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Cauchy problem for nonlinear parabolic equations

Hi Jun CHOE and Jin Ho LEE
(Received February 21, 1996; Revised April 7, 1997)

Abstract. The Cauchy problem for degenerate parabolic equations with bounded mea-
surable coefficients is studied. The existence and uniqueness of initial trace for nonneg-
ative solutions is shown. The Harnack type estimate is fundamental. Moreover the
behavior of interface is studied locally and globally. The interface is H\"older continuous
graph. Finally the asymptotic behavior of solutions is studied.

Key words: initial trace , Harnack type inequality, degenerate parabolic equation, inter-
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1. Introduction

In this paper we study the Cauchy problem of a degenerate parabolic
equation

u_{t}=(a_{ij}(x)|\nabla u|^{p-2}u_{x_{i}})_{x_{j}} in \mathbb{R}^{n}\cross(0, T] , (p>2) (1.1)

u(x, 0)=u_{0}(x)\in L_{1oc}^{1}(\mathbb{R}^{n}) (1.2)

where a_{ij}(x) are bounded, symmetric and measurable functions which sat-
isfy the ellipticity condition

\Lambda^{-1}|\xi|^{2}\leq a_{ij}(x)\xi_{i}\xi_{j}\leq\Lambda|\xi|^{2} a.e . in R^{n} ,

for some \Lambda\geq 1 . The Cauchy problem of the heat equation

\{

u_{t}=\triangle u in \mathbb{R}^{n}\cross(0, T] ,

u(x, 0)=u_{0}(x)
(1.1)

is relatively well understood. Widder [20] proved that to each nonnega-
tive solution u of the heat equation, there corresponds a nonnegative Borel
measure \mu on \mathbb{R}^{n} such that

\lim_{tarrow 0}\int_{R^{n}}u(x, t)\eta(x)dx=\int_{R^{n}}\eta d\mu
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for all continuos functions \eta in \mathbb{R}^{n} with compact support. Here we call \mu as
the initial trace of u and the trace \mu satisfies the growth condition

\int_{R^{n}}e^{-\frac{|x|^{2}}{4T}}d\mu(x)<\infty .

Moreover if u and v are two nonnegative solutions of (1.3) in \mathbb{R}^{n}\cross(0, T]

with equal trace \mu , then u is identically equal to v .
For the porous medium equation

u_{t}-\triangle u^{m}=0 , m>1 in \mathbb{R}^{n}\cross(0, \infty) (1.4)

Aronson and Caffarelli [1] showed that every nonnegative solution u of (1.4)
has a unique initial trace \mu and \mu satisfies the growth condition

\frac{1}{R^{n}}\int_{|x|\leq R}d\mu=O(R^{\frac{2}{m-1}}) as Rarrow\infty . (1.5)

Also Benilan, Crandall and Pierre [2] showed that for every measure \mu

satisfying (1.5), there is a solution u of (1.4) with initial trace \mu . On the
other hand the uniqueness of nonnegative solution has been studied by
Dahlberg and Kenig [8]. They also studied the Cauchy problem of the
general porous medium equation

u_{t}=\triangle(\phi(u)) in \mathbb{R}^{n}\cross(0, T]

with suitable growth condition on \phi .
The evolutionary p-Laplace equation

u_{t}-div(|\nabla u|^{p-2}\nabla u)=0 in \mathbb{R}^{n}\cross(0, T] p>2 (1.6)

has been studied by many authors [7], [11], [12], In particular,
DiBenedetto and Herrero [12] showed that for every \sigma-finite Borel measure
\mu in \mathbb{R}^{n} satisfying

|| \mu||_{r}=\sup_{\rho\geq r}\rho^{-n-\frac{p}{p-2}}\int_{|x|\leq\rho}d\mu(x)<\infty for some r>0 ,

there exist a weak solution to (1.6) in \mathbb{R}^{n}\cross(0, T] , where T is

T( \mu)=c_{0}[\lim_{rarrow\infty}||\mu||_{r}]-(p-2) if ||\mu||_{r}>0

and T(\mu)=\infty if ||\mu||_{r}=0 . Furthermore they showed that for each non-
negative weak solution u , there is a unique \sigma-finite Borel measure \mu on \mathbb{R}^{n}
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such that

\lim_{tarrow 0}\int_{R^{n}}u(x, t)\eta(x)dx=\int_{R^{n}}\eta d\mu

for all continuous and compactly supported function \eta in \mathbb{R}^{n} . They used
the existence of an explicit Barenblatt solution whose initial trace is the
Dirac measure at the origin.

We extend the above result to the degenerate parabolic equation (1.1)
which has bounded measurable coefficients. A measurable function (x, t)\mapsto

u(x, t) defined in \mathbb{R}^{n}\cross(0, T] is a weak solution of (1.1) and (1.2) if for every
bounded open set \Omega\subset \mathbb{R}^{n}

u\in C(0, T : L^{1}(\Omega))\cap L^{p}(0, T : W^{1,p}(\Omega))

and

\int_{\Omega}u(x, t)\eta(x, t)dx+\int_{0}^{t}\int_{\Omega}-u\eta_{t}+a_{ij}(x)|\nabla u|^{p-2}u_{x_{i}}\eta_{x_{j}}dxds

= \int_{\Omega}u(x, 0)\eta(x, 0)dx (1.7)

for 0<t<T and all test functions \eta\in W^{1,\infty}(0, T;L^{\infty}(\Omega))\cap L^{\infty}(0, T;
W_{0}^{1,\infty}(\Omega)) . If we replace the initial condition (1.2) by a \sigma-finite Borel mea-
sure \mu , that is, the right hand side of (1.7) replaced by \int_{\Omega}\eta(x, O)d\mu(x) for
all smooth and compactly supported function \eta , then we say u(x, t) is a
weak solution to (1.1) and (1.2) with the initial trace \mu .

Remark. Here we study only the case that a_{ij} is independent of t . When
a_{ij} depends on t , all the theorems and lemmas are true except Lemma 3.4.

In section 2 we estimate interior Lipschitz norm in terms of L^{p} norm of
u , by Moser type iterations. After this, the maximum of u can be estimated
by L^{1} norm of u . We follow the idea of Dahlberg and Kenig [9].

In section 3 we show the growth rate of weak solution u in terms of t .

Once we know the growth rate of u , we can show the following estimate

\int_{0}^{\tau}\int_{R^{n}}|\nabla u|^{p-1}dxdt\leq c\tau^{\frac{1}{\kappa}} ,

where \kappa=n(p-2)+p . This estimate is useful in showing the uniqueness
of the initial trace . A similar estimate has been proved in [12], when \{a_{ij}\}

is identity matrix. We shall also prove the Harnack principle, namely the
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fact that

i_{|x|<R}^{u(x,O)dx\leq\beta}[( \frac{R^{p}}{T})\frac{1}{p-2}+(\frac{T}{R^{p}})\frac{n}{p}[u(0, T)]^{\frac{n(p-2)+p}{p}}] (1.8)

for some constant \beta . The same estimate for evolutionary p-Laplace equation
was proved by DiBenedetto and Herrero [12]. Their proof depends on ex-
plicit formula of Barenblatt solution and is not applicable to our problems.
We employ a compactness method and scaling argument and the explicit
formula of Barenblatt solution is not necessary. This method provides a
new proof for Harnack principle for evolutionary p-Laplace equations.

In section 4 we prove the existence and uniqueness of the initial trace of
nonnegative weak solution by the use of Harnack inequality (1.8). Also we
prove the uniqueness of weak solution with L_{1oc}^{1} data at t=0 . In section 5 we
consider the regularity of interface and the behavior of solutions as t goes to
infinity. For the porous medium equation, Caffarelli and Wolanski [4] proved
the C^{1.\alpha} regularity of the interface under some nondegeneracy conditions
on initial data. On the other hand Choe and Kim [7] have considered the
regularity questions of the interface for evolutionary p-Laplace equations.
They showed that the interface is H\"older continuous graph if the interface is
moving and Lipschitz graph if the initial data satisfy certain nondegeneracy
conditions. Here we extend the H\"older regularity result of the inteface to
degenerate parabolic equations with bounded measurable coefficients.

|x-x_{0}|<R \},Q_{R}(x_{0},t_{0})=B_{R}(x_{0})\cross(t_{0}-R^{p},,S_{R}(x_{0}, t_{0})=B_{R}(x_{0})\cross Thefo11owingsymbo1sareused;+_{A}udx=\frac{1}{t_{0})|A|}\int_{A}udx,B_{R}(x_{0})=\{x.\cdot

(t_{0}-R^{p}, t_{0}+R^{p}) , \partial_{p}Q_{R}(x_{0}, t_{0})=B_{R}(x_{0})\cross\{t_{0}-R^{p}\}\cup\partial B_{R}(x_{0})\cross[t_{0}-R^{p}, t_{0}] .
If there is no confusion, we drop out (x_{0}, t_{0}) in various expressions.

2. Interior estimate

In this section we prove various a priori estimates which are useful
in studying pointwise behavior of u . Taking u^{\alpha+1}\eta^{p} for suitable \alpha and
cutoff function \eta , we find a local maximum principle. A similar estimate
for evolutionary p–Laplace equation is known (see [6]).

Lemma 2.1 Suppose u is a nonnegative smooth solution of (1.1) and
(1.2) in Q_{R_{0}} , then there exists a constant c_{1} and c_{2} depending on p, n , \Lambda
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and R_{0} such that

Q_{\frac{upR_{0}}{2}} su\leq c_{1}[\int_{Q_{R_{0}}}u^{p}dxdt]\frac{1}{2}+c_{2} .

Now we estimate \iint_{Q_{R}}u^{p}dxdt in terms of \iint_{Q_{2R}}udxdt .

Lemma 2.2 Suppose u is a smooth nonnegative solution of (1.1) in Q_{2R_{0}} .

Then there are constants \sigma and c depending only on \Lambda , n and p such that

QR_{\lrcorner 1}- \sup_{2}u\leq c[\sup_{t}\int_{|x|<2R_{0}}u(x, t)dx+1]^{\sigma}

Proof. From H\"older inequality we have

\iint u^{p/n+(\alpha+p)}\eta^{p(1+p/n)}dxdt (2.1)

\leq[\sup_{t}\int u\eta^{p}dx]^{p/n}\int[\int u^{(\alpha+p)n/(n-p)}\eta^{np/(n-p)}dx](n-p)/ndt .

We let \eta be a smooth cut off function such that 0\leq\eta\leq 1 , \eta=0 on \partial S_{R}

and \eta(z)=1 on for all z\in S_{\rho} . Now we note that u_{1}=u+1 is again
a solution to the same equation. The advantage of taking u_{1} is that we
can take negative exponent \alpha in (2.1). By Sobolev embedding theorem and
(2.1),

\int[\int u_{1}^{\frac{\alpha+p}{p}\frac{np}{n-p}}\eta^{\frac{np}{n-p}}dx]\frac{n-p}{np}\cdot pdt\leq\int\int|\nabla(u_{1}^{\frac{\alpha+p}{p}}\eta)|^{p}dxdt

\leq c\int\int_{S_{R}}(u_{1^{\alpha+2}}+u_{1^{\alpha+p}})dxdt

\leq c\int\int_{S_{R}}u^{\alpha+p}+1dxdt .

Then we can write (2.1) as

\iint_{S_{\rho}}u_{1}^{\frac{p}{n}+(\alpha+p)}dxdt\leq c[\sup_{t}\int_{|x|<R}u_{1}dx]n\iint_{S_{R}}u_{1^{\alpha+p}}dxdt2 . (2.2)

We let \frac{p}{m}+\alpha_{i}+p=\alpha_{i+1}+p with \alpha_{0}+p=1 then \alpha_{i}=\alpha_{0}+Rni . Define
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R_{i}=R_{0}(1+2^{-i}) and \rho=R_{i+1} , R=R_{i} . Hence iterating (2.2) we obtain

\iint_{S_{R_{i+1}}}u_{1}^{R}dnxdt+\alpha_{i}+p\leq c[\sup_{t}\int_{|x|<R}u_{1}dx]n\iint_{S_{R_{i+1}}}u_{1}^{(\alpha_{i}+p)}dxdtR

and

\iint_{S_{R_{i}}}u_{1}^{\alpha_{i}+p}dxdt\leq c[\sup_{t}\int_{|x|<R_{0}}u_{1}dx]^{\sigma}[\iint_{S_{R_{0}}}u_{1}dxdt] (2.3)

for some \sigma depending only on n , p and \Lambda . Therefore combining Lemma 2.1
and (2.3) we prove the Lemma. \square

Now we improve Lemma 2.2.

Theorem 2.3 Let u be a smooth nonnegative solution of (1.1) in S_{2R} .
Then there are constants c , \gamma and \sigma depending on p, n and \Lambda such that

\sup_{S_{R}-2\Delta}u\leq c[I^{\sigma}+I^{\gamma}]

, (2.4)

where I= \sup_{t}\int_{|x|<2R_{0}}u(x, t)dx .

Proof. If I\geq\epsilon_{0} for some fixed \epsilon_{0}>0 , then Lemma 2.2 implies (2.4) with
a constant c depending on \epsilon_{0} . When 0\leq I<\epsilon_{0} , there is c_{0}(R_{0}) such that
0\leq u\leq c_{0} in Q_{R_{0}} . Since sup |u|\leq c_{0} from (2.1) we can deduce that

\sup_{t}\int u^{\alpha+2}\eta^{p}dx+c\iint|\nabla(u^{\frac{\alpha+p}{p}})\eta|^{p}dxdt

\leq c\int\int u^{\alpha}g(|\eta_{t}|+|\nabla\eta|^{p})dxdt (2.5)

for suitable function g and some constant c depending on c_{0} . Hence iterating
(2.5) with similar methods as Lemma 2.1 and 2.2 we prove the Theorem.

\square

3. Harnack estimate

Here we employ the idea of Dahlberg and Kenig [9] which uses the
scaling properties of solutions. We denote by S the class of all nonnegative
weak solutions of (1.1) and (1.2) in \mathbb{R}^{n}\cross(0, T] and P(N)=\{u\in S :
\sup_{t}\int_{R^{n}}u(x, t)dx\leq N\}

Lemma 3.1 Let u\in P(N) , then there is a constant c depending only on
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p , n and \Lambda such that for all x\in \mathbb{R}^{n}

u(x, t)\leq cN^{\frac{p}{n(p-2)+p}}t^{\frac{-n}{n(p-2)+p}} for 0<t<T-1 .

Proof We define v(\xi, \tau) as

v( \xi, \tau)=\frac{1}{\gamma}u(x+\rho\xi, t\tau) , (3.1)

where \gamma is defined by \gamma^{(p-2)}=\frac{\rho^{p}}{t} . Then v(\xi, \tau) is solution to

\frac{\gamma}{t}v_{\tau}(\xi, \tau)=\frac{\gamma^{p-1}}{\rho^{p}}(a_{ij}(x+\rho\xi, t\tau)|\nabla v|^{p-2}v_{\xi_{i}})_{\xi_{j}}

which is v_{\tau}(\xi, \tau)=(\overline{a}_{ij}|\nabla v|^{p-2}v_{\xi_{i}})_{\xi_{j}} . Note \overline{a}_{ij} is bounded and has the same

ellipticity modulus. If we choose \rho so that \gamma\rho^{n}=N . then \rho=N^{\frac{p-2}{\kappa}}t^{\frac{1}{\kappa}} and

\int_{R^{n}}v(\xi, \tau)d\xi=\frac{1}{\gamma}\int_{R^{n}}u(x+\rho\xi, t\tau)d\xi=\frac{1}{\gamma\rho^{n}}\int_{R^{n}}u(y, t\tau)dy=1

and v\in P(1) . Therefore from Theorem 2.3, we get

u(x, t)= \gamma v(0,1)=(\frac{\rho^{p}}{t})\frac{1}{p-2}v(0,1)\leq c(\frac{\rho^{p}}{t})^{\frac{1}{p-2}}

=cN^{n(p-2)+p}t^{\frac{-n}{n(p-2)+p}}{?} .

\square

Lemma 3.2 Let \sigma\in(0, T) be fixed and u\in P(N) , then there exists some
positive constant c depending on \sigma , p and n such that

\int_{0}^{\tau}\int_{B_{R}}|\nabla u|^{p-1}dxdt\leq cN^{1+\frac{p-2}{\kappa}}\tau^{\frac{1}{\kappa}} (3.2)

for all \tau\in(0, T-\sigma) , where \kappa=n(p-2)+p

Proof As in the case of Lemma 3.1 we define v(x, t) as v(x, t)= \frac{1}{\gamma}u(\rho x, t) ,

with \gamma=\rho^{\frac{p}{p-2}} . Then v(x, t) is solution to v_{t}(x, t)=(\overline{a}_{ij}|\nabla v|^{p-2}v_{x_{i}})_{x_{j}} . Note

\overline{a}_{ij} is bounded and has the same ellipticity modulus. If we choose \rho=N^{\frac{p-2}{\kappa}} ,
then v\in P(1) and ||v||_{L^{1}(R^{n})}=1 . By H\"older’s inequality we get

\int_{0}^{\tau}\int_{B_{R}}|\nabla v|^{p-1}dxdt|\nabla v|^{p-1}t^{-\delta}v^{\in}dxdt (3.3)
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\leq[\int_{0}^{\tau}\int_{B_{R}}(t^{\delta}v^{-\in})^{\frac{p}{p-1}}|\nabla v|^{p}dz]\frac{p-1}{p}[\int_{0}^{\tau}\int_{B_{R}}(t^{-\delta}v^{\in})^{p}dz]\frac{1}{p}

Let A= \int_{0}^{\tau}\int_{B_{R}}(t^{\delta}v^{-\in})^{\frac{p}{p-1}}|\nabla v|^{p}dz and B= \int_{0}^{\tau}\int_{B_{R}}(t^{-\delta}v^{\in})^{p}dz .
From Lemma 3.1, B can be estimated as

B \leq\int_{0}^{\tau}t^{-\delta p}||v^{\in p-1}||_{\infty}\int_{B_{R}}vdxdt

\leq c\int_{0}^{\tau}t^{-p\delta}t^{(\in p-1)\frac{-n}{\kappa}}dt=c\int_{0}^{\tau}t^{-p\delta-\frac{n}{\kappa}(\in p-1)}dt .

Hence if we choose \delta and \epsilon satisfying p \delta+\frac{n}{\kappa}(\epsilon p-1)<1 and \epsilon>\frac{1}{p} , then

B\leq c\tau^{1-p\delta-\frac{n}{\kappa}(\in p-1)} .

for some c depending only on \rho , \sigma , n and p . To estimate A , take
t^{\frac{\delta p}{p-1}}v^{1-\frac{\in p}{p-1}}\phi^{2} as a test function to (1.1), where \phi is a piecewise smooth
cutoff function in B_{R+1} with |\nabla\phi|\leq c . Here we assume 1- \frac{\in p}{p-1}\geq 0 . Hence
we obtain

\int\int v_{t}(t^{\frac{\delta p}{p-1}}v^{1-\frac{\in p}{p-1}}\phi^{2})+\overline{a}_{ij}(x, t)|\nabla v|^{p-2}v_{x_{i}}(t^{\frac{\delta p}{p-1}}v^{1-\frac{\in p}{p-1}}\phi^{2})_{x_{j}}dz=0

and

\frac{p-1}{2(p-1)-\epsilon p}\int\int(v^{2^{\in g}}t^{\frac{\delta p}{p-1}}-_{\overline{p}-\overline{1}}\phi^{2})_{t}dz

- \frac{\delta p}{2(p-1)-\in p}\int\int v^{2-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}-1}\phi^{2}dz+\lambda\int\int|\nabla v|^{p\frac{-\in p}{p-1}\frac{\delta p}{p-1}}vt\phi^{2}dz

\leq c\int\int|\nabla v|^{p-1}v^{1-\frac{-\in p}{p-1}}t^{\frac{\delta p}{p-1}}\phi|\nabla\phi|dz .

From the definition of A , we get

A \leq c\int\int v^{2_{\overline{p}-\overline{1}}^{\in}}t^{\frac{\delta p}{p-1}-1}-*\phi^{2}dz+c\int\int|\nabla v|p-1v\frac{\in p}{p-1}1-^{\delta p}t^{\overline{p}-\overline{1}}\phi|\nabla\phi|dz

\leq c\int_{0}^{\tau}||v^{1-_{\overline{p}-\overline{1}}^{\epsilon p}}||_{\infty}t^{\frac{\delta p}{p-1}-1}\int_{B_{R+1}}v\phi^{2}dxdt

+c \int\int|\nabla v|^{p-1}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}\phi|\nabla\phi|dz

\leq c\int_{0}^{\tau}t^{\frac{-n}{\kappa}(1-\frac{\in p}{p-1})}t^{\frac{\delta p}{p-1}-1}dt+c\int\int|\nabla v|^{p-1}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}\phi|\nabla\phi|dz

\leq c_{1}\tau^{-\frac{n}{\kappa}(1-\frac{\in p}{p-1})+\frac{\delta p}{p-1}}+c_{2}\int\int|\nabla v|^{p-1}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}\phi|\nabla\phi|dz .
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Here \delta satisfies

\frac{\delta p}{p-1}-\frac{n}{\kappa}(1-\frac{\epsilon p}{p-1})>0 .

On the other hand by Youngs inequality

\int\int|\nabla v|^{p-1}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}\phi|\nabla\phi|dz

\leq\lambda\int\int|\nabla v|^{p\frac{-\in p}{p-1}\frac{\delta p}{p-1}}vt\phi^{\frac{p}{p-1}}dz+c(\lambda)\int\int v^{p-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}|\nabla\phi|^{p}dz .

Hence taking sufficiently small \lambda , we see that

A \leq c_{1}\tau^{-\frac{n}{\kappa}(1-\frac{\in p}{p-1})+\frac{\delta p}{p-1}}+c\int\int v^{p-2}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}vdz . (3.4)

From Lemma 3.1, we see that

\int\int v^{p-2}v^{1-\frac{\in p}{p-1}}t^{\frac{\delta p}{p-1}}vdxdt

\leq c\int_{0}^{\tau}t\frac{\delta p}{p-1}-\frac{n}{\kappa}(1-\frac{\in p}{p-1})-1dt\leq c\tau^{\overline{p}-\overline{1}}-\delta p\frac{n}{\kappa}(1-\frac{\in p}{p-1}) .

provided that \epsilon and \delta satisfy \frac{\delta p}{p-1}-\frac{n}{\kappa}(1-\frac{\in p}{p-1})>0 . Thus from (3.4) we
deduce that

A\leq c\tau^{-\frac{n}{\kappa}(1-\frac{\overline{c}p}{p-1})+\frac{\delta p}{p-1}} .

Now we need to find \delta and \epsilon which satisfies following conditions; \frac{1}{p}\leq\epsilon\leq

\frac{p-1}{p} , p \delta+\frac{n}{\kappa}(\epsilon p-1)\leq 1,\frac{\delta p}{p-1}-\frac{n}{\kappa}(1-\frac{\in p}{p-1})>0 , \frac{\delta p}{p-1}-\frac{n}{\kappa}(p-1-p\in\overline{p}-\overline{1})>-1 .
In particular \delta=\epsilon=\frac{1}{p} satisfy the above inequalities. So with a suitable
choice of \delta and \epsilon we conclude that

\int_{0}^{\tau}\int_{B_{R}}|\nabla v|^{p-1}dxdt

\leq[c\tau^{\frac{\delta p}{p-1}-\frac{n}{\kappa}(1-\frac{\in p}{p-1})}]\frac{p-1}{p}[c\tau^{1-(\delta p+\frac{n}{\kappa}(\in p-1))}]\frac{1}{p}=c\tau^{\frac{1}{\kappa}} .

where c depends on \Lambda , n and p. Thus scaling back we prove the Theorem.
\square

Theorem 3.3 Suppose u_{k}\in P(N) and \mu_{k} is the initial trace of u_{k} at
t=0 . Suppose also that \mu_{k} converges to \mu weakly as tarrow 0 . Then there is
u\in P(N) such that u_{k} converges to u uniformly on each compact subset of
\mathbb{R}^{n}\cross(0, T) and u has initial trace \mu .
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Proof. Suppose K\subset R^{n}\cross(0, T) is compact. From Lemma 3.1 we know
that \{u_{k}\} are uniformly bounded in K and hence u_{k} are uniformly H\"older

continuous (see [11]) and hence \{u_{k}\} converge to a H\"older continuous func-
tion u in K The fact u is a weak solution follows from weak convergence in
L^{p}(0, t;W^{1,p}(K)) and equicontinuity of u_{k} . Hence it is enough to show that
whenever u is locally the uniform limit of u_{k} , u\in P(N) and u has initial
trace \mu . Let 0<\tau<t<T and fix \eta\in C_{0}^{\infty}(\mathbb{R}^{n}) . From Lemma 3.2

| \int_{R^{n}}u_{k}(x, t)\eta(x)dx-\int_{R^{n}}u_{k}(x, \tau)\eta(x)dx|

\leq c\int_{\tau}^{t}\int_{R^{n}}|\nabla u_{k}|^{p-1}|\nabla\eta|dxdt\leq c||\nabla\eta||_{\infty}(t-\tau)^{1/\kappa} . (3.5)

Therefore sending \tauarrow 0 and karrow\infty we prove the Theorem. \square

Lemma 3.4 There exists a solution u(x, t)\in P(1) of (1.1) such that the
initial trace of u is \delta(0) . Moreover there is T_{0}>0 such that

u(0, T_{0}) \geq\frac{1}{4} .

Proof. First we consider the case that \{a_{ij}(x)\} is a constant matrix. Let
initial data u_{0}^{k}(x) of u as u_{0}^{k}(x)= \frac{1}{\omega_{n}}k^{n}\chi_{B(\frac{1}{k})} and \int_{R^{n}}u_{0}^{k}(x)dx=1 , where \omega

is the measure of B_{1}(0) Then a nonnegative solution u of (1.1) with initial
data u(x, 0)=u_{0}^{k}(x) will exist. So the existence of solution with Dirac
measure as initial trace follows from Theorem 3.3. Let \eta\in C_{0}^{\infty}(\mathbb{R}^{n}) be
nonnegative with \eta(0)=\max_{x\in R^{n}}=1 , ||\nabla\eta||_{L}\infty\leq 1 and \int_{R^{n}}\eta(x)dx=1 .
From (3.5) we have for each t

| \int_{R^{n}}u(x, t)\eta(x)dx-\eta(0)|<ct^{\frac{1}{\kappa}}

for some c depending on \Lambda , p and n . Furthermore since \{a_{ij}\} is a constant
symmetric matrix, it is easy to see that u(0, t)= \max_{R^{n}}u(x, t) for each
t (see [19]). Thus if T\leq(2c)^{-k} , then

u(0, T)= \int_{R^{n}}u(0, T)\eta(x)dx\geq\int_{R^{n}}u(x, T)\eta(x)dx\geq\frac{1}{2} .

This proves our claim when \{a_{ij}\} is constant matrix. We employ a blow up
method along time, to consider general (a_{ij}) . We let \{\tau_{s}\} be a decreasing
sequence of time which converges to zero and set u_{s}(x, t)=\tau_{s}^{\frac{n}{\kappa}}u(\tau_{s}^{\frac{1}{\kappa}}x, \tau_{s}t) ,
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then u_{s}(x, t) is a nonnegative solution to

v_{t}-(b_{ij}^{s}(x)|\nabla v|^{p-2}v_{x_{i}})_{x_{j}}=0 ,

where b_{ij}^{s}(x)=a_{ij}(\tau_{s}^{\frac{1}{\kappa}}x) . Moreover ||u_{s}||_{L^{1}}=1 for each s and the initial
trace of u_{s} is Dirac measure for each s . Observe that since b_{ij}^{s}(x) is bounded,

it converges weak* L^{\infty} to a constant symmetric matrix b_{ij}^{\infty} with the same
modulus of ellipticity as a_{ij} . Hence it follows from Theorem 3.3 that u_{s}

converges uniformly on each compact subset to u_{\infty} which is a solution to

v_{t}-(b_{ij}^{\infty}|\nabla v|^{p-2}v_{x_{i}})_{x_{j}}=0

with Dirac delta measure as initial trace . Since b_{ij}^{\infty} is a constant matrix, we
have u_{\infty}(0, T) \geq\frac{1}{2} and hence for sufficiently large number s ,

u_{s}(0, T)= \tau_{s}^{\frac{n}{\kappa}}u(0, \tau_{s}T)\geq\frac{1}{4}

and this completes the proof. \square

With the obvious modification of the previous proof, we find the fol-
lowing Corollary.

Corollary 3.5 For every N>0 , there is a unique solution u_{N}\in P(N)

with initial trace N6. Furthermore, there is N such that \inf\{u_{N}(0,1)\}>0 .

Lemma 3.6 Suppose that u is a continuous nonnegative solution to (1.1)

in \mathbb{R}^{n}\cross(0, \infty) . Define J(s)=s^{\frac{p}{p-2}} and

H(s)=\{
1 if 0<s\leq 1

s[J^{-1}(s)]^{n} if s>1 ,

then there is a constant c such that

\int_{|x|\leq 1}u(x, O)dx\leq cH(u(0,1)) (3.6)

Proof We shall prove the result under the following additional assump-
tions that

supp\{u(x, 0)\}\subset\{x : |x|<1\} and \sup_{0<t<\infty}\int u(x, t)dx<\infty .

(3.7)

The general cases can be handled by cutoff method (see [9]). Suppose
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(3.6) does not hold, then there exist a sequence of continuous nonnegative
solutions u_{k} satisfying

I_{k} \equiv\int_{R^{n}}u_{k}(x, 0)dx\geq kH(u_{k}(0,1))

for k=1,2,3 , . Let v_{k}(x, t)= \frac{1}{\gamma_{k}}u_{k}(\alpha_{k}x, t)\in P(1) , then v_{k}(x, t) is

solution to (v_{k})_{t}= \frac{\gamma_{k}^{p-2}}{\alpha_{k}^{p}} div (a_{ij}(x, t)|\nabla v_{k}|^{p-2}\nabla v_{k}) . We define \alpha_{k} and \gamma_{k}

such that \alpha_{k}^{n+1}\alpha\frac{2}{kp-2}=I_{k} and \gamma_{k}=\alpha_{k}\alpha^{\frac{2}{kp-2}}=\alpha^{\frac{p}{kp-2}} By the definition
of v_{k} we get \int v_{k}(x, O)dx=\frac{1}{\gamma_{k}}\int u_{k}(\alpha_{k}x, O)dx=1 and supp\{v_{k}(x, 0)\}\subset

\{x;\alpha_{k}|x|<1\} , and v_{k}(x, 0) converges weakly to Dirac delta measure cen-
tered at origin. By compactness argument, there is a v(x, t) such that a sub-
sequence v_{k}(x, t) converges uniformly to v(x, t) and v(x, t) solves v(x, t) -
(b_{ij}(x)|\nabla v|^{p-2}v_{x_{i}})_{x_{j}}=0 , where b_{ij}(x) is weak*- L^{\infty} limit of a_{ij}(\alpha_{k}x) .
We claim that there is T_{0} such that v(0, T_{0})>\epsilon . If the claim is not
true, then there is a sequence T_{k} such that v(0, T_{k}) –0as T_{k} –0.
Let w_{k}(x, t)= \frac{1}{\gamma(T_{k})}v((T_{k})^{\frac{1}{\kappa}}x, T_{k}t) . We define \gamma(T_{k}) as \gamma(T_{k})=(T_{k})^{\frac{p}{p-2}} ,
then w_{k}(x, t)= \frac{1}{\gamma(T_{k})}v((T_{k})^{\frac{1}{\kappa}}x, T_{k}t) , w_{k}(x, t)_{t}= \frac{T_{k}}{\gamma(T_{k})}v_{t}((T_{k})^{\frac{1}{\kappa}}x, T_{k}t) , and
\nabla w_{k}(x, t)=\frac{(T_{k})^{\frac{1}{\kappa}}}{\gamma(T_{k})}v((T_{k})^{\frac{1}{\kappa}}x, T_{k}t) and hence w_{k}(x, t) is solution to

w_{k}(x, t)_{t}=(b_{ij}((T_{k})^{\frac{1}{\kappa}}x)|\nabla w_{k}|^{p-2}w_{kx_{i}})_{x_{j}}

Since (T_{k})^{\frac{1}{\kappa}}xarrow 0 as k goes to \infty , it is easy to see that b_{ij}((T_{k})^{\frac{1}{\kappa}}x)
– b_{ij}(0)

in weak*- L^{\infty} sense. Hence there is w(x, t) such that w_{k}(x, t) converges
uniformly to w(x, t) as T_{k}arrow 0 and w(x, t) solves the equation w(x, t) -
(b_{ij}(0)|\nabla w|^{p-2}w_{x_{i}})_{x_{j}}=0 with Dirac measure as initial trace . Since a_{ij}(x)

is symmetric, b_{ij}(0) is symmetric and w(0, t) is the maximum of w(x, t) .
Then there is T such that w(0, T)>\mu for any \mu and v(0, T_{k})>\mu\gamma(T_{k})>\epsilon

with suitable choice of \mu . But this contradicts to the assumption that
v(0, T_{k}) –0 as T_{k}arrow 0 and the claim follows. Without loss of generality we
may assume T_{0}=1 and hence v(0,1)>\epsilon . Recall v_{k}(0,1)= \frac{u_{k}(0,1)}{\gamma_{k}} . Hence
from the uniform convergence of v_{k} to v , u_{k}(0,1)\geq\epsilon\gamma_{k} – \infty . On the other
hand

u_{k}(0,1)[J^{-1}(u_{k}(0,1))]^{n}=H[u_{k}(0,1)] \leq\frac{1}{k}\alpha_{k}^{n}\alpha^{\frac{p}{kp-2}}

= \frac{1}{k}\gamma_{k}[J^{-1}(\gamma_{k})]^{n}
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and \frac{u_{k}(0,1)}{\gamma_{k}}\leq\frac{1}{k} –0 as k – \infty . \square

Theorem 3.7 Suppose u\geq 0 is a weak solution to
u_{t}=(a_{ij}(x)|\nabla u|^{p-2}u_{x_{i}})_{x_{j}} in \mathbb{R}\cross(0, T_{0}) , T_{0}>0 . We fix 0<T<T_{0}-\delta .

Then there is a constant \beta depending only on n , p , \Lambda and \delta such that

f_{|x|<R}u(x, O)dx\leq\beta[(\frac{R^{p}}{T})\frac{1}{p-2}+(\frac{T}{R^{p}})^{\frac{n}{p}}[u(0, T)]^{\frac{n(p-2)+p}{p}}] (3.8)

and the Theorem follows from scaling back.

Proof. Let \gamma=(\frac{R^{p}}{T})^{\frac{1}{p-2}} and v(x, t)= \frac{1}{\gamma}u(Rx, Tt)=\frac{1}{\gamma}u(y, s) . Then, v

is solution to v_{t}(x, t)=(a_{ij}(Rx, Tt)|\nabla v|^{p-2}v_{x_{i}})_{x_{j}} . We find that ||v||_{L^{1}}(t)=

||u||_{L^{1}}(t) . Hence from Lemma 3.6 we obtain for \kappa=n(p-2)+p

\int_{|y|\leq 1}v(y, O)dy\leq\beta[1+v(0,1)^{\frac{\kappa}{p}}]=\beta[1+(\frac{u(0,T)}{\gamma})^{\frac{\kappa}{p}}]

\square

4. Existence and Uniqueness

In this section we will show the existence of an initial trace for any
nonnegative weak solution u in \mathbb{R}^{n}\cross(0, T) , and solutions are uniquely
determined by their initial trace . The Harnack inequality and compactness
argument are main ingredients.

Theorem 4.1 Suppose u is a nonnegative weak solution of (1.1) in \mathbb{R}^{n}\cross

(0, T) , then there is a unique nonnegative \sigma- ffinite Borel measure \mu such that

\lim_{tarrow 0}\int_{R^{n}}u(x, t)\eta(x)dx=\int\eta d\mu ,

for all \eta(x)\in C_{0}^{\infty}(\mathbb{R}^{n}) . Furthermore \mu satisfies
|| \mu||_{1}\equiv\sup_{R>1}R^{-\frac{\kappa}{p-2}}\int_{B_{R}}d\mu<c(u(0, T)) /or some constant c .

Proof. As a consequence of our Harnack inequality (Theorem 3.7) we get

\sup_{t}\int_{|x|<R}u(x, t)dx\leq c(T,p, R, u(0, T))<\infty .

Thus there exists a sequence t_{j} –0 and a \sigma-finite Borel measure \mu on \mathbb{R}^{n}

such that u(x, t_{j}) converges weakly to \mu on \mathbb{R}^{n} . If \eta\in C_{0}^{\infty}(\mathbb{R}^{n}) , then for
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0<\tau<t

\int_{R^{n}}u(x, t)\eta(x)dx-\int_{R^{n}}u(x, \tau)\eta(x)dx

= \int_{\tau}^{t}\int_{R^{n}}a_{ij}(x)|\nabla u|^{p-2}u_{x_{i}}\eta_{x_{j}}dxds . (4.1)

From Lemma 3.2 and (4.1) it follows that

| \int_{R^{n}}u(x, t)\eta(x)dx-\int_{R^{n}}u(x, \tau)\eta(x)dx|\leq c(t-\tau)^{\frac{1}{\kappa}} . (4.2)

Hence taking \tau along t_{j} , we get \lim_{t_{j}arrow 0}\int_{R^{n}}u(x, t_{j})\eta(x)dx=\int\eta d\mu . Now
we assume that there are \sigma-finite measure lJ and a sequence s_{j} –0 such
that \lim_{jarrow\infty}\int_{R^{n}}u(x, s_{j})\eta(x)dx=\int\eta d\nu for all \eta\in c_{0}^{\infty}(\mathbb{R}^{n}) . Let \zeta be a
nonnegative cutoff function in B_{(1+\in)R} such that \zeta\equiv 1 in B_{R} and | \nabla\zeta|\leq\frac{c}{\in R} .
Taking \zeta as a test function to (1.1) we get

\int_{B_{(1+\in)R}}u(x, t)dx-\int_{B_{R}}u(x, \tau)dx

\geq-\frac{c}{\epsilon R}\int_{\tau}^{t}\int_{B_{(1+\in)R}}|\nabla u|^{p-2}|\nabla u|dxds

and

\int_{B_{(1+\in)R}}u(x, t)dx\geq\int_{B_{R}}u(x, \tau)dx-\frac{c}{\epsilon R}(t-\tau)^{\frac{1}{\kappa}}

Taking \tau=t_{i} and t=s_{j} and sending i and j to infinity, we get

\int_{B_{(1+\in)R}}dlJ \geq\int_{B_{R}}d\mu for all R>0

Since this inequality holds for all R and \epsilon , letting \epsilonarrow 0 and interchanging
the role of \mu and lJ we conclude lJ =\mu . This completes the proof. \square

From a usual energy estimate, we obtain an improved convergence.

Lemma 4.2 Suppose that u and v are two weak solutions of (1.1) in
\mathbb{R}^{n}\cross(0, T) for some 0<T<\infty . If \sup_{t\in(0,T)}||u(t)||_{1}+||v(t)||_{1}<\infty and
\lim_{tarrow 0}[u(\cdot, t)-v(\cdot, t)]=0 in L_{1oc}^{1}(R^{n}) , then

\lim_{tarrow 0}[u(\cdot, t)-v(\cdot, t)]=0 in L_{1oc}^{1+\in}(\mathbb{R}^{n})

for all 0< \epsilon<\frac{1}{n} .
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Once we know the higher integrability lemma, we can prove uniqueness
of nonnegative weak solutions. Indeed DiBenedetto and Herrero proved the
uniqueness considering some weighted norm (see [12]). Here Gronwall type
inequality is established and hence uniqueness follows easily.

Theorem 4.3 Suppose that u and v are two nonnegative weak solutions of
(1.1) in \mathbb{R}^{n}\cross(0, T) for some 0<T<\infty . If \sup_{t\in(0,T)}(||u(t)||_{1}+||v(t)||_{1})<

\infty , and \lim_{tarrow 0}[u(\cdot, t)-v(\cdot, t)]=0 in L_{1oc}^{1}(R^{n}) , then u\equiv v in \mathbb{R}\cross(0, t) .

Proof. Let w=u-v and we may assume w\geq 0 . Let \eta be a standard
cutoff function which is compactly supported in B_{R+1} and \eta\equiv 1 in B_{R} and
|\nabla\eta|<c for some constant c . We take w^{\epsilon}\eta^{2} as a test function to (1.1). We
know that \lim_{\tauarrow 0}\int w(x, \tau)^{1+\in}dx=0 . Thus from this we obtain

\int_{R_{R}}w(x, t)^{1+\in}dx\leq c\int_{0}^{t}\int_{B_{R+1}}(|\nabla u|+|\nabla v|)^{p-2}w^{\epsilon+1}dxds

\leq c[\int_{0}^{t}\int_{B_{R+1}}(|\nabla u|+|\nabla v|)^{p-1}dxds](p-2)/(p-1)

[ \int_{0}^{t}\int_{B_{R+1}}w^{(\in+1)(p-1)}dxds]1/(p-1) (4.3)

From Lemma 3.2, we know that \int_{0}^{t}\int(|\nabla u|+|\nabla v|)^{p-1}
dxds\leq ct^{\frac{1}{\kappa}} On the

other hand, from Lemma 3.1, sup w\leq ct^{-\frac{n}{\kappa}} . Hence we obtain that for
\sigma=(p-2)/\kappa(p-1)

t^{-\sigma} \int_{B_{R}}w^{1+\in}dx

\leq c[\int_{0}^{t}s^{-n/\kappa(1+\in)(p-2)+\sigma}s^{-\sigma}\int_{B_{R+1}}w^{1+\in}dxds]^{1/(p-1)} (4.4)

Now we establish Gronwall type inequality. This implies uniqueness. Define

H(R, t)=t^{-\frac{p-2}{\kappa(p-1)}} \int_{B_{R}}w^{1+\in}(x, t)dx .

Then (4.4) becomes

H(R, t) \leq c[\int_{0}^{t}s^{-\frac{n}{\kappa}(1+\in)(p-2)+\frac{p-2}{\kappa(p-1)}}H(R+1, s)ds]\frac{1}{p-1} (4.5)

Let \delta\equiv-\frac{n}{\kappa}(1+\epsilon)(p-2) + \frac{p-2}{\kappa(p-1)} , then \delta>-1 for small \epsilon . Moreover
we note that from the proof of Lemma 4.2 and scaling there is a smooth
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function G : \mathbb{R}^{+}arrow \mathbb{R}^{+} such that \frac{G(R+1)}{G(R)}\leq c for some c and \frac{H(R,t)}{G(R)} –0 as
Rarrow 0 (see [9]). Since \lim_{Rarrow 0}\frac{H(R,t)}{G(R)}=0 for all t , we can find R_{1} such that
\frac{H(R_{1},t)}{G(R_{1})}=\sup_{R\geq 1}\frac{H(R,t)}{G(R)} . Hence we obtain

\frac{H(R,t)}{G(R)}\leq c\frac{G(R+1)}{G(R)}[\int_{0}^{t\frac{1}{p-1}}s^{\delta}\frac{H(R+1,s)}{G(R+1)}ds] (4.6)

Let \int_{0}^{t}s^{\delta}\sup_{R\geq 1}\frac{H(R,s)}{G(R)}ds=A(t) . Since \frac{G(R+1)}{G(R)}<c and \frac{H(R,t)}{G(R)}arrow 0 as
Rarrow\infty , we get from (4.6)

A’(t)t^{-\delta}\leq cA(t)^{\frac{1}{p-1}}

and this implies A(t)=0 since \delta>-1 . Therefore we conclude that u\equiv v .
\square

5. Regularity of the interface and asymptotic behavior

We define a cylindrical domain Q_{R}^{h}(x_{0}, t_{0})=B_{R}(x_{0})\cross(t_{0}, t_{0}+h) , \Omega(t)=

\{(x, t) : u(x, t)>0\} , \Gamma(t)= the boundary of \Omega(t) , and \Gamma=\bigcup_{t\geq 0}\Gamma(t) .
Then \Gamma(0) is the boundary of \{x\in \mathbb{R}^{n} : u_{0}>0\} . We show that interface \Gamma

consists of two parts that moving part \Gamma_{1} and nonmoving part \Gamma_{2} . Moreover
\Gamma_{1} is H\"older continuous graph. The Harnack principle is a main tool in
studying the behavior of interface.

Lemma 5.1 Suppose that u(x, t_{0})=0 for all x\in B_{R_{0}}(x_{0}) Then we have

sup u \leq c(\frac{h}{R_{0}^{p}})\frac{1}{2}[ff_{Q_{R_{0}}^{h}(x_{0},t_{0})}u^{p}dxdt]\frac{1}{2}

Q_{R}^{h}\not\simeq

for some constant c depending on p , n and \Lambda .

Proof. Let 0<\rho<R<R_{0} and \eta be a standard cutoff function such
that 0\leq\eta\leq 1 , \eta(x)=1 on B_{\rho} , \eta=0 on \partial B_{R} and \eta\in C_{0}^{\infty}(B_{R}) with
| \nabla\eta|\leq\frac{c}{(R-\rho)} for some constant c . We take u^{\alpha+1}\eta^{p} as a test function to
(1.1). Since u\equiv 0 on B_{R}\cross\{t_{0}\} and \eta is independent of t , we have

\frac{1}{(\alpha+2)}\int\int_{Q_{R}^{h}}(u^{\alpha+2}\eta^{p})_{t}dxdt+(\alpha+1)\int\int_{Q_{R}^{h}}|\nabla u|^{p}u^{\alpha}\eta^{p}dxdt
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\leq\frac{c}{\alpha+1}\int\int_{Q_{R}^{h}}u^{\alpha+p}|\nabla\eta|^{p}dxdt .

From the energy estimate, we have

\sup_{t}\int_{B_{R}}u^{\alpha+2}\eta^{p}dx+c\int\int_{Q_{R}^{h}}|\nabla(u^{\frac{\alpha+p}{p}})\eta|^{p}dxdt

\leq c\int\int_{Q_{R}^{h}}u^{\alpha+p}|\nabla\eta|^{p}dxdt .

From H\"older inequality and Sobolev inequality we have

\iint_{Q_{\rho}^{h}}u^{(\alpha+2)\frac{p}{n}+(\alpha+p)}dxdt\leq[\frac{c}{(R-\rho)^{p}}\iint_{Q_{R}^{h}}u^{\alpha+p}dxdt]1+\frac{p}{n} (5.1)

for some constant c depending only n , \Lambda , \alpha and p . Define \alpha_{i+1}=(\alpha_{i}+

2) \frac{p}{n}+\alpha_{i} and \alpha_{0}=0 . Setting \gamma=1+\frac{p}{n} , we can write \alpha_{i}=2(\gamma^{i}-1) . Let
R_{i}= \frac{1}{2}R_{0}(1+2^{-i}) and take \alpha=\alpha_{i} , \rho=R_{i+1} and R=R_{i} in (5.1).

Hence if we define \Psi_{i}=++_{Q_{R_{i}}^{h}}u^{\alpha_{i}+p}dxdt , then from (5.1) we get

\Psi_{i+1}\leq c^{i}(\frac{h}{R_{0}^{p}})n\Psi_{i}^{\gamma}4i . (5.2)

Iterating (5.2) we prove the Lemma. \square

Lemma 5.2 Suppose that u(x, t_{0})=0 in B_{R}(x_{0}) . Then there exists a

constant c such that if

ff_{Q_{R}^{h}(x_{0},t_{0})}u^{p}dxdt \leq c(\frac{h}{R^{p}})^{-\frac{p}{p-2}}

then u\equiv 0 in Q_{R/4}^{h} .

Proof. We will show that if y\in B_{R/4}(x_{0}) , then \sup_{t_{0}\leq t\leq t_{0}+h}u(y, t)=0 .
Let y\in B_{R/4}(x_{0}) be given. We define for M_{\rho}= \sup_{Q_{\rho}^{h}(x_{0})}u for \rho\in(0, R/4) .

From Lemma 5.1 we have M_{\rho/2} \leq c(\frac{h}{\rho^{p}})^{\frac{1}{2}}M_{\rho}^{\frac{p}{2}} for \rho\in(0, R/2) . It is a rather
standard argument to prove that \sup_{t_{0}\leq t\leq t_{0}+h}u(y, t)=\lim_{\rhoarrow 0}M_{\rho}=0 if
M_{R/4} \leq c^{-\frac{4}{(p-2)^{2}}}[c(\frac{h}{R^{p}})^{\frac{1}{2}}]^{-\frac{2}{p-2}} . By Lemma 5.1 and the assumption, we have

M_{R/4} \leq Q_{R/2}^{h}(x_{0},t_{0})\sup u\leq(\frac{h}{R^{p}})^{\frac{1}{2}}[ff_{Q_{R}^{h}(x_{0},t_{0})}u^{p}dxdt]\frac{1}{2}
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\leq c(\frac{c}{R^{p}})^{-\frac{1}{p-2}} (5.3)

So we conclude that \sup_{t_{0}\leq t\leq t_{0}+h}u(y, t)=0 . Since y could be any point in
B_{R/4}(x_{0}) , the proof is completed. \square

Lemma 5.3 Suppose u(x, t_{0})=0 in B_{R}(x_{0}) , then for any \epsilon_{0}>0 , there
exists a constant c depending only on \Lambda , n , p and \epsilon_{0} such that

ff_{Q_{R/2}^{h}}u^{p}dxdt \leq c[_{t_{0}\leq t\leq t_{0}+h}\sup f_{B_{R}}u(x, t)dx]^{p}+\epsilon_{0}(\frac{R^{p}}{h})\frac{p}{p-2}

(5.4)

Proof. Define v(x, t)=( \frac{h}{R^{p}})^{\frac{1}{p-2}}u(Rx+x_{0}, ht+t_{0}) , then v is solution to

v_{t}=(a_{ij}(Rx+x_{0})|\nabla v|^{p-2}v_{x_{i}})_{x_{j}} . (5.5)

Let \frac{1}{2}<r_{2}<r_{1}\leq 1 and denote v_{\epsilon}=v+\epsilon . We take v_{\epsilon}^{\alpha+1}\eta^{p} as a test
function to (5.5), where \eta is a standard cutoff function as \eta\equiv 1 on B_{r_{2}} and
\eta=0 on \partial B_{r_{1}} with |\nabla\eta|\leq c . Since v(x, 0)=0 , we have

( \alpha+1)\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p}v_{\in}^{\alpha}\eta^{p}dxdt+\frac{1}{\alpha+2}\int_{B_{r_{1}}}v_{\Xi}^{\alpha+2}(x, 1)\eta^{p}dx

\leq c\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p-1}v_{\in}^{\alpha+1}\eta^{p-1}|\nabla\eta|dxdt+\int_{B_{r_{1}}}\frac{\epsilon^{\alpha+2}}{\alpha+2}\eta^{p}(x)dx .

Hence if \alpha<-2 or \alpha>-1 , then

\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p}v_{\epsilon}^{\alpha}\eta^{p}dxdt

\leq c(\alpha)[\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p-1}v_{\in}^{\alpha+1}\eta^{p-1}|\nabla\eta|dxdt+\epsilon^{\alpha+2}|B_{r_{1}}|] (5.6)

and if -2<\alpha<-1 , then

\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p}v_{\in}^{\alpha}\eta^{p}dxdt (5.7)

\leq c(\alpha)[\iint_{Q_{\Gamma}^{1}1}|\nabla v|^{p-1}v_{\epsilon}^{\alpha+1}\eta^{p-1}|\nabla\eta|dxdt+\int_{B_{r_{1}}}v_{\in}^{\alpha+2}(x, 1)\eta^{p}dx]

Combining (5.6) and (5.7), from the ellipticity condition and Young’s in-
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equality we get for some small \delta

\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p}v_{\in}^{\alpha}\eta^{p}dxdt

\leq c(\alpha, \Lambda)[\int\int_{Q_{r_{1}}^{1}}\delta^{p/(p-1)}|\nabla v|^{p}v_{\in}^{\alpha}\eta^{p}+\delta^{-p}v_{\in}^{\alpha+p}|\nabla\eta|^{p}dxdt

+ \int_{B_{r_{1}}}(c_{1}v_{\epsilon}^{\alpha+2}+c_{2}v_{\epsilon})\eta^{p}dx+\epsilon^{\alpha+2]} (5.8)

Then choosing \delta small in (5.8) we obtain

\int\int_{Q_{r_{1}}^{1}}|\nabla v|^{p}v_{\epsilon}^{\alpha}\eta^{p}dxdt

\leq c[\int\int_{Q_{r_{1}}^{1}}v_{\epsilon}^{\alpha+p}(\eta^{p}+|\nabla\eta|^{p})dxdt+I+\epsilon^{\alpha+2]}, (5.9)

where I= \sup_{t\in[0,1]}\int_{B_{r_{1}}}v(x, t)dx . From Sobolev inequality, H\"older inequal-

ity and (5.9), we have

\int\int_{Q_{r_{2}}^{1}}v^{\frac{p}{\xi jn}+p+\alpha}dxdt\leq cI^{R}n[\int\int_{Q_{r_{1}}^{1}}v_{\epsilon}^{\alpha+p}dxdt+I+\epsilon^{\alpha+2}]+\epsilon^{R}n+p .

(5.10)

Iterating (5.10) in a similar manner as Lemma 2.2 we get

ff_{Q_{1/2}^{1}}v^{p}dxdt \leq c[_{t\in[0,1]}\sup f_{B_{1}}v(x, t)dx]^{p}+\epsilon_{0}

for some constant c depending on \Lambda , p and n . Therefore scaling back we
prove the lemma. \square

Theorem 5.4 Suppose that dist( x_{0} , su p \{u_{0}\} ) >R , then there is a con-
stant c depending on \Lambda , p and n such that u(x_{0}, t)=0 for all t \leq

\frac{c}{||u_{0}||^{p-2}}R^{n(p-2)+p} .

Proof. From Lemma 5.2 we know that if f-+_{Q_{R}^{h}}u^{p}dxdt \leq c(\frac{h}{R^{p}})^{B}\overline{p}-\overline{2} , then

u\equiv 0inQ_{R/4}^{h} . Hence if u(x_{0}, h)\neq 0 for some h>0 , then

ff_{Q_{R}^{h}}u^{p}dxdt>c( \frac{h}{R^{p}})\frac{p}{p-2} (5.11)
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On the other hand we know that from Lemma 5.3, for any \epsilon_{0}>0 ,

ff_{Q_{R}^{h}}u^{p}dxdt \leq c[_{t\in[0,h]}\sup f_{B_{2R}}u(x, t)dx]^{p}+\epsilon_{0}(\frac{R^{p}}{h})\frac{p}{p-2} (5.12)

Hence if we choose \epsilon_{0}\leq\frac{c}{2} , then from (5.11), (5.12) we have

\frac{c}{2}(\frac{R^{p}}{h})\frac{p}{p-2}<c[\frac{1}{R^{n}}\sup_{t\in[0,h]}\int_{B_{2R}}u(x, t)dx]^{p}

Since ||u||_{L^{1}}(t)=||u_{0}||_{L^{1}} for all t , we conclude that h> \frac{c}{||u_{0}||^{p-2}L^{1}}R^{n(p-2)+p} .
\square

Now we prove the converse of Theorem 5.4. These are direct conse-
quences of Harnack principle.

Corollary 5.5 Suppose that supp \{u_{0}\}\subset B_{R}(0) , Then there is a constant
c such that if

h \geq\frac{c}{||u_{0}||_{L^{1}}^{p-2}}(|x_{0}|+R)^{n(p-2)+p} ,

then u(x_{0}, h)>0 .

Proof. The Harnack principle (see Theorem 3.7) implies that if
f_{B_{R}(x_{0})}u_{0}(x)dx \geq 2\beta(\frac{R^{p}}{h})^{\frac{1}{p-2}} , then u(x_{0}, h) \geq c(\frac{R^{p}}{h})^{\frac{1}{p-2}} . We note that
B_{|x_{0}|+R}(x_{0})\supset B_{R(0)}\supset suppu_{0} and hence we have +_{B_{|x_{0}|+R}(x_{0})}u_{0}(x)dx=

\frac{c}{(|x0|+R)^{n}}||u_{0}||_{L^{1}} . Thus if \frac{c}{(|x_{0}|+R)^{n}}||u_{0}||_{L^{1}}\geq 2\beta(\frac{(|x_{0}|+R)^{p}}{h})^{\frac{1}{p-2}} , that is, h\geq

c \frac{(||x_{0}||+R)^{n(p-2)+p}}{||u_{0}||^{p-2}L^{1}} , then u(x_{0}, h)>0 . \square

From the Harnack principle we can observe the support expands as time
goes. Now we show that the interface is H\"older continuous. First we find
that the interface \Gamma consists of moving part \Gamma_{1} and nonmoving part \Gamma_{2} ,
that is, \Gamma=\Gamma_{1}\cup\Gamma_{2} and \Gamma_{1} is relatively open in \Gamma We refer Caffarelli and
Friedmann [3] for the porous medium equations and Choe and Kim [7] for
the evolutionary p-Laplace equations.

Theorem 5.6 Suppose that (x_{0}, t_{0})\in\Gamma_{1} , that is, the vertical segment
does not contain any point of \Gamma , then there exist constants c , h and \alpha such
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that

u(x, t)=0 on \{(x, t) : t\in(t_{0}-h, t_{0}), |x-x_{0}|\leq c|t_{0}-t|^{\alpha}\}

and

u(x, t)>0 on \{(x, t) : t\in(t_{0}, t_{0}+h), |x-x_{0}|\leq c|t_{0}-t|^{\alpha}\} .

Consequently \Gamma_{1} is locally H\"older continuous.

Proof. Let t_{1}<t_{0} be fixed and set h=t_{0}-t_{1} . From the monotonicity of
the support there exists R>0 such that B_{2R}(x_{0})\cap\Omega(t_{1}) is empty, that is,
u(x_{1}, t_{1})=0 for all x\in B_{2R}(x_{0}) . For t\in[t_{1}, t_{0}] , we write t=t_{1}+\delta h . Our
aim is to find a relation between \delta and dist(x_{0}, \Gamma(t))=d(\delta)R .

First we claim that there exists a \delta_{0}<1/2 such that d(\delta_{0})>1/3 . It

follows from Lemma 5.2 that if \frac{|x_{1}-x_{0}|}{R}=d(\delta)\leq 1/3 , then

[f_{t_{1}}^{t_{1}+\delta h}f_{B_{(1-d)R}(x_{1})}u^{p}(x, s)dxds] \frac{1}{p}\geq c[\frac{(1-d)^{p}R^{p}}{\delta h}]\frac{1}{p-2}

Thus we obtain

[f_{t_{1}}^{t_{1}+\delta h}f_{B_{R}(x_{0})}u^{p}(x, s)dxds] \frac{1}{p}\geq c\frac{(1-d)^{\frac{n}{p}+\frac{p}{p-2}}}{\delta^{\frac{1}{p-2}}}(\frac{R^{p}}{h})\frac{1}{p-2}

(5.13)

By Harnack principle and Lemma 5.3 we get

c \frac{(1-d)^{\frac{n}{p}+\frac{p}{p-2}}}{\delta^{\frac{1}{p-2}}}(\frac{R^{p}}{h})\frac{1}{p-2}

\leq[f_{t_{1}}^{t_{1}+\delta h}f_{B_{R}(x_{0})}u^{p}(x, s)dxds]\frac{1}{p}

\leq c(\in)[_{t_{1}\leq s\leq t_{1}+\delta h}\sup f_{B_{R}(x_{0})}u(x, s)dx]+\epsilon(\frac{R^{p}}{\delta h})\frac{1}{p-2}

\leq c(\epsilon)(\frac{R^{p}}{(1-\delta)h})^{\frac{1}{p-2}}+\epsilon(\frac{R^{p}}{\delta h})\frac{1}{p-2}
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for any small \epsilon since u(x_{0}, t_{0})=0 . Hence we get

(1-d)^{\frac{n}{p}+\frac{p}{p-2}} \leq c(\frac{\delta}{1-\delta})\frac{1}{p-2}+\epsilon .

Since \epsilon is arbitrary, d is close to 1 if \delta is small. Now we let \frac{1}{3}=(1-\delta_{0})^{\alpha}

for some a>0 . Hence we have

dist (x_{0}, \Gamma(t_{0}-(1-\delta_{0})h))\geq(1-\delta_{0})^{\alpha}R .

Repeating this process we get

dist (x_{0}, \Gamma(t_{0}-(1-\delta_{0})^{k}h))\geq(1-\delta_{0})^{k\alpha}R

for each k=1,2 , . . Finally varying h we conclude that

dist (x_{0}, \Gamma(t))\geq(\frac{t_{0}-t}{h})^{\alpha}R .

This completes the proof of the first statement. The second statement can
be proved in the same way. \square

Now we study the behavior of a solution u to (1.1) as t goes to infinity.
From Lemma 3.1 we know that

u(x, t)\leq cN^{n(p-2)+p}t^{\frac{-n}{n(p-2)+p}}{?} for 0<t<T-1 .

Considering the Harnack estimate we can state a Lemma which is converse
to Lemma 3.1.

Lemma 5.7 There exist constants c_{1} and c_{2} depending only on \Lambda , n and
p such that

u(0, t)\geq c_{1}||u_{0}||^{\frac{p}{L^{1}n(p-2)+p}}t^{\frac{-n}{n(p-2)+p}}

if t is so large that \int_{B_{R}(0)}u_{0}(x)dx\geq\frac{1}{2}||u_{0}||_{L^{1}} , where R=c_{2}||u_{0}||^{\frac{p}{L^{1}n(p-2)+p}}

Proof. From the Harnack estimate we get

f_{B_{R}(x_{0})}u_{0}(x)dx \leq\beta[(\frac{R^{p}}{t})\frac{1}{p-2}+(\frac{t}{R^{p}})\frac{n}{p}[u(x_{0}, t)]^{\frac{n(p-2)+p}{p}}]

We fix R so that +_{B_{R}(x_{O})}u_{0}(x)dx\geq 12R^{n}||u_{0}||_{L^{1}} . If t is so large that
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\beta(\frac{R^{p}}{t})^{\frac{1}{p-2}}\leq\frac{1}{4R^{n}}||u_{0}||_{L^{1}} , that is t \geq\frac{c}{||u0||^{p-2}L^{1}}R^{n(p-2)+p} , then

\frac{1}{2R^{n}}||u_{0}||_{L^{1}}\leq f_{B_{R}(x_{0})}u_{0}(x)dx

\leq\frac{1}{4R^{n}}||u_{0}||_{L^{1}}+\beta(\frac{t}{R^{p}})\frac{n}{p}[u(x_{0}, t)]^{\frac{n(p-2)+p}{p}}

Hence

u(x_{0}, t) \geq[\frac{c}{4R^{n}}||u_{0}||_{L^{1}}(\frac{R^{p}}{t})\frac{n}{p}]\frac{p}{n(p-2)+p}=||u_{0}||_{L^{1}}^{n(p-2)+p}t^{\frac{-n}{n(p-2)+p}}{?} .

The proof ended. \square

Finally we study the asymptotic behavior of u in term of fundamental
solutions. There are some results for porous medium equations and p-
Laplace equations using explicit form of Barenblatt solutions (see [13] and
[15] ) . Let F(\Lambda, M) be the class of all fundamental solutions Q to Q_{t} -

(a_{ij}(x)|\nabla Q|^{p-2}Q_{x_{i}})_{x_{j}}=0 , with Q(x, O)=M\delta(0) , where a_{ij} satisfies the
ellipticity condition \Lambda^{-1}|\xi|^{2}\leq a_{ij}(x)\xi_{i}\xi_{j}\leq\Lambda|\xi|^{2} for all x , \xi\in \mathbb{R}^{n} .

Theorem 5.8 Let R(t)=t^{\frac{1}{n(p-2)+p}} , then

lim inft arrow\infty Q\in F(\Lambda,||u||_{L^{1}})(\sup_{B_{R(t)}(0)}t^{\frac{n}{n(p-2)+p}}|u(x, t)-Q(x, t)|)=0 .

Proof. We prove by contradiction. Suppose the assertion is not true,
then there is a sequence of time \tau_{i}

– \infty such that for some \epsilon and for all
Q \in F(\Lambda, ||u||_{L^{1}})\sup_{B_{\tau}(0)}\tau_{i}^{\frac{n}{\kappa}}|u(x, \tau_{i})-Q(x, \tau_{i})|>\epsilon . We define v^{i}(x, t)=

\tau_{i}^{\frac{n}{\kappa}}u(\tau_{i}^{\frac{1}{\kappa}}x, \tau_{i}t) , then v^{i} is solution to v_{t}^{i}-(a_{ij}(\tau_{i}^{1/\kappa}x, \tau_{i}t)|\nabla v^{i}|^{p-2}v_{x_{i}}^{i})_{x_{j}}=0 ,

with v^{i}(x, 0)=\tau_{i}^{n/\kappa}u_{0}(\tau_{i}^{\frac{1}{\kappa}}x) . We may assume that [a_{ij}(\tau_{i}^{1/\kappa}x)] converges to
[b_{ij}(x)] weakly, where [b_{ij}(x)] satisfies the same ellipticity condition. Since
v^{i}(x, 0)arrow||u_{0}||_{L^{1}}\delta(0) as iarrow\infty , v^{i}arrow Q uniformly on each compact subset
K\subset R^{n}\cross R^{+} for some Q\in F(\Lambda, ||u_{0}||_{L^{1}}) . In particular

lim sup |v^{i}(x, 1)-Q(x, 1)|=0 .
iarrow\infty_{B_{1}(0)}
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We define \overline{Q}^{i}(x, t) by

Q(x, t)=\tau_{i}^{\frac{n}{k}}\overline{Q}^{i}(\tau_{i}^{\frac{1}{k}}x, \tau_{i}t) .

Now we see that \overline{Q}^{i}\in F(\Lambda, ||u_{0}||_{L^{1}}) and

\lim_{iarrow\infty}(_{B_{\frac{\sup_{1}}{k’}}(0)}\tau_{i}^{\frac{n}{k}}|u(x, \tau_{i})\tau_{i}-\overline{Q}^{i}(x, \tau_{i})|)

= \lim sup |\tau_{i}^{\frac{n}{k}}u(\tau^{\frac{1}{k}}x, \tau_{i})-\tau^{\frac{n}{k}}\overline{Q}^{i}(\tau_{i}^{\frac{1}{k}}x, \tau_{i})|

iarrow\infty_{B_{1}(0)}

= \lim_{iarrow\infty}\sup_{B_{1(0)}}|v^{i}(x, 1)-Q(x, 1)|=0

and this completes the proof \square

We note that if a_{ij} is identity matrix, then F(\Lambda, ||u_{0}||_{L^{1}}) has only a
single element, that is, the explicit Barenblatt solution to evolutionary p-
Laplace equation. This will corresponds to the known results (see [15]).
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