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Regularity up to the boundary for the \overline{\partial} complex

Giuseppe ZAMPIERI
(Received May 7, 1998; Revised October 12, 1998)

Abstract. We introduce a condition of q-pseudoconvexity for a domain W of \mathbb{C}^{N} , and
prove that it is sufficient for solvability of the \overline{\partial}-complex over (antiholomorphic) forms
of degree \geq q+1 with smooth coefficients up to the boundary. Our method applies to
wedges of \mathbb{C}^{N} and therefore it provides a useful tool to solve the tangential \overline{\partial} system on
real submanifolds of \mathbb{C}^{N} . The proof is very elementary. It consists in a variant of the
L^{2} estimates by H\"ormander [4], [5] (in the non coordinate-free version) which permits a
straight application of the method by Dufresnoy [2]. The plan of the paper is as follows

In \S 1 we introduce generalized pseudoconvexity ((1.1) and (12)), prove that it can
be formulated equivalently for defining functions of \partial W or exhaustion functions of W ,
and state our main result on solvability of \overline{\partial} for forms with coefficients in \mathbb{C}^{\infty} (\overline{W}) . In
\S 2 we give the variant of the L^{2} estimates by [4], [5] which fits our condition. It consists
in a partial use of the commutation relations of [5, formula (426)], so that the terms
involved in our condition (1.1), instead of the full Levi form, are obtained The rest is
just routine. The above estimates first entail existence in L^{2} spaces with universal weight
( i.e . independent of W) for \overline{\partial} , and then c\infty regularity up to the boundary for (\overline{\partial},\overline{\partial}^{*})

We aim to develop and refine our statements in our forthcoming paper [10]
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1. Statement of the result

Let W_{h} , h=1 , \ldots , m be C^{2} half-spaces in a neighborhood of a point z_{o}

in \mathbb{C}^{N} . with transversal boundaries M_{h}=\partial W_{h} , and let W= \bigcap_{h=1}, . ’
mW_{h} .

We assume \bigcap_{h=1,\ldots,m}M_{h} generic, and set \hat{M}_{h}:=M_{h}\cap\partial W . N:= \bigcup_{h\neq k}\hat{M}_{h}\cap

\hat{M}_{k} . For multiindices J= (j_{1}, \ldots , j_{k}) , we shall deal with vectors w =(w_{J})

with complex alternate coefficients. We shall consider defining functions r_{h}

for W_{h} (i.e. W=\{r_{h}<0\} with \partial r_{h}\neq 0). We assume there are positive
integers a and q and local coordinates z=x+iy on \mathbb{C}^{N} at z_{o} such that

\sum_{|K|=a+q}\sum_{iorj\geq q+1}\overline{\partial}_{j}\partial_{i}r_{h}(z)\overline{w}_{jK}w_{iK}’\geq 0

\forall z\in\hat{M}_{h}\forall z close to z_{o}\forall(w_{iK})_{i}\in\partial r_{h}(z)^{\perp} . (1.1)
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(Here \sum’ denotes summation over ordered indices and\perp indicates the (com-
plex) orthogonal.) Particular emphasis shall be put in the case a=0 . If
\partial’:= (\partial_{1}, \ldots, \partial_{q}) we are also assuming that Span \partial’\subset\partial r_{h}(z)^{\perp}\forall z\in\hat{M}_{h} .
Let \partial’=\sum_{q+1}^{N}a_{j}’(z)\partial_{j}(a’=(a_{j}^{\prime\prime h}) j=q+1\cdots Nh=q+1\cdots N’-1) be the orthogonal comple-

tion of \partial’ in T^{(1,0)}M_{h} ; then a sufficient condition for (1.1) with a=0 is
clearly:

\overline{\partial}’\partial’r_{h}(z)=0 \overline{\partial}’\partial’r_{h}\geq 0 \forall z\in\hat{M}_{h} close to z_{o} . (1.2)

Note that both (1.1) and (1.2) are independent of the choice of the defining
functions r_{h} . The other extremal case is when q=0. To treat it, let
\mu_{1}^{h}\leq\mu_{2}^{h}\leq , denote the eigenvalues of \overline{\partial}\partial r_{h}|_{\partial r_{h}^{\perp}} .

Proposition 1.1 (1.1) for q=0 is equivalent to

\sum_{j=1,\ldots,a+1}\mu_{j}^{h}\geq 0\forall h
. (1.3)

Proof. It is a general fact that

\sum_{|K|=a}\sum_{ij=1,..,N}\overline{\partial}_{j}\partial_{i}r_{h}\overline{w}_{jK}w_{iK}’\geq(\sum_{j=1\ldots a+1}\mu_{j}^{h})|w|^{2} , (1.4)

(which proves that (1.3) implies (1.1)). Moreover when \overline{\partial}_{j}\partial_{i}r_{h}|_{\partial r_{h}^{\perp}} is diag0-
nal, and w=(w_{1}\cdot\cdot a+1) , then (1.4) becomes equality (which proves that
(1.1) implies (1.3) ) . \square

We represent now \hat{M}_{h} as a graph x_{1}=g_{h} , and \partial W as x_{1}=g . We put
r:=-x_{1}+g , \delta:=-r , \phi=- log \delta+c|z|^{2} . Let S= {z : g_{h}=g_{k} for h\neq k }.
This is a manifold (because the M_{h} ’s intersect transversally) with conormals
\pm n=\frac{\pm\partial(g_{h}-g_{k})}{|\partial(g_{h}-g_{k})|} . Denote by J(\cdot) the jump between the h ’s and k ’s side of
S . We have

+n= \frac{J(\partial r)}{|J(\partial r)|}=\frac{J(\partial\phi)}{|J(\partial\phi)|} . (1.5)

It is also clear that

\partial’|s\subset T^{\mathbb{C}}S . (1.6)

Proposition 1.2 Assume (1.1). Then there is a defining function r of
W such that if we set \phi=- log \delta+c|z|^{2}(\delta:=-r) , for suitable c , we obtain
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an exhaustion function of W at z_{o} such that for some \lambda(\lambda(z)>0z\in W)

and for any k\geq q+a+1 :

\sum_{|K|=k-1}\sum_{iorj\geq q+1}\overline{\partial}_{j}\partial_{i}\phi(z)\overline{w}_{jK}w_{iK}’\geq\lambda|w|^{2}

\forall z\in W\backslash S close to z_{o} . (1.7)

Proof One of the problems here is that in (1.1) z ranges in \partial W whereas in
(1.7) it ranges through Wr Recall the functions r=-x_{1}+g , r_{h}=-x_{1}+g_{h} ,
and the surface S= {z : g_{h}=g_{k} for h\neq k }. We then consider the local
foliation W= \bigcup_{\epsilon}M_{\epsilon} (where M_{\epsilon}=\{r=-\epsilon\} ). Let z , z^{*} be two points in
M_{\epsilon}\backslash S and M_{0}(=\partial W) respectively with the same (y_{1}, z’) -components. We
have

T_{z}M_{\epsilon}=T_{z}*M_{0} \overline{\partial}\partial r(z)=\overline{\partial}\partial r(z^{*}) .

Under our choice of r , (1.1) holds for any z\in W\backslash S (not only z\in\partial W ).
We then put \phi=- log (-r)+c|z|^{2} . We have \forall K :

\overline{\partial}\partial\phi(\overline{w}_{K}., w_{K}.)=r^{-2}\partial rw_{K}.\overline{\partial}r\overline{w}_{K}.
-r^{-1}\overline{\partial}\partial r(\overline{w}_{K}., w_{K}.)+c|w_{K}.|^{2}- (1.8)

When w.K\perp\partial r , then the first term on the right of (1.8) vanishes whereas
for the second (1.1) applies (\forall z\in W) . Observe here that any |J|\geq q+1

can be written, up to order, as J=iK for i\geq q+1 , |K|=k-1 . Then
(1.7) follows.

In the general case, let w_{K}^{\tau}. (resp. w_{K}^{\nu}. ) be the component of w.K or-
thogonal (resp. parallel) to \partial r . We have

\sum_{|K|=k-1}’\sum_{iorj\geq q+1}\overline{\partial}_{j}\partial_{i}\phi\overline{w}_{jK}w_{iK}

\geq\sum_{|K|=k-1}’(-\sum_{iorj\geq q+1}r^{-1}\overline{\partial}_{j}\partial_{i}r\overline{w}_{jK}^{\tau}w_{iK)}^{\tau}

+ \sum_{|K|=k-1}(’\frac{r^{-2}}{2}|w_{K}^{\nu}.|^{2}+c\sum_{i\geq q+1}|w_{iK}|^{2}-br^{-1}|w_{K}^{\tau}.||w_{K}^{lJ}.|) .

(1.9)

The first term on the right of (1.9) is positive by assumption, while the
second is positive for suitable c=c_{b} . (We are using again here the fact that
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any |J|\geq q+1 can be written as J=iK for i\geq q+1 .) Then (1.7) easily
follows. \square

We are ready to state the main theorem of the paper

Theorem 1.3 Assume (1.1). Then there is a fundamental system of
neighborhoods \{U\} of z_{o} such that for any \overline{\partial} -closed form f= \sum_{|J|=k}’f_{J}d\overline{z}_{J}

of degree k \geq\max(a, q)+1 and with coefficients in C^{\infty}(\overline{W\cap U}) , there is
a form u= \sum_{|K|=k-1}’u_{K}d\overline{z}_{K} with coefficients in C^{\infty}(\overline{W\cap U}) which solves
\overline{\partial}u=f .

2. L^{2} estimates and proof of Theorem 1.3

We provide here the variant of the L^{2} estimates by H\"ormander [4], [5]
which fits our condition (1.1). We shall then recall the sequence of argu-
ments which yields the proof of Th. 1.3 in the line of [2]. Let W be a domain
of \mathbb{C}^{N} with C^{2} boundary, and \phi a real positive C^{2} function on W We de-
note by L_{\phi}^{2}(W) the space of functions f such that ||f||:= \int_{W}e^{-\phi}|f|^{2}dV is
finite (where dV denotes the Euclidean element of volume). We denote by
L_{\phi}^{2}(W)^{k} the space of antiholomorphic forms f= \sum_{|J|=k}’f_{J}d\overline{z}_{J} with L_{\phi}^{2}(W)

coefficients. We consider the sequence of closed densely defined operators

L_{\phi}^{2}(W)^{k-1}arrow L_{\phi}^{2}(W)^{k}arrow L_{\phi}^{2}(W)^{k+1}\overline{\partial}\overline{\partial}.

, (2.1)

and denote by \overline{\partial}^{*} the adjoint operators. Let \delta_{i} be the operator (on func-
tions) defined by \delta_{i}(f_{J})=e^{\phi}\partial_{i}(e^{-\phi}f_{J}) . The following equality holds for
any positive \phi :

\sum_{|K|=k-1}\sum_{ij=1}’,

. ’

N \int_{W}e^{-\phi}(\delta_{i}(f_{iK})\overline{\delta_{j}(f_{jK})}-\overline{\partial}_{J}(f_{iK})\overline{\overline{\partial}_{i}(f_{jK})}dV

+ \sum’ \sum \int_{W}e^{-\phi}|\overline{\partial}_{j}(f_{J})|^{2}dV=||\overline{\partial}^{*}f||_{\phi}^{2}+||\overline{\partial}f||_{\phi}^{2}

|J|=kj=1 ,. . ,N
\forall f\in C_{c}^{\infty}(W)^{k} . (2.2)

Note that by the trivial choice \phi=0 , (2.2) gives

\sum’ \sum ||\overline{\partial}_{j}f_{J}||^{2}=||\overline{\partial}^{*}f||_{\phi}^{2}+||\overline{\partial}f||_{\phi}^{2} \forall f\in C_{c}^{\infty}(W)^{k} , (2.3)
|J|=kj=1 ,... , N

where || || is the norm in L^{2}(W) . ((2.3) will be used in the sequel as the
main ingredient in proving the ellipticity of the system (\overline{\partial},\overline{\partial}^{*}).) Let us
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introduce now a new \psi\geq 0 . Then (2.1) modifies to

L_{\phi-2\psi}^{2}(W)^{k-1}arrow L_{\phi-\psi}^{2}(W)^{k}\overline{\partial}arrow L_{\phi}^{2}(W)^{k+1}\overline{\partial} (2.4)

Let (I) be the term on the left side of (2.2). By introducing the new function
\psi , (2.2) modifies to

(I)\leq 2||\overline{\partial}^{*}f||_{\phi-2\psi}^{2}+||\overline{\partial}f||_{\phi}^{2}+2|||\partial\psi|f||_{\phi}^{2}\forall f\in C_{c}^{\infty}(W)^{k} . (2.5)

Let D - and D_{\overline{\partial}^{*}} denote the domains in (2.4) of \overline{\partial} and \overline{\partial}^{*} respectively.

Proposition 2.1 Assume (1.7) (\forall z\in W\backslash S) and let k \geq\max(a+1, q+1) .
Then we may find \phi and \psi such that

||f||_{\phi-\psi}^{2}\leq||\overline{\partial}^{*}f||_{\phi-2\psi}^{2}+||\overline{\partial}f||_{\phi}^{2} \forall f\in D_{\overline{\partial}}\cap D_{\overline{\partial}^{*}} . (2.6)

Moreover, for any fixed compact subset C\subset\subset W , we can choose \psi|_{C}\equiv 0

and \phi|c\equiv 2|z|^{2} .

Proof. We choose \psi according to the density result [5, Lemma 4.1.3] (in
particular \psi|c\equiv 0). By this choice it shall be enough to prove (2.6) only on
forms with C_{c}^{\infty}(W) coefficients. We fix the coordinates in which (1.7) holds.
We observe that the sum of the terms in (I) of (2.5) with both i and j\leq q

equals ||\overline{\partial}^{\prime*}f||_{\phi}^{2}+||\overline{\partial}’f||_{\phi}^{2} . In particular it is positive. We want to rewrite
now those terms where either of i or j is \geq q+1 . We recall that \delta_{i}=-\overline{\partial}_{i}^{*}

(for the inner product underlying to the L_{\phi}^{2}(W) norm) and observe that

\delta_{i}\overline{\partial}_{j}-\overline{\partial}_{j}\delta_{i}=\overline{\partial}_{j}\partial_{i}\phi . (2.7)

We also recall the notation n for the conormal to S . By (2.7) and by Stokes
formula, we get

\sum_{|K|=k-1}\sum_{iorj\geq q+1}’+\sum_{|J|=k}’\sum_{j\geq q+1}

= \sum’ \sum \int_{W}e^{-\phi}\overline{\partial}_{j}\partial_{i}\phi\overline{f}_{jK}f_{iK}dV

|K|=k-1i or j\geq q+1

+ \sum’ \sum \int_{S}e^{-\phi}\overline{n}_{j}n_{i}|J(\partial\phi)|\overline{f}_{jK}f_{iK}dV. (2.8)
|K|=k-1i or j\geq q+1

Now since n’=0 (by (1.5)) then in the last term in (2.8) we can extend the
sum to all indices ij and conclude that it is positive (because it contains a
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square). Collecting all the previous remarks, we get

(I)\geq \sum’ \sum \int_{W}e^{-\phi}\overline{\partial}_{j}\partial_{i}\phi\overline{f_{jK}}f_{iK}dV. (2.9)
|K|=k-1i or j\geq q+1

By combining (1.7), (2.5) and (2.9) we conclude:

\lambda||f||_{\phi}^{2}\leq 2||\overline{\partial}^{*}f||_{\phi-2\psi}^{2}+||\overline{\partial}f||_{\phi}^{2}+2|||\partial\psi|f||_{\phi}^{2}\forall f\in C_{c}^{\infty}(W)^{k} .

Here we can take the same constant \lambda=\lambda_{C}\forall f with supp f\subset C . Note
also that the subsets C_{t}:=\{z\in W : \phi(z)\leq t\}t\in \mathbb{R}^{+} are an exhaustive
family of compact of W Thus with \psi\equiv 0 on C_{c} ( c large), we replace \phi by
\phi_{1}=\chi(\phi)+2|z|^{2} where \chi has the properties: \chi(t)\geq 0\forall t , \chi(t)\equiv 0\forall t\leq c ,
\chi’\geq 0 , and finally

sup 2 (|\partial\psi|^{2}+e^{\psi})

\chi’(t)\geq c_{t} (2.10)
\lambda_{C_{t}}

Then (2.6) immediately follows for such a \phi_{1} . \square

End of proof of Theorem 1.3 We first prove existence in L^{2} , and then
regularity in C^{\infty} for solutions of (\overline{\partial},\overline{\partial}^{*}) . Finally we shall apply the technique
by Dufresnoy. Let W be bounded and assume that in suitable coordinates,
(1.7) holds \forall z\in W\backslash S . Then for any f\in L_{2|z|^{2}}^{2}(W)^{k} with \overline{\partial}f=0 there is
u\in L_{2|z|^{2}}^{2}(W)^{k-1} such that

(\overline{\partial}u=f,\overline{\partial}^{*}u=0) ||u||_{2|z|^{2}}^{2}\leq||f||_{2|z|^{2}}^{2} . (2.11)

This statement follows from Prop. 2.1 in the lines of [5, Lemma 4.4.1]. Let
now || ||_{(s)} be the norm of the Sobolev space H^{s}(W) . Let W_{\epsilon}=\{z\in W :
dist(z, \partial W ) >\epsilon\} . Let W be still bounded and (1.7) be fulfilled \forall z\in W\backslash S .
Using (2.11) together with (2.3), we can in fact prove the following result
on regularity of the solutions of the system (\overline{\partial},\overline{\partial}^{*}) (cf. [5, Th. 4.2.5]): For
any f\in C^{\infty}(W)^{k} with \overline{\partial}f=0 , there is u\in C^{\infty}(W_{\epsilon})^{k-1} such that \forall s\geq 0

and for suitable M_{s} we have

(\overline{\partial}u=f,\overline{\partial}^{*}u=0) ||u||_{(s+1)} \leq\frac{M_{s}}{\epsilon^{s+1}}||f||_{(s)} . (2.12)

We are ready to conclude. We aim to apply (2.12) to a sequence of domains
W_{\iota\nearrow}\supset\supset W_{\nu+1}\supset\supset , . W\tau We suppose W is defined locally by r(=-x_{1}+g)<

0 , and then define W_{\nu} by r<L_{-}^{2^{\mathcal{U}}}2

’ for 0< \eta<\frac{1}{2} . Clearly we have in a
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neighborhood of z_{o} :

{ z\in \mathbb{C}^{N} : dist ( z , W)<\eta^{2^{\nu+1}} }

\subset W_{\nu}\subset\{z\in \mathbb{C}^{N} : dist (z, W)< \frac{\eta^{2^{\nu}}}{2}\} . (2.13)

We then observe that since the hypothesis of Th. 1.3 is local, whereas the
techiques developped in the whole \S 2 are global, we need to replace W by
W\cap U and W_{\nu} by W_{\nu}\cap U for a system of neighborhoods U of z_{o} . We shall
still use the notation W and W_{\nu} instead of W\cap U and W_{\nu}\cap U .

Let f\in C^{\infty}(\overline{W})^{k} satisfy \overline{\partial}f=0 . Extend f to \tilde{f} such that

||\overline{\partial}\tilde{f}||_{(s)}\leq M_{rs}\eta r2^{\nu} on W_{\nu} for any r, s and for suitable M_{rs} .

This is clearly possible because \overline{\partial}\tilde{f}\equiv 0 on W and W_{\nu}\subset\{z : dist(z, W) <
\frac{\eta^{2^{\nu}}}{2}\} . According to (2.12) there is a solution h_{\nu} on W_{\nu+1} of

\{

\overline{\partial}h_{\nu}=\overline{\partial}\tilde{f}

||h_{\nu}||_{(s+1)}\leq M_{s}(\eta^{2^{\nu+1}})^{-s-1}||\overline{\partial}\tilde{f}||_{(s)} ,

(due to W_{\nu+1}\subset\{z : dist(z, \partial W_{\nu} ) >{?}_{-\})}^{2^{\nu_{2+1}} . Solve on W_{2} the equation
\overline{\partial}g_{1}=\tilde{f}-h_{1} , and, inductively on W_{\nu+2} :

\overline{\partial}g_{\nu+1}=h_{\nu}-h_{\nu+1} ,

with the estimates

||g_{\nu+1}||_{(s+2)}\leq M_{s+1}(\eta^{2^{\nu+2}})^{-(s+2)}||h_{\nu}-h_{\nu+1}||_{(s+1)}

\leq M_{s}’(\eta^{2^{\nu+2}})^{-2s-s_{M_{rs}\eta}r2^{\nu}}

\leq M_{rs}’\frac{1}{2^{\nu}} (r, \nu large).

Therefore \sum_{\nu=1}^{\infty}g_{\nu} converges in C^{\infty} (\overline{W}) and solves on \overline{W} :

\overline{\partial}(\sum_{\nu=1}^{\infty}g_{\nu})=\tilde{f}-\lim_{\nu}h_{\nu}=\tilde{f} .

\square
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