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Global hypoellipticity of subelliptic operators
on closed manifolds
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Abstract. We give a criterion of global hypoellipticity on closed manifolds for cer-
tain second order operators. Applying this criterion, global hypoellipticity of horizontal
Laplacians and an example which has no infinitesimally transitive points are studied.
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1. Introduction

A differential operator L on a C* manifold M is hypoelliptic, if any
distribution solution u of the equation Lu = f is smooth at the place where
f is smooth.

Similarly, L is called to be globally hypoelliptic, if Lu € C*°(M) for a
distribution u implies v € C*°(M). Here C*°(M) is the space of smooth
functions on M.

It is obvious that if L is hypoelliptic, then L is globally hypoelliptic.
In this paper, we concern with the global hypoellipticity of a differential
operator on a closed (compact connected without boundary) manifold M.

Let Xi,...,X, be smooth (real) tangent vector fields on M. The
differential operator L which we shall treat in this paper is given in the
form

L .= ZXi*Xia (1.1)
1=1

where X;* is the formal adjoint operator of X; with respect to a fixed smooth
Riemannian metric on M. Let V be the linear space spanned by X;’s

V= {if,;Xi L fi € C’°°(M)}, (1.2)
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and put
b := the Lie algebra generated by V. (1.3)

Recall first the following theorem which is directly obtained by applying
the theorem of Hormander [6] to our closed manifold.

Theorem (Hormander) If b is infinitesimally transitive at every p € M,
i.e., h(p) = T,M for all p € M, then L given by (1.1) is hypoelliptic.

Now, for every Y € V, we denote by exptY the one parameter diffeo-
morphism group generated through integral curves by Y, and put

#% = the closed subgroup generated by {expY : Y € V}.

In a sense J# is a Lie group (generalized Lie group [11]), but in general its Lie
algebra (see (2.4)) is much bigger than b as it will be seen in Examples 1-3
below.

Remark that every C* diffeomorphism ¢ of M onto itself acts as the
adjoint action on the space of smooth vector fields, i.e., for a vector field Y,
we define it by

(Ad(Q)Y)f := ¢"Yp™ [ for feC®(M).

If b is infinitesimally transitive at every p € M, then the implicit function
theorem gives that the group # acts transitively on M. However the con-
verse does not hold in general. This otccurs in general if the Lie algebra b
has not the property that

Ad(expY)h=1Hh forall Y €b.

If a Lie algebra b has not this property, then h cannot be the Lie algebra
of any infinite dimensional Lie group whatever the definition of infinite
dimensional Lie groups is (cf. [11]).

On the other hand, if J# is not transitive on M and the orbits give
a smooth fiber bundle structure over some open subset of the orbit space
M/, then L is not globally hypoelliptic (see [6]).

By the above observation, the case where the group J# acts transitively
on M, but the infinitesimal transitivity of b fails on a subset of M or on the
whole space M is the most interesting. There are several examples of such
Lie algebra b:
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Fig. 1. Examples 1 and 2

Ezample 1. M = T? = [0, 2n] x [0, 2] glued each opposite edges together:
Let x, y be the coordinate functions on T?. We consider a differential
operator

L=X"X1+ Xo* Xy = -0, — ((z)%82, (1.5)

where X1 = 8;, Xy = (0, and ¢ = {(z) is a smooth function on T? depend-
ing only on z, but ( = 0 on some interval [a,b] such that 0 <a < b < 27
and ¢ > 0 on the complement.

Ezample 2. M = T?: Let X; = 8, and Xy = {0y, where ¢ = ((z,y) is a
smooth function such that { vanishes identically on a compact set K ; T2,
but ¢ > 0 otherwise. Consider the differential operator

L=X1"X1+ Xo* Xy = =02 — (202 — 2((, 0. (1.6)

We assume that # generated by X; and X is transitive on T? (see Fig-
ure 1).

Ezample 3. M = T3: Let z, y, z be the coordinate functions on T®. Con-
sider vector fields X; = 0., X2 = ((z)0y, X3 = n(z,y)0,, and the differen-
tial operator

L=X*X1+ X" Xy + X3* X3 = =02 — ((2)°0] — n(z,y)*87, (L.7)

where ( = ((z) and = n(z,y) are smooth functions whose supports are
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Z

Fig. 2. Example 3

mutually disjoint and depend only on = and z, y, respectively. Hence the
commutator [X,, X3] = 0. It is obvious that dim h(p) < 2 at every p € T3.
Thus there is no infinitesimal transitive point. However, % acts transitively
on T3 whenever ¢ and 7 do not identically vanish (see Figure 2).

It is known in that Example 1 is globally hypoelliptic. However,
the proof is based on the feature that the operator L in commutes
with elliptic operators. Using this feature and the transitivity of J¢, we
obtain the Ly-regularity theorem, where Lg-regularity theorem means the
following: The distribution solution u of Lu = f is contained in L9 whenever
f € Ly (cf. Lemma 3.1).

In Example 1, L commutes with 9, and hence [L, L — 85] = 0, where
L - 85 is elliptic. Thus, if Lu € C*, then L(L — 6§)mu € C°, hence
(L - Bg)mu € Ly for any m, and then u € C* by using elliptic regularity
theorem.

Amano [2] proved the global hypoellipticity of operators involving Ex-
ample 2. However, the proof was based essentially on the condition that
there is a point where § is infinitesimally transitive. Thus, the global hy-
poellipticity of operators of the type of Example 3 has not been proved.

In this paper, we first give a criterion of global hypoellipticity (cf. The-
orem 3.3) in a slightly different shape from those given by Fedii [3] and
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Amano (2], and by following several estimates in that the operator L
in Example 3 is globally hypoelliptic, if {( and 1 are smooth nonnegative
functions (cf. Section 4).

In [10], the first author extends Example 1 to the horizontal Laplacian
(cf. Section 5) of a G-connection on a G-principal bundle over a closed man-
ifold where G is a compact Lie group. In the case of horizontal Laplacian,
the vertical part of h(p) corresponds to the holonomy Lie algebra of the G-
connection at the reference point p, and the transitivity of J# corresponds
to that the holonomy group is the total group G. Hence the horizontal
Laplacian of a G-connection is globally hypoelliptic, if the holonomy group
is G. This includes an example where § is nowhere infinitesimally transitive.

Remark now the horizontal Laplacian Ay is defined not only on G-
principal bundle but also on every Riemannian fiber bundle (M, N, 7). The
feature of a G-connection is that every element of G acts on the total space
M as a fiber preserving isometry which leaves Ay invariant, and G acts
transitively on each fiber.

Taking the criterion in [Theorem 3.3 in Section 3 into account, we define
here a notion of fiber preserving diffeomorphisms which leave Ay almost
invariant. That is, a volume preserving and fiber preserving diffeomorphism
¢ on M is called a partially conformal transformation, if there is a smooth
function f, on M such that p*Aye~!" = efe Ay Clearly, partially con-
formal transformations form a group, which could be infinite dimensional.
The infinitesimal version of such transformations, that is, an infinitesimal
partially conformal transformation is a divergence free vector field X on M,
tangents to each fiber such that [X,Ay] = fxAy, where fx is a smooth
function depending on X. All infinitesimal partially conformal transforma-
tions form a Lie algebra.

We show in this paper that if the holonomy group acts transitively
on M, and if infinitesimal partially conformal transformation group acts
infinitesimally transitive along each fiber, then global hypoellipticity holds
for the horizontal Laplacian of a (non-linear) connection on a fiber bundle
with a compact fiber and a compact base space (Theorem 5.1)).

See Section 5 for the precise notion of infinitesimal transitivity along
each fiber. Note that there are examples of connections such that the in-
finitesimal holonomy is nowhere transitive but the holonomy group is tran-
sitive on the total space.
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2. Positivity on the Orthogonal Space to Constant Functions

We fix a Riemannian metric on M. We put

es(ay = {1 ec=on): [ fau=o},

where dy is the volume element induced by the fixed Riemannian metric.
The space £, (M) is the one of all smooth functions which are orthogo-
nal to constants functions. We denote by (f, h), := [, f - hdu the usual
Lo-inner product (we consider real valued functions) and by || f|lo the Lo-
norm. Let H*(M) be the usual Sobolev space with the norm || f||x given by
(1 + A)*/2f||o by using the Laplacian with respect to an arbitrarily fixed
C* Riemannian metric. It is known that the space H¥(M) is indepen-
dent of the choice of Riemannian metric and H~*(M) is the dual space of
HF(M).
We put

HY (M) = {f € HE(M) : (£, 1) = 0}.
We remark first the following:

Theorem 2.1 Let L be the differential operator (1.1) and S the closed
Lie group defined by (1.4). If the J acts transitively on M, then L 1s
positive definite on £, (M), that is, there is a constant ¢ > 0 such that

[ Li-fduz el forany f € £x(M). (2.1)

For the proof of Theorem 2.1, suppose there were no such a posoitive
constant c¢. The assumption gives an existence of a sequence { fn}n in £, (M)
such that || f.|lo = 1 and that

lim (Lfn, fa)o=0. (2.2)

n—o00

So to obtain a contradiction, it is enough to show that implies
nlggo [ fnllo = 0.

Since (Lfn, fa)o = Soreq || Xifnll§, the definition of V and give
lim | Xfallo=0 forall X eV. (2.3)
n—oo



Global hypoellipticity of subelliptic operators 619

Next we introduce another Lie algebra b as
b := the Lie algebra spaned by {Ad(¢)X : X € V, p € #}, (24)

where J# is the group (1.4). This § can be viewed as the Lie algebra of J#
(see Lemma 2.3).

Lemma 2.2 For every Y € b, we have

Jim Y full -1 = 0. (25)

Proof. Every Y € b is a linear combination of elements written in the
form

Ad(expY;---expYoexp Y1) X,

with Y7,Ys,...,Y,, X € V. Thus it is enough to prove for the vector
field

Zy = Ad(expY;---expYoexpY)X.

For ¢ = 0, it is trivial that limp— e || X fn]|l-=1 = 0 by (2.3) and || X fall-1 <
1X fnllo-

Now suppose holds for Z, ;. This implies lim,_,00 [|Zs—1 frll-1 =
0 and we have only to prove that

lim ||Ad(expY;)Zp_1 fnll-1 =0.

n—00

Remark that Ad(expYy)Z,_1 fr = (exp Ys)*Zy_1(exp —Yy)" fn, and (exp Yz)*
on a closed manifold M leaves the Sobolev space H|'(M) invariant. Hence
we have only to show that

Jim 122 (exp =Y full-1 = 0.
Now, remark that
1
Zy1(exp=Yy)* fo=Zp1 fn — /o Zy_1(exp —tYy) Yy fn dt.
Since lim, 00 ||Yz frllo = 0 by (2.3), we see

lim ||(exp —t¥,)"Y; fullo = 0.
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This implies
i 1203 (exp ~1)"Ys full 1 =
since Zy_; is a differential operator of order 1. Therefore,
|1 Ze-1(exp —=Y3)*Yy fnll-1
1
<N Zeos full-1+ [ 1Zes(exp —t¥0)Ye full-1dt >0,
by using the uniform continuity in . []

The following is due to Sussmann [14].

Lemma 2.3 (Sussmann) The group S acts transitively on M, if and
only if b is infinitesimal transitive at every p € M.

Proof of Theorem 2.1. Suppose F# acts transitively on M. By Lemma 2.3,
we see at every p € M that T,M = b(p). Since M is compact, there are
finite number of elements Y7, ..., Y, € b such that {Y1(p), ..., Ye(p)} spans
the tangent space T,M at every p € M. By [Lemma 2.2, we see that

le Y fall-1 =0 for every 1 <i</.
Hence, the inequality

[fnllo < CUYifull-1 + .. + [[Yefull-1)

gives lim, o || fnllo = 0, which completes the proof of [Theorem 2.1I. L]
By [I’heorem 2.1, we have the following apriori estimate.

Corollary 2.4 For any integer N > 0, the following estimate holds for
every u € H*(M),

lullo < CllLullo + D ljull-n, (2.6)

where C' and Dy are positive constants, and Dy may depend on N but C
s independent of N.

The global hypoellipticity follows from [2.6), if L satisfies several sup-

plementary conditions.
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3. Sufficient Conditions for Global Hypoellipticity

The inequality yields the Lo-regularity theorem, if L commutes
with an elliptic operator A of order m > 0. Namely, we have the following:

Lemma 3.1 Suppose (2.6) holds for L. If L commutes with an elliptic
operator A of order m > 0, then Lu € Hﬁ(M) for some distribution u
implies u € HY (M).

Proof. We assume m = 1 without loss of generality and considering
¢l + A if necessary, we may assume that A, = I + €A gives for every € > 0
an isomorphism of H**1(M) onto H*(M) for every s.

If u € H-N(M), then we have A-N "2y € H2(M), and by [2.6), we
have

IA; N2y, < CIILA; N H |y + Dy ||A; Ny _ .

Since u € HN(M), we see that limHoH]\;(NH)uH_N = |lul|-n < o0.
Suppose Lu € HY(M). Since LAy = Ac N2 Ly, we have

g | LA, 4Dy = by | A7) Lufy = |l < oo.

This implies that

Jullo = A7 V2 ully < oo,

and u € HY(M). Thus we obtain the Ly-regularity. [

Since L commutes with an elliptic operator A, we see also that L is
globally hypoelliptic by the remark in the introduction.

By the above observation we see that inequality and the norm
estimate of the commutator with an elliptic operator plays a crucial role.

Indeed, even if there is no elliptic operator which commutes with L,
several useful sufficient conditions for global hypoellipticity has been known
by Amano [2], Fedii [3] and Morimoto [9]. In what follows we give a short
summary of their results by following mainly [2] and [3], but the statement
of the result is given in a little different shape.

We call a pseudo-differential operator A a regulator, if A gives an iso-
morphism H*t1(M) onto H*(M) for every s € R. The pseudo-differential
operator with the total symbol (|£|2 4+ 1)'/2 is an example of regulators,
where |¢] is the norm with respect to the Riemannian metric on M (cf. [12],
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116]). We first remark the following:

Proposition 3.2 If L satisfies the inequality (2.6) and the following in-
equality (3.1):

For every & > 0 and for every integer N > 0, there is a constant
Cn,s > 0 such that

I((ad A)*L) ull _p < 8| Lullo + Cn gl

ul-y £=1,2, (3.1)

for all uw € C*°(M), where (ad A)L = [A, L].
Then for every integers k and N > 0, and for every § > 0, there exist
positive constants Cg, Dy and Cn s such that the inequalities

lulle < Ckl||lLullx + Dy kllu)-n, (3.2a)
[((ad A)L) ul—; < 0||Lullx + Cnllul-n~, (3.2b)
I((ad A’ L) ully_y < 6l|Lulle + Cnsellull-n (3.2c)

hold for all w e C*(M).

Proof.  First we prove inequalities by induction for positive integers
k. From [2.6) and [3.1), inequalities hold for k = 0. Suppose that
inequalities hold for k > 0. Then we have

[((ad A)L) ullx
= ||A((ad A)L) ullk—1
< [I((ad A)L)Aullr—1 + [|((ad A)*L) w4
< 8| LAullx + Cni1sllull-n + [I((ad A)*L) wl, ;.- (3.3)

Remark that

I((ad A)*L) ully,_,
< [l((ad A’ L)Aufl,_p + [I((ad A)*L) ull,_,
< |I((ad A)*L)Aully_ + Bgllullx
< [[((ad A)*L)Aully,_g + Be(Cl| Lullx + Dy llull-n),
with some constant By, because (ad A)3L is an operator of order 2. Applying

induction hypothesis to the first term in the right hand side and
interpolation inequality to ||Lul|x, we have
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|((ad A)QL) “||k—1
< || LAullx + 0||Lulles1 + O g llull -~
< 20| Lullk+1 + 0l ((ad A)L) ull, + Ch gk llull-N- (3.4)

Substituting (3.4) into (3.3), we obtain

30
[((ad M) ulle < == | Lullis s + Chpgellull-n.

Hence we have the desired inequality

I((ad A)L) ulli < 8[| Lutllk+1 + Cngprallull-n- (3.5)

Inserting [3.5) to [3.4), we have the desired one for |((ad A)°L) ul|,_,.
Finally, we compute

ullk+1 = [|Aullx
< CillLAuljx + Dyy1xllull-~
< Gyl Lullg+1 + Ckll((ad A)L) wl|x + D1 kllull-n-

Applying to the second term, we have the desired inequality for ||u||x+1-
For negative integer we use another induction. Suppose that inequalities

hold for £ < 0. Using [A™!, L] = —A~}((ad A)L)A™?, from we
have
A~ Llull = [I((ad A)L)A™ ufle—1
< S LA ulle + Cn-vgkllull-n
< 8|\ Lullp—1 + 8[A™, Llulle + Cn-1,64]

ull-n-
Taking § = 1/2, we have

A, Llulle < || Lulli—1 + Dy ellull-~- (3.6)
Using to A~1u, we have

lulle—1 < Crll LA™ 'ullk + Dn—1kllull-~
< CrllLullk—1 + Ckll[A™Y, Llullk + Dn—1.kllull-~-

Substituting to the second term, we see

lulle—1 < Cr—1l|Lullk-1 + Dng—1llu||-~- (3.7)
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Next using [A™}, (ad A)L] = —A~'((ad A)?L)A~! we have
I((ad A)L)ully_y < [I((ad A)L)YA™ uully_y + [I[A7Y, (ad A) Luffe—y

<
< [I((ad A)L)A™  ullk—y + [|((ad A)* LYA™ |-

Applying induction hypothesis [3.2b), [3.2c)] and then to the right
hand side, we obtain the desired one for ||((ad A)L)ul|,_,:

[((ad A)L)ully 5 < bl Lufle-1 + Cngp—1llull-n. (3.8)
Finally we compute ||((ad A)?L)ul,_5 as follow:
I((ad A)*L)ull;,_s
< [((ad AY*L)A™ " ully_p + A7 ((ad AP L)A ],y
< O LA™ ully + Cn—gkllull-n + Billullk-2,

because A~!((ad A)®L)A~! is an operator of order 0. Using and the
general interpolation inequality

llullk—2 < €lluflp—1 + C;V,e,lc”u”—N for any € > 0, (3.9
we see that

I((ad A)*Lullk—3 < 8| Lufl—1 + Cn g llull-n-
This completes the induction for negative integers. []

The trick of obtaining global hypoellipticity is as follows: Setting A, =
I + €A, we use the operator A_™ for a positive integer n as a mollifier. To
compute the commutator [A_™, L], it is useful to remark that

. - ny\ ,_ n

A7) = 30 () A (ad A DA, (3.10)
=1

holds for every positive integer n, and that (ad Ac)L = e(ad A)L. Using

this we show the following theorem.

Theorem 3.3 Let L be a differential operator on a closed manifold M of
order 2. If there is a regulator A such that a system of inequalities (2.6)
and (3.1) holds for L, then L is globally hypoelliptic on M.

Proof.  First we show that for every e > 0, every positive integers k, n
and a u € H**27"(M) there exists a positive constant Dy k n independent
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of € such that
n 1 _ _n
A", Lull, < §||LA6 "ullk + DN nllAc " ull-N- (3.11)

To see this, we remark first that (3.10) gives for u € H**2-"(M)
. " /n _ “n .
HAc Ll < 3 () ) 1A ((ad A DAl (3.12)
=1

Remark that for a fixed v € H¥(M), there is a constant B, depending on v
but independent of € such that

1A V]l < Bollvlli—e- (3.13)

Using [[3.13), we see if u € H*™2="(M) is fixed, then there is a constant C,
independent of € such that

n

A" L] ulle < Ce Y e ll((ad A) L)A ™ ull -
=1

Using (3.2b) and for £ = 1,2, and using that (ad A.)’L is an operator
of order 2 for any £ > 3, we have the following: For every § > 0 and for

sufficiently large N, there is a constant Dy k., independent of € such that
A", L] ulle < S| LA ullk + D jenllA " ull -~ -

Here we have used the interpolation inequality (3.9). This implies (3.11).
Now the theorem follows from the next Lemma 3.4. L]

Lemma 3.4 Suppose that L satisfies for every integer k > 0 and for a
sufficiently large N,

”U“k < C’k||Lu||k + DN,k||u||_N for u € Hk+2(M), (3.14)

and suppose that for every positive integers k, n and for u € H ’°+2_"( M),
the following inequality holds:

—n 1 — -n
I[AC", Lull, < §||LAE "ullk + DN gnll A "ull-N, (3.15)

where Dy k. does not depend on € but may depend on u. If u € H-N(M)
and Lu € C*®(M), then u € C*(M).

Proof. Suppose u € H™N(M). By setting n = k + N + 2, we have
A"y € H**2(M). Note that applying to the right hand side of the
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following inequality
ILA ™ ulle < AT Lulle + || [AC™, L] ullk,
we have
LA ully, < 2[[A"Lull, + 2D kn A0l _y, (3.16a)
HAS™ L] ulle < AT Lully + 2D knllAZ ull - (3.16b)

Using (3.14) for A-™u € H*2(M), we see

1A |
< Crll LA™ ullk + Dl AT ull-n
< CulAZ" Lulle + Cill [AZ™, L) ulle + Dl AT N ull - (3.17)

Substituting (3.16b) into the right hand side of (3.17), we obtain
1A ullk < 2Ck[IAT" Lullk + Diy g nllA™ull -~ (3.18)
Note that Cy and DYy ,, do not depend on €. Since u € H=N(M), we see
tim A"l = [Jull - < co.

If Lu € C*°(M) in addition, then we have lim¢_,o||A_"Lu||, = || Lul|lx < oo.
From these inequalities imply that ||u|lx = limeo ||A7"ullx < oo,
which shows u € H¥(M). Since k is an arbitrary integer, we have u €

C=(M). ]

4. Global Hypoellipticity for Example 3

Since general theory for the global hypoellipticity is still hard to con-
struct, we restrict our concern in this section to the case Example 3. We
shall show in this section that is obtained under the assumption that

¢(z) >0,  n(z,y) >0, (4.1)

The proof is given by showing the inequalities requested in [I'neorem 3.3.
The condition (4.1) gives for |5| < 2 that

0°C*(p) =0 where (*(p) =0, 8°n*(p) =0 where n*(p) = 0.

Let Z¢, = {p € T%((p) = n(p) = 0} and W be an arbitrary open subset
of T3 such that W N Z¢n = 0. Using the assumption that the supports of
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¢ and n are mutually disjoint, we see easily that for every multi-index 0,
there exists Cg > 0 such that

0°¢%) < Cpl¢?| 107n°| < Cpln’| on W
It follows for every 3, |3| < 2, that

|Lgullo < Cl|Lullo  for u € C5°(W), (4.2)
where

Ligyu = —(0°¢*)0%u — (0°n*)d2u.

Let A be the pseudo-differential operator with symbol (€| + 1)!/2. We use
A as a regulator. Since the symbol does not contain the variables of the
base manifold, the product formula on T? gives:

LA - Y oA L, € yDOTY, (4.3)
1<|y[<N+2

where yyDQO" is the space of all pseudo differential operators of order r and
(A5)") is the one with symbol 87((|¢|? + 1)*/2). Remark that (A*)(?) is an
operator of order s — |y|. Using (4.2) and the interpolation inequality

loll-1 < é[jvllo + Cnllvll-n,
we have for every positive § and for g with 1 < |8| < 2, that
HL(ﬂ)U”—IﬂI < d||Lullo + Csnl|lul|-n for u € CSe(W). (4.4)

On the other hand, following a little delicate estimate according to
Amano [2] from (1.3) to (1.9), we have that for every 6 > 0 there exists a
neighborhood U of Z; ,, such that

> IIL@yullo < 6(IILufly + [lully) + Dljull-n  for u € C§°(U).
Bl=1 @3

For the case |3] = 2, since U is a small neighborhood of Z ;, we can assume
that the coefficients of L(ﬁ) are less than & on U. Hence we see that

| Ligyullo < dllullz for uwe CF(U), (4.6)
and since [A™2, L] is an operator of order —1, inequality (4.6) yields easily
ILgyull-2 < dlluflo + Dljull-n  for we C5°(U). (4.7)
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On the other hand, we have
IL@yull-1 < ILg A ullo + AT, Lig)] ullo-

Using (4.5) to the first term and using and (4.7) to the second term,
we have that

[Legyull-1 < 6([|Lullo + llullo) + Dllull-n for ue C§(U) (4.8)

holds for every § such that |3| = 1. Here we have used the fact that
[L,A™'] and [Lg),A"!] are operators of order 0. Hence we see that for
every multi-index 3 such that 1 < |3| < 2 and § > 0, there are estimates

IL(gyull-ig < (NI Lullo + llullo) + Dfjull-n for u € C§(U). (4.9)

Suppose now that U UW = T3. For a smooth nonnegative function ¢
with supp¢ C U and ¢ = 1 on Z¢,, we have from Lemma 1.5 of Amano

1@, L] ullo < C(|[Lullo + [lullo)- (4.10)
Using (4.2) and [4.10), we obtain from and (4.9) for 8,1 < |B] < 2

ILgyull-i5 < 8(|Lullo + [lullo) + Dluf-n for ue C=(T?).
Now implies

IL(gyull-5 < 26[|Lullo + Dlull-n 1 <8] < 2.
By the product formula [4.3), we have

I((ad A)L)ull -1 < C 3 ILgyull-1 + C'llull-1 + Dlull-x,
18=1

I((ad A)*L)ull-2 < C Y [ILgyull-2 + C'ull-1 + Dlull .
|61=2

By these we obtain and hence we have

Theorem 4.1 Subelliptic operator L in Example 3 is globally hypoelliptic,
if (>0 and n>0.

Though the proof of [Theorem 4.1 depends essentially on the nonnega-
tivity of the coefficients ¢ and 7, we have the following

Conjecture The differential operator L defined by is globally hy-
poelliptic, if the group 4% acts transitively on M.
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5. Global Hypoellipticity of Horizontal Laplacians

In this section we show that the criterion given in Section 3 can be
applied to non-linear connections. Let (M, N, ) be a smooth fiber bundle
with the projection m : M — N such that M is a closed manifold. Fix a
smooth Riemannian metric on M. Let H, be the orthogonal complement of
the tangent space T, F), of the fiber F}, through p in the tangent space T, M
of M. The distribution {#, : p € M} gives a horizontal one of a (non-linear)
connection on M.

Let (z!,...,2Z™) be a local coordinate system of N on a neighborhood
U of 7(p) and let (z',...,z™,y',...,y") be one on a neighborhood U of p
such that 2! = 7*(%*) and (y',...,y") is one along fiber. Let 01, ...,0,, be
the coordinate frame field on a neighborhood of 7(p) in N. Let X; be the
horizontal lift of the vector field 0;. Using the local frame field

Xl,...,Xm, ayl,--.,ayr On U,
we construct an orthonormal local frame field
61,...,€m, em+1,...,6m+r OH U,

with e;(q) € Hq, 1 <t < m and en4;(q) € TyFy, 1 < j<rateveryqeU.
We define a differential operator Ay on M by

A'Hf = Zei*ei f, (51)
=1

where e;* is the formal adjoint operator of the vector field e; viewed as a
differential operator of order 1. For f,g € C§°(U), we have

(Aot o =3 [ (ciF)ess)d

Thus, we see Ay is independent of the choice of orthonormal local frame
fields and that Ay is globally defined differential operator on M.

Let g;; = (XZ,XJ) and hg; = (Oyk,(‘?yz), then
dp = \/gdz; - - - dzpdy; - - - dyr, g = det(gi;) det(hg).
Since e; is written as a linear combination of X1, ..., X,,, we see that

1 g
Ay =—=> Xi /79" Xj, 5.2
-2 V997 X; (5.2)
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where ¢ is the inverse matrix of gij.- We call Ay the horizontal Laplacian
on M.

Let h be the Lie algebra generated by
CUNNX1®...0C*°U)Xn.

Let b, be the germ of h at the point p. It is called the infinitesimal holonomy
Lie algebra at p.

Let J# be the minimal closed subgroup of the group of all C* diffeo-
morphisms on M containing diffeomorphisms

{exp (¢ X1), ..., exp(¢7 Xm)},

where U moves among all coordinate neighborhood on M and qb’& moves
among all smooth functions such that supp ¢¢, C U. We call 5 the holon-
omy group of the horizontal distribution.

It can occur that although dimb,(p) is less than dim M everywhere,
the group J# acts transitively on M.

Let € be the Lie algebra of all infinitesimal partially conformal transfor-
mations on M. €is called infinitesimally transitive along fibers, if dim €(p) =
dim F;, holds at every p € M.

In this section we prove the following theorem:

Theorem 5.1 Suppose that holonomy group F€ acts transitively on M
and and that dim €(p) = dim F,, holds at every p € M. Then the horizontal
Laplacian Ay is globally hypoelliptic on M.

Proof. Since Y € € is divergent free, we have Y* = —Y. Since M
is compact, there is a finite number of elements Y7,...,Ys; € € such that
Yi(p),...,Ys(p) span F, at every p € M. It follows that Ay — S Y2 is
an elliptic operator, which is positive semi-definite, and hence we can use
A = (Ay — Y2 +1)1/2 as a regulator. Since the holonomy group acts
transitively on M, [Corollary 2.4 gives [2.6). Thus, we have only to show
the inequalities [3.1).
To obtain 3.1}, we remark first that

| 1Y, Anlull, = [l fv, Awulls < CollAulls s € R. (5.3)

Hence, we have for each ¢

1Y, Asulls—1 < CllAsgulls,
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and hence for A = Ay — Y. Y? + 1 that
1A, Anulls—1 < CllAxu]s.
Using induction, we have for every non-negative integer k that
1A%, AJulls < Ol Anullssak—1- (5.4)

We apply the following identity to the case A = Ay — Y2 + 1, and
B = Ay:

VA, B] =Nf2( : ad(@)k#m B]
=2 \eva A

4 (zjzad(@)va VA, B

Since the remainder term is of order — N, we have only to estimate the first
term:

(@) sz sui]

< O||(ad(VA))*[A, Axul| -2

k
k—I
<CY A A VA ul -2kt
=0

k
k—1
<C"Y ARVAT Ul
1=0

By using for the case when k — [ is even and odd separately, the last
side is estimated by

< Cl|Ayul|-1 + C'|I[VA, AgJul| 2.
It follows that
IIVA, AsJull 1 < ClAwul1 + C[VA, Agull -2 + Dljull-x.

Using the interpolation inequality to the second term of the right hand side,
we have

I[VA, AJul| -1 < Cll Ayl -1 + Dlfuf|-n- (5.5)
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By a similar estimate, we have easily

|[VA, VA, A | < CllAwull -1 + Dljul|-n. (5.6)
Applying the interpolation inequality to ||Aul|—1 in and [5.6), we
have the desired inequalities 3.1). []

If (M, N,7) is a G-principal bundle with the compact group G, and the
connection is G-invariant (G-connection), then Ay commute with every
element Y of the Lie algebra g of G viewed as a vector field on M which
tangents to the fiber. Hence for a linear basis Yi,...,Y, of g, the operator
Ay + 5, Y'Y, is elliptic and satisfies [Ay, Ay + >, Yi*Yi] = 0. Thus, we
have no need to show the above inequalities in this case.
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