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Oscillatory behavior of higher order nonlinear
neutral difference equation
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Abstract. In this paper, we are concerned with the oscillation of the solutions of cer-
tain more general higher order nonlinear neutral difference equation, we obtained several
criteria for oscillatory behavior.
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1. Introduction

We consider the higher order nonlinear neutral difference equation

\triangle^{m}(x_{n}-p_{n}x_{n-\tau})+\sum_{i=1}^{k}Q_{i}(n)f_{i}(x_{n-\sigma_{i}(n)})=0 , n=0,1,2 , \ldots .

(1)

where \triangle is the forward difference operator defined by \triangle x_{n}=x_{n+1}-x_{n} ,
m\geq 2 is even, \tau is a positive integer. \{p_{n}\} is a positive real sequence.
\{Q_{i}(n)\} are nonnegative real sequences, \{\sigma_{i}(n)\} are nonnegative integer
sequences and \lim_{narrow\infty}(n-\sigma_{i}(n))=\infty , for i=1,2 , . . ’ k . Moreover, there
is at least an integer j , 1\leq j\leq k , such that Q_{j}(n)>0 , \sigma_{j}(n)>0 for
n=0,1,2, . . f_{i}(u)\in C(R, R) are nondecreasing functions, uf_{i}(u)>0
for u\neq 0 and i=1,2 , \ldots , k .

Let \mu=\max\{\tau, \sup[\sigma_{i}(n)|1\leq i\leq k, n\geq 0]\} . Then by a solution
of (1), We mean a real sequence \{x_{n}\}_{n=-\mu}^{\infty} which satisfies equation (1) for
n\geq 0 . A solution \{x_{n}\} of (1) is said to be eventually positive if x_{n}>0 for
all large n , and eventually negative if x_{n}<0 for all large n . It is said to be
oscillatory if it is neither eventually positive nor eventually negative. We
will also say that (1) is oscillatory if every of its solution is oscillatory.

For the sake of convenience, the sequence \{z_{n}\} is defined by

z_{n}=x_{n}-p_{n^{X}n-\tau} . (2)
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As is customary, empty sums will be taken to be zero.

Lemma 1 [1] Let \{y_{n}\} be a sequence of real number in N=\{0, 1, 2, \ldots\} ,
Let y_{n}>0 and \triangle^{m}y_{n} be of constant sign with \triangle^{m}y_{n} not being identically
zero on any subset \{n_{0},n_{0}+1, \ldots\} . Then, there exists an integer l , 0\leq l\leq

m, with m+l odd for \triangle^{m}y_{n}\leq 0 , and m+l even for \triangle^{m}y_{n}\geq 0 , such that

l\leq m-1 implies (-1)^{l+k}\triangle^{k}y_{n}>0 ,

for all n\in N , l\leq k\leq m-1 ;

and

l\geq 1 implies \triangle^{k}y_{n}>0 , for all n\in N, 1\leq k\leq l-1 .

Lemma 2 [8] Assume that \{p_{n}\} is a sequence of nonnegative real num-
bers and k is a positive integer, then either one of the following conditions

\lim_{narrow}\inf_{\infty}\sum_{i=n-k}^{n-1}p_{i}>(\frac{k}{k+1})^{k+1}

or

a_{0=} \lim_{narrow}\inf_{\infty}\sum_{i=n-k}^{n-1}p_{i}\leq(\frac{k}{k+1})^{k+1}

and

\lim\sup_{i}\sum_{=n-k}^{n}p_{i}narrow\infty>1-\frac{1-a_{0}-\sqrt{1-2a_{0}-a_{0}^{2}}}{2}

implies that
(H_{1}) The difference inequality

\triangle x_{n+}p_{n}x_{n-k}\leq 0 , n=0,1,2 , \ldots :

has no eventually positive solutions;
(H_{2}) The difference inequality

\triangle x_{n}+PnXn-k\geq 0 , n=0,1,2 , \ldots ,

has no eventually negalive solutions.

Lemma 3 Let 0<p_{n}<1 for n=0,1,2 , \ldots Assume that there is at
least an integer j , 1\leq j\leq k , such that \sum_{n=n_{0}}^{\infty}Q_{j}(n)=\infty , If \{x_{n}\} is
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eventually positive (or negative) solution of equation (1), then \lim_{narrow\infty}z_{n}=

0 , moreover, (-1)^{s}\triangle^{s}z_{n}<0 (or>0) , for s=0,1,2 , . . ’ m and all large n .

Proof. Let \{x_{n}\} be an eventually positive solution of Eq. (1) (the proof
when \{x_{n}\} is eventually negative is similar), and without loss of generality,
assume that x_{n}>0 , x_{n-\tau}>0 , x_{n-\sigma_{i}(n)}>0 for i=1,2 , \ldots , k and n\geq n_{0} .
By (1) and (2), we have

\triangle^{m}z_{n}=-\sum_{i-1}^{k}Q_{i}(n)f_{i}(x_{n-\sigma_{i}(n)})<0 , for n\geq n_{1} . (3)

It follows that \triangle^{s}z_{n} (s=0,1,2, \ldots, m-1) are strictly monotone and are
of constant sign eventually. Hence, we may see

\lim_{narrow\infty}z_{n}=L(-\infty\leq L\leq\infty) .

If -\infty\leq L<0 . Then there exists a constant C>0 and a n_{2}\geq n_{1} ,
such that z_{n}<-C<0 for n\geq n_{2} . By (2), we have

x_{n}<p_{n}x_{n-\tau}-C\leq x_{n-\tau}-C, for n\geq n_{2} .

This implies

x_{n+\tau}<x_{n}-C , for n\geq n_{2} ,

so that

x_{n_{2}+h\tau}<x_{n_{2}}-hC, for h=1,2 , \ldots ,

and set harrow\infty , we obtain

x_{n_{2}+h\tau}arrow-\infty

This contradicts x_{n}>0 for n\geq n_{1} . Hence, -\infty\leq L<0 is impossible.
If 0<L\leq\infty . Then there exist a constant C>0 and a n_{2}\geq n_{1} ,

such that z_{n}>C>0 for n\geq n_{2} . In view of \triangle^{m}z_{n}<0 for n\geq n_{1} and
m is even. By Lemma 1, there exist an integer l\in\{1,3, \ldots, m-1\} and
a n_{3}\geq n_{2} , such that, as n\geq n_{3} , \triangle^{s}z_{n}>0 for s=0,1,2 , . . ’ l-1 , and
(-1)^{s+l}\triangle^{s}z_{n}>0 for s=l , l+1 , \ldots , m-1 . In particular, \triangle^{m-1}z_{n}>0 for
n\geq n_{3} . Observe that z_{n}>C>0 , from (2), we have

x_{n}>z_{n}>C>0 , for n\geq n_{3} .
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Therefore, we may take a n_{4}\geq n_{3} , such that x_{n-\sigma_{i}(n)}>z_{n-\sigma_{i}(n)}>C>0

for n\geq n_{4} and i=1,2 , \ldots , k . Since f_{i} is nondecreasing, from (3), we have

\triangle^{m}z_{n}\leq-\sum_{i=1}^{k}Q_{i}(n)f_{i}(C)\leq-b\sum_{i=1}^{k}Q_{i}(n)\leq-bQ_{j}(n) ,

for n\geq n_{4} , (4)

where b= \min_{1\leq i\leq k}\{f_{i}(c)\}>0 .
By summing (4) from n_{4} to n and then set narrow\infty , we have \triangle^{m-1}z_{n}arrow

-\infty as narrow\infty . This contradicts \triangle^{m-1}z_{n}>0 for n\geq n_{3} . Hence 0<L\leq\infty

is impossible. So that L=0 holds, that is \lim_{narrow\infty}z_{n}=0 .
Since \lim_{narrow\infty}z_{n}=0 , it is not difficult to use proof by contradiction to

show that \lim_{narrow\infty}\triangle^{s}z_{n}=0 for s=0,1,2 , . . , m-1 . In view of \triangle^{m}z_{n}<0

for n\geq n_{1} and m is even, hence, it is easy to see that, for all large n ,
(-1)^{s}\triangle^{s}z_{n}<0 for s=1,2 , . . ’ m . The proof is complete. \square

Lemma 4 Let 1<p_{n}\leq p for n\geq n_{0} and some positive constant p . As-
sume that there is at least an integer j , 1\leq j\leq k such that \sum_{n=n_{0}}^{\infty}Q_{j}(n)=

\infty . If \{x_{n}\} is a eventually bounded positive (or negative) solution of equa-
tion (1), then \lim_{narrow\infty}z_{n}=0 , moreover, (-1)^{s}\triangle^{s}z_{n}<0 (or>0) for
s=0,1,2 , \ldots , m and all large n .

Proof Let \{x_{n}\} be an eventually bounded positive solution of Eq. (1)
(the proof when \{x_{n}\} is eventually bounded negative solution is similar),
and without loss of generality, assume that x_{n}>0 , x_{n-\tau}>0 , x_{n-\sigma_{i}(n)}>0

for n\geq n_{1}\geq n_{0} and i=1,2, \ldots , k . By (1), (2), we have

\triangle^{m}z_{n}=-\sum_{i=1}^{k}Q_{i}(n)f_{i}(x_{n-\sigma_{i}(n)})<0 , for n\geq n_{1} . (5)

It follows that \triangle^{s}z_{n} (s=0,1,2, \ldots, m-1) are strictly monotone and are
of constant sign eventually. Observe that \{x_{n}\} is bounded, 1<p_{n}\leq p

for n\geq n_{0} , by (2), \{z_{n}\} is bounded. Hence, we may set \lim_{narrow\infty}z_{n}=L

(-\infty<L<\infty) .
If-\infty<L<0 , then there exist a constant C>0 and a n_{2}\geq n_{1} ,

such that z_{n}<-C<0 for n\geq n_{2} . Since \triangle^{m}z_{n}<0 for n\geq n_{1} and \{z_{n}\}

is bounded, set y_{n}=-z_{n}>0 , then \triangle^{m}y_{n}=-\triangle^{m}z_{n}>0 for n\geq n_{2} ,
moreover, \{y_{n}\} is bounded. In view of m is even, it follows, by Lemma 1,
that there exists a n_{3}\geq n_{2} and an integer l=0, such that (-1)^{s}\triangle^{s}y_{n}>0
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for s=0,1,2 , \ldots , m-1 and n\geq n_{3} . This implies (-1)^{s}\triangle^{s}z_{n}<0 for
s=0,1 , 2, \ldots , m-1 and n\geq n_{3} , in particular, \triangle^{m-1}z_{n}>0 for n\geq n_{3} .

On the other hand, since \{x_{n}\} is bounded, we set \lim_{narrow\infty}\inf x_{n}=a

(0\leq a<\infty) . We wish to show that a>0 . Otherwise, if a=0, then there
is a sequence \{n_{i}\} , \lim_{iarrow\infty}n_{i}=\infty such that \lim_{iarrow\infty}x_{n_{i}}=a=0 . By (2),
we have

x_{n_{i}+\tau}=z_{n_{i}+\tau}+p_{n_{i}+\tau^{X}n_{i}} . (6)

From (6), set iarrow\infty and observe that 1<p_{n}\leq p , we have

x_{n_{i}+\tau}arrow L<0 , as iarrow\infty .

This contradicts x_{n}>0 for n\geq n_{1} . Hence a>0 holds, that is \lim_{narrow\infty}x_{n}=

a>0 . Then there exist a constant C_{1}>0 and a n_{4}\geq n_{3} . such that
x_{n}>C_{1}>0 , and x_{n-\sigma_{i}(n)}>C_{1}>0 for n\geq n_{4} and i=1,2 , \ldots , k . So by
(5) and hypothesis on f_{i}(u) , we have

\triangle^{m}z_{n}\leq-\sum_{i=1}^{k}f_{i}(C_{1})Q_{i}(n)\leq-b\sum_{i=1}^{k}Q_{i}(n)\leq-bQ_{j}(n) ,

for n\geq n_{4} (7)

where b= \min_{1\leq i\leq k}\{f_{i}(C_{1})\}>0 .
By summing (7) from n_{4} to n and then set narrow\infty , we have

\triangle^{m-1}z_{n}arrow-\infty , as narrow\infty .

This contradicts \triangle^{m-1}z_{n}>0 for n\geq n_{3} , Hence -\infty<L<0 is impossible.
If 0<L<\infty , as in the proof of Lemma 3 for case 0<L\leq\infty .

We imply that 0<L<\infty is impossible. Hence, L=0 holds, that is,
\lim_{narrow\infty}z_{n}=0 holds.

The rest of the proof is similar to that of Lemma 3, we may get for all
large n .

(-1)^{s}\triangle^{s}z_{n}<0 for s=0,1,2 , . . ’ m .

The proof is complete. \square

Theorem 1 Assume that
(C_{1}) 0<p_{n}\leq p for n\geq n_{0} and some positive constant p, 0<p\leq 1 ;
(C_{2}) There exists a positive constant \lambda , such that lim \inf_{uarrow 0}\frac{f_{i}(u)}{u}>\lambda ,

for i=1,2 , \ldots , k ;
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(C_{3}) There exists at least an integer j , 1\leq j\leq k , such that Q_{j}(n)>0 ,
\sigma_{j}(n)\geq\sigma_{j}>0 for n\geq n_{0} and some positive constant \sigma_{j} .

Moreover, there exists a positive constant k , such that

\frac{\lambda}{p}Q_{j}(n)\geq k^{m} and either k \frac{\sigma_{j}-\tau-m}{m}>(\frac{\sigma_{j}-\tau}{\sigma_{j}-\tau+m})^{\frac{\sigma_{j}-\tau+m}{m}}

or

a_{0}=k \frac{\sigma_{j}-\tau-m}{m}\leq(\frac{\sigma_{j}-\tau}{\sigma_{j}-\tau+m})^{\frac{\sigma_{j}-\tau+m}{m}}

and

k \frac{\sigma_{j}-\tau}{m}>1-\frac{1-a_{0}-\sqrt{1-2a_{0}-a_{0}^{2}}}{2}

Then every solution of Eq. (1) oscillates.

Proof. Let \{x_{n}\} be a nonoscillatory solution of Eq. (1). Without loss of
generality, assume that x_{n}>0 , x_{n-\tau}>0 , x_{n-\sigma_{i}(n)}>0 (i=1,2, \ldots, k) for
n\geq n_{1}\geq n_{0} (the proof for x_{n}<0 is similar). From (C_{3}) , we have

Q_{j}(n) \geq\frac{pk^{m}}{\lambda}>0 , for n\geq n_{0} .

It follows that

\sum_{n=n_{0}}^{\infty}Q_{j}(n)=\infty .

By Lemma 3, we have

\lim_{narrow\infty}z_{n}=0 ,

moreover, there exists n_{2}\geq n_{1} , such that

(-1)^{s}\triangle^{s}z_{n}<0 , for n\geq n_{2} and s=0,1,2 , \ldots , m . (8)

In particular, z_{n}<0 for n\geq n_{2} . So by (2) we have

z_{n}>-p_{n}x_{n-\tau}\geq-px_{n-\tau} , for n\geq n_{2} .

This implies that

x_{n}>- \frac{1}{p}z_{n+\tau}>0 , for n\geq n_{2} .
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Hence, we may take a n_{3}\geq n_{2} , such that

x_{n-\sigma_{i}(n)}>- \frac{1}{p}z_{n+\tau-\sigma_{i}(n)}>0 , for n\geq n_{3} and i=1,2 , . ’ k . (9)

From (1), (2) and (9), we have

\triangle^{m}z_{n}\leq-\sum_{i=1}^{k}Q_{i}(n)f_{i} \{\begin{array}{l}1-z_{n+\tau-\sigma_{i}(n)}\overline{p}\end{array}\} , for n\geq n_{3} . (10)

Since \lim_{narrow\infty}z_{n}=0 , so that

\lim_{narrow\infty}
\{\begin{array}{l}1-z_{n+\tau-\sigma_{i}(n)}\overline{p}\end{array}\}=0 , for i=1,2 , \ldots , k .

By (c_{2}) , then there exists n_{4}\geq n_{3} , such that, as n\geq n_{4} ,

\frac{f_{i}[-\frac{1}{p}z_{n+\tau-\sigma_{i}(n)}]}{-\frac{1}{p}z_{n+\tau-\sigma_{i}(n)}}>\lambda>0 , for i=1,2 , . , k . (11)

From (8), \triangle z_{n}>0 for n\geq n_{2} , and combining (10), (11), we get

\triangle^{m}z_{n}\leq-\sum_{i=1}^{k}Q_{i}(n)f_{i} \{\begin{array}{l}1-z_{n+\tau-\sigma_{i}(n)}\overline{p}\end{array}\}

\leq\frac{\lambda}{p}\sum_{i=1}^{k}Q_{i}(n)z_{n+\tau-\sigma_{i}(n)}

\leq\frac{\lambda}{p}Q_{j}(n)z_{n+\tau-\sigma_{j}(n)}\leq\frac{\lambda}{p}Q_{j}(n)z_{n+\tau-\sigma_{j}} , for n\geq n_{4} . (12)

set w_{n}= \sum_{i=1}^{m}
(-1)^{i-1}k^{i-1} \triangle^{m-i}zn-(i-1)\frac{\sigma_{j^{-\mathcal{T}}}}{m} .

By (8), w_{n}>0 for n\geq n_{4} , so that

\triangle w_{n}+kwn-\frac{\sigma_{j}-\tau}{m}=\sum_{i=1}^{m}(-1)^{i-1}k^{i-1}\triangle^{m-i+1}zn-(i-1)_{m}^{\sigma-\tau}-\mapsto

+ \sum_{i=1}^{m}(-1)^{i-1}k^{i}\triangle^{m-i}zn-i\frac{\sigma_{j}-\tau}{m}

= \triangle^{m}z_{n}+\sum_{i=2}^{m}(-1)^{i-1}k^{i-1}\triangle^{m-i+1}zn-(i-1)\frac{\sigma_{j}-\tau}{m}

- \sum_{i=1}^{m-1}(-1)^{i}k^{i}\triangle^{m-i}zn-i\frac{\sigma_{j}-\tau}{m}-k^{m}z_{n+\tau-\sigma_{j}}
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=\triangle^{m}z_{n}-k^{m}z_{n+\tau-\sigma_{j}} , for n\geq n_{4} . (13)

From (12), (13), and (c_{3}) we have

\triangle w_{n}+kwn-\frac{\sigma_{j}-\tau}{m}\leq\frac{\lambda}{p}Q_{j}(n)z_{n+\tau-\sigma_{j^{-}}}k^{m}z_{n+\tau-\sigma_{j}}

=( \frac{\lambda}{p}Q_{j}(n)-k^{m})z_{n+\tau-\sigma_{j}}\leq 0 , for n\geq n_{4} .

That is

\triangle w_{n}+kwn-\frac{\sigma_{j}-\tau}{m}\leq 0 , for n\geq n_{4} . (14)

By (c_{3}) and Lemma 2, (14) has no eventually positive solutions, this con-
tradicts w_{n}>0 for n\geq n_{4} , and the proof is complete. \square

Theorem 2 Let conditions (C_{1}) and (C_{2}) be satisfied. Moreover, assume
that

(C_{4}) There exists at least an integer j , 1\leq j\leq k , such that Q_{j}(n)>0 ,
\sigma_{j}(n)\geq\sigma_{j}>\tau for n\geq n_{0} and some positive constant \sigma_{j} , and that

\lim\sup_{s=}\sum_{n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)(s-n+m-2)^{(m-1)}narrow\infty>(m-1)! ,

where (s-n+m-2)^{(m-1)} is the usual factorial function. Then every
solution of Eq. (1) oscillates.

Proof. Let \{x_{n}\} be a nonosillatory solution of Eq. (1). Without loss of
generality, assume that x_{n}>0 , x_{n-\tau}>0 , x_{n-\sigma_{i}(n)}>0 (i=1,2, \ldots, k) for
n\geq n_{1}\geq n_{0} (the proof when x_{n}<0 , n\geq n_{1} , is similar). Observe that
\sigma_{j}>\tau>0 and m\geq 2 , we have

\sum_{s=n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)(\sigma_{j}-\tau)^{m-1}\geq\sum_{s=n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)(n-s)^{m-1} ,

using (C_{4}) , we have

\lim\sup_{s=}\sum_{n+\tau-\sigma_{j}}^{n}Q_{j}(s)narrow\infty\geq\frac{p(m-1)!}{\lambda(\sigma_{j}-\tau)^{m-1}}>0 .

So that \sum_{s=n_{0}}^{\infty}Q_{j}(s)=\infty . By Lemma 3, we get \lim_{narrow\infty}z_{n}=0 , and there
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exists n_{2}\geq n_{1} , such that

(-1)^{s}\triangle^{s}z_{n}<0 , for n\geq n_{2} and s=0,1,2 , . . ’ m . (15)

In particular, z_{n}<0 for n\geq n_{2} . As in the proof of Theorem 1, we get that
(12) holds, that is

\triangle^{m}z_{n}\leq\frac{\lambda}{p}Q_{j}(n)z_{n+\tau-\sigma_{j}} , for n\geq n_{4} . (16)

Set s\geq n\geq n_{4} , from (16) and by discrete Taylor’s formu1a^{[1]} , we have

\triangle^{m}z_{s}\leq\frac{\lambda}{p}Q_{j}(s)z_{n+\tau-\sigma_{j}}

= \frac{\lambda}{p}Q_{j}(s)[\sum_{i=0}^{m-1}\frac{(s-n+i-1)^{(i)}}{i!}(-1)^{i}\triangle^{i}z_{n+\tau-\sigma_{j}}

- \frac{(-1)^{m-1}}{(m-1)!}\sum_{l=s+\tau-\sigma_{j}}^{n+\tau-\sigma_{j}-1}(l+m-1-s-\tau+\sigma_{j})^{(m-1)}\triangle^{m}z_{l]} .

(17)

From (15) and (17), we have

\triangle^{m}z_{s}\leq\frac{-\lambda(s-n+m-2)^{(m-1)}}{p(m-1)!}Q_{j}(s)\triangle^{m-1}z_{n+\tau-\sigma_{j}} . (18)

By summing (18), from n+\tau-\sigma_{j} to n, we get

\triangle^{m-}\leq\frac{-(s-n+m-2)^{(m-1)}1-\triangle m-z_{n+1}1z_{n+\tau-\sigma_{j}}}{(m-1)!}\triangle^{m-1}z_{n+\tau-\sigma_{j}}\sum_{s=n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)

. (19)

From (15), \triangle^{m-1}z_{n+1}>0 for n\geq n_{4} , It follows, from (19), that

\sum_{s=n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)<\frac{(m-1)!}{(s-n+m-2)^{(m-1)}} , for n\geq n_{4} .

So that

\lim\sup_{s=}\sum_{n+\tau-\sigma_{j}}^{n}\frac{\lambda}{p}Q_{j}(s)narrow\infty\leq\frac{(m-1)!}{(s-n+m-2)^{(m-1)}} .

This contradicts (C_{4}) , and the proof is complete. \square
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Using Lemma 4 and following the proof of Theorem 1 and Theorem 2,
we have the following results.

Theorem 3 Let condition (C_{1}) in Theorem 1 be replaced by
(C_{5}) 1\leq p_{n}\leq p for n\geq n_{0} and some positive constant p .

Then every bounded solution of Eq. (1) oscillates.

Theorem 4 Let condition (C_{1}) in Theorem 2 be replaced by (C_{5}) . Then
every bounded solution of Eq. (1) oscillates.

Example. Consider the equation

\triangle^{5}(x_{n}-\frac{1}{2}x_{n-1})+48x_{n-2}=0 , n=0,1,2 , \ldots (20)

So that m=5, p_{n}=1/2 , \tau=1 , \sigma=2 , Q(n)=48 and f(u)=u. It is easy
to verify that the conditions of Theorem 1 are satisfied. Therefore (20) has
an oscillatory solution. For instance, \{x_{n}\}=(-1)^{n} is such an solution.
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