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The subobject classifier of the category
of functional bisimulations
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Abstract. We show the existence of subobject classifier in the category of nondeter-
ministic dynamical systems and functional bisimulations.
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1. Introduction

In [8], we studied the category AfVyn of nondeterministic dynamical
systems whose morphisms are functional bisimulations.

A nondeterministic dynamical system is a labelled transition system
whose label set has only one element. A functional bisimulation is a map
between transition systems. The main results of [8] are the following.

\circ The category MVyn is an autonomous category, i.e., monoidal closed.
\circ There exists a subobject classifier.

The monoidal closedness was shown by constructing AfVyn objects via the
presheaves over the category Tree, where the Tree is a small, dense subcat-
egory of NDyn. On the other hand the existence of the subobject classifier
was proved by using the theory of hypersets.

In this paper, we prove the existence of subobject classifier in MVyn
by using the construction via presheaves over Tree in the same way as the
proof of monoidal closedness in [8]. The proof uses a general lemma about
presheaf categories, which is given in [10].

As we remark later, NDyn is a category of coalgebras for finite pow-
erset functor without empty set. We can brush up the technique which is
used in this paper, to an existence theorem [7] of subobject classifiers in
categories of coalgebras by using accessible category theory, which led to
another existential proof [3] in the context of topos theory.
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It is generally difficult to describe explicitly the structure of the sub-
object classifiers for coalgebra categories even if they exist. However there
are a few exceptional cases. One is in [9, 8] , where the truth-value object
of AfVyn was given as a universe of hereditarily finite hypersets. Another
example was given in [3] for the categories of coalgebras of finite powerset
functor.

The significance and applications of the existence of subobject classifier
in MVyn have not been fully considered yet. But we can show it implies
the regularity of MVyn [7, 3] , and hence we can define category of relations
over MVyn which is the category of nondeterministic dynamical systems
and bisimulations.

We proceed as follows. First we recall the definitions of nondeterministic
dynamical systems and the category MVyn of them in Section 2. We recall
some of the basic facts of AfVyn, for example, the existence of terminal
object, characterization of monic arrows in AfVyn and cocompleteness. We
give the concrete construction of coproduct and coequalizer.

In Section 3, we show the existence of small, dense subcategory Tree in
AfVyn . Then the category NDyn turns out to be a reflective subcategory
of Set^{\mathcal{T}ree^{op}} , and hence complete.

We apply the criterion given in [10], and show the existence of subobject
classifier in Section 4.

2. The category \mathcal{N}\mathcal{D}yn

2.1. Definitions
First of all, we recall the definitions of nondeterministic dynamical sys-

tems and the category MVyn they form.

Definition 2.1 A nondeterministic dynamical system D =(|D|, \tau_{D})

consists of a set |D| with a binary relation \tau_{D}\subseteq|D|\cross|D| . Elements of |D|

are called states and \tau_{D} the transitions. When (x, y)\in\tau_{D} , we denote
xarrow Dy and call y a child of x . For each x\in|D| , define

chi1d_{D}(x)=\{y\in|D||xarrow Dy\} .

We call a finite sequence x , z_{1} , z_{2} , . , z_{n} of |D| a path from x to z_{n} if
xarrow_{D}z_{1} and z_{i}arrow_{D}z_{i+1} for each 1\leq i\leq n-1 .

We introduce a notion of morphism between nondeterministic dynami-
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cal systems. Let D=(|D|, \tau_{D}) , D’=(|D’|, \tau_{D’}) be nondeterministic dynam-
ical systems. A map \varphi : |D| -arrow|D’| is called a functional bisimulation
from D to D’ if

\varphi(chi1d_{D}(x))=chi1d_{D’}(\varphi(x))

for all x\in|D| .
Next we give the definition of subsystems based on the functional bisim-

ulations. We also give some examples of subsystems induced by them. A
nondeterministic dynamical system D_{0}=(|D_{0}|, \tau_{D_{0}}) is called a subsystem
of D=(|D|, \tau_{D}) if |D_{0}|\subseteq|D| and chi1d_{D_{0}}(x)=chi1d_{D}(x) for all x\in|D_{0}| .
Then the inclusion map |D_{0}|c_{-arrow}|D| is a functional bisimulation.

Let f : Darrow D’ be a functional bisimulation.
The image {\rm Im}(f) of f is defined by {\rm Im}(f)=(f(|D|), \tau_{D’}|_{f(|D|)\cross f(|D|)}) ,

where \tau_{D’}|_{f(|D|)\cross f(|D|)}is a restriction of \tau_{D’} on f(|D|)\cross f(|D|) . Obviously
{\rm Im}(f) is a subsystem of D’-

The inverse image f^{-1}(V) of a subsystem V=(|V|, \tau_{V}) of D’ is
defined by |f^{-1}(V)|=f^{-1}(|V|)=\{x\in|D||f(x)\in|V|\} and x - f^{-1}(V)y
if xarrow Dy . Obviously f^{-1}(V) is a subsystem of D .

Now we define the category NDyn of nondeterministic dynamical
systems.

Definition 2.2 The category AfVyn is defined as follows. An object of
AfVyn is a nondeterministic dynamical systems D=(|D|, \tau_{D}) which satis-
fies,

\circ chi1d_{D}(x)\neq\emptyset for all x\in|D| ,
\circ |chi1d_{D}(x)|<\infty for all x\in|D| .

An arrow \varphi : Darrow D’ from NVyn object D to D’ is a functional bisimula-
tion \varphi : |D|arrow|D’| .

Remark 2.3 The category MVyn can also be described as the category
of coalgebras for endofunctor pow_{o} on Set, which is defined by

\circ pow_{o}(A) is the set of all the nonempty finite subsets of A,
\circ For each map f : A – B , pow_{o}(f) : pow_{o}(A) – pow_{o}(B) maps a

nonempty finite set A_{0}\subseteq A to its image \{f(x)|x\in A_{0}\}\subset B , which
is obviously nonempty and finite.

We recall some of the basic properties of AfVyn[8] .
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2.2. The terminal object
The terminal object 1=(\{*\}, \{(*, *)\}) exists in AfVyn.

2.3. Monic arrows
The monic arrows in MVyn have the following properties.

Proposition 2.4 A MVyn arrow is monic if and only if the underlying
map is injective.

Proof. Let m : D - D’ be a monic arrow in MVyn. Suppose m(x_{1})=
m(x_{2}) for x_{1} , x_{2}\in|D| . Let D_{0}=(|D_{0}|, \tau_{D_{0}}) be the object oiMVyn defined
by

|D_{0}|=\{(y_{1}, y_{2})\in|D|\cross|D||m(y_{1})=m(y_{2})\} ,

and

(y_{1}, y_{2})\prec_{D_{0}}(z_{1}, z_{2}) iff y_{1} -\prec_{D}z_{1} and y_{2} – Dz2 .

Define \pi_{1} , \pi_{2} : D_{0} - D by \pi_{i}(y_{1}, y_{2})=y_{i} for i=1,2 . These maps are
arrows in MVyn Now mo\pi_{1}=mo\pi_{2} by construction of \pi_{i} ’s. Thus \pi_{1}=\pi_{2}

by the monicity of m . Hence we have x_{1}=\pi_{1}(x_{1}, x_{2})=\pi_{2}(x_{1}, x_{2})=x_{2} ,
and so m is injective.

The reverse implication is obvious. \square

Corollary 2.5 A subobject is represented by a uniquely determined sub-
system.

Proof. Let r be any subobject of object D\in AfVyn . Then there is a
subsystem {\rm Im}(r) of D , and r is equivalent to the inclusion {\rm Im}(r)\llcorner\Rightarrow D .

\square

2.4. Cocompleteness
As we noticed in Remark 2.3, the category AfDyn is a category of

coalgebras for endofunctor on Set, which implies the following property by
using [1, Proposition 1.1 or 2, Proposition 2.1].

Proposition 2.6 The category AfVyn is cocomplete.

The colimit of each diagram in AfVyn can be constructed by using
coproducts and coequalizer. We need to construct explicitly colimits of
diagram in AfVyn later, so we review the construction of coproduct and
coequalizer.
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Let \{D_{k} : k\in K\} be a family of objects in MVyn indexed by a set Kt
Its coproduct D=(|D|, \tau_{D}) is defined by

|D|= \prod_{k\in K}|D_{k}|

and

xarrow_{D}y iff there exists some k\in K such that
x , y\in|D_{k}| and xarrow D_{k}y

and universal cocone consists of the inclusion functional bisimulations
|D_{k}|arrow*|D| .

Let f,g : D_{1} – D_{2} be functional bisimulations. The coequalizer of f
and g is given by a functional bisimulation q : D_{2}arrow D , which is constructed
as follows: The D=(|D|, \tau_{D}) is given by

|D|=|D_{2}|/R

where R is the smallest equivalence relation on |D_{2}| generated by

\{(f(x), g(x))|x\in D_{1}\} ,

and \tau_{D} is defined by

[x]arrow D[y] if xarrow D_{2}y ,

where [x] is the equivalence class of x\in|D_{2}| . The q is given by the quotient
map q : |D_{2}|arrow|D_{2}|/R .

3. Small and dense subcategory of \mathcal{N}\mathcal{D}yn

3.1. The category Tree

Definition 3.1 Let N be the set of natural numbers and N^{*} be the set
of finite words over N. Let T be a subset of N^{*} . We say

\circ T is prefix closed if w\in T implies v\in T for all prefixes v of w .
\circ T is infinite if for all v\in T there is at least one i\in N with v.i\in T
\circ T is locally finite if for each v\in T the set \{i\in N|v.i\in T\} is a

finite set of the form \{ 1, 2, . . ’
n_{v}\} .

Observe that every prefix closed subset T\subset N^{*} contains the empty
word \epsilon . Each prefix closed, infinite, locally finite subset T\subset N^{*} determines
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a MVyn object (T, \tau_{T}) defined by v - Tw when w=v.i(i\in N) ; which
is called a finitely branching tree. Finitely branching trees and their
functional bisimulations define a category Tree, which is a full subcategory
of MVyn . We denote the inclusion functor by i : Treearrow+ MVyn . By the
construction, the category Tree is small.

Let D=(|D|, \tau_{D}) be a NDyn object. A numbering \alpha on D is a family
of bij ections \alpha_{x} : chi1d_{D}(x) -arrow\{1,2, \ldots , |chi1d_{D}(x)|\}(x\in|D|) . Given a
numbering \alpha on D , define Path_{\alpha}(x)\subset N^{*} for x\in|D| by

Path_{\alpha}(x):=\{\epsilon\}\cup\{\alpha_{x}(z_{1}).\alpha_{z_{1}}(z_{2})\ldots\alpha_{z_{n-1}}(z_{n})|

x , z_{1} , z_{2} , \ldots , z_{n} is a path in D }.

Then Path_{\alpha}(x) is a prefix closed, infinite, locally finite subset of N^{*} Hence
it determines an object of Tree, which is also denoted by Patha(x). There
is a canonical MVyn arrow \gamma_{x} : i(Path_{\alpha}(x)) – D in NDyn defined in-
ductively by \gamma_{x}(\epsilon)=x , and \gamma_{x}(v.i)=\alpha_{\gamma_{x}(v)^{-1}}(i) , for v.i\in Path_{\alpha}(x) with
i\in N .

Lemma 3.2 Let D be an object of AfVyn and let \alpha be a numbering on it.
For each object T\in Tree and an arrow f : i(T) – D in NDyn, there exists
x\in|D| and an arrow \overline{f} : T – Path_{\alpha}(x) in Tree such that the following
diagram commutes.

i(T)\underline{i(\overline{f})}i(Path_{\alpha}(x))

|\gamma_{x}

D

Proof. First put x=f(\epsilon_{T}) , where \epsilon_{T} is the empty word in T Define a
map \overline{f} : Tarrow Path_{\alpha}(x) inductively by \overline{f}(\epsilon_{T})=\epsilon_{Path_{\alpha}(x)} , and for the word
w=v.i\in T with i\in N,\overline{f}(w)=\overline{f}(v).\alpha_{f(v)}(f(w)) . Then this map \overline{f} turns
out to be a functional bisimulation, and makes the above diagram commute.

\square

3.2. Density
In this subsection, we show that the category Tree is dense in MVyn.
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Let D=(|D|, \tau_{D}) be any NDyn object and \alpha be a numbering on
it. Now let \Gamma(D) be the free category generated by the graph (|D|, \tau_{D}) .
Define a graph map E : D^{op} -arrow Tree by E(x)=Path_{\alpha}(x) for x\in|D| ,
and E(xarrow Dy)(w)=\alpha_{x}(y).w , and extending it a functor \Gamma(D)^{op}arrow \mathcal{T}ree ,
denoted also by E .

Lemma 3.3

Colim(i \circ E ) \cong D

Proof. Put D’= Colim(i \circ E). Then the set of states |D’| is given by

|D’|= \prod_{x\in|D|}|i(Path_{\alpha}(x))|/\simeq
,

where\simeq is the smallest equivalence relation generated by

w\simeq i\circ E(xarrow Dy)(w)

for w\in|i(Path_{\alpha}(y))| and xarrow Dy . It is easily seen that

|i(Path_{\alpha}(x))|\ni v-, \gamma_{x}(v)

induce a bijection |D’| -arrow|D| which is obviously functional bisimulation.
Hence we have Colim i\circ E\cong D . \square

Proposition 3.4 The category Tree is dense in AfVyn.

Proof. In order to show the density of Tree in NDyn, we have to show
each object D\in MVyn is isomorphic to the colimit of its canonical diagram

i(-)/Darrow\partial \mathcal{T}ree arrow+i NDyn,

where i(-)/D is the comma category and \partial : i(-)/D –Tree is the pr0-
jection functor. Fix an object D\in NDyn and a numbering \alpha on D .
Let G : \Gamma(D)^{op} – i(-)/D be the functor defined by G(x)=\gamma_{x} and
G(xarrow Dz)=E(x - Dz) for x\in\Gamma(D)^{op} and an edge xarrow Dz of \Gamma(D) . It
follows from Lemma 3.2 that

Colim(i (-)/Darrow\partial Treearrow+iNDyn )
\cong Colim(\Gamma(D)^{op}arrow i(-)/DGarrow \mathcal{T}ree\partial\mapsto i MVyn
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Because the diagram i\circ\partial\circ G=ioE , we have

Colim(i (-)/Darrow\partial Tree \llcorner i\Rightarrow NVyn) \cong Co1im(i oE) \cong D

by Lemma 3.3. Since D was arbitrary, we have shown that the inclusion
functor i : Tree\mapsto NDyn is dense. \square

3.3. Reflective subcategory
As a consequence of the existence of small dense subcategory Tree of

the cocomplete NVyn, the category AfVyn turns out to be a reflective
subcategory of Set^{\mathcal{T}ree^{op}} [10, Propositon 2.4]. The full and faithful right
adjoint functor R : MVyn –

Set^{\mathcal{T}ree^{op}} is given for each object D\in NVyn
by

R(D)=NDyn(i(-), D) .

The left adjoint functor L : Set^{\mathcal{T}ree^{op}}arrow NDyn is given for each presheaf P
by

LP= Colim(\int Parrow\pi_{P}\mathcal{T}reecarrow NDyn)i .

Here \int P is the category of elements of a presheaf P defined as follows:
\circ Its object is a pair (T,p) of an object T\in Tree and p\in P(T) .
\circ And an arrow u : (T,p) - (T’,p)’ is a \mathcal{T}ree arrow u : T - T’ such

that p’u=p, where p’u:=P(u)(p’) .
The functor \pi_{P} : \int Parrow Tree is the projection: (T,p) – T The composi-
tion of functors

\int Parrow\pi_{P}\mathcal{T}reearrow+NDyni

is a diagram in NDyn with the indexing category \int P , denoted simply by
i\circ\pi_{P} .

Remark 3.5 The canonical diagram of each D\in NDyn is nothing but
the diagram i\circ\pi_{R(D)} : \int R(D) -arrow MVyn . Because the functor i : Treearrow\succ

MVyn is dense, we have, for each object D\in NVyn ,

LR(D)= Colim(\int R(D)arrow \mathcal{T}ree\pi_{R(D)}\epsilonarrow NDyn)i

=Colim( i(-)/Darrow \mathcal{T}ree\partial\mapsto i NDyn)\cong D.
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According to the construction in Section 2.4, the nondeterministic dy-
namical system LP for a presheaf P can be given concretely as follows: The
set of states |LP| is given by

|LP|= \prod_{T\in \mathcal{T}ree}|i(T)|\cross P(T)/\simeq_{LP}

where\simeq_{LP} is the smallest equivalence relation on II_{T\in \mathcal{T}ree}|i(T)|xP(T)

generated by

(t,p’u)\simeq_{LP}(i(u)(t),p’)

for t\in|i(T)| , u:Tarrow T’, p\in P(T’) , T, T’\in Tree . The transition relation
arrow LP is given by

[(t_{1},p)]arrow LP[(t2,p)] if t_{1}arrow i(T)t2 , p\in P(T) , T\in Tree .

According to the notation [10, Section 4.1], we denote the universal cocone
i\circ\pi_{P} – LP for each presheaf P by

\{\kappa_{p}^{LP} : i(T) arrow LP|(T,p)\in\int P\} (1)

Then the element \kappa_{p}^{LP} : i,(T) – LP is given by

\kappa_{p}^{LP}(t)=[(t,p)] for t\in|i(T)| (2)

from the construction of LP.
The following results are used in Section 4.

Lemma 3.6 ([10, Lemma 4.2]) Let \alpha : Parrow Q be a Set^{\mathcal{T}ree^{op}} arrow. For
each p\in P(T) with T\in Tree , the following diagram commutes in AfVyn.

i(T)

LP LQ
L\alpha

3.4. Completeness
Since NDyn is a reflective subcategory of presheaf category Set^{\mathcal{T}ree^{op}}
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and the presheaf category is complete, we obtain by using [2, Proposi-
tion 3.5.3]:

Proposition 3.7 The category AfVyn is complete.

Hence all pullbacks exist in AfVyn . In particular, the pullbacks of
monic arrows exist in MVyn. Consequently there exists a subobject functor
Sub: NDyn^{op}arrow Set, and we have the following property for the pullbacks
of monic arrows.

Lemma 3.8 Let f : D - D’ be a AfVyn arrow and r\in Sub(D’) , then
the following diagram is a pullback in MVyn

f^{-1}({\rm Im}(r))arrow{\rm Im}(r)f^{*}

1 1

D D’-,f
where f^{*} is the restriction of f to |f^{-1}({\rm Im}(r))|\subseteq|D| .

4. The existence of a subobject classifier in \mathcal{N}\mathcal{D}yn

Now applying the criterion of [10], we show the existence of subobject
classifier in the category MVyn .

Define Set^{\mathcal{T}ree^{op}} arrow \xi : R(1) – Sub(i(-)), a natural transformation,
by

\xi\tau(!_{i(T)})=id_{i(T)}

for !_{i(T)}\in R(1)(T) and T\in Tree . Set T=L\xi : LR(1) – L Sub(i(-)).
Then T is a monic MVyn arrow since LR(1)\cong 1 from Remark 3.5.

We recall the criterion for the existence of a subobject classifier.

Criterion for the existence of a subobject classifier ([10, Corol-
lary 4.6]) Let the universal cocone of the diagram i\circ\pi_{Sub(i(-))} be given
by the collection

\{ \kappa_{r}^{LSub(i(-))} : i(T) – L Sub(i(-)) |(T, r) \in\int Sub(i(-))\} (3)
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If the following diagram is a pullbaek for each (T, r) \in\int Sub(i(-)) then
there exists a subobject classifier in AfVyn :

r|\circ LR(1)|T
(4)

A(C)\overline{LSub(A(-))}L Sub(A(-))
\kappa_{r}

Theorem 4.1 There exists a subobject classifier in the category MVyn.

Proof. Now we fix (T, r) \in\int Sub(i(-)) , and show that the diagram (4)
is pullbaek. To show this, by Lemma 3.8, it suffices to show

\kappa_{r}^{LSub(i(-))^{-1}}(|{\rm Im}(T)|)=|{\rm Im}(r)| (5)

as a map.
Now we start the verification of (5). Since i is dense, the object LR(1)\in

MVyn is isomorphic to a terminal object in AfVyn , so we denote LR(1)=
(\{*\}, \{(*, *)\}) . Put

true= T(*)\in|L Sub(i (-)) | .

Then chi1d_{LSub(i(-))} {true} = {true} holds in L Sub(i(-)), since T is a
functional bisimulation.

By applying Lemma 3.6 for Set^{\mathcal{T}ree^{op}} arrow \xi , we have the following
commutative diagram since \xi_{T}(!_{i(T)})=id_{i(T)} .

i(T)

LR(1) L Sub(i (-))
T

Hence we have

\kappa_{id_{i(T)}}^{LSub(i(-))}(t)=To\kappa_{!_{i(T)}}^{LR(1)}(t) (6)
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for any t\in|i(T)| . Since the left hand side of (6) is

\kappa_{id_{i(T)}}^{I_{J}Sub(i(-))}(t)=[(t, id_{i(T)})]_{LSub(i(-))} ,

aI1(1 since the right hand side is

T(\kappa_{I_{i(T)}}^{LR(1)}(t))=T(*)=true ,

wc obtairl

Lemma 4.2

[(t, id_{i(T)})]_{LSub(i(-))}=true in L Sub(A(-)) for each
t\in|i(T)| , T\in \mathcal{T}ree .

Let t\in|?.(T)| and t’\in|i(T’)| with T, T’\in Tree .

Lem ma 4.3 If (t, id_{i(T)})\simeq_{LS_{11}b(i(-))}(t’, r) , then t’\in{\rm Im}(r) .

Proo.f. S_{11}pposc

(t, id_{i(’I)}\urcorner)\simeq_{LSub(i(-))}(t’, r) . (7)
T1_{1}e^{Y}n there exists \int Sub(i(-)) diagram

(T_{1}, r_{1})4^{f}(T_{2}, r_{2})\underline{f_{2}}(T_{3}, r_{3})\underline{f_{R}}, , . . fn-+– 3(T_{n-2}, r_{n-2})

f_{n-2}fn(T_{n-1}, r_{n-1})arrow-arrow 1(T_{n}, r_{n}) (8)

with (T_{1}, r_{1}.)=(T, id_{i(T)}) and (T_{n}, r_{n})=(T’, r) , which gives the equivalence
(7). T1_{1}cn

i(f_{1})(t)\in|{\rm Im}(r_{2})|\subseteq|T_{2}| by i(f_{1})^{-1}(r_{2})=r_{1}=id_{i(T)}

i(f_{2})^{-1}(i(f_{1})(t))\subseteq|{\rm Im}(r_{3})| by i(f_{2})^{-1}(r_{2})=r_{3}

?,\cdot(f_{33})(i(f_{2})^{-1}(i(f_{1})(t)))\subseteq|{\rm Im}(r_{4})| by i(f_{3})^{-1}(r_{3})=r_{4} .

By induction, we can show

i(f_{n-1})^{-1}(i(f_{7\iota-2})(\cdots i(f_{3})(i(f_{2})^{-1}(i(f_{1})(t)))\cdots))

\subseteq|{\rm Im}(r_{r\iota})|=|{\rm Im}(r)| .

Sin ce the equivalence (7) is given by \int Sub(i(-)) arrows (8), we have

t’\in i(f_{n-1})^{-1}(i(f_{n-2})(\cdot . _{i(f_{3})(i(f_{2})^{-1}(i(f_{1})(t)))}. .)) .
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Hence we obtain t’\in|{\rm Im}(r)| , whence the lemma. \square

By using Lemma 4.2 and Lemma 4.3, we have the following property.

Lemma 4.4 Suppose t\in|i(T)| and r\in Sub(i(T)) with T\in Tree . Then
t\in|{\rm Im}(r)| if and only if [(t, r)]_{LSub(i(-))}=true .

Proof Fix an object T\in Tree and r\in Sub(i(T)) , and suppose t\in
|{\rm Im}(r)|\subseteq|i(T)| , then t is a finite word over N. Here we identify the set
|i(T)| with the set T . Define a subset T’\subset N^{*} by

T’=\{v\in N^{*}|t.v\in T\} .

The set T’ is a prefix closed, infinite, locally finite subset of N^{*} , Hence T’
determines a Tree object, denoted also by T’ . There is a canonical injective
map m : T’arrow T defined by m(v)=t.v for each v\in T’ . which turns out
to be a functional bisimulation. Hence m : T’ -arrow T is a monic Tree arrow,
which satisfies i(m)(\epsilon_{i(T’)})=t for empty word \epsilon_{i(T’)}\in|i(T’)| .

Now we have i(m)\subseteq r as a subobject since i(m)(\epsilon_{i(T’)})=t\in{\rm Im}(r) .
Then the following diagram is a pullback in NDyn:

i(T’)

id_{i(T’)}|
o|r

i(T’)\overline{i(m)}i(T)

Consequently we have

(t, r)=(i(m)(\epsilon_{i(T’)}), r)

\simeq_{LSub(i(-))}(\epsilon_{i(T’)}, id_{i(T’)}) by the definition of\simeq_{LSub(i(-))}

=true by Lemma 4.2.

Conversely suppose [(t, r)]_{LSub(i(-))}=true . Then (t, r)\simeq_{LSub(i(-))}

(t’, id_{i(T’)}) for some t’\in|i(T’)| , T’\in Tree by Lemma 4.2. Hence we
obtain t\in|{\rm Im}(r)| by using the Lemma 4.3. \square

From Lemma 4.4, we have

\kappa_{r}^{LSub(i(-))}(t)=true if and only if t \in|{\rm Im}(r)|
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for t\in|i(T)| and r\in Sub(i(T)) , which is the equation (5). Hence the
diagram (4) is pullback for each (T, r) \in\int Sub(i(-)) , and the criterion is
satisfied. Thereby we conclude that the category NDyn has a subobject
classifier. \square
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