b),
(c) a®[b,d=("b®%)(b®c)7",
for all a,b,c € G, [a,b] = aba~ 1671
We next consider braidings on crossed modules.

Definition 8 A braiding on a crossed module 8 : N — G is a map
{, }: GxG — N (bracket operation) satisfying the following conditions:
(1) 8{a,b} = aba~1b7!

(2) {8(n),b} = nbn~!

(3) {a,0(n)} = *nn?

(4) {av bc} = {a’ b}b{a’ C}

(5) {ab,c} =*{b,c}{a,c}, a,b,ce G,n € N.

Ezxample 2. There are canonical braidings on the crossed modules id:
G—Gand G®G — G,a®b+— [a,b] by the following maps:

G x G — G, (a,b) —|a,b] = aba=1b71,

GxG@—GR®G, (a,b) — a®b.

Definition 9 A morphism between two braided crossed modules is defined
as a crossed module morphism which preserves the braiding structures. In
particular, a g-central extension of a braided crossed module is a g-central
extension of the underlying crossed module which preserves the braiding
structures.

3. Canonical braidings and their universalities

To construct new braidings, we start from the following observation:

o
Proposition 1 If a crossed module N — G has a braiding { , }, then
there is a group homomorphism G ® G 1, N, a®br— {a,b}.
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Proof.  Let us check that f preserves the defining relations in G ® G. By
the definitions, we have

fla®bc) = {a,bc} = {a,b}*{a,c},
fla®b)f(*a®’c) = {a,b}{°a,’c}.

But by a result of Conduché [10], any braiding is equivariant (i.e., *{b,c}
= {%,%}), so that f(a ® bc) = f(a ® b)f(’a ® ®c). The other relation can
be proved by the same computation. []

We next consider the g-tensor analogues. The main difference is the
existence of the elements {k}, and to construct a well behaved map on
G ®7 G, we assume that crossed modules N — G are g-central extensions

of G.

Proposition 2 When a crossed module 8 : N — G is a g-central ex-
tension of G and has a braiding { , }, there is a group homomorphism

f:G®'G — N, a®b+— {a,b}, {k} — s(k)? (s is a section of 0).

Proof. ~ We have to check that f preserves the relations (3)—(6) in mod-q
tensor product. We first consider the relation (3). Then we have
f({k}(a @7 b){k}™) = s(k)*{a,b}s(k) ™9 = *{a,b} = {*a,*b} = f(Ma &7
*b). We next consider the relation (4). Then we have f([{k},{h}]) =
[s(k),s(h)?] = *®Fs(h)i(s(R))" = Fs(h)9(s(h)?)™" = {k%,h}. For

the relation (5), we have f({kh}) s(kh)? = (s(k)s(h))? = S(k)q(qﬁl

(s())™, (B Ry )s(h)? = s(k)I(TT (k1 (B h)'})s(h)?. Finally,
we consider the relation (6). Then we have f ({(k"k~!,*hh~1)}) = s([k, h])Y,

and because s([k,h]) and {k,h} have the same image under 9, s([k, h])? co-
incides with {k, h}q. ]

il

We proceed to construct a canonical braidingon p: N G — GQ G
when N — G is braided with a braiding {, }. Define {, } : GG xG®
G — N®G by

{,}: (e®b,c®d)— {a,b} ®[c,d].
Then we have the following proposition:

Proposition 3 {, } satisfies the braiding conditions.

Proof.  The proof is by computations:
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We first consider the identity (1). If we take a = a® b, b = c®d, we
have p({a ® b,c® d}) = p({a, b} & [c,d]) = {a, b} ® ¢, d] = [a,5] ® [c, d], 50
that we need the following identity:

(a®@b)(c®d)(a®b) Hc®d) ™ =[a,b] ® [c,d],

but this is the product of (a) and (b) in page 4.

The identities (2) and (3) are proved by a result in Brown, Loday [6].
Alternatively, one can prove them using a technique which will be described
in Lemma 1.

We next consider the identity (4). If we take a = a ® b and bc =
(c® d)(d ® d'), we have {a®b,(c®d)(d®d)} = {a,b} ® [¢,d][c,d].
On the other hand, we have {a ® b,c® d}*®{a®b,d ®d'} = ({a,b} ®
[c,d])®?({a,b} ® [¢,d') = ({a,b} ® [¢,d])(*U{a, b} @ 1*U[,d]) = {a,b} ®
e, d][d, d].

Finally, we consider the identity (5). If we take ab = (a®b)(a’ ®b') and
¢ =c®d, we have {(a®b)(d’ ®V'),c®d} = {a,b}{d,b'} ® [c,d]. On the
other hand, *®*{d’ ® ¥/,c® d}{a ® b,c ® d} = *®*({d’,V'} ® [c,d])({a,b} ®
[c,d]) = ([a’b]{ala v} ® la.0] [c,d])({a,b} ® [c,d]) = ({a’b}{al’ v} ® {a’b}[ca d])
({a,b} ® [c,d]) = {a, b}{ala b,} ® [c,d]. ]

Remark 1. 1In (4), (5) the property d({a,b}) = [a,b] and ?™n/ = nn'n~!
were used.

When a crossed modules N — G is a g¢-central extension of G and
equipped with a braiding { , }, one can use [Proposition 2 to define a
canonical braiding {, }Y on N®?1G — G R7G.

Before checking the braiding conditions, we prove the next lemma.

Lemma 1 In N ®7G, the next identities hold:
(a) aba”l®Ih = (a®b)(Ma®?Mb)7L,
(b) {n}?®?[a,b] = {n}{l*Fn}~1,
(¢) niI®1hd = {n}{"n}L.
Proof. Recall that for two crossed modules (M,G,9) and (N,G,d'),

Doncel-Judrez and Grandjean L.-Valcarcel constructed the following crossed
module p: M @I N — GRRIG:

p(m@n) =0(m) ® d'(n), p({k}) = {9(m1(k))}
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(a®Db) (m ® n) _ [a,b]m ® [a,b]n’ (a®b)({k}> _ {[a,b]k}’
Y mon) ="MmeMn, M ({k)) = (k)

([a,b] = aba= 167! a,b,h € G;m € M,n € Nk € M xg N,m : M X¢
N — M), and proved that N ®? G — G ®? G becomes the universal
central extension of a crossed module N — G.

To prove the identities (a) ~ (c), we use the universality of N ®?G, and
show that, for any g-central extension (X1, X2, 8/) of (N,G,0), the unique
map ¢; : N®?G — X defined by ¢1(n®%g) = s1(n)2@s;(n)1, o1 ({R}) =
s1(h)?, where s; and sy are sections of 11 : X7 — N and 9 : Xo — G
respectively, preserves the relations.

We first check the identity (a). By the definition, we have

gpl(aba_l ®7 h?) = sl(aba"l)”(hq)sl(aba—l)'l.

But because s;(a’a1)%2(")s;(aa=1)~! has a form z¥z~!

change s;(aba™1) to s1(a)*>®s;(a)~!. Then we have

in X, we can

sl(aba—l)sz(hq)sl(aba—l)—1

= (51(a)**®s1(a) 1) 2" (51(a)** s (a) 7).
On the other hand, we have

p1((a®@b)(Ma®? "))
= (s1(a)®s1(a) )1 (Ma ®1 b))

— (31(a)sZ(b)sl(a)_l)(sl(hqa)32(h b)Sl(hqa)—l)_l.
Hence we should prove the formula:
32(h‘1)(Sl(a)SQ(b)Sl(a)—l)—l — (Sl(hqa)sz(h b)Sl(hqa)_l)_l,

but notice that the latter has the form (z%z~1)~!. Thus we can replace
s1("a) by 2" s, (a) and sy(*b) by s2(h?)sa(b)sa(hd)7L.
We next check the identity (b). By the definition, we have

pr({n} &7 [a,8]) = s(n0)2 sy (1) !
= (s1(m)7)2(2 (s, (m) 1)

On the other hand, we have

o1 ({nH{*"n} 1) = s1(n)¥(s1(*Mn)9) 71,
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But because 22?5, (n) and s, ([%%n) have the same image by 9, : X; —
N, one can see that, by the property of g-central extensions of a crossed
module, *2(%) (s;(n)?)~1 coincides with (s ({*n)7)~1.

Finally, we check the identity (c). By the definition, we have
@1 (n? @7 h9) = s1(n9)2" s (n9) 71 = s1(n)1(32(F) sy (n)) 9.
On the other hand, we have

p1({n}H{"n}™1) = s1(n)?s1("'n) 7.

But one can easily see that 52(**)s;(n) and s;(*"n) have the same image by
1. Thus the result follows. []

Proposition 4 {, }? becomes a braiding on N 1G — G ®1G.

Proof. By the end of this proof, we denote { , }? by { , }. When the
elements {k} do not appear in the relations, they are derived from the results
for {, }. So we consider the case where the elements {k} are appearing in
the relations.

We first consider the relation (1). If we take a = {k} and b = c®%d, we
have p{{k},c®7d} = p(s(k)? ®7 {c,d}') = k%9 ®7 [c,d]. On the other hand,
we have {k}(c®1d){k} 1 (c®?d)™! = (*c®9*"d)(c®?d)~!. Hence we need
the identity:

k@7 [c,d] = (M@ d)(c®?d)7!,

but this is the formula (c) applid to mod-gq tensor product with a = k9,
b=c, c=d.

We next consider the relation (2). If we take n = a ®7b and b = {h},
then by the definition we have {0(a) ®7 b, {h}} = {8(a),b} ®1hI = ala~1 ®1
hd. On the other hand, we have (a®?b)1" (a®7b)~! = (a®9b) (M a®?b) 1.
Thus by Lemma 1 (a), they coincide. If we take n = {n} and b = a ®7 b,
then we have {p{n},a ®?b} = n? @7 [a,b]. On the other hand, we have
{n}2®"{n}~1 = {n}{[4¥n}~1 Thus by Cemma 1 (b), they coincide. If we
take n = {n} and b = {h}, we have {p{n}, {h}} = n? ®? h9. On the other
hand, we have {n}{"}{n}=' = {n}{*n}~!. Thus by Lemma 1 (c), they

coincide.

The relation (3) follows by the same computations.
We next consider the relation (4). If we take a = {k} and bc =
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(@ ®7b)(c ®7 d), we have {{k}, (a ®1b)(c®7d)} = s(k)? ®7 [a,b][c,d]. On
the other hand, we have {{k},a ®7b}(®®"®) {1k} c®7d} = (s(k)? @7 [a,b])
() (s(k)1 @7 [e,d])) = (s(k)? ®7 [a,0])("Ms(k)? @7 [*M[c,d]) =
s(k)? ®7 [a,b]lc,d]. If we take a = {k} and bc = {h}(c ®? d), we have
{{k},{r}(c®?d)} = s(k)? ®7 s(h)?c,d]. On the other hand, we have
(HEL AR (M {{k} c@7d}) = (s(k)? @ s()) (M (s(k)? ®7 [c,d]) =
(s(k)1 @7 s(R)7)(*s(k)? @7 [c, d]) = s(k)? ®7 5(h)[c, d]. If we take a = {k}
and bc = (c ®7 d){h}, we have {{k}, (c® d){h}} = s(k)? ®7 [c,d]s(h)T.
On the other hand, we have {{k},c®?d}(«®'D{{k} {h}} = (s(k)? ®°
[e, d])°®4(s(k)? @7 s(h)?) = (s(k)? @7 [c,d]) (Vs (k)? @9 1> 5(h)?) = s(k)? "
[c,d]s(h)q.

(5) Omitted. ]

We have so far been concerned with constructing canonical braidings
on the crossed modules N® G — G®G and N ®1G — G ®9(G. Since it
is known that N®@ G — G® G (N ®1G — G ®?(@G) are the universal (g-
universal) central extensions of perfect (g-perfect) crossed modules N —
G, it is quite natural to consider their braided version.

The next proposition shows that the canonical braidings {, } on the
crossed modules N ® G — G ® G are compatible with {, }.

Proposition 5 The next diagram becomes commutative.

G®G)® (G G) N®G
Ex & A
GRG N

Proof. It is enough to show that the next diagrams commute:

1) Ge@)® GG — N®G (2) N®G
§x¢

G®G / GG

The diagram (1) becomes commutative because of the braiding con-
dition (1). The triangle (2) also becomes commutative by the braiding
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condition (2) for {, }. [

Thus we know that the braided crossed module (N® G — G®QG,{, })

is an extension of (N — G,{ , }). Furthermore, this braiding has a
universal property.

Theorem 1 If (N — G,{, }) is a perfect braided crossed module, and

(X4 LI Xo,{, }) is a central extension of it with a compatible braiding,
then the next diagram becomes commutative.

|88
(GRG)x (GeG) —— N®G

{ (Y

XZXXZ ;Xl

Proof.  Define
r:G®G — X tober={, } osy (by choosing a section
sg : G — X3 and extending it on G ® G),
t:GR®G — X3, a®br— [sg(a), s2(b)], by the same s,
p=rxt,q=Qx1d.
Let us consider the next diagram and show that each triangle commutes.

X1><X2

XQXXT > X,

By the definitions, the diagram (1) becomes naturally commutative
because the diagram (x) is commutative.
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(1) Gy

Xl XX2 (*) X2®X2 X1

| o]

N®G G®aG N

(GRG) % (G®G)

The next diagram (2) also becomes commutative because the diagram
(*%) is commutative by the braiding condition (2) and the choice of r.

@) coayx(@oa)—XixX: "M ewe— x

L T

XQ X X2 X2
Finally let us see the next diagram commutes.

X1><X2

|

N®dG

l

X2XX2 %Xl

It follows again by the braiding condition (2) and the constructions. []

Corollary 1 If (N — G,{ , }) is a g-perfect braided crossed module
with N being a g-central extension of G, then (N ®@1G — G ®1G,{, }7)
becomes the universal q-central ertension of it.

It follows because we can construct the similar maps by r({k}) = (s1 0

s(k))? and t({k}) = (w o 51 0 5(k))1.
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