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Global hypoellipticity of subelliptic operators
on closed manifolds

Hideki OMORI and Takao KOBAYASHI
(Received November 25, 1998)

Abstract. We give a criterion of global hypoellipticity on closed manifolds for cer-
tain second order operators. Applying this criterion, global hypoellipticity of horizontal
Laplacians and an example which has no infinitesimally transitive points are studied.
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1. Introduction

A differential operator L on a C^{\infty} manifold M is hypoelliptic, if any
distribution solution u of the equation Lu=f is smooth at the place where
f is smooth.

Similarly, L is called to be globally hypoelliptic, if Lu\in C^{\infty}(M) for a
distribution u implies u\in C^{\infty}(M) . Here C^{\infty}(M) is the space of smooth
functions on M .

It is obvious that if L is hypoelliptic, then L is globally hypoelliptic.
In this paper, we concern with the global hypoellipticity of a differential
operator on a closed (compact connected without boundary) manifold M\iota

Let X_{1} , \ldots , X_{m} be smooth (real) tangent vector fields on M . The
differential operator L which we shall treat in this paper is given in the
form

L:= \sum_{i=1}^{m}X_{i}^{*}X_{i} , (1.1)

where X_{i}^{*} is the formal adjoint operator of X_{i} with respect to a fixed smooth
Riemannian metric on M. Let \mathcal{V} be the linear space spanned by X_{i} ’s

\mathcal{V}:=\{\sum_{i=1}^{m}f_{i}X_{i} : f_{i}\in C^{\infty}(M)\}’. (1.2)
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and put

\mathfrak{h}:=the Lie algebra generated by V. (1.3)

Recall first the following theorem which is directly obtained by applying
the theorem of H\"ormander [6] to our closed manifold.

Theorem (H\"ormander) If \mathfrak{h} is infifinitesimally transitive at every p\in M ,
i.e. , \mathfrak{h}(p)=T_{p}M for all p\in M , then L given by (1.1) is hypoelliptic.

Now, for every Y\in \mathcal{V} , we denote by exp tY the one parameter diffe0-
morphism group generated through integral curves by V, and put

\mathscr{K}:=the closed subgroup generated by {exp Y : Y\in \mathcal{V} }. (1.1)

In a sense \mathscr{K} is a Lie group (generalized Lie group [11]), but in general its Lie
algebra (see (2.4)) is much bigger than \mathfrak{h} as it will be seen in Examples 1-3
below.

Remark that every C^{\infty} diffeomorphism \varphi of M onto itself acts as the
adjoint action on the space of smooth vector fields, i.e., for a vector field Y ,
we define it by

(Ad(\mbox{\boldmath $\varphi$})Y) f:=\varphi^{*}Y\varphi f-1^{*} for f\in C^{\infty}(M) .

If \mathfrak{h} is infinitesimally transitive at every p\in M , then the implicit function
theorem gives that the group \mathscr{K} acts transitively on M . However the con-
verse does not hold in general. This otccurs in general if the Lie algebra \mathfrak{h}

has not the property that

Ad(exp Y) \mathfrak{h}=\mathfrak{h} for all Y\in \mathfrak{h} .

If a Lie algebra \mathfrak{h} has not this property, then \mathfrak{h} cannot be the Lie algebra
of any infifinite dimensional Lie group whatever the definition of infinite
dimensional Lie groups is (cf. [11]).

On the other hand, if \mathscr{H} is not transitive on M and the orbits give
a smooth fiber bundle structure over some open subset of the orbit space
M/\mathscr{K}, then L is not globally hypoelliptic (see [6]).

By the above observation, the case where the group \mathscr{X} acts transitively
on M, but the infinitesimal transitivity of \mathfrak{h} fails on a subset of M or on the
whole space M is the most interesting. There are several examples of such
Lie algebra \mathfrak{h} :
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Fig. 1. Examples 1 and 2

Example 1. M=\mathbb{T}^{2}=[0,2\pi]\cross[0,2\pi] glued each opposite edges together:
Let x , y be the coordinate functions on \mathbb{T}^{2} . We consider a differential
operator

L=X_{1}^{*}X_{1}+X_{2}^{*}X_{2}=-\partial_{x}^{2}-((x)^{2}\partial_{y}^{2}, (1.5)

where X_{1}=\partial_{x} , X_{2}=(\partial_{y} and \zeta=((x) is a smooth function on \mathbb{T}^{2} depend-
ing only on x , but \zeta=0 on some interval [a, b] such that 0<a<b<2\pi
and \zeta>0 on the complement.

Example 2. M=\mathbb{T}^{2} : Let X_{1}=\partial_{x} and X_{2}=(\partial_{y} , where \zeta=\zeta(x, y) is a
smooth function such that \zeta vanishes identically on a compact set K_{\neq}\subset \mathbb{T}^{2} ,
but ( >0 otherwise. Consider the differential operator

L=X_{1}^{*}X_{1}+X_{2}^{*}X_{2}=-\partial_{x}^{2}-(^{2}\partial_{y}^{2}-2((_{y}\partial_{y}. (1.6)

We assume that \mathscr{H} generated by X_{1} and X_{2} is transitive on \mathbb{T}^{2} (see Fig-
ure 1).

Example 3. M=\mathbb{T}^{3} : Let x , y , z be the coordinate functions on \mathbb{T}^{3} . Con-
sider vector fields X_{1}=\partial_{x} , X_{2}=((x)\partial_{y}, X_{3}=\eta(x, y)\partial_{z} , and the differen-
tial operator

L=X_{1}^{*}X_{1}+X_{2}^{*}X_{2}+X_{3}^{*}X_{3}=-\partial_{x}^{2}-((x)^{2}\partial_{y}^{2}-\eta(x, y)^{2}\partial_{z}^{2}, (1.7)

where \zeta=\zeta(x) and \eta=\eta(x, y) are smooth functions whose supports are
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Fig. 2. Example 3

mutually disjoint and depend only on x and x , y , respectively. Hence the
commutator [X_{2}, X_{3}]=0 . It is obvious that dim \mathfrak{h}(p)\leq 2 at every p\in \mathbb{T}^{3} .
Thus there is no infinitesimal transitive point. However, \mathscr{H} acts transitively
on \mathbb{T}^{3} whenever ( and \eta do not identically vanish (see Figure 2).

It is known in [4] that Example 1 is globally hypoelliptic. However,
the proof is based on the feature that the operator L in (1.5) commutes
with elliptic operators. Using this feature and the transitivity of \mathscr{H}, we
obtain the L_{2} Irregularity theorem, where L_{2}-regularity theorem means the
following: The distribution solution u of Lu=f is contained in L_{2} whenever
f\in L_{2} (cf. Lemma 3.1).

In Example 1, L commutes with \partial_{y} and hence [L, L-\partial_{y}^{2}]=0 , where
L-\partial_{y}^{2} is elliptic. Thus, if Lu\in C^{\infty} , then L(L-\partial_{y}^{2})^{m}u\in C^{\infty} . Hence
(L-\partial_{y}^{2})^{m}u\in L_{2} for any m, and then u\in C^{\infty} by using elliptic regularity
theorem.

Amano [2] proved the global hypoellipticity of operators involving Ex-
ample 2. However, the proof was based essentially on the condition that
there is a point where \mathfrak{h} is infinitesimally transitive. Thus, the global hy-
poellipticity of operators of the type of Example 3 has not been proved.

In this paper, we first give a criterion of global hypoellipticity (cf. The-
orem 3.3) in a slightly different shape from those given by Fedi\dot{i}[3] and
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Amano [2], and by following several estimates in [2] that the operator L
in Example 3 is globally hypoelliptic, if ( and \eta are smooth nonnegative
functions (cf. Section 4).

In [10], the first author extends Example 1 to the horizontal Laplacian
(cf. Section 5) of a G-connection on a G-principal bundle over a closed man-
ifold where G is a compact Lie group. In the case of horizontal Laplacian,
the vertical part of \mathfrak{h}(p) corresponds to the holonomy Lie algebra of the G-
connection at the reference point p, and the transitivity of \mathscr{K} corresponds
to that the holonomy group is the total group G . Hence the horizontal
Laplacian of a G-connection is globally hypoelliptic, if the holonomy group
is G . This includes an example where \mathfrak{h} is nowhere infinitesimally transitive.

Remark now the horizontal Laplacian \triangle_{H} is defined not only on G-
principal bundle but also on every Riemannian fiber bundle (M, N, \pi) . The
feature of a G-connection is that every element of G acts on the total space
M as a fiber preserving isometry which leaves \triangle_{\mathcal{H}} invariant, and G acts
transitively on each fiber.

Taking the criterion in Theorem 3.3 in Section 3 into account, we define
here a notion of fiber preserving diffeomorphisms which leave \triangle_{\mathcal{H}} almost
invariant. That is, a volume preserving and fiber preserving diffeomorphism
\varphi on M is called a partially conformal transformation, if there is a smooth
function f_{\varphi} on M such that \varphi^{*}\triangle_{H}\varphi^{-1^{*}}=e^{f_{\varphi}}\triangle_{H} . Clearly, partially con-
formal transformations form a group, which could be infinite dimensional.
The infinitesimal version of such transformations, that is, an infifinitesimal
partially conformal transformation is a divergence free vector field X on M,
tangents to each fiber such that [X, \triangle_{7\{}]=f_{X}\triangle_{H} , where f_{X} is a smooth
function depending on X . All infinitesimal partially conformal transforma-
tions form a Lie algebra.

We show in this paper that if the holonomy group acts transitively
on M, and if infinitesimal partially conformal transformation group acts
infinitesimally transitive along each fiber, then global hypoellipticity holds
for the horizontal Laplacian of a (non-linear) connection on a fiber bundle
with a compact fiber and a compact base space (Theorem 5.1).

See Section 5 for the precise notion of infinitesimal transitivity along
each fiber. Note that there are examples of connections such that the in-
finitesimal holonomy is nowhere transitive but the holonomy group is tran-
sitive on the total space.
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2. Positivity on the Orthogonal Space to Constant Functions

We fix a Riemannian metric on M . We put

\mathcal{E}_{\perp}(M):=\{f\in C^{\infty}(M) : \int_{M}fd\mu=0\}’.

where d\mu is the volume element induced by the fixed Riemannian metric.
The space \mathcal{E}_{\perp}(M) is the one of all smooth functions which are orthog0-
nal to constants functions. We denote by \langle f, h\rangle_{0}:=\int_{M}f hd\mu the usual
L_{2}-inner product (we consider real valued functions) and by ||f||_{0} the L_{2} -

norm Let H^{k}(M) be the usual Sobolev space with the norm ||f||_{k} given by
||(1+\triangle)^{k/2}f||_{0} by using the Laplacian with respect to an arbitrarily fixed
C^{\infty} Riemannian metric. It is known that the space H^{k}(M) is indepen-
dent of the choice of Riemannian metric and H^{-k}(M) is the dual space of
H^{k}(M) .

We put

H_{\perp}^{k}(M):=\{f\in H^{k}(M) : \langle f, 1\rangle_{0}=0\}

We remark first the following:

Theorem 2.1 Let L be the differential operator (1.1) and \mathscr{H} the closed
Lie group defifined by (1.4). If the \mathscr{H} acts transitively on M, then L is
positive defifinite on \mathcal{E}_{\perp}(M) , that is, there is a constant c>0 such that

\int_{M}Lffd\mu\geq c||f||_{0}^{2} for any f\in \mathcal{E}_{\perp}(M) . (2.1)

For the proof of Theorem 2.1, suppose there were no such a posoitive
constant c . The assumption gives an existence of a sequence \{f_{n}\}_{n} in \mathcal{E}_{\perp}(M)

such that ||f_{n}||_{0}=1 and that

\lim_{narrow\infty}\langle Lf_{n}, f_{n}\rangle_{0}=0 . (2.2)

So to obtain a contradiction, it is enough to show that (2.2) implies

\lim_{narrow\infty}||f_{n}||_{0}=0 .

Since \langle Lf_{n}, f_{n}\rangle_{0}=\sum_{i=1}^{m}||X_{i}f_{n}||_{0}^{2} , the definition (1.2) of \mathcal{V} and (2.2) give

\lim_{narrow\infty}||Xf_{n}||_{0}=0 for all X\in \mathcal{V} . (2.3)
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Next we introduce another Lie algebra \tilde{\mathfrak{h}} as

\tilde{\mathfrak{h}}:=the Lie algebra spaned by {Ad(\mbox{\boldmath $\varphi$})X : X\in \mathcal{V} , \varphi\in \mathscr{X} } , (2.4)

where \mathscr{H} is the group (1.4). This \tilde{\mathfrak{h}} can be viewed as the Lie algebra of \mathscr{K}

(see Lemma 2.3).

Lemma 2.2 For every Y\in\tilde{\mathfrak{h}} , we have

\lim_{narrow\infty}||Yf_{n}||_{-1}=0 . (2.5)

Proof. Every Y\in\tilde{\mathfrak{h}} is a linear combination of elements written in the
form

Ad(exp Y_{\ell}\cdots exp Y_{2} exp Y_{1} )X,

with Y_{1} , Y_{2} , \ldots , Y_{\ell} , X\in \mathcal{V} . Thus it is enough to prove (2.5) for the vector
field

Z_{\ell}=Ad ( \exp Y_{\ell}\cdots exp Y_{2} exp Y_{1} )X.

For \ell=0 , it is trivial that \lim_{narrow\infty}||Xf_{n}||_{-1}=0 by (2.3) and ||Xf_{n}||_{-1}\leq

||Xf_{n}||_{0} .
Now suppose (2.5) holds for Z_{\ell-1} . This implies \lim_{narrow\infty}||Z_{\ell-1}f_{n}||_{-1}=

0 and we have only to prove that

\lim_{narrow\infty}||Ad(\exp Y_{\ell})Z_{\ell-1}f_{n}||_{-1}=0 .

Remark that Ad(exp Y_{\ell} ) Z_{\ell-1}f_{n}=(\exp Y_{\ell})^{*}Z_{\ell-1}(\exp-Y_{\ell})^{*}f_{n} , and (exp Y_{\ell})^{*}

on a closed manifold M leaves the Sobolev space H_{\perp}^{-1}(M) invariant. Hence
we have only to show that

\lim_{narrow\infty}||Z_{\ell-1}(\exp-Y_{\ell})^{*}f_{n}||_{-1}=0 .

Now, remark that

Z_{\ell-1}( \exp-Y_{\ell})^{*}f_{n}=Z_{\ell-1}f_{n}-\int_{0}^{1}Z_{\ell-1}(\exp-tY_{\ell})^{*}Y_{\ell}f_{n}dt .

Since \lim_{narrow\infty}||Y_{\ell}f_{n}||_{0}=0 by (2.3), we see

\lim_{narrow\infty}||(\exp-tY_{\ell})^{*}Y_{\ell}f_{n}||_{0}=0 .
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This implies

\lim_{narrow\infty}||Z_{\ell-1}(\exp-tY_{\ell})^{*}Y_{\ell}f_{n}||_{-1}=0 ,

since Z_{\ell-1} is a differential operator of order 1. Therefore,

||Z_{\ell-1}(\exp-Y_{\ell})^{*}Y_{\ell}f_{n}||_{-1}

\leq||Z_{\ell-1}f_{n}||_{-1}+\int_{0}^{1}||Z_{\ell-1}(\exp-tY_{\ell})^{*}Y_{\ell}f_{n}||_{-1}dt -arrow 0 ,

by using the uniform continuity in t . \square

The following is due to Sussmann [14].

Lemma 2.3 (Sussmann) The group \mathscr{H} acts transitively on M, if and
only if \tilde{\mathfrak{h}} is infifinitesimal transitive at every p\in M

Proof of Theorem 2.1. Suppose \mathscr{H} acts transitively on Mr By Lemma 2.3,
we see at every p\in M that T_{p}M=\tilde{\mathfrak{h}}(p) . Since M is compact, there are
finite number of elements Y_{1} , . . ’

Y_{\ell}\in\tilde{\mathfrak{h}} such that \{Y_{1}(p), , Y_{\ell}(p)\} spans
the tangent space T_{p}M at every p\in M . By Lemma 2.2, we see that

\lim_{narrow\infty}||Y_{i}f_{n}||_{-1}=0 for every 1\leq i\leq\ell .

Hence, the inequality

||f_{n}||_{0}\leq C(||Y_{1}f_{n}||_{-1}+ +||Y_{\ell}f_{n}||_{-1})

gives \lim_{narrow\infty}||f_{n}||_{0}=0 , which completes the proof of Theorem 2.1. \square

By Theorem 2.1, we have the following apriori estimate.

Corollary 2.4 For any integer N>0 , the following estimate holds for
every u\in H^{2}(M) ,

||u||_{0}\leq C||Lu||_{0}+D_{N}||u||_{-N} , (2.6)

where C and D_{N} are positive constants, and D_{N} may depend on N but C
is independent of N

The global hypoellipticity follows from (2.6), if L satisfies several sup-
plementary conditions.
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3. Sufficient Conditions for Global Hypoellipticity

The inequality (2.6) yields the L_{2}-regularity theorem, if L commutes
with an elliptic operator \tilde{\Lambda} of order m>0 . Namely, we have the following:

Lemma 3.1 Suppose (2.6) holds for L. If L commutes with an elliptic
operator \tilde{\Lambda} of order m>0 , then Lu\in H_{\perp}^{0}(M) for some distribution u
implies u\in H_{\perp}^{0}(M) .

Proof. We assume m=1 without loss of generality and considering
cI+\tilde{\Lambda} if necessary, we may assume that \tilde{\Lambda}_{\epsilon}=I+\epsilon\tilde{\Lambda} gives for every \epsilon>0

an isomorphism of H^{s+1}(M) onto H^{s}(M) for every s .
If u\in H^{-N}(M) , then we have \tilde{\Lambda}_{\epsilon}^{-(N+2)}u\in H^{2}(M) , and by (2.6), we

have

||\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{0}\leq C||L\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{0}+D_{N}||\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{-N} .

Since u\in H^{-N}(M) , we see that \lim_{\epsilonarrow 0}||\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{-N}=||u||_{-N}<\infty .
Suppose Lu\in H^{0}(M) . Since L\tilde{\Lambda}_{\epsilon}^{-(N+2)}u=\tilde{\Lambda}_{\epsilon}^{-(N+2)}Lu , we have

\lim_{\epsilonarrow 0}||L\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{0}=\lim_{\epsilonarrow 0}||\tilde{\Lambda}_{\epsilon}^{-(N+2)}Lu||_{0}=||Lu||_{0}<\infty .

This implies that

||u||_{0}= \lim_{\epsilonarrow 0}||\tilde{\Lambda}_{\epsilon}^{-(N+2)}u||_{0}<\infty ,

and u\in H^{0}(M) . Thus we obtain the L_{2} -regularity. \square

Since L commutes with an elliptic operator \tilde{\Lambda} , we see also that L is
globally hypoelliptic by the remark in the introduction.

By the above observation we see that inequality (2.6) and the norm
estimate of the commutator with an elliptic operator plays a crucial role.

Indeed, even if there is no elliptic operator which commutes with L ,
several useful sufficient conditions for global hypoellipticity has been known
by Amano [2], Fedi\dot{i}[3] and Morimoto [9]. In what follows we give a short
summary of their results by following mainly [2] and [3], but the statement
of the result is given in a little different shape.

We call a pseud0-differential operator \Lambda a regulator, if \Lambda gives an is0-
morphism H^{s+1}(M) onto H^{s}(M) for every s\in \mathbb{R} . The pseud0-differential
operator with the total symbol (|\xi|^{2}+1)^{1/2} is an example of regulators,
where |\xi| is the norm with respect to the Riemannian metric on M (cf. [12],
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[16] ) . We first remark the following:

Proposition 3.2 If L satisfifies the inequality (2.6) and the following in-
equality (3.1):

For every \delta>0 and for every integer N>0 , there is a constant
C_{N,\delta}>0 such that

||((ad\Lambda)^{\ell}L)u||_{-\ell}\leq\delta||Lu||_{0}+C_{N,\delta}||u||_{-N} \ell=1,2 , (3.1)

for all u\in C^{\infty}(M) , where (ad \Lambda ) L=[\Lambda, L] .
Then for every integers k and N>0 , and for every \delta>0 , there exist

positive constants C_{k} , D_{N,k} and C_{N,\delta,k} such that the inequalities

||u||_{k}\leq C_{k}||Lu||_{k}+D_{N,k}||u||_{-N} , (3.2a)

||((ad\Lambda)L)u||_{k-1}\leq\delta||Lu||_{k}+C_{N,\delta,k}||u||_{-N} , (3.2b)

||((ad\Lambda)^{2}L)u||_{k-2}\leq\delta||Lu||_{k}+C_{N,\delta,k}||u||_{-N} (3.2c)

hold for all u\in C^{\infty}(M) .

Proof First we prove inequalities (3.2a) by induction for positive integers
k . From (2.6) and (3.1), inequalities (3.2a) hold for k=0. Suppose that
inequalities (3.2a) hold for k\geq 0 . Then we have

||((ad\Lambda)L)u||_{k}

=||\Lambda((ad\Lambda)L)u||_{k-1}

\leq||((ad\Lambda)L)\Lambda u||_{k-1}+||((ad\Lambda)^{2}L)u||_{k-1}

\leq\delta||L\Lambda u||_{k}+C_{N+1,\delta,k}||u||_{-N}+||((ad\Lambda)^{2}L)u||_{k-1} . (3.3)

Remark that

||((ad\Lambda)^{2}L)u||_{k-1}

\leq||((ad\Lambda)^{2}L)\Lambda u||_{k-2}+||((ad\Lambda)^{3}L)u||_{k-2}

\leq||((ad\Lambda)^{2}L)\Lambda u||_{k-2}+B_{k}||u||_{k}

\leq||((ad\Lambda)^{2}L)\Lambda u||_{k-2}+B_{k}(C_{k}||Lu||_{k}+D_{N,k}||u||_{-N}) ,

with some constant B_{k)} because (ad \Lambda)^{3}L is an operator of order 2. Applying
induction hypothesis (3.2c) to the first term in the right hand side and
interpolation inequality to ||Lu||_{k} , we have
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||((ad\Lambda)^{2}L)u||_{k-1}

\leq\delta||L\Lambda u||_{k}+\delta||Lu||_{k+1}+C_{N,\delta,k}’||u||_{-N}

\leq 2\delta||Lu||_{k+1}+\delta||((ad\Lambda)L)u||_{k}+C_{N,\delta,k}’||u||_{-N} . (3.4)

Substituting (3.4) into (3.3), we obtain

||(( ad\Lambda)L)u||_{k}\leq\frac{3\delta}{1-2\delta}||Lu||_{k+1}+C_{N+1,\delta,k}’||u||_{-N} .

Hence we have the desired inequality

||((ad\Lambda)L)u||_{k}\leq\delta||Lu||_{k+1}+C_{N,\delta,k+1}||u||_{-N} . (3.5)

Inserting (3.5) to (3.4), we have the desired one for ||((ad\Lambda)^{2}L)u||_{k-1} .
Finally, we compute

||u||_{k+1}=||\Lambda u||_{k}

\leq C_{k}||L\Lambda u||_{k}+D_{N+1,k}||u||_{-N}

\leq C_{k}||Lu||_{k+1}+C_{k}||((ad\Lambda)L)u||_{k}+D_{N+1,k}||u||_{-N} .

Applying (3.5) to the second term, we have the desired inequality for ||u||_{k+1} .
For negative integer we use another induction. Suppose that inequalities

(3.2a) hold for k\leq 0 . Using [\Lambda^{-1}, L]=-\Lambda^{-1}((ad\Lambda)L)\Lambda^{-1} , from (3.2b) we
have

||[\Lambda^{-1}, L]u||_{k}=||((ad\Lambda)L)\Lambda^{-1}u||_{k-1}

\leq\delta||L\Lambda^{-1}u||_{k}+C_{N-1,\delta,k}||u||_{-N}

\leq\delta||Lu||_{k-1}+\delta||[\Lambda^{-1}, L]u||_{k}+C_{N-1,\delta,k}||u||_{-N} .

Taking \delta=1/2 , we have

||[\Lambda^{-1}, L]u||_{k}\leq||Lu||_{k-1}+D_{N,k}’||u||_{-N} . (3.6)

Using (3.2a) to \Lambda^{-1}u , we have

||u||_{k-1}\leq C_{k}||L\Lambda^{-1}u||_{k}+D_{N-1,k}||u||_{-N}

\leq C_{k}||Lu||_{k-1}+C_{k}||[\Lambda^{-1}, L]u||_{k}+D_{N-1,k}||u||_{-N} .

Substituting (3.6) to the second term, we see

||u||_{k-1}\leq C_{k-1}||Lu||_{k-1}+D_{N,k-1}||u||_{-N} . (3.7)
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Next using [ \Lambda^{-1} , (ad \Lambda ) L] =-\Lambda^{-1}((ad\Lambda)^{2}L)\Lambda^{-1} we have

||((ad\Lambda)L)u||_{k-2}\leq||((ad\Lambda)L)\Lambda^{-1}u||_{k-1}+|| [ \Lambda^{-1} , (ad \Lambda)L ] u||_{k-1}

\leq||((ad\Lambda)L)\Lambda^{-1}u||_{k-1}+||((ad\Lambda)^{2}L)\Lambda^{-1}u||_{k-2} .

Applying induction hypothesis (3.2b), (3.2c) and then (3.6) to the right
hand side, we obtain the desired one for ||((ad\Lambda)L)u||_{k-2} :

||((ad\Lambda)L)u||_{k-2}\leq\delta||Lu||_{k-1}+C_{N,\delta,k-1}||u||_{-N} . (3.8)

Finally we compute ||((ad\Lambda)^{2}L)u||_{k-3} as follow:

||((ad\Lambda)^{2}L)u||_{k-3}

\leq||((ad\Lambda)^{2}L)\Lambda^{-1}u||_{k-2}+||\Lambda^{-1}((ad\Lambda)^{3}L)\Lambda^{-1}u||_{k-2}

\leq\delta||L\Lambda^{-1}u||_{k}+C_{N-1,\delta,k}||u||_{-N}+B_{k}||u||_{k-2} ,

because \Lambda^{-1}((ad\Lambda)^{3}L)\Lambda^{-1} is an operator of order 0. Using (3.6) and the
general interpolation inequality

||u||_{k-2}\leq\epsilon||u||_{k-1}+C_{N,\epsilon,k}’||u||_{-N} for any \epsilon>0 , (3.8)

we see that

||((ad\Lambda)^{2}L)u||_{k-3}\leq\delta||Lu||_{k-1}+C_{N,\delta,k-1}||u||_{-N} .

This completes the induction for negative integers. \square

The trick of obtaining global hypoellipticity is as follows: Setting \Lambda_{\epsilon}=

I+\epsilon\Lambda , we use the operator \Lambda_{\epsilon}^{-n} for a positive integer n as a mollifier. To
compute the commutator [\Lambda_{\epsilon}^{-n}, L] , it is useful to remark that

[ \Lambda_{\epsilon}^{-n}, L]=\sum_{\ell=1}^{n}(-1)^{\ell} (\begin{array}{l}n\ell\end{array}) \Lambda_{\epsilon}^{-\ell}((ad\Lambda_{\epsilon})^{\ell}L)\Lambda_{\epsilon}^{-n} (3.10)

holds for every positive integer n , and that (ad \Lambda_{\epsilon} ) L=\epsilon (ad \Lambda ) L . Using
this we show the following theorem.

Theorem 3.3 Let L be a differential operator on a closed manifold M of
order 2. If there is a regulator \Lambda such that a system of inequalities (2.6)
and (3.1) holds for L , then L is globally hypoelliptic on M

Proof First we show that for every \epsilon>0 , every positive integers k , n
and a u\in H^{k+2-n}(M) there exists a positive constant D_{N,k,n} independent
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of \epsilon such that

||[ \Lambda_{\epsilon}^{-n}, L]u||_{k}\leq\frac{1}{2}||L\Lambda_{\epsilon}^{-n}u||_{k}+D_{N,k,n}||\Lambda_{\epsilon}^{-n}u||_{-N} . (3.11)

To see this, we remark first that (3.10) gives for u\in H^{k+2-n}(M)

||[ \Lambda_{\epsilon}^{-n}, L]u||_{k}\leq\sum_{\ell=1}^{n} (\begin{array}{l}np\end{array}) ||\Lambda_{\epsilon}^{-\ell}\epsilon^{\ell}((ad\Lambda)^{\ell}L)\Lambda_{\epsilon}^{-n}u||_{k} . (3.14)

Remark that for a fixed v\in H^{k}(M) , there is a constant B_{v} depending on v

but independent of \epsilon such that

||\Lambda_{\epsilon}^{-\ell}v||_{k}\leq B_{v}||v||_{k-\ell} . (3.13)

Using (3.13), we see if u\in H^{k+2-n}(M) is fixed, then there is a constant C_{k}

independent of \epsilon such that

||[ \Lambda_{\epsilon}^{-n}, L]u||_{k}\leq C_{k}\sum_{\ell=1}^{n}\epsilon^{\ell}||((ad\Lambda)^{\ell}L)\Lambda_{\epsilon}^{-n}u||_{k-\ell} .

Using (3.2b) and (3.2c) for \ell=1,2 , and using that (ad \Lambda_{\epsilon})^{\ell}L is an operator
of order 2 for any \ell\geq 3 , we have the following: For every \delta>0 and for
sufficiently large N. there is a constant D_{N,k,n} independent of \epsilon such that

||[\Lambda_{\epsilon}^{-n}, L]u||_{k}\leq\delta||L\Lambda_{\epsilon}^{-n}u||_{k}+D_{N,k,n}||\Lambda_{\epsilon}^{-n}u||_{-N} .

Here we have used the interpolation inequality (3.9). This implies (3.11).
Now the theorem follows from the next Lemma 3.4. \square

Lemma 3.4 Suppose that L satisfifies for every integer k>0 and for a

sufficiently large N,

||u||_{k}\leq C_{k}||Lu||_{k}+D_{N,k}||u||_{-N} for u\in H^{k+2}(M) , (3.14)

and suppose that for every positive integers k , n and for u\in H^{k+2-n}(M) ,
the following inequality holds:

||[ \Lambda_{\epsilon}^{-n}, L]u||_{k}\leq\frac{1}{2}||L\Lambda_{\epsilon}^{-n}u||_{k}+D_{N,k,n}||\Lambda_{\epsilon}^{-n}u||_{-N} , (3.15)

where D_{N,k,n} does not depend on \epsilon but may depend on u . If u\in H^{-N}(M)

and Lu\in C^{\infty}(M) , then u\in C^{\infty}(M) .

Proof. Suppose u\in H^{-N}(M) . By setting n=k+N+2, we have
\Lambda_{\epsilon}^{-n}u\in H^{k+2}(M) . Note that applying (3.15) to the right hand side of the
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following inequality

||L\Lambda_{\epsilon}^{-n}u||_{k}\leq||\Lambda_{\epsilon}^{-n}Lu||_{k}+||[\Lambda_{\epsilon}^{-n}, L]u||_{k} ,

we have

||L\Lambda_{\epsilon}^{-n}u||_{k}\leq 2||\Lambda_{\epsilon}^{-n}Lu||_{k}+2D_{N,k,n}||\Lambda_{\epsilon}^{-n}u||_{-N} , (3.16a)

||[\Lambda_{\epsilon}^{-n}, L]u||_{k}\leq||\Lambda_{\epsilon}^{-n}Lu||_{k}+2D_{N,k,n}||\Lambda_{\epsilon}^{-n}u||_{-N} . (3.16b)

Using (3.14) for \Lambda_{\epsilon}^{-n}u\in H^{k+2}(M) , we see

||\Lambda_{\epsilon}^{-n}u||_{k}

\leq C_{k}||L\Lambda_{\epsilon}^{-n}u||_{k}+D_{N,k}||\Lambda_{\epsilon}^{-N}u||_{-N}

\leq C_{k}||\Lambda_{\epsilon}^{-n}Lu||_{k}+C_{k}||[\Lambda_{\epsilon}^{-n}, L]u||_{k}+D_{N,k}||\Lambda_{\epsilon}^{-N}u||_{-N} . (3.17)

Substituting (3.16b) into the right hand side of (3.17), we obtain

||\Lambda_{\epsilon}^{-n}u||_{k}\leq 2C_{k}||\Lambda_{\epsilon}^{-n}Lu||_{k}+D_{N,k,n}’||\Lambda_{\epsilon}^{-n}u||_{-N} . (3.18)

Note that C_{k} and D_{N,k,n}’ do not depend on \epsilon . Since u\in H^{-N}(M) , we see

\lim_{\epsilonarrow 0}||\Lambda_{\epsilon}^{-n}u||_{-N}=||u||_{-N}<\infty .

If Lu\in C^{\infty}(M) in addition, then we have \lim_{\epsilonarrow 0}||\Lambda_{\epsilon}^{-n}Lu||_{k}=||Lu||_{k}<\infty .
From (3.18) these inequalities imply that ||u||_{k}= \lim_{\epsilonarrow 0}||\Lambda_{\epsilon}^{-n}u||_{k}<\infty ,
which shows u\in H^{k}(M) . Since k is an arbitrary integer, we have u\in

C^{\infty}(M) . \square

4. Global Hypoellipticity for Example 3

Since general theory for the global hypoellipticity is still hard to con-
struct, we restrict our concern in this section to the case Example 3. We
shall show in this section that (3.1) is obtained under the assumption that

( (x)\geq 0 , \eta(x, y)\geq 0 . (4.1)

The proof is given by showing the inequalities requested in Theorem 3.3.
The condition (4.1) gives for |\beta|\leq 2 that

\partial^{\beta}(^{2}(p)=0 where \zeta^{2}(p)=0 , \partial^{\beta}\eta^{2}(p)=0 where \eta^{2}(p)=0 .

Let Z_{\zeta,\eta}=\{p\in \mathbb{T}^{3}; \zeta(p)=\eta(p)=0\} and W be an arbitrary open subset
of \mathbb{T}^{3} such that \overline{W}\cap Z_{(,\eta}=\emptyset . Using the assumption that the supports of
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(and \eta are mutually disjoint, we see easily that for every multi-index \beta ,

there exists C_{\beta}>0 such that

|\partial^{\beta}\zeta^{2}|\leq C_{\beta}|\zeta^{2}| , |\partial^{\beta}\eta^{2}|\leq C_{\beta}|\eta^{2}| on W

It follows for every \beta , |\beta|\leq 2 , that

||L_{(\beta)}u||_{0}\leq C||Lu||_{0} for u\in C_{0}^{\infty}(W) , (4.2)

where

L_{(\beta)}u=-(\partial^{\beta}(^{2})\partial_{y}^{2}u-(\partial^{\beta}\eta^{2})\partial_{z}^{2}u .

Let \Lambda be the pseud0-differential operator with symbol (|\xi|^{2}+1)^{1/2} . We use
\Lambda as a regulator. Since the symbol does not contain the variables of the
base manifold, the product formula on \mathbb{T}^{3} gives:

[L, \Lambda^{s}]- \sum C_{\gamma}(\Lambda^{s})^{(\gamma)}L_{(\gamma)}\in\psi DO^{s-N} , (4.3)
1\leq|\gamma|\leq N+2

where \psi DO^{r} is the space of all pseudo differential operators of order r and
(\Lambda^{s})^{(\gamma)} is the one with symbol \partial^{\gamma}((|\xi|^{2}+1)^{s/2}) . Remark that (\Lambda^{s})^{(\gamma)} is an
operator of order s-|\gamma| . Using (4.2) and the interpolation inequality

||v||_{-1}\leq\delta||v||_{0}+C_{N}||v||_{-N} ,

we have for every positive \delta and for \beta with 1\leq|\beta|\leq 2 , that

||L_{(\beta)}u||_{-|\beta|}\leq\delta||Lu||_{0}+C_{\delta,N}||u||_{-N} for u\in C_{0}^{\infty}(W) . (4.4)

On the other hand, following a little delicate estimate according to
Amano [2] from (1.3) to (1.9), we have that for every \delta>0 there exists a
neighborhood U of Z_{\zeta,\eta} such that

\sum_{|\beta|=1}||L_{(\beta)}u||_{0}\leq\delta(||Lu||_{1}+||u||_{1})+D||u||_{-N}
for u\in C_{0}^{\infty}(U) .

(4.5)

For the case |\beta|=2 , since U is a small neighborhood of Z_{\zeta,\eta} , we can assume
that the coefficients of L_{(\beta)} are less than \delta on U . Hence we see that

||L_{(\beta)}u||_{0}\leq\delta||u||_{2} for u\in C_{0}^{\infty}(U) , (4.6)

and since [\Lambda^{-2}, L_{(\beta)}] is an operator of order-l, inequality (4.6) yields easily

||L_{(\beta)}u||_{-2}\leq\delta||u||_{0}+D||u||_{-N} for u\in C_{0}^{\infty}(U) . (4.7)
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On the other hand, we have

||L_{(\beta)}u||_{-1}\leq||L_{(\beta)}\Lambda^{-1}u||_{0}+||[\Lambda^{-1}, L_{(\beta)}]u||_{0} .

Using (4.5) to the first term and using (4.3) and (4.7) to the second term,
we have that

||L_{(\beta)}u||_{-1}\leq\delta(||Lu||_{0}+||u||_{0})+D||u||_{-N} for u\in C_{0}^{\infty}(U) (4.8)

holds for every \beta such that |\beta|=1 . Here we have used the fact that
[L, \Lambda^{-1}] and [L_{(\beta)}, \Lambda^{-1}] are operators of order 0. Hence we see that for
every multi-index \beta such that 1\leq|\beta|\leq 2 and \delta>0 , there are estimates

||L_{(\beta)}u||_{-|\beta|}\leq\delta(||Lu||_{0}+||u||_{0})+D||u||_{-N} for u\in C_{0}^{\infty}(U) . (4.9)

Suppose now that U\cup W=\mathbb{T}^{3} . For a smooth nonnegative function \phi

with supp \phi\subset U and \phi=1 on Z_{\zeta,\eta} , we have from Lemma 1.5 of Amano [2]

||[\phi, L]u||_{0}\leq C(||Lu||_{0}+||u||_{0}) . (4.10)

Using (4.2) and (4.10), we obtain from (4.4) and (4.9) for \beta , 1\leq|\beta|\leq 2

||L_{(\beta)}u||_{-|\beta|}\leq\delta(||Lu||_{0}+||u||_{0})+D||u||_{-N} for u\in C^{\infty}(\mathbb{T}^{3}) .

Now (2.6) implies

||L_{(\beta)}u||_{-|\beta|}\leq 2\delta||Lu||_{0}+D||u||_{-N} 1\leq|\beta|\leq 2 .

By the product formula (4.3), we have

||(( ad\Lambda)L)u||_{-1}\leq C\sum_{|\beta|=1}||L_{(\beta)}u||_{-1}+C’||u||_{-1}+D||u||_{-N}
,

||(( ad\Lambda)^{\ell}L)u||_{-2}\leq C\sum_{|\beta|=2}||L_{(\beta)}u||_{-2}+C’||u||_{-1}+D||u||_{-N}
.

By these we obtain (3.1) and hence we have

Theorem 4.1 Subelliptic operator L in Example 3 is globally hypoelliptic,
if ( \geq 0 and \eta\geq 0 .

Though the proof of Theorem 4.1 depends essentially on the nonnega-
tivity of the coefficients \zeta and \eta , we have the following

Conjecture The differential operator L defined by (1.1) is globally hy-
poelliptic, if the group \mathscr{H} acts transitively on M .
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5. Global Hypoellipticity of Horizontal Laplacians

In this section we show that the criterion given in Section 3 can be
applied to non-linear connections. Let (M, N, \pi) be a smooth fiber bundle
with the projection \pi : M - N such that M is a closed manifold. Fix a
smooth Riemannian metric on M . Let H_{p} be the orthogonal complement of
the tangent space T_{p}F_{p} of the fiber F_{p} through p in the tangent space T_{p}M

of M . The distribution \{H_{p} : p\in M\} gives a horizontal one of a (non-linear)
connection on M .

Let (\tilde{x}^{1}, \ldots,\tilde{x}^{m}) be a local coordinate system of N on a neighborhood
\tilde{U} of \pi(p) and let (x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{r}) be one on a neighborhood U of p
such that x^{i}=\pi^{*}(\tilde{x}^{i}) and (y^{1}, , y^{r}) is one along fiber. Let \partial_{1} , , \partial_{m} be
the coordinate frame field on a neighborhood of \pi(p) in N . Let X_{i} be the
horizontal lift of the vector field \partial_{i} . Using the local frame field

X_{1} , \ldots , X_{m} , \partial_{y^{1}} , , \partial_{y^{r}} on U ,

we construct an orthonormal local frame field

e_{1} , \ldots , e_{m} , e_{m+1} , \ldots , e_{m+r} on U ,

with e_{i}(q)\in H_{q} , 1\leq i\leq m and e_{m+j}(q)\in T_{q}F_{q} , 1\leq j\leq r at every q\in U .
We define a differential operator \triangle_{?t} on M by

\triangle_{H}f:=\sum_{i=1}^{m}e_{i}^{*}e_{i}f , (5.1)

where e_{i^{*}} is the formal adjoint operator of the vector field e_{i} viewed as a
differential operator of order 1. For f, g\in C_{0}^{\infty}(U) , we have

\langle\triangle_{H}f, g\rangle_{0}=\sum_{i=1}^{m}\int_{U}(e_{i}f)(e_{i}g)d\mu .

Thus, we see \triangle\mu is independent of the choice of orthonormal local frame
fields and that \triangle_{H} is globally defined differential operator on M .

Let g_{ij}=(X_{i}, X_{j}) and h_{kl}=(\partial_{y^{k}}, \partial_{y^{l}}) , then

d\mu=\sqrt{g}dx_{1}\cdot\cdot dx_{m}dy_{1}’\cdot\cdot dy_{r} , g=\det(g_{ij}) det (h_{kl}) .

Since e_{i} is written as a linear combination of X_{1} , \ldots , X_{m} , we see that

\triangle_{H}=\frac{1}{\sqrt{g}}\sum_{i,j}X_{i}\sqrt{g}g^{ij}X_{j} , (5.2)



630 H. Omori and T. Kobayashi

where g^{ij} is the inverse matrix of g_{ij} . We call \triangle\mu the horizontal Laplacian
on M .

Let \mathfrak{h} be the Lie algebra generated by

C^{\infty}(U)X_{1}\oplus\ldots\oplus C^{\infty}(U)X_{m} .

Let \mathfrak{h}_{p} be the germ of \mathfrak{h} at the point p . It is called the infifinitesimal holonomy
Lie algebra at p .

Let \mathscr{H} be the minimal closed subgroup of the group of all C^{\infty} diffe0-
morphisms on M containing diffeomorphisms

{exp (\phi_{U}^{1}X_{1}) , \ldots , \exp(\phi_{U}^{m}X_{m}) },

where U moves among all coordinate neighborhood on M and \phi_{U}^{i} moves
among all smooth functions such that supp \phi_{U}^{i}\subset U We call \mathscr{H} the holon-
omy group of the horizontal distribution.

It can occur that although dim \mathfrak{h}_{p}(p) is less than dim M everywhere,
the group \mathscr{K} acts transitively on Mr

Let C be the Lie algebra of all infinitesimal partially conformal transfor-
mations on M. C is called infifinitesimally transitive along fifibers, if dim C(p)=
dim F_{p} holds at every p\in M\tau

In this section we prove the following theorem:

Theorem 5.1 Suppose that holonomy group \mathscr{H} acts transitively on M
and and that dim C(p)=\dim F_{p} holds at every p\in M Then the horizontal
Laplacian \triangle\mu is globally hypoelliptic on M.

Proof. Since Y\in C is divergent free, we have Y^{*}=-Y Since M
is compact, there is a finite number of elements Y_{1} , \ldots . Y_{s}\in C such that
Y_{1}(p) , \ldots , Y_{s}(p) span F_{p} at every p\in M1 It follows that \triangle r-\sum Y_{i}^{2} is
an elliptic operator, which is positive semi-definite, and hence we can use
\Lambda=(\triangle_{7\{}-\sum Y_{i}^{2}+1)^{1/2} as a regulator. Since the holonomy group acts
transitively on M, Corollary 2.4 gives (2.6). Thus, we have only to show
the inequalities (3.1).

To obtain (3.1), we remark first that

||[Y_{i}, \triangle_{7f}]u||_{s}=||f_{Y_{i}}\triangle_{74}u||_{s}\leq C_{s}||\triangle_{H}u||_{s} s\in \mathbb{R} . (5.3)

Hence, we have for each i

||[Y_{i}^{2}, \triangle_{\mathcal{H}}]u||_{s-1}\leq C||\triangle_{H}u||_{s} ,
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and hence for A= \triangle_{7\{}-\sum Y_{i}^{2}+1 that

||[A, \triangle_{H}]u||_{s-1}\leq C||\triangle_{7\{}u||_{s} .

Using induction, we have for every non-negative integer k that

||[A^{k}, \triangle_{H}]u||_{s}\leq C||\triangle_{7\{}u||_{s+2k-1} . (5.4)

We apply the following identity to the case A= \triangle_{\mathcal{H}}-\sum Y_{i}^{2}+1 , and
B=\triangle_{7\{} :

[ \sqrt{A}, B]=\sum_{k=0}^{N+1}(\frac{1}{2\sqrt{A}}ad(\sqrt{A}))^{k}\frac{1}{2\sqrt{A}}[A, B]

+( \frac{1}{2\sqrt{A}}ad(\sqrt{A}))^{N+2}[\sqrt{A}, B]

Since the remainder term is of order-N, we have only to estimate the first
term:

|| ( \frac{1}{2\sqrt{A}} ad (\sqrt{A}) ) \frac{1}{2\sqrt{A}}[A, \triangle_{H}]u||_{-1}

\leq C||(ad(\sqrt{A}))^{k}[A, \triangle_{H}]u||_{-2-k}

\leq C’\sum_{l=0}^{k}||[A, \triangle_{H}]\sqrt{A}^{k-l}u||_{-2-k+l}

\leq C’\sum_{l=0}^{k}||\triangle_{H}\sqrt{A}^{k-l}u||_{-1-k+l} .

By using (5.4) for the case when k-l is even and odd separately, the last
side is estimated by

\leq C||\triangle_{H}u||_{-1}+C’||[\sqrt{A}, \triangle_{H}]u||_{-2} .

It follows that

||[\sqrt{A}, \triangle_{H}]u||_{-1}\leq C||\triangle_{H}u||_{-1}+C’||[\sqrt{A}, \triangle_{74}]u||_{-2}+D||u||_{-N} .

Using the interpolation inequality to the second term of the right hand side,
we have

||[\sqrt{A}, \triangle_{H}]u||_{-1}\leq C||\triangle\tau\{u||_{-1}+D||u||_{-N} . (5.5)
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By a similar estimate, we have easily

||[\sqrt{A}, [\sqrt{A}, \triangle_{H}]]u||_{-2}\leq C||\triangle_{H}u||_{-1}+D||u||_{-N} . (5.6)

Applying the interpolation inequality to ||\triangle_{H}u||_{-1} in (5.5) and (5.6), we
have the desired inequalities (3.1). \square

If (M, N, \pi) is a G-principal bundle with the compact group G, and the
connection is G-invariant (G-connection), then \triangle\mu commute with every
element Y of the Lie algebra \mathfrak{g} of G viewed as a vector field on M which
tangents to the fiber. Hence for a linear basis Y_{1} , . ’

Y_{r} of \mathfrak{g} , the operator
\triangle_{H}+\sum_{i}Y_{i}^{*}Y_{i} is elliptic and satisfies [ \triangle_{H}, \triangle_{\mathcal{H}}+\sum_{i}Y_{i}^{*}Y_{i}]=0 . Thus, we
have no need to show the above inequalities in this case.
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