On the sharpness of Seeger-Sogge-Stein orders

Michael RuZhansky

(Received March 2, 1998)

Abstract

We will extend the sharpness results on L^{p} - and $L^{p}-L^{q}$-continuity of Fourier integral operators for an arbitrary rank of the canonical projection. For the elliptic operators of small negative orders we will show that by a coordinate change they are equivalent to pseudo-differential operators.

Key words: Fourier integral operator, regularity, sharp estimates, pseudo-differential operator, Lagrangian manifold.

1. Introduction

Let X, Y be smooth paracompact n-dimensional manifolds. Let $d \sigma_{X}$ and $d \sigma_{Y}$ be the standard symplectic forms on $T^{*} X$ and $T^{*} Y$ and let Λ be a conic Lagrangian submanifold of $T^{*} X \backslash 0 \times T^{*} Y \backslash 0$, equipped with the symplectic form $d \sigma_{X}-d \sigma_{Y}$. We will assume that Λ is a local graph of a symplectomorphism from $T^{*} Y \backslash 0$ to $T^{*} X \backslash 0$. Let $T \in I^{\mu}(X, Y ; \Lambda)$ be a Fourier integral operator with the canonical relation Λ. The distributional kernel $K \in \mathcal{D}^{\prime}(X \times Y)$ of T is a Lagrangian distribution of order μ whose wavefront set is contained in $\Lambda^{\prime}=\{(x, \xi, y, \eta):(x, \xi, y,-\eta) \in \Lambda\}$. The global theory of such operators can be found in [1]. Let $\pi_{X \times Y}$ be the natural projection from $T^{*} X \backslash 0 \times T^{*} Y \backslash 0$ to $X \times Y$. The deep result of Seeger, Sogge and Stein [5] states that for $1<p<\infty$ and $\mu \leq-(n-1)|1 / p-1 / 2|$ the operators $T \in I^{\mu}(X, Y ; \Lambda)$ are continuous from $L_{\text {comp }}^{p}(Y)$ to $L_{\text {loc }}^{p}(X)$. This result is sharp if T is elliptic and $\left.d \pi_{X \times Y}\right|_{\Lambda}$ has full rank equal to $2 n-1$ anywhere, which follows from the stationary phase method as in [3]. Somewhat different approaches to this are in [6] and [7]. If the rank of the canonical projection on Λ can be bounded from above by

$$
\begin{equation*}
\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda} \leq 2 n-k \tag{1}
\end{equation*}
$$

with some $1 \leq k \leq n$, then under the so-called smooth factorization condition introduced in $\left[5\right.$ the operators $T \in I_{\rho}^{\mu}(X, Y ; \Lambda), 1 / 2 \leq \rho \leq 1$, are continuous from $L_{\text {comp }}^{p}(Y)$ to $L_{\text {loc }}^{p}(X)$ for $1<p<\infty$ and $\mu \leq-(n-k \rho)|1 / p-1 / 2|$.

In [4] the factorization condition is shown to be satisfied in a number of important cases, if a phase function of the operator is analytic.

Using analysis of some convolution operators in [8], it was shown in [5] that there exist conormal operators with constant $\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda} \equiv 2 n-k$, for which the estimate of the critical order μ is sharp. We want to show that for $\rho=1$ this order is sharp for an arbitrary elliptic operator whose canonical relation satisfies inequality (1). The basic idea to test the $L^{p_{-}}$ continuity of an operator will be to investigate its behavior on the functions obtained from a δ-distribution at some $y_{0} \in Y$ after the application of elliptic pseudo-differential operators of sufficiently negative orders. The only singularities of such functions are at y_{0}, meanwhile the singularities of T applied to them happen only in the directions transversal to some $(n-k)$ dimensional subset $\Sigma_{y_{0}}$ of X. Finally, this will be applied to the continuous Fourier integral operators of zero order.

It was pointed out in $\left[7\right.$, p. 398], that in \mathbb{R}^{3} the operator $T: f \mapsto$ $\frac{\partial}{\partial x_{j}}(f * d \sigma)$ with $j=1,2$, or 3 , and $d \sigma$ the usual measure on the unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$, is essentially a Fourier integral operator of order 0 , which is not continuous in $L^{p}\left(\mathbb{R}^{3}\right), 1<p<\infty$. We will show that this is not a single example and derive a structural formula for the continuous elliptic Fourier integral operators of order 0 (Theorem 2) and then generalize it for small negative orders and $L^{p} \rightarrow L^{q}$ continuity (Theorem 3).

2. Results

By the equivalence-of-phase-function theorem as in [1, Th. 2.3.4] and [5] it is sufficient to consider operators in \mathbb{R}^{n} with kernel

$$
\begin{equation*}
K(x, y)=\int_{\mathbb{R}^{n}} e^{i[\langle x, \xi\rangle-\phi(y, \xi)]} b(x, y, \xi) d \xi \tag{2}
\end{equation*}
$$

with some symbol $b \in S^{\mu}$ vanishing for x, y outside a compact set and phase function satisfying

$$
\begin{equation*}
\operatorname{det} \phi_{y \xi}^{\prime \prime} \neq 0 \tag{3}
\end{equation*}
$$

on the support of b, which is equivalent to Λ being a canonical graph. Locally Λ is the set of the form $\left\{\left(\nabla_{\xi} \phi, \xi, y, \nabla_{y} \phi\right)\right\}$. We begin with the following

Proposition 1 Let $T \in I^{\mu}(X, Y ; \Lambda)$ be elliptic. Assume that the canon-
ical relation Λ is a local graph and $\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda} \equiv 2 n-k, 1 \leq k \leq n$. Then T is not bounded as a linear operator $L_{\text {comp }}^{p}(Y) \rightarrow L_{\text {loc }}^{p}(X)$, if $\mu>$ $-(n-k)|1 / p-1 / 2|, 1<p<\infty$.

Proof. By the above reduction it is sufficient to restrict ourselves to the case of \mathbb{R}^{n} and operators satisfying (2) and (3). Let $P_{-s} \in \Psi^{-s}(Y)$ be an elliptic pseudo-differential operator in Y and consider $f_{s}(y)=\left(P_{-s} \delta_{y_{0}}\right)(y)$. Then by Schwartz kernel theorem $f_{s}(y)=\int K_{-s}(y, z) \delta_{y_{0}}(z) d z=K_{-s}\left(y, y_{0}\right)$, and in view of the kernel estimates for pseudo-differential operators in, for example, [7, p. 241, 245], we have $\left|K_{-s}\left(y, y_{0}\right)\right| \leq C\left|y-y_{0}\right|^{-n+s}$ in some local coordinate system. It follows that $f_{s} \in L_{l o c}^{p}$ if and only if $s>n(1-1 / p)$. We assume here $1<p \leq 2$, for the rest would follow by considering the adjoint operators.

Let $\Sigma=\pi_{X \times Y}(\Lambda)$. Then in view of the assumption on the rank of $\pi_{X \times Y}, \Sigma \subset X \times Y$ is a smooth submanifold of codimension k. Let Σ be given by the set of equations $h_{j}(x, y)=0,1 \leq j \leq k$, in a neighborhood of y_{0}, where $\nabla h_{1}, \ldots, \nabla h_{k}$ are linearly independent. Then Λ is the conormal bundle of Σ and the phase function of T may be given by

$$
\psi(x, y, \lambda)=\sum_{j=1}^{k} \lambda_{j} h_{j}(x, y)
$$

Let $T_{s}=T \circ P_{-s}$. Then $T f_{s}(x)=T_{s}\left(\delta_{y_{0}}\right)(x)$ and the canonical relations of T_{s} and T coincide, since a composition with a pseudo differential operator leaves it invariant. The operator T_{s} is of order $\mu-s$ and in local coordinates it can be expressed as

$$
\begin{align*}
T f_{s}(x) & =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{k}} e^{i \sum \lambda_{j} h_{j}(x, y)} a(x, \bar{\lambda}) \delta_{y_{0}}(y) d \bar{\lambda}\right) d y \\
& =\int_{\mathbb{R}^{k}} e^{i\left\langle\bar{\lambda}, \bar{h}\left(x, y_{0}\right)\right\rangle} a(x, \bar{\lambda}) d \bar{\lambda} \\
& =(2 \pi)^{k} \check{a}\left(x, \bar{h}\left(x, y_{0}\right)\right) \tag{4}
\end{align*}
$$

where $\bar{\lambda}$ and \bar{h} are the vectors with the components λ_{j} and h_{j} respectively, and $a \in S^{\mu-s+(n-k) / 2}\left(\mathbb{R}^{k}\right)$ is a symbol of T_{s} after applying the stationary phase method and integrating away $(n-k)$-variables. Now, the inverse Fourier transform of a in the second variable is $(2 \pi)^{k} \check{a}(x, \zeta)=$ $\int_{\mathbb{R}^{k}} e^{i\langle\lambda, \zeta\rangle} a(x, \lambda) \hat{\delta}_{0}(\lambda) d \lambda=P_{0} \delta_{0}(\zeta)=K_{0}(\zeta, 0)$ and this is equivalent to $|\zeta|^{-k-\operatorname{ord}(a)}$, where $P_{0} \in \Psi^{\operatorname{ord}(a)}\left(\mathbb{R}^{k}\right)$ with symbol equal to $a(x, \lambda)$ and K_{0}
is a distributional kernel of P_{0}. In view of $\operatorname{dist}\left(x, \Sigma_{y_{0}}\right) \approx\left|\bar{h}\left(x, y_{0}\right)\right|$ with $\Sigma_{y_{0}}=\left\{x:\left(x, y_{0}\right) \in \Sigma\right\}$ and formulas above, we have $(2 \pi)^{k} \check{a}\left(x, \bar{h}\left(x, y_{0}\right)\right) \sim$ $\left|\operatorname{dist}\left(x, \Sigma_{y_{0}}\right)\right|^{-k-(\mu-s+(n-k) / 2)}$, locally uniformly in x. Formula (4) implies that $T f_{s}$ is smooth along $\Sigma_{y_{0}}$, so $T f_{s} \notin L_{\text {loc }}^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p(k+\mu-s+$ $(n-k) / 2) \geq k$, or, equivalently, $s \leq \mu+k(1-1 / p)+(n-k) / 2$. Together with condition on $f_{s} \in L_{\text {loc }}^{p}$ this implies that T is not continuous in L^{p}-norms if such s exists, i.e. when $\mu>-(n-k)|1 / p-1 / 2|$. This completes the proof.

Assume now that the operator T is not conormal and that (1) is satisfied with $2 n-k$ at some point. Then the set $\Lambda_{0}=\left\{\lambda \in \Lambda:\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda}(\lambda)=\right.$ $2 n-k\}$ is nonempty and open in Λ. Applying the equivalence of the phase function and the same argument as in Proposition 1 at some $\lambda_{0}=$ $\left(x_{0}, \xi_{0}, y_{0}, \eta_{0}\right) \in \Lambda_{0}$, we get

Theorem 1 Let $T \in I^{\mu}(X, Y ; \Lambda)$ be elliptic. Assume that the canonical relation Λ is a local graph and that $\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda} \leq 2 n-k, 1 \leq k \leq n$, equal to $2 n-k$ at some point. Then T is not bounded as a linear operator $L_{\text {comp }}^{p}(Y) \rightarrow L_{\text {loc }}^{p}(X)$, if $\mu>-(n-k)|1 / p-1 / 2|, 1<p<\infty$.

The application of the arguments of [5] to Theorem 1 yields that an operator T as in Theorem 1 is not bounded as a linear operator in Sobolev spaces $L_{\alpha}^{p} \rightarrow L_{\alpha-(n-k)|1 / p-1 / 2|-\mu}^{p}, 1<p<\infty$.

It is well known $([2])$ that pseudo-differential operators of zero order are continuous in L^{p}-spaces, $1<p<\infty$. It turns out that all elliptic Fourier integral operators with this property can be obtain from pseudodifferential operators by a smooth coordinate change in one of the spaces X or Y. For a smooth map $\kappa: X \rightarrow Y$ the pullback by κ is a mapping $\kappa^{*}: C^{\infty}(Y) \rightarrow C^{\infty}(X)$ defined by $\left(\kappa^{*} f\right)(x)=f(\kappa(x))$. This pullback is a Fourier integral operator with the canonical relation corresponding to the phase function $\langle\kappa(x)-y, \eta\rangle$ and given by the graph of the induced transformation $\tilde{\kappa}: T^{*} X \backslash 0 \rightarrow T^{*} Y \backslash 0$ with $\tilde{\kappa}(x, \xi)=\left(\kappa(x),-\left({ }^{t} D \kappa_{x}\right)^{-1}(\xi)\right)$. Sce $[1,2.4]$ for more detailed discussion.

Theorem 2 Let $T \in I^{0}(X, Y ; \Lambda)$ be elliptic and assume Λ to be a local graph, $1<p<\infty, p \neq 2$. Then T is continuous from $L_{\text {comp }}^{p}(Y)$ to $L_{\text {loc }}^{p}(X)$ if and only if there exist $P \in \Psi^{0}(X), Q \in \Psi^{0}(Y)$, such that $T=P \circ \kappa_{-}^{*}=$ $\kappa_{+}^{*} \circ Q$, where κ_{-}^{*} and κ_{+}^{*} are the pullbacks by smooth coordinate changes $X \rightarrow Y$.

Proof. The operators κ_{-}^{*} and κ_{+}^{*} are clearly L^{p} continuous, and this together with the continuity of pseudo-differential operators of order 0 im ply the continuity of T. Conversely, let k be a minimal codimension of $\Sigma=\pi_{X \times Y}(\Lambda)$ in $X \times Y$, i.e. $2 n-k=\left.\max _{\lambda \in \Lambda} \operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda}(\lambda)$. Then Theorem 1 together with our assumption of the continuity of T imply $k=n$. This means that $\left.\operatorname{rank} d \pi_{X \times Y}\right|_{\Lambda} \equiv n$ and Σ is a smooth n-dimensional submanifold of $X \times Y$. The rank of $\left.d \pi_{X}\right|_{\Sigma}$ of the projection $\pi_{X}: X \times Y \rightarrow X$ is equal to n in view of the assumption on Λ to be a local graph. The surjectivity of $\left.d \pi_{X}\right|_{\Sigma}$ together with $\operatorname{dim} \Sigma=n$ imply that $\left.\pi_{X}\right|_{\Sigma}$ is a diffeomorphism, and locally $\Sigma=\{(x, \sigma(x))\}, \sigma$ a diffeomorphism. The pullback operator $\kappa_{+}^{*}=\sigma^{*}$ has the canonical relation equal to the conormal bundle of Σ, which is Λ, implying that the operator Q in $T=\kappa_{+}^{*} \circ Q$ is pseudodifferential. The same argument applies for Y space to yield the second part of the Theorem.

Finally we would like to make some remarks about $L^{p}(Y) \rightarrow L^{q}(X)$ continuity. Under the factorization assumptions of [5], the interpolation between $L^{p} \rightarrow L^{p}$ and $H^{1} \rightarrow L^{2}$ for operators of order $-n / 2$ ([7, Ch. 3,5.21]) yields that for $1<p \leq q \leq 2$ and $2 \leq p \leq q<\infty$ the operators $T \in$ $I^{\mu}(X, Y ; \Lambda)$ are continuous from $L^{p}(Y)$ to $L^{q}(X)$ for $\mu \leq-n / p+k / q+(n-$ $k) / 2$. Note that for $k=1$ we get the orders of [7, Ch. 9,6.15]. The technique of the proof of Proposition 1 can be applied to show that an elliptic operator $T \in I^{\mu}(X, Y ; \Lambda)$ with maximal rank equal to $2 n-k$ at some point is not continuous from $L^{p}(Y)$ to $L^{q}(X)$ if $\mu>(n-k) / 2-n / p+k / q$, which shows that the orders above are sharp. A straightforward generalization of Theorem 2 yields

Theorem 3 Let $T \in I^{\mu}(X, Y ; \Lambda)$ be elliptic and assume Λ to be a local graph, $1<p \leq q<2$. Assume that $-n(1 / p-1 / q) \geq \mu>-(1 / q-1 / 2)-$ $n(1 / p-1 / q)$. Then T is continuous from $L_{\text {comp }}^{p}(Y)$ to $L_{\text {loc }}^{q}(X)$ if and only if there exist $P \in \Psi^{\mu}(X), Q \in \Psi^{\mu}(Y)$, such that $T=P \circ \kappa_{-}^{*}=\kappa_{+}^{*} \circ Q$, where κ_{-}^{*} and κ_{+}^{*} are the pullbacks by smooth coordinate changes $X \rightarrow Y$.

The converse statement follows from $L^{p} \rightarrow L^{q}$-continuity of pseudodifferential operators of order $-n(1 / p-1 / q)$, which can be obtained from [7, Ch. 9,6.15] by Hardy-Littlewood argument or by interpolation between $H^{1} \rightarrow L^{2}$ and $L^{p} \rightarrow L^{p}$ for zero order operators. Note that the argument of Proposition 1 with $k=n$ implies that this order is also sharp. By duality
the same conclusion holds for $2<p \leq q<\infty$. Finally we would like to note that because the graphs of the transformations κ_{+}^{*} and κ_{-}^{*} in Theorems 2 and 3 are the same, it follows that κ_{+}and κ_{-}are equal.

Acknowledgments I would like to thank professor J.J. Duistermaat for discussions and his important contribution to my understanding of Fourier integrals.

References

[1] Duistermaat J.J., Fourier integral operators. Birkhäuser, Boston, 1996.
[2] Fefferman C., L^{p}-bounds for pseudo-differential operators. Israel J. Math. 14 (1973) 413-417.
[3] Littman W., ' $L^{p}-L^{q}$ '-estimates for singular integral operators. Proc. Symp. Pure and Appl. Math. A.M.S. 23 (1973) 479-481.
[4] Ruzhansky M., Analytic Fourier integral operators, Monge-Ampère equation and holomorphic factorization. To appear in Archiv der Mathematik.
[5] Seeger A., Sogge C.D. and Stein E.M., Regularity properties of Fourier integral operators. Ann. of Math. 134 (1991), 231-251.
[6] Sogge C.D., Fourier integrals in classical analysis. Cambridge University Press, 1993.
[7] Stein E.M., Harmonic analysis. Princeton University Press, Princeton, 1993.
[8] Wainger S., Special Trigonometric Series in k-Dimensions. Mem. Amer. Math. Soc. 59, 1965.

Mathematical Institute
University of Utrecht
P.O. Box $80.010,3508$ TA Utrecht
The Netherlands
E-mail: M.Ruzhansky@math.ruu.nl
Current address:
Department of Mathematics
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, U.S.A.
E-mail: ruzan@math.jhu.edu

