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On the sharpness of Seeger-Sogge-Stein orders
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Abstract. We will extend the sharpness results on L^{p_{-}} and L^{p}-L^{q_{-}}continuity of Fourier
integral operators for an arbitrary rank of the canonical projection For the elliptic
operators of small negative orders we will show that by a coordinate change they are
equivalent to pseud0-differential operators.
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1. Introduction

Let X , Y be smooth paracompact n-dimensional manifolds. Let d\sigma_{X}

and d\sigma_{Y} be the standard symplectic forms on T^{*}X and T^{*}Y and let \Lambda

be a conic Lagrangian submanifold of T^{*}X\backslash 0\cross T^{*}Y\backslash 0 , equipped with the
symplectic form d\sigma_{X}-d\sigma_{Y} . We will assume that \Lambda is a local graph of
a symplectomorphism from T^{*}Y\backslash 0 to T^{*}X\backslash 0 . Let T\in I^{\mu}(X, Y;\Lambda) bc a
Fourier integral operator with the canonical relation \Lambda . The distributional
kernel K\in D’(X\cross Y) of T is a Lagrangian distribution of order \mu whose
wavefront set is contained in \Lambda’=\{(x, \xi, y, \eta) : (x, \xi, y, -\eta)\in\Lambda\} . The
global theory of such operators can be found in [1]. Let \pi_{X\cross Y} be the natural
projection from T^{*}X\backslash 0\cross T^{*}Y\backslash 0 to X\cross Y The deep result of Seeger,
Sogge and Stein [5] states that for 1<p<\infty and \mu\underline{\backslash \nearrow}-(n-1)|1/p-1/2|

the operators T\in I^{\mu}(X, Y;\Lambda) are continuous from L_{comp}^{p}(Y) to L_{loc}^{p}(X) .
This result is sharp if T is elliptic and d\pi_{X\cross Y}|\Lambda has full rank equal to
2n-1 anywhere, which follows from the stationary phase method as in [3].
Somewhat different approaches to this are in [6] and [7]. If the rank of the
canonical projection on \Lambda can be bounded from above by

rank d\pi_{X\cross Y}|\Lambda\leq 2n-k (1)

with some 1\leq k\leq n , then under the s0-called smooth factorization condi-
tion introduced in [5] the operators T\in I_{\rho}^{\mu}(X, Y;\Lambda) , 1/2\leq\rho\leq 1 , are contin-
uous from L_{comp}^{p}(Y) to L_{loc}^{p}(X) for 1<p<\infty and \mu\leq-(n-k\rho)|1/p-1/2| .
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In [4] the factorization condition is shown to be satisfied in a number of im-

portant cases, if a phase function of the operator is analytic.
Using analysis of some convolution operators in [8], it was shown in [5]

that there exist conormal operators with constant rank d\pi_{X\cross Y}|\Lambda\equiv 2n-k ,
for which the estimate of the critical order \mu is sharp. We want to show
that for \rho=1 this order is sharp for an arbitrary elliptic operator whose
canonical relation satisfies inequality (1). The basic idea to test the L^{p_{-}}

continuity of an operator will be to investigate its behavior on the functions
obtained from a \delta-distribution at some y_{0}\in Y after the application of
elliptic pseud0-differential operators of sufficiently negative orders. The
only singularities of such functions are at y_{0} , meanwhile the singularities of
T applied to them happen only in the directions transversal to some (n-k)-
dimensional subset \Sigma_{y0} of X\tau Finally, this will be applied to the continuous
Fourier integral operators of zero order.

It was pointed out in [7, p. 398], that in \mathbb{R}^{3} the operator T : f }arrow

\frac{\partial}{\partial x_{j}}(f*d\sigma) with j=1,2 , or 3, and d\sigma the usual measure on the unit sphere
S^{2}\subset \mathbb{R}^{3} , is essentially a Fourier integral operator of order 0, which is not
continuous in L^{p}(\mathbb{R}^{3}) , 1<p<\infty . We will show that this is not a single
example and derive a structural formula for the continuous elliptic Fourier
integral operators of order 0 (Theorem 2) and then generalize it for small
negative orders and L^{p}arrow L^{q} continuity (Theorem 3).

2. Results

By the equivalence-0f-phase-function theorem as in [1, Th. 2.3.4] and
[5] it is sufficient to consider operators in \mathbb{R}^{n} with kernel

K(x, y)= \int_{\mathbb{R}^{n}}e^{i[\langle x,\xi\rangle-\phi(y,\xi)]}b(x, y, \xi)d\xi , (2)

with some symbol b\in S^{\mu} vanishing for x , y outside a compact set and phase
function satisfying

det \phi_{y\xi}’\neq 0 (3)

on the support of b , which is equivalent to \Lambda being a canonical graph.
Locally \Lambda is the set of the form \{(\nabla_{\xi}\phi, \xi, y, \nabla_{y}\phi)\} . We begin with the
following

Proposition 1 Let T\in I^{\mu}(X, Y;\Lambda) be elliptic. Assume that the canon-
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ical relation \Lambda is a local graph and rank d\pi_{X\cross Y}|\Lambda\equiv 2n-k , 1\leq k\leq n .
Then T is not bounded as a linear operator L_{comp}^{p}(Y) - L_{loc}^{p}(X) , if \mu>

-(n-k)|1/p-1/2| , 1<p<\infty .

Proof. By the above reduction it is sufficient to restrict ourselves to the
case of \mathbb{R}^{n} and operators satisfying (2) and (3). Let P_{-s}\in\Psi^{-s}(Y) be an
elliptic pseud0-differential operator in Y and consider f_{s}(y)=(P_{-s}\delta_{y0})(y) .
Then by Schwartz kernel theorem f_{s}(y)= \int K_{-s}(y, z)\delta_{y0}(z)dz=K_{-s}(y, y_{0}) ,
and in view of the kernel estimates for pseud0-differential operators in, for
example, [7, p. 241, 245], we have |K_{-s}(y, yo)|\leq C|y-y_{0}|^{-n+s} in some local
coordinate system. It follows that f_{s}\in L_{loc}^{p} if and only if s>n(1-1/p) .
We assume here 1<p\leq 2 , for the rest would follow by considering the
adjoint operators.

Let \Sigma=\pi_{X\cross Y}(\Lambda) . Then in view of the assumption on the rank of
\pi_{XxY} , \Sigma\subset X\cross Y is a smooth submanifold of codimension k . Let \Sigma be
given by the set of equations h_{j}(x, y)=0,1\leq j\leq k , in a neighborhood of
y_{0} , where \nabla h_{1} , . ’

\nabla h_{k} are linearly independent. Then \Lambda is the conormal
bundle of \Sigma and the phase function of T may be given by

\psi(x, y, \lambda)=\sum_{j=1}^{k}\lambda_{j}h_{j}(x, y) .

Let T_{s}=T\circ P_{-s} . Then Tf_{s}(x)=T_{s}(\delta_{y0})(x) and the canonical relations of
T_{s} and T coincide, since a composition with a pseudo differential operator
leaves it invariant. The operator T_{s} is of order \mu-s and in local coordinates
it can be expressed as

Tf_{s}(x)= \int_{R^{n}}(\int_{\mathbb{R}^{k}}e^{i\sum\lambda_{j}h_{j}(x,y)}a(x,\overline{\lambda})\delta_{y0}(y)d\overline{\lambda})dy

= \int_{\mathbb{R}^{k}}e^{i\langle\overline{\lambda},\overline{h}(x,yo)\rangle}a(x,\overline{\lambda})d\overline{\lambda}

=(2\pi)^{k}\check{a}(x,\overline{h}(x, yo)) , (4)

where \overline{\lambda} and \overline{h} are the vectors with the components \lambda_{j} and h_{j} respec-
tively, and a\in s^{\mu-s+(n-k)/2}(\mathbb{R}^{k}) is a symbol of T_{s} after applying the sta-
tionary phase method and integrating away (n-k)-variables. Now, the
inverse Fourier transform of a in the second variable is (2\pi)^{k}\check{a}(x, () =
\int_{\mathbb{R}^{k}}e^{i\langle\lambda,\zeta\rangle}a(x, \lambda)\hat{\delta}_{0}(\lambda)d\lambda=P_{0}\delta_{0}(\zeta)=K_{0}(\zeta, 0) and this is equivalent to
|(|^{-k-ord(a)} , where P_{0}\in\Psi^{ord(a)}(\mathbb{R}^{k}) with symbol eq\iota lal to a(x, \lambda) and K_{0}
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is_{\llcorner}^{\tau}\epsilon 1rdi\llcorner s^{\backslash }trib11tio)11a1 kernel of P_{0} . In view of dist(x, \Sigma_{y0} ) \approx|\overline{h}(x, y_{0})| with
\Sigma_{y\circ}=\{x : (x,.\uparrow J0)\in\Sigma\} and formulas above, we have (2\pi)^{k}\check{a}(x,\overline{h}(x, y_{0}))\sim

|di\llcorner s^{1}t(x, \Sigma_{y0})|^{-k-(/\iota-s+(n-k)/2)} , locally uniformly in x . Formula (4) implies
1h\dot{\epsilon}\mathfrak{i}f\Gamma l^{\tau}.f_{s} is smooth along \Sigma_{y0} , so Tf_{s}\not\in L_{loc}^{p}(\mathbb{R}^{n}) if and only if p(k+\mu-s+
(rl - k)/2)\geq k , or, equivalently, s\leq\mu-\vdash k(1-1/p)+(n-k)/2 . Together with
0^{\cdot}r)rlelition 011f_{s}\in L_{loc}^{p} tllis implies that T is not continuous in L^{p_{-}}rurns if
s\iota 1(.11se xists, i.e. well/x >-(n-k)|1/p-1/2| . This completes the proof.

\square

Ass\iota lnlC 11t)W that the operator T is not conormal and that (1) is satisfied
witll 2/\iota-k at \llcorner b^{1}O\ln C^{1} point. Then the set \Lambda_{0}=\{\lambda\in\Lambda : rank d\pi_{X\cross Y}|_{\Lambda}(\lambda)=

2n-k\} is nonempty and open in \Lambda . Applying the equivalence of the
I)11\acute{r}1St^{1}f\iota 1I1t^{\tau}fio11 and thc sa me argument as in Proposition 1 at some \lambda_{0}=

(x_{0}, \xi_{0}, \tau/0,710)\in\Lambda_{0} , we gct

Theorem 1 Let T\in I^{\mu}(X, Y;\Lambda) be elliptic. Assume that the canonical
\gamma .( \Lambda is ‘ llt) r\cdot al graph and that rank d\pi_{X\cross Y}|_{\Lambda}\leq 2n-k , 1\leq k\leq n ,
equal to 2n – k at so\prime rn,e point. Then T is not bounded as a linear operator
L_{c\cdot CJ7\prime\iota p}^{l^{J}}(Y)arrow L_{loc}^{1^{J}}(X) , if \mu>-(n-k)|1/p-1/2| , 1<p<\infty .

Tllc application of the arguments of [5] to Theorem 1 yields that an
()1)e^{1}rate)rT as in Theorem 1 is not bounded as a linear operator in Sobolev
S1).dC^{\cdot}CSL_{(}^{p_{\gamma}}arrow L_{\alpha-(n-k)|1/p-1/2|-\mu}^{p} , 1<p<\infty .

If i_{\backslash }s^{\backslash }we^{1}11 known ([2]) that pseud0-differential operators of zero order
\dot{c}1\Gamma()(.()11fi1111O11\llcorner b^{\urcorner} ill IZ-spaces, 1 <p<\infty . It turns out that all elliptic
F()1\iota rie^{1}r inte gral ope rators with this property can be obtain from pseud0-
(liffffercntial oI) er_{\dot{\epsilon}}:te)rs by a smooth coordinate change in one of the spaces
X()rY For a smooth map \kappa : X -arrow Y the pullback by \kappa is a mapping
\kappa^{*} : C^{\infty}(Y) - C^{\infty}(X) defined by (\kappa^{*}f)(x)=f(\kappa(x)) . This pullback is
.d\Gamma\{()1lricr integral operator with the canonical relation corresponding to
th(\ 1)hasc function \langle\kappa(x)-y, \eta\rangle and given by the graph of the induced
trar1\llcorner b^{\backslash }fe)1^{\cdot}111\dot{\epsilon}\iota tie)n\tilde{\kappa} : T^{*}X\backslash 0arrow T^{*}Y\backslash 0 with \tilde{\kappa}(x, \xi)=(\kappa(x), -(^{t}D\kappa_{x})^{-1}(\xi)) .
St^{Y}e[1,2.4] for rr1ore^{J}\det ailed discussion.

Theorem 2 Lc^{2}tT\in- I^{0}(X, Y;\Lambda) be elliptic and assume \Lambda to be a local
.(lr\cdot\iota xph, 1<p<\infty , p\neq 2 . Then T is continuous from L_{comp}^{p}(Y) to L_{loc}^{p}(X)

if an d only if there exist P\in\Psi^{0}(X) , Q\in\Psi^{0}(Y) , such that T=P\circ\kappa_{-}^{*}=

/i^{*}+\circ Q , where \kappa_{-}^{*} and \kappa_{+}^{*} are the pullbacks by smooth coordinate changes
X-Y
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Proof. The operators \kappa_{-}^{*} and \kappa_{+}^{*} are clearly L^{p} continuous, and this
together with the continuity of pseud0-differential operators of order 0 im-
ply the continuity of T Conversely, let k be a minimal codimension of
\Sigma=\pi_{X\cross Y}(\Lambda) in X\cross Y , i.e . 2n-k= \max_{\lambda\in\Lambda} rank d\pi_{X\cross Y}|_{\Lambda}(\lambda) . Then
Theorem 1 together with our assumption of the continuity of T imply k=n.
This means that rankd\pi_{X\cross Y}|_{\Lambda}\equiv n and \Sigma is a smooth n-dimensional sub-
manifold of X\cross Y The rank of d\pi_{X}|\Sigma of the projection \pi_{X} : X\cross Y - X
is equal to n in view of the assumption on \Lambda to be a local graph. The
surjectivity of d\pi_{X}|\Sigma together with dim \Sigma=n imply that \pi_{X}|\Sigma is a diffe0-
morphism, and locally \Sigma=\{(x, \sigma(x))\} , \sigma a diffeomorphism. The pullback
operator \kappa_{+}^{*}=\sigma^{*} has the canonical relation equal to the conormal bundle
of \Sigma , which is \Lambda , implying that the operator Q in T=\kappa_{+}^{*}\circ Q is pseud0-
differential. The same argument applies for Y space to yield the second
part of the Theorem. \square

Finally we would like to make some remarks about L^{p}(Y) -arrow L^{q}(X)-

continuity. Under the factorization assumptions of [5], the interpolation
between L^{p} -arrow L^{p} and H^{1}arrow L^{2}fo_{I}r operators of order-n/2 ( [7, Ch. 3,5.21])
yields that for 1<p\leq q\leq 2 and 2\leq p\leq q<\infty the operators T\in
I^{\mu}(X, Y;\Lambda) are continuous from L^{p}(Y) to L^{q}(X) for \mu\leq-n/p+k/q+(n-
k)/2 . Note that for k=1 we get the orders of [7, Ch. 9,6.15]. The technique
of the proof of Proposition 1 can be applied to show that an elliptic operator
T\in I^{\mu}(X, Y;\Lambda) with maximal rank equal to 2n-k at some point is not
continuous from L^{p}(Y) to L^{q}(X) if \mu>(n-k)/2-n/p+k/q , which
shows that the orders above are sharp. A straightforward generalization of
Theorem 2 yields

Theorem 3 Let T\in I^{\mu}(X, Y;\Lambda) be elliptic and assume \Lambda to be a local
graph, 1<p\leq q<2 . Assume that-n(l/p–l/q) \geq\mu>-(1/q-1/2)-
n(1/p-1/q) . Then T is continuous from L_{comp}^{p}(Y) to L_{loc}^{q}(X) if and only
if there exist P\in\Psi^{\mu}(X) , Q\in\Psi^{\mu}(Y) , such that T=Po\kappa_{-}^{*}=\kappa_{+}^{*}oQ ,
where \kappa_{-}^{*} and \kappa_{+}^{*} are the pullbacks by smooth coordinate changes X – Y

The converse statement follows from L^{p} –L9-c0ntinuity of pseud0-
differential operators of order -n(1/p-1/q) , which can be obtained from
[7, Ch. 9,6.15] by Hardy-Littlewood argument or by interpolation between
H^{1}arrow L^{2} and L^{p}arrow L^{p} for zero order operators. Note that the \arg_{11}ment of
Proposition 1 with k=n implies that this order is also sharp. By duality
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the same conclusion holds for 2<p\leq q<\infty . Finally we would like to note
that because the graphs of the transformations \kappa_{+}^{*} and \kappa_{-}^{*} in Theorems 2
and 3 are the same, it follows that \kappa_{+} and \kappa_{-} are equal.
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