Oscillatory behavior of higher order nonlinear neutral difference equation

Xinping Guan, Jun Yang, Shu Tang Liu and Sui Sun Cheng
(Received May 18, 1998)

Abstract

In this paper, we are concerned with the oscillation of the solutions of certain more general higher order nonlinear neutral difference equation, we obtained several criteria for oscillatory behavior.

Key words: nonlinear delay difference equation, higher order difference equation, oscillatory behavior.

1. Introduction

We consider the higher order nonlinear neutral difference equation

$$
\begin{equation*}
\Delta^{m}\left(x_{n}-p_{n} x_{n-\tau}\right)+\sum_{i=1}^{k} Q_{i}(n) f_{i}\left(x_{n-\sigma_{i}(n)}\right)=0, \quad n=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$, $m \geq 2$ is even, τ is a positive integer. $\left\{p_{n}\right\}$ is a positive real sequence. $\left\{Q_{i}(n)\right\}$ are nonnegative real sequences, $\left\{\sigma_{i}(n)\right\}$ are nonnegative integer sequences and $\lim _{n \rightarrow \infty}\left(n-\sigma_{i}(n)\right)=\infty$, for $i=1,2, \ldots, k$. Moreover, there is at least an integer $j, 1 \leq j \leq k$, such that $Q_{j}(n)>0, \sigma_{j}(n)>0$ for $n=0,1,2, \ldots . f_{i}(u) \in C(R, R)$ are nondecreasing functions, $u f_{i}(u)>0$ for $u \neq 0$ and $i=1,2, \ldots, k$.

Let $\mu=\max \left\{\tau, \sup \left[\sigma_{i}(n) \mid 1 \leq i \leq k, n \geq 0\right]\right\}$. Then by a solution of (1), We mean a real sequence $\left\{x_{n}\right\}_{n=-\mu}^{\infty}$ which satisfies equation (1) for $n \geq 0$. A solution $\left\{x_{n}\right\}$ of (1) is said to be eventually positive if $x_{n}>0$ for all large n, and eventually negative if $x_{n}<0$ for all large n. It is said to be oscillatory if it is neither eventually positive nor eventually negative. We will also say that (1) is oscillatory if every of its solution is oscillatory.

For the sake of convenience, the sequence $\left\{z_{n}\right\}$ is defined by

$$
\begin{equation*}
z_{n}=x_{n}-p_{n} x_{n-\tau} . \tag{2}
\end{equation*}
$$

1991 Mathematics Subject Classification : 39A10.

As is customary, empty sums will be taken to be zero.
Lemma $1[1]$ Let $\left\{y_{n}\right\}$ be a sequence of real number in $N=\{0,1,2, \ldots\}$, Let $y_{n}>0$ and $\Delta^{m} y_{n}$ be of constant sign with $\Delta^{m} y_{n}$ not being identically zero on any subset $\left\{n_{0}, n_{0}+1, \ldots\right\}$. Then, there exists an integer $l, 0 \leq l \leq$ m, with $m+l$ odd for $\Delta^{m} y_{n} \leq 0$, and $m+l$ even for $\Delta^{m} y_{n} \geq 0$, such that

$$
\begin{aligned}
& l \leq m-1 \text { implies }(-1)^{l+k} \Delta^{k} y_{n}>0 \\
& \text { for all } n \in N, \quad l \leq k \leq m-1
\end{aligned}
$$

and

$$
l \geq 1 \text { implies } \Delta^{k} y_{n}>0, \quad \text { for all } n \in N, \quad 1 \leq k \leq l-1
$$

Lemma $2[8]$ Assume that $\left\{p_{n}\right\}$ is a sequence of nonnegative real numbers and k is a positive integer, then either one of the following conditions

$$
\liminf _{n \rightarrow \infty} \sum_{i=n-k}^{n-1} p_{i}>\left(\frac{k}{k+1}\right)^{k+1}
$$

or

$$
a_{0}=\liminf _{n \rightarrow \infty} \sum_{i=n-k}^{n-1} p_{i} \leq\left(\frac{k}{k+1}\right)^{k+1}
$$

and

$$
\limsup _{n \rightarrow \infty} \sum_{i=n-k}^{n} p_{i}>1-\frac{1-a_{0}-\sqrt{1-2 a_{0}-a_{0}^{2}}}{2}
$$

implies that
$\left(\mathrm{H}_{1}\right) \quad$ The difference inequality

$$
\Delta x_{n+} p_{n} x_{n-k} \leq 0, \quad n=0,1,2, \ldots
$$

has no eventually positive solutions;
$\left(\mathrm{H}_{2}\right) \quad$ The difference inequality

$$
\Delta x_{n}+p_{n} x_{n-k} \geq 0, \quad n=0,1,2, \ldots
$$

has no eventually negative solutions.
Lemma 3 Let $0<p_{n}<1$ for $n=0,1,2, \ldots$. Assume that there is at least an integer $j, 1 \leq j \leq k$, such that $\sum_{n=n_{0}}^{\infty} Q_{j}(n)=\infty$, If $\left\{x_{n}\right\}$ is
eventually positive (or negative) solution of equation (1), then $\lim _{n \rightarrow \infty} z_{n}=$ 0 , moreover, $(-1)^{s} \Delta^{s} z_{n}<0($ or $>0)$, for $s=0,1,2, \ldots, m$ and all large n.

Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of Eq. (1) (the proof when $\left\{x_{n}\right\}$ is eventually negative is similar), and without loss of generality, assume that $x_{n}>0, x_{n-\tau}>0, x_{n-\sigma_{i}(n)}>0$ for $i=1,2, \ldots, k$ and $n \geq n_{0}$. By (1) and (2), we have

$$
\begin{equation*}
\Delta^{m} z_{n}=-\sum_{i-1}^{k} Q_{i}(n) f_{i}\left(x_{n-\sigma_{i}(n)}\right)<0, \quad \text { for } n \geq n_{1} \tag{3}
\end{equation*}
$$

It follows that $\Delta^{s} z_{n}(s=0,1,2, \ldots, m-1)$ are strictly monotone and are of constant sign eventually. Hence, we may see

$$
\lim _{n \rightarrow \infty} z_{n}=L(-\infty \leq L \leq \infty)
$$

If $-\infty \leq L<0$. Then there exists a constant $C>0$ and a $n_{2} \geq n_{1}$, such that $z_{n}<-C<0$ for $n \geq n_{2}$. By (2), we have

$$
x_{n}<p_{n} x_{n-\tau}-C \leq x_{n-\tau}-C, \quad \text { for } n \geq n_{2} .
$$

This implies

$$
x_{n+\tau}<x_{n}-C, \quad \text { for } n \geq n_{2},
$$

so that

$$
x_{n_{2}+h \tau}<x_{n_{2}}-h C, \quad \text { for } h=1,2, \ldots,
$$

and set $h \rightarrow \infty$, we obtain

$$
x_{n_{2}+h \tau} \rightarrow-\infty
$$

This contradicts $x_{n}>0$ for $n \geq n_{1}$. Hence, $-\infty \leq L<0$ is impossible.
If $0<L \leq \infty$. Then there exist a constant $C>0$ and a $n_{2} \geq n_{1}$, such that $z_{n}>C>0$ for $n \geq n_{2}$. In view of $\Delta^{m} z_{n}<0$ for $n \geq n_{1}$ and m is even. By Lemma 1, there exist an integer $l \in\{1,3, \ldots, m-1\}$ and a $n_{3} \geq n_{2}$, such that, as $n \geq n_{3}, \Delta^{s} z_{n}>0$ for $s=0,1,2, \ldots, l-1$, and $(-1)^{s+l} \Delta^{s} z_{n}>0$ for $s=l, l+1, \ldots, m-1$. In particular, $\Delta^{m-1} z_{n}>0$ for $n \geq n_{3}$. Observe that $z_{n}>C>0$, from (2), we have

$$
x_{n}>z_{n}>C>0, \quad \text { for } n \geq n_{3} .
$$

Therefore, we may take a $n_{4} \geq n_{3}$, such that $x_{n-\sigma_{i}(n)}>z_{n-\sigma_{i}(n)}>C>0$ for $n \geq n_{4}$ and $i=1,2, \ldots, k$. Since f_{i} is nondecreasing, from (3), we have

$$
\begin{array}{r}
\Delta^{m} z_{n} \leq-\sum_{i=1}^{k} Q_{i}(n) f_{i}(C) \leq-b \sum_{i=1}^{k} Q_{i}(n) \leq-b Q_{j}(n) \\
\text { for } n \geq n_{4} \tag{4}
\end{array}
$$

where $b=\min _{1 \leq i \leq k}\left\{f_{i}(c)\right\}>0$.
By summing (4) from n_{4} to n and then set $n \rightarrow \infty$, we have $\Delta^{m-1} z_{n} \rightarrow$ $-\infty$ as $n \rightarrow \infty$. This contradicts $\Delta^{m-1} z_{n}>0$ for $n \geq n_{3}$. Hence $0<L \leq \infty$ is impossible. So that $L=0$ holds, that is $\lim _{n \rightarrow \infty} z_{n}=0$.

Since $\lim _{n \rightarrow \infty} z_{n}=0$, it is not difficult to use proof by contradiction to show that $\lim _{n \rightarrow \infty} \Delta^{s} z_{n}=0$ for $s=0,1,2, \ldots, m-1$. In view of $\Delta^{m} z_{n}<0$ for $n \geq n_{1}$ and m is even, hence, it is easy to see that, for all large n, $(-1)^{s} \Delta^{s} z_{n}<0$ for $s=1,2, \ldots, m$. The proof is complete.
Lemma 4 Let $1<p_{n} \leq p$ for $n \geq n_{0}$ and some positive constant p. Assume that there is at least an integer $j, 1 \leq j \leq k$ such that $\sum_{n=n_{0}}^{\infty} Q_{j}(n)=$ ∞. If $\left\{x_{n}\right\}$ is a eventually bounded positive (or negative) solution of equation (1), then $\lim _{n \rightarrow \infty} z_{n}=0$, moreover, $(-1)^{s} \Delta^{s} z_{n}<0$ (or >0) for $s=0,1,2, \ldots, m$ and all large n.

Proof. Let $\left\{x_{n}\right\}$ be an eventually bounded positive solution of Eq. (1) (the proof when $\left\{x_{n}\right\}$ is eventually bounded negative solution is similar), and without loss of generality, assume that $x_{n}>0, x_{n-\tau}>0, x_{n-\sigma_{i}(n)}>0$ for $n \geq n_{1} \geq n_{0}$ and $i=1,2, \ldots, k$. By (1), (2), we have

$$
\begin{equation*}
\Delta^{m} z_{n}=-\sum_{i=1}^{k} Q_{i}(n) f_{i}\left(x_{n-\sigma_{i}(n)}\right)<0, \quad \text { for } n \geq n_{1} \tag{5}
\end{equation*}
$$

It follows that $\Delta^{s} z_{n}(s=0,1,2, \ldots, m-1)$ are strictly monotone and are of constant sign eventually. Observe that $\left\{x_{n}\right\}$ is bounded, $1<p_{n} \leq p$ for $n \geq n_{0}$, by (2), $\left\{z_{n}\right\}$ is bounded. Hence, we may set $\lim _{n \rightarrow \infty} z_{n}=L$ $(-\infty<L<\infty)$.

If $-\infty<L<0$, then there exist a constant $C>0$ and a $n_{2} \geq n_{1}$, such that $z_{n}<-C<0$ for $n \geq n_{2}$. Since $\Delta^{m} z_{n}<0$ for $n \geq n_{1}$ and $\left\{z_{n}\right\}$ is bounded, set $y_{n}=-z_{n}>0$, then $\Delta^{m} y_{n}=-\Delta^{m} z_{n}>0$ for $n \geq n_{2}$, moreover, $\left\{y_{n}\right\}$ is bounded. In view of m is even, it follows, by Lemma 1, that there exists a $n_{3} \geq n_{2}$ and an integer $l=0$, such that $(-1)^{s} \Delta^{s} y_{n}>0$
for $s=0,1,2, \ldots, m-1$ and $n \geq n_{3}$. This implies $(-1)^{s} \Delta^{s} z_{n}<0$ for $s=0,1,2, \ldots, m-1$ and $n \geq n_{3}$, in particular, $\Delta^{m-1} z_{n}>0$ for $n \geq n_{3}$.

On the other hand, since $\left\{x_{n}\right\}$ is bounded, we set $\lim _{n \rightarrow \infty} \inf x_{n}=a$ $(0 \leq a<\infty)$. We wish to show that $a>0$. Otherwise, if $a=0$, then there is a sequence $\left\{n_{i}\right\}, \lim _{i \rightarrow \infty} n_{i}=\infty$ such that $\lim _{i \rightarrow \infty} x_{n_{i}}=a=0$. By (2), we have

$$
\begin{equation*}
x_{n_{i}+\tau}=z_{n_{i}+\tau}+p_{n_{i}+\tau} x_{n_{i}} . \tag{6}
\end{equation*}
$$

From (6), set $i \rightarrow \infty$ and observe that $1<p_{n} \leq p$, we have

$$
x_{n_{i}+\tau} \rightarrow L<0, \quad \text { as } \quad i \rightarrow \infty .
$$

This contradicts $x_{n}>0$ for $n \geq n_{1}$. Hence $a>0$ holds, that is $\lim _{n \rightarrow \infty} x_{n}=$ $a>0$. Then there exist a constant $C_{1}>0$ and a $n_{4} \geq n_{3}$. such that $x_{n}>C_{1}>0$, and $x_{n-\sigma_{i}(n)}>C_{1}>0$ for $n \geq n_{4}$ and $i=1,2, \ldots, k$. So by (5) and hypothesis on $f_{i}(u)$, we have

$$
\begin{array}{r}
\Delta^{m} z_{n} \leq-\sum_{i=1}^{k} f_{i}\left(C_{1}\right) Q_{i}(n) \leq-b \sum_{i=1}^{k} Q_{i}(n) \leq-b Q_{j}(n) \\
\text { for } n \geq n_{4} \tag{7}
\end{array}
$$

where $b=\min _{1 \leq i \leq k}\left\{f_{i}\left(C_{1}\right)\right\}>0$.
By summing (7) from n_{4} to n and then set $n \rightarrow \infty$, we have

$$
\Delta^{m-1} z_{n} \rightarrow-\infty, \quad \text { as } n \rightarrow \infty .
$$

This contradicts $\Delta^{m-1} z_{n}>0$ for $n \geq n_{3}$, Hence $-\infty<L<0$ is impossible.
If $0<L<\infty$, as in the proof of Lemma 3 for case $0<L \leq \infty$. We imply that $0<L<\infty$ is impossible. Hence, $L=0$ holds, that is, $\lim _{n \rightarrow \infty} z_{n}=0$ holds.

The rest of the proof is similar to that of Lemma 3, we may get for all large n.

$$
(-1)^{s} \Delta^{s} z_{n}<0 \quad \text { for } s=0,1,2, \ldots, m .
$$

The proof is complete.

Theorem 1 Assume that

$\left(\mathrm{C}_{1}\right) \quad 0<p_{n} \leq p$ for $n \geq n_{0}$ and some positive constant $p, 0<p \leq 1$;
$\left(\mathrm{C}_{2}\right) \quad$ There exists a positive constant λ, such that $\liminf _{u \rightarrow 0} \frac{f_{i}(u)}{u}>\lambda$, for $i=1,2, \ldots, k$;
$\left(\mathrm{C}_{3}\right) \quad$ There exists at least an integer $j, 1 \leq j \leq k$, such that $Q_{j}(n)>0$, $\sigma_{j}(n) \geq \sigma_{j}>0$ for $n \geq n_{0}$ and some positive constant σ_{j}.

Moreover, there exists a positive constant k, such that

$$
\frac{\lambda}{p} Q_{j}(n) \geq k^{m} \text { and either } k \frac{\sigma_{j}-\tau-m}{m}>\left(\frac{\sigma_{j}-\tau}{\sigma_{j}-\tau+m}\right)^{\frac{\sigma_{j}-\tau+m}{m}}
$$

or

$$
a_{0}=k \frac{\sigma_{j}-\tau-m}{m} \leq\left(\frac{\sigma_{j}-\tau}{\sigma_{j}-\tau+m}\right)^{\frac{\sigma_{j}-\tau+m}{m}}
$$

and

$$
k \frac{\sigma_{j}-\tau}{m}>1-\frac{1-a_{0}-\sqrt{1-2 a_{0}-a_{0}^{2}}}{2}
$$

Then every solution of Eq. (1) oscillates.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of Eq. (1). Without loss of generality, assume that $x_{n}>0, x_{n-\tau}>0, x_{n-\sigma_{i}(n)}>0(i=1,2, \ldots, k)$ for $n \geq n_{1} \geq n_{0}$ (the proof for $x_{n}<0$ is similar). From (C_{3}), we have

$$
Q_{j}(n) \geq \frac{p k^{m}}{\lambda}>0, \text { for } n \geq n_{0}
$$

It follows that

$$
\sum_{n=n_{0}}^{\infty} Q_{j}(n)=\infty
$$

By Lemma 3, we have

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

moreover, there exists $n_{2} \geq n_{1}$, such that

$$
\begin{equation*}
(-1)^{s} \Delta^{s} z_{n}<0, \quad \text { for } n \geq n_{2} \text { and } s=0,1,2, \ldots, m . \tag{8}
\end{equation*}
$$

In particular, $z_{n}<0$ for $n \geq n_{2}$. So by (2) we have

$$
z_{n}>-p_{n} x_{n-\tau} \geq-p x_{n-\tau}, \text { for } n \geq n_{2} .
$$

This implies that

$$
x_{n}>-\frac{1}{p} z_{n+\tau}>0, \quad \text { for } n \geq n_{2}
$$

Hence, we may take a $n_{3} \geq n_{2}$, such that

$$
\begin{equation*}
x_{n-\sigma_{i}(n)}>-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}>0, \text { for } n \geq n_{3} \text { and } i=1,2, \ldots, k . \tag{9}
\end{equation*}
$$

From (1), (2) and (9), we have

$$
\begin{equation*}
\Delta^{m} z_{n} \leq-\sum_{i=1}^{k} Q_{i}(n) f_{i}\left[-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}\right], \quad \text { for } n \geq n_{3} \tag{10}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} z_{n}=0$, so that

$$
\lim _{n \rightarrow \infty}\left[-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}\right]=0, \quad \text { for } \quad i=1,2, \ldots, k
$$

By $\left(\mathrm{C}_{2}\right)$, then there exists $n_{4} \geq n_{3}$, such that, as $n \geq n_{4}$,

$$
\begin{equation*}
\frac{f_{i}\left[-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}\right]}{-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}}>\lambda>0, \quad \text { for } \quad i=1,2, \ldots, k \tag{11}
\end{equation*}
$$

From (8), $\Delta z_{n}>0$ for $n \geq n_{2}$, and combining (10), (11), we get

$$
\begin{align*}
\Delta^{m} z_{n} & \leq-\sum_{i=1}^{k} Q_{i}(n) f_{i}\left[-\frac{1}{p} z_{n+\tau-\sigma_{i}(n)}\right] \\
& \leq \frac{\lambda}{p} \sum_{i=1}^{k} Q_{i}(n) z_{n+\tau-\sigma_{i}(n)} \\
& \leq \frac{\lambda}{p} Q_{j}(n) z_{n+\tau-\sigma_{j}(n)} \leq \frac{\lambda}{p} Q_{j}(n) z_{n+\tau-\sigma_{j}}, \text { for } n \geq n_{4} \tag{12}
\end{align*}
$$

set $w_{n}=\sum_{i=1}^{m}(-1)^{i-1} k^{i-1} \Delta^{m-i} z_{n-(i-1) \frac{\sigma_{j}-\tau}{m}}$.
By (8), $w_{n}>0$ for $n \geq n_{4}$, so that

$$
\begin{aligned}
\Delta w_{n}+k w_{n-\frac{\sigma_{j}-\tau}{m}}= & \sum_{i=1}^{m}(-1)^{i-1} k^{i-1} \Delta^{m-i+1} z_{n-(i-1) \frac{\sigma_{j}-\tau}{m}} \\
& +\sum_{i=1}^{m}(-1)^{i-1} k^{i} \Delta^{m-i} z_{n-i \frac{\sigma_{j}-\tau}{m}} \\
= & \Delta^{m} z_{n}+\sum_{i=2}^{m}(-1)^{i-1} k^{i-1} \Delta^{m-i+1} z_{n-(i-1) \frac{\sigma_{j}-\tau}{m}} \\
& -\sum_{i=1}^{m-1}(-1)^{i} k^{i} \Delta^{m-i} z_{n-i \frac{\sigma_{j}-\tau}{m}}-k^{m} z_{n+\tau-\sigma_{j}}
\end{aligned}
$$

$$
\begin{equation*}
=\Delta^{m} z_{n}-k^{m} z_{n+\tau-\sigma_{j}}, \quad \text { for } n \geq n_{4} \tag{13}
\end{equation*}
$$

From (12), (13), and $\left(\mathrm{C}_{3}\right)$ we have

$$
\begin{aligned}
\Delta w_{n}+k w_{n-\frac{\sigma_{j}-\tau}{m}} & \leq \frac{\lambda}{p} Q_{j}(n) z_{n+\tau-\sigma_{j}-} k^{m} z_{n+\tau-\sigma_{j}} \\
& =\left(\frac{\lambda}{p} Q_{j}(n)-k^{m}\right) z_{n+\tau-\sigma_{j}} \leq 0, \quad \text { for } n \geq n_{4}
\end{aligned}
$$

That is

$$
\begin{equation*}
\Delta w_{n}+k w_{n-\frac{\sigma_{j}-\tau}{m}} \leq 0, \quad \text { for } n \geq n_{4} \tag{14}
\end{equation*}
$$

By $\left(\mathrm{C}_{3}\right)$ and Lemma 2, (14) has no eventually positive solutions, this contradicts $w_{n}>0$ for $n \geq n_{4}$, and the proof is complete.

Theorem 2 Let conditions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ be satisfied. Moreover, assume that
$\left(\mathrm{C}_{4}\right) \quad$ There exists at least an integer $j, 1 \leq j \leq k$, such that $Q_{j}(n)>0$, $\sigma_{j}(n) \geq \sigma_{j}>\tau$ for $n \geq n_{0}$ and some positive constant σ_{j}, and that

$$
\limsup _{n \rightarrow \infty} \sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s)(s-n+m-2)^{(m-1)}>(m-1)!
$$

where $(s-n+m-2)^{(m-1)}$ is the usual factorial function. Then every solution of Eq. (1) oscillates.

Proof. Let $\left\{x_{n}\right\}$ be a nonosillatory solution of Eq. (1). Without loss of generality, assume that $x_{n}>0, x_{n-\tau}>0, x_{n-\sigma_{i}(n)}>0(i=1,2, \ldots, k)$ for $n \geq n_{1} \geq n_{0}$ (the proof when $x_{n}<0, n \geq n_{1}$, is similar). Observe that $\sigma_{j}>\tau>0$ and $m \geq 2$, we have

$$
\sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s)\left(\sigma_{j}-\tau\right)^{m-1} \geq \sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s)(n-s)^{m-1}
$$

using $\left(\mathrm{C}_{4}\right)$, we have

$$
\limsup _{n \rightarrow \infty} \sum_{s=n+\tau-\sigma_{j}}^{n} Q_{j}(s) \geq \frac{p(m-1)!}{\lambda\left(\sigma_{j}-\tau\right)^{m-1}}>0
$$

So that $\sum_{s=n_{0}}^{\infty} Q_{j}(s)=\infty$. By Lemma 3, we get $\lim _{n \rightarrow \infty} z_{n}=0$, and there
exists $n_{2} \geq n_{1}$, such that

$$
\begin{equation*}
(-1)^{s} \Delta^{s} z_{n}<0, \quad \text { for } n \geq n_{2} \text { and } s=0,1,2, \ldots, m \tag{15}
\end{equation*}
$$

In particular, $z_{n}<0$ for $n \geq n_{2}$. As in the proof of Theorem 1, we get that (12) holds, that is

$$
\begin{equation*}
\Delta^{m} z_{n} \leq \frac{\lambda}{p} Q_{j}(n) z_{n+\tau-\sigma_{j}}, \quad \text { for } n \geq n_{4} \tag{16}
\end{equation*}
$$

Set $s \geq n \geq n_{4}$, from (16) and by discrete Taylor's formula ${ }^{[1]}$, we have

$$
\begin{align*}
\Delta^{m} z_{s} \leq & \frac{\lambda}{p} Q_{j}(s) z_{n+\tau-\sigma_{j}} \\
= & \frac{\lambda}{p} Q_{j}(s)\left[\sum_{i=0}^{m-1} \frac{(s-n+i-1)^{(i)}}{i!}(-1)^{i} \Delta^{i} z_{n+\tau-\sigma_{j}}\right. \\
& \left.-\frac{(-1)^{m-1}}{(m-1)!} \sum_{l=s+\tau-\sigma_{j}}^{n+\tau-\sigma_{j}-1}\left(l+m-1-s-\tau+\sigma_{j}\right)^{(m-1)} \Delta^{m} z_{l}\right] . \tag{17}
\end{align*}
$$

From (15) and (17), we have

$$
\begin{equation*}
\Delta^{m} z_{s} \leq \frac{-\lambda(s-n+m-2)^{(m-1)}}{p(m-1)!} Q_{j}(s) \Delta^{m-1} z_{n+\tau-\sigma_{j}} \tag{18}
\end{equation*}
$$

By summing (18), from $n+\tau-\sigma_{j}$ to n, we get

$$
\begin{align*}
& \Delta^{m-1} z_{n+1}-\Delta^{m-1} z_{n+\tau-\sigma_{j}} \\
& \quad \leq \frac{-(s-n+m-2)^{(m-1)}}{(m-1)!} \Delta^{m-1} z_{n+\tau-\sigma_{j}} \sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s) . \tag{19}
\end{align*}
$$

From (15), $\Delta^{m-1} z_{n+1}>0$ for $n \geq n_{4}$, It follows, from (19), that

$$
\sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s)<\frac{(m-1)!}{(s-n+m-2)^{(m-1)}}, \quad \text { for } n \geq n_{4}
$$

So that

$$
\limsup _{n \rightarrow \infty} \sum_{s=n+\tau-\sigma_{j}}^{n} \frac{\lambda}{p} Q_{j}(s) \leq \frac{(m-1)!}{(s-n+m-2)^{(m-1)}}
$$

This contradicts $\left(\mathrm{C}_{4}\right)$, and the proof is complete.

Using Lemma 4 and following the proof of Theorem 1 and Theorem 2, we have the following results.

Theorem 3 Let condition $\left(\mathrm{C}_{1}\right)$ in Theorem 1 be replaced by
$\left(\mathrm{C}_{5}\right) \quad 1 \leq p_{n} \leq p$ for $n \geq n_{0}$ and some positive constant p. Then every bounded solution of Eq. (1) oscillates.

Theorem 4 Let condition $\left(\mathrm{C}_{1}\right)$ in Theorem 2 be replaced by $\left(\mathrm{C}_{5}\right)$. Then every bounded solution of Eq. (1) oscillates.

Example. Consider the equation

$$
\begin{equation*}
\triangle^{5}\left(x_{n}-\frac{1}{2} x_{n-1}\right)+48 x_{n-2}=0, \quad n=0,1,2, \ldots \tag{20}
\end{equation*}
$$

So that $m=5, p_{n}=1 / 2, \tau=1, \sigma=2, Q(n)=48$ and $f(u)=u$. It is easy to verify that the conditions of Theorem 1 are satisfied. Therefore (20) has an oscillatory solution. For instance, $\left\{x_{n}\right\}=(-1)^{n}$ is such an solution.

References

[1] Agarwal R.P., Difference Equation and Inequalities,Marcel Dekker. New York, 1992.
[2] Gyori I. and Lades G., Oscillation Theory Delay Differential Equations. Clarendon Press, Oxford, 1991.
[3] Lalli B.S., Oscillation theorem for neutral difference equations. Computers Math. Appl. 28 (1994), 191-202.
[4] Zhang B.G. and Cheng S.S., Oscillation and comparison theorems for delay difference equations. Fasiculi Math. 25 (1995), 13-32.
[5] Thandapani E., Sundaram P. and Lalli B.S., Oscillation theorem for higher order nonlinear delay difference equations. Comp. Math. Applic. 32 (3) (1996), 111-117.
[6] Zafer A., Oscillatory and asymptotic behavior of higher order difference equations. Mathl. Comput. Modeling 21 (4) (1995), 43-50.
[7] Wong P.J.Y. and Agarwal R.P., Comparison theorem for the oscillation of higher order difference equations with deviating arguments. Mathl Comput. Modeling 24 (12) (1996), 39-48.
[8] Chen Ming-Po and Yu J.S., Oscillations of delay difference equations with variable coefficients. Proceedings of the First International Cconference on Difference Equations, Gordon and Breach, 1995, 105-114.

Xinping Guan
Department of Mathematics and Physics
Yanshan University
Qinhuangdao, Hebei 066004
P. R. China
E-mail: xpguan@ysu.edu.cn

Jun Yang
Department of Mathematics and Physics Yanshan University
Qinhuangdao, Hebei 066004
P. R. China

Shu Tang Liu
Department of Mathematics
Binzhou Normal College
Binzhou, Shandong 256604, P.R. China

Sui Sun Cheng
Department of Mathematics
Tsing Hua University
Hsinchu, Taiwan 30043, R. O. C.

