On the sharpness of Seeger-Sogge-Stein orders

Michael RUZHANSKY

(Received March 2, 1998)

Abstract. We will extend the sharpness results on L^p - and $L^p - L^q$ -continuity of Fourier integral operators for an arbitrary rank of the canonical projection. For the elliptic operators of small negative orders we will show that by a coordinate change they are equivalent to pseudo-differential operators.

Key words: Fourier integral operator, regularity, sharp estimates, pseudo-differential operator, Lagrangian manifold.

1. Introduction

Let X, Y be smooth paracompact n-dimensional manifolds. Let $d\sigma_X$ and $d\sigma_Y$ be the standard symplectic forms on T^*X and T^*Y and let Λ be a conic Lagrangian submanifold of $T^*X \setminus 0 \times T^*Y \setminus 0$, equipped with the symplectic form $d\sigma_X - d\sigma_Y$. We will assume that Λ is a local graph of a symplectomorphism from $T^*Y\setminus 0$ to $T^*X\setminus 0$. Let $T\in I^{\mu}(X,Y;\Lambda)$ be a Fourier integral operator with the canonical relation Λ . The distributional kernel $K \in \mathcal{D}'(X \times Y)$ of T is a Lagrangian distribution of order μ whose wavefront set is contained in $\Lambda' = \{(x,\xi,y,\eta) : (x,\xi,y,-\eta) \in \Lambda\}$. The global theory of such operators can be found in [1]. Let $\pi_{X \times Y}$ be the natural projection from $T^*X \setminus 0 \times T^*Y \setminus 0$ to $X \times Y$. The deep result of Seeger, Sogge and Stein [5] states that for $1 and <math>\mu \leq -(n-1)|1/p - 1/2|$ the operators $T \in I^{\mu}(X,Y;\Lambda)$ are continuous from $L^{p}_{comp}(Y)$ to $L^{p}_{loc}(X)$. This result is sharp if T is elliptic and $d\pi_{X\times Y}|_{\Lambda}$ has full rank equal to 2n-1 anywhere, which follows from the stationary phase method as in [3]. Somewhat different approaches to this are in [6] and [7]. If the rank of the canonical projection on Λ can be bounded from above by

$$\operatorname{rank} d\pi_{X \times Y}|_{\Lambda} \le 2n - k \tag{1}$$

with some $1 \le k \le n$, then under the so-called smooth factorization condition introduced in [5] the operators $T \in I^{\mu}_{\rho}(X, Y; \Lambda)$, $1/2 \le \rho \le 1$, are continuous from $L^{p}_{comp}(Y)$ to $L^{p}_{loc}(X)$ for $1 and <math>\mu \le -(n-k\rho)|1/p-1/2|$.

¹⁹⁹¹ Mathematics Subject Classification: 35S30, 58G15.

In [4] the factorization condition is shown to be satisfied in a number of important cases, if a phase function of the operator is analytic.

Using analysis of some convolution operators in [8], it was shown in [5] that there exist conormal operators with constant rank $d\pi_{X\times Y}|_{\Lambda} \equiv 2n - k$, for which the estimate of the critical order μ is sharp. We want to show that for $\rho = 1$ this order is sharp for an arbitrary elliptic operator whose canonical relation satisfies inequality (1). The basic idea to test the L^{p} continuity of an operator will be to investigate its behavior on the functions obtained from a δ -distribution at some $y_0 \in Y$ after the application of elliptic pseudo-differential operators of sufficiently negative orders. The only singularities of such functions are at y_0 , meanwhile the singularities of T applied to them happen only in the directions transversal to some (n-k)dimensional subset Σ_{y_0} of X. Finally, this will be applied to the continuous Fourier integral operators of zero order.

It was pointed out in [7, p. 398], that in \mathbb{R}^3 the operator $T : f \mapsto \frac{\partial}{\partial x_j}(f * d\sigma)$ with j = 1, 2, or 3, and $d\sigma$ the usual measure on the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$, is essentially a Fourier integral operator of order 0, which is not continuous in $L^p(\mathbb{R}^3)$, $1 . We will show that this is not a single example and derive a structural formula for the continuous elliptic Fourier integral operators of order 0 (Theorem 2) and then generalize it for small negative orders and <math>L^p \to L^q$ continuity (Theorem 3).

2. Results

By the equivalence-of-phase-function theorem as in [1, Th. 2.3.4] and [5] it is sufficient to consider operators in \mathbb{R}^n with kernel

$$K(x,y) = \int_{\mathbb{R}^n} e^{i[\langle x,\xi\rangle - \phi(y,\xi)]} b(x,y,\xi) d\xi,$$
(2)

with some symbol $b \in S^{\mu}$ vanishing for x, y outside a compact set and phase function satisfying

$$\det \phi_{y\xi}^{\prime\prime} \neq 0 \tag{3}$$

on the support of b, which is equivalent to Λ being a canonical graph. Locally Λ is the set of the form $\{(\nabla_{\xi}\phi, \xi, y, \nabla_{y}\phi)\}$. We begin with the following

Proposition 1 Let $T \in I^{\mu}(X, Y; \Lambda)$ be elliptic. Assume that the canon-

ical relation Λ is a local graph and rank $d\pi_{X \times Y}|_{\Lambda} \equiv 2n - k, \ 1 \leq k \leq n$. Then T is not bounded as a linear operator $L^p_{comp}(Y) \to L^p_{loc}(X)$, if $\mu > -(n-k)|1/p - 1/2|, \ 1 .$

Proof. By the above reduction it is sufficient to restrict ourselves to the case of \mathbb{R}^n and operators satisfying (2) and (3). Let $P_{-s} \in \Psi^{-s}(Y)$ be an elliptic pseudo-differential operator in Y and consider $f_s(y) = (P_{-s}\delta_{y_0})(y)$. Then by Schwartz kernel theorem $f_s(y) = \int K_{-s}(y, z)\delta_{y_0}(z)dz = K_{-s}(y, y_0)$, and in view of the kernel estimates for pseudo-differential operators in, for example, [7, p. 241, 245], we have $|K_{-s}(y, y_0)| \leq C|y-y_0|^{-n+s}$ in some local coordinate system. It follows that $f_s \in L^p_{loc}$ if and only if s > n(1 - 1/p). We assume here 1 , for the rest would follow by considering the adjoint operators.

Let $\Sigma = \pi_{X \times Y}(\Lambda)$. Then in view of the assumption on the rank of $\pi_{X \times Y}$, $\Sigma \subset X \times Y$ is a smooth submanifold of codimension k. Let Σ be given by the set of equations $h_j(x, y) = 0$, $1 \le j \le k$, in a neighborhood of y_0 , where $\nabla h_1, \ldots, \nabla h_k$ are linearly independent. Then Λ is the conormal bundle of Σ and the phase function of T may be given by

$$\psi(x,y,\lambda) = \sum_{j=1}^k \lambda_j h_j(x,y)$$

Let $T_s = T \circ P_{-s}$. Then $Tf_s(x) = T_s(\delta_{y_0})(x)$ and the canonical relations of T_s and T coincide, since a composition with a pseudo differential operator leaves it invariant. The operator T_s is of order $\mu - s$ and in local coordinates it can be expressed as

$$Tf_{s}(x) = \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{k}} e^{i\sum\lambda_{j}h_{j}(x,y)} a(x,\bar{\lambda})\delta_{y_{0}}(y)d\bar{\lambda} \right) dy$$
$$= \int_{\mathbb{R}^{k}} e^{i\langle\bar{\lambda},\bar{h}(x,y_{0})\rangle} a(x,\bar{\lambda})d\bar{\lambda}$$
$$= (2\pi)^{k}\check{a}(x,\bar{h}(x,y_{0})), \qquad (4)$$

where $\bar{\lambda}$ and \bar{h} are the vectors with the components λ_j and h_j respectively, and $a \in S^{\mu-s+(n-k)/2}(\mathbb{R}^k)$ is a symbol of T_s after applying the stationary phase method and integrating away (n-k)-variables. Now, the inverse Fourier transform of a in the second variable is $(2\pi)^k \check{a}(x,\zeta) = \int_{\mathbb{R}^k} e^{i\langle\lambda,\zeta\rangle} a(x,\lambda) \hat{\delta}_0(\lambda) d\lambda = P_0 \delta_0(\zeta) = K_0(\zeta,0)$ and this is equivalent to $|\zeta|^{-k-\operatorname{ord}(a)}$, where $P_0 \in \Psi^{\operatorname{ord}(a)}(\mathbb{R}^k)$ with symbol equal to $a(x,\lambda)$ and K_0

is a distributional kernel of P_0 . In view of $\operatorname{dist}(x, \Sigma_{y_0}) \approx |\bar{h}(x, y_0)|$ with $\Sigma_{y_0} = \{x : (x, y_0) \in \Sigma\}$ and formulas above, we have $(2\pi)^k \check{a}(x, \bar{h}(x, y_0)) \sim |\operatorname{dist}(x, \Sigma_{y_0})|^{-k-(\mu-s+(n-k)/2)}$, locally uniformly in x. Formula (4) implies that Tf_s is smooth along Σ_{y_0} , so $Tf_s \notin L^p_{loc}(\mathbb{R}^n)$ if and only if $p(k+\mu-s+(n-k)/2) \geq k$, or, equivalently, $s \leq \mu+k(1-1/p)+(n-k)/2$. Together with condition on $f_s \in L^p_{loc}$ this implies that T is not continuous in L^p -norms if such s exists, i.e. when $\mu > -(n-k)|1/p - 1/2|$. This completes the proof.

Assume now that the operator T is not conormal and that (1) is satisfied with 2n - k at some point. Then the set $\Lambda_0 = \{\lambda \in \Lambda : \operatorname{rank} d\pi_{X \times Y} | \Lambda(\lambda) = 2n - k\}$ is nonempty and open in Λ . Applying the equivalence of the phase function and the same argument as in Proposition 1 at some $\lambda_0 = (x_0, \xi_0, y_0, \eta_0) \in \Lambda_0$, we get

Theorem 1 Let $T \in I^{\mu}(X, Y; \Lambda)$ be elliptic. Assume that the canonical relation Λ is a local graph and that rank $d\pi_{X \times Y}|_{\Lambda} \leq 2n - k$, $1 \leq k \leq n$, equal to 2n - k at some point. Then T is not bounded as a linear operator $L^{p}_{comp}(Y) \rightarrow L^{p}_{loc}(X)$, if $\mu > -(n-k)|1/p - 1/2|$, 1 .

The application of the arguments of [5] to Theorem 1 yields that an operator T as in Theorem 1 is not bounded as a linear operator in Sobolev spaces $L^p_{\alpha} \to L^p_{\alpha-(n-k)|1/p-1/2|-\mu}$, 1 .

It is well known ([2]) that pseudo-differential operators of zero order are continuous in L^p -spaces, 1 . It turns out that all ellipticFourier integral operators with this property can be obtain from pseudodifferential operators by a smooth coordinate change in one of the spaces<math>X or Y. For a smooth map $\kappa : X \to Y$ the pullback by κ is a mapping $\kappa^* : C^{\infty}(Y) \to C^{\infty}(X)$ defined by $(\kappa^* f)(x) = f(\kappa(x))$. This pullback is a Fourier integral operator with the canonical relation corresponding to the phase function $\langle \kappa(x) - y, \eta \rangle$ and given by the graph of the induced transformation $\tilde{\kappa} : T^*X \setminus 0 \to T^*Y \setminus 0$ with $\tilde{\kappa}(x,\xi) = (\kappa(x), -({}^tD\kappa_x)^{-1}(\xi))$. See [1, 2.4] for more detailed discussion.

Theorem 2 Let $T \in I^0(X, Y; \Lambda)$ be elliptic and assume Λ to be a local graph, 1 . Then <math>T is continuous from $L^p_{comp}(Y)$ to $L^p_{loc}(X)$ if and only if there exist $P \in \Psi^0(X), Q \in \Psi^0(Y)$, such that $T = P \circ \kappa^*_{-} = \kappa^*_{+} \circ Q$, where κ^*_{-} and κ^*_{+} are the pullbacks by smooth coordinate changes $X \to Y$.

Proof. The operators κ_{-}^{*} and κ_{+}^{*} are clearly L^{p} continuous, and this together with the continuity of pseudo-differential operators of order 0 imply the continuity of T. Conversely, let k be a minimal codimension of $\Sigma = \pi_{X imes Y}(\Lambda) ext{ in } X imes Y, ext{ i.e. } 2n-k = \max_{\lambda \in \Lambda} ext{ rank } d\pi_{X imes Y}|_{\Lambda}(\lambda). ext{ Then}$ Theorem 1 together with our assumption of the continuity of T imply k = n. This means that rank $d\pi_{X\times Y}|_{\Lambda} \equiv n$ and Σ is a smooth *n*-dimensional submanifold of $X \times Y$. The rank of $d\pi_X|_{\Sigma}$ of the projection $\pi_X : X \times Y \to X$ is equal to n in view of the assumption on Λ to be a local graph. The surjectivity of $d\pi_X|_{\Sigma}$ together with dim $\Sigma = n$ imply that $\pi_X|_{\Sigma}$ is a diffeomorphism, and locally $\Sigma = \{(x, \sigma(x))\}, \sigma$ a diffeomorphism. The pullback operator $\kappa^*_+ = \sigma^*$ has the canonical relation equal to the conormal bundle of Σ , which is Λ , implying that the operator Q in $T = \kappa_+^* \circ Q$ is pseudodifferential. The same argument applies for Y space to yield the second part of the Theorem.

Finally we would like to make some remarks about $L^p(Y) \to L^q(X)$ continuity. Under the factorization assumptions of [5], the interpolation between $L^p \to L^p$ and $H^1 \to L^2$ for operators of order -n/2 ([7, Ch. 3,5.21]) yields that for $1 and <math>2 \leq p \leq q < \infty$ the operators $T \in$ $I^{\mu}(X,Y;\Lambda)$ are continuous from $L^p(Y)$ to $L^q(X)$ for $\mu \leq -n/p + k/q + (n-k)/2$. Note that for k = 1 we get the orders of [7, Ch. 9,6.15]. The technique of the proof of Proposition 1 can be applied to show that an elliptic operator $T \in I^{\mu}(X,Y;\Lambda)$ with maximal rank equal to 2n - k at some point is not continuous from $L^p(Y)$ to $L^q(X)$ if $\mu > (n-k)/2 - n/p + k/q$, which shows that the orders above are sharp. A straightforward generalization of Theorem 2 yields

Theorem 3 Let $T \in I^{\mu}(X, Y; \Lambda)$ be elliptic and assume Λ to be a local graph, $1 . Assume that <math>-n(1/p - 1/q) \geq \mu > -(1/q - 1/2) - n(1/p - 1/q)$. Then T is continuous from $L^p_{comp}(Y)$ to $L^q_{loc}(X)$ if and only if there exist $P \in \Psi^{\mu}(X)$, $Q \in \Psi^{\mu}(Y)$, such that $T = P \circ \kappa^*_{-} = \kappa^*_{+} \circ Q$, where κ^*_{-} and κ^*_{+} are the pullbacks by smooth coordinate changes $X \to Y$.

The converse statement follows from $L^p \to L^q$ -continuity of pseudodifferential operators of order -n(1/p - 1/q), which can be obtained from [7, Ch. 9,6.15] by Hardy-Littlewood argument or by interpolation between $H^1 \to L^2$ and $L^p \to L^p$ for zero order operators. Note that the argument of Proposition 1 with k = n implies that this order is also sharp. By duality the same conclusion holds for $2 . Finally we would like to note that because the graphs of the transformations <math>\kappa_+^*$ and κ_-^* in Theorems 2 and 3 are the same, it follows that κ_+ and κ_- are equal.

Acknowledgments I would like to thank professor J.J. Duistermaat for discussions and his important contribution to my understanding of Fourier integrals.

References

- [1] Duistermaat J.J., Fourier integral operators. Birkhäuser, Boston, 1996.
- Fefferman C., L^p-bounds for pseudo-differential operators. Israel J. Math. 14 (1973) 413-417.
- [3] Littman W., 'L^p-L^q'-estimates for singular integral operators. Proc. Symp. Pure and Appl. Math. A.M.S. 23 (1973) 479-481.
- [4] Ruzhansky M., Analytic Fourier integral operators, Monge-Ampère equation and holomorphic factorization. To appear in Archiv der Mathematik.
- [5] Seeger A., Sogge C.D. and Stein E.M., Regularity properties of Fourier integral operators. Ann. of Math. 134 (1991), 231–251.
- [6] Sogge C.D., Fourier integrals in classical analysis. Cambridge University Press, 1993.
- [7] Stein E.M., Harmonic analysis. Princeton University Press, Princeton, 1993.
- [8] Wainger S., Special Trigonometric Series in k-Dimensions. Mem. Amer. Math. Soc. 59, 1965.

Mathematical Institute University of Utrecht P.O. Box 80.010, 3508 TA Utrecht The Netherlands E-mail: M.Ruzhansky@math.ruu.nl

Current address: Department of Mathematics Johns Hopkins University 3400 N. Charles Street Baltimore, MD 21218, U.S.A. E-mail: ruzan@math.jhu.edu