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Note on C^{\infty} functions with the zero property
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Abstract. Suppose that all of c\infty functions f_{1} , . , f_{k} have the zero property. We give
a necessary and sufficient condition for their product to have the same property This is
a generalization of Bochnak’s result ([1])
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1. Introduction

The theorem of zeros for ideals of C^{\infty} functions was studied by J.
Bochnak and J.J . Risler in the 1970’s .

Let M be a connected manifold of class C^{\infty} and J an ideal in the ring
C^{\infty}(M) of C^{\infty} functions on M . We say that J has the zero property if all
functions in C^{\infty}(M) vanishing on the zeros of J belong to J . Also, we say
that f\in C^{\infty}(M) has the zero property if the principal ideal (/) has the
zero property.

J. Bochnak shows that for an ideal J in C^{\infty}(M) generated by a finite
number of real analytic functions, J has the zero property if and only if J
is real ([1]). He conjectures that for a finitely generated ideal J in C^{\infty}(M) ,
J has the zero property if and only if J is real and closed with respect to
C^{\infty} topology ([1]).

J.J . Risler shows that for a finitely generated ideal J in C^{\infty}(\mathbb{R}^{2}) , J has
the zero property if and only if J is real and closed ([3]). Moreover for
f\in C^{\infty}(\mathbb{R}^{3}) , he shows that if (/) is real and closed and the zero set of f
satisfies a certain condition then f has the zero property ([3]). It is still an
open problem to give a complete characterization of those finitely generated
ideals of C^{\infty} functions which have the zero property.

We are interested in the characterization of C^{\infty} functions with the zero
property. In this paper we treat the C^{\infty} functions that can be expressed as
a product of C^{\infty} functions with the zero property. Namely, suppose that
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f_{1} , . , f_{k} have the zero property and consider the following condition.

The product f=f_{1}\cdot\cdot f_{k} has the zero property.

In the case when the functions f_{i} are real analytic, J. Bochnak proves the
following.

Theorem (Bochnak [1]) Let M be a connected real analytic manifold and
k a positive integer. Suppose that real analytic functions f_{i} : Marrow \mathbb{R} have
the zero property and that f_{i}\not\equiv 0(1\leqq i\leqq k) . Set f=f_{1}\cdot\cdot f_{k} . Then the
following two conditions are equivalent.
(1) f has the zero property.

(2) \overline{G(f)}=V(f) , where V(f) denotes the zero set of f and G(f) denotes
the set of regular points of f in V(f) .

We get rid of the condition of analyticity. Moreover, we add five con-
ditions which are equivalent to (1). We have the following.

Theorem Let M be a connected manifold of class C^{\infty} and k a positive
integer. Suppose that f_{i}\in C^{\infty}(M) have the zero property and that f_{i}\not\equiv 0

(1\leqq i\leqq k) . Set f=f_{1} \cdot f_{k} . Then the following seven conditions are
equivalent.

(1) f has the zero property.

(2) (/) is real, i.e. , g_{1^{2}}+\cdot\cdot+g_{p}^{2}\in(f) implies g_{i}\in(f) for 1\leqq i\leqq p .

(3) (/) is a radical, i.e. , for some k\in N , g^{k}\in(f) implies g\in(f) .

(4) \overline{G(f)}=V(f) , where V(f) denotes the zero set of f and G(f) denotes
the set of regular points of f in V(f) .

(5) V(f_{i})=\overline{V(f_{i})\backslash V(f_{j})} for 1\leqq i , j\leqq k , i\neq j .

(6) V(f_{i})=\overline{V(f_{i})\backslash V(f_{j_{1}}\cdot f_{j_{m}})} for 1\leqq m\leqq k-1,1\leqq i,j_{1} , \ldots , j_{m}\leqq k ,
i\neq j_{1} , \ldots,j_{m} .

(7) V(f_{i})=\overline{V(f_{i})\backslash V(f_{1}\cdot\cdot f_{i-1})} for 1<i\leqq k .

The conditions (2) and (3) are algebraic conditions. The conditions (5),
(6) and (7) are purely topological conditions. The condition (7) depends on
the numbering of f_{i} , but the weakest condition among them. In fact, (5)
and (6) are always equivalent but (5) and (7) are not equivalent in general
without the hypothesis that f_{i} have the zero property. (Example: k=2,
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f_{1}=x^{2}+y^{2} , f_{2}=x) . Namely, the hypothesis that f_{i} have the zero property
is necessary for the equivalence of (5), (6) and (7). The equivalence of (1)
and (2) shows that Bochnak’s conjecture is affirmative in this situation.

2. Proof of Theorem

Proposition 1 Let \mathbb{J}I be a manifold of class C^{\infty} and V be open in M ‘

If g\in C^{\infty}(M) has the zero property then g|_{V}\in C^{\infty}(V) also has the zero
property. Conversely, if g has the zero property locally, it has the zero
property globally.

Proof. Suppose that \psi\in C^{\infty}(V) vanishes on V(g|_{V}) . It is known that
there exists an \eta\in C^{\infty}(M) such that \eta\psi\in C^{\infty}(M) and \eta(x)\neq 0 for
x\in V , \eta(x)=0 for x\not\in V Then \eta\psi vanishes on V(g) . Since g has
the zero property, there exists a Q\in C^{\infty}(M) such that \eta\psi=gQ . Hence
\psi=(g|_{V})(Q/\eta) on V The converse immediately follows from partition of
unity. \square

This means that the zero property is a local property. Hence it is
sufficient to prove our theorem in the case of M=\mathbb{R}^{n} . First, we remember
the following three propositions.

Proposition 2 If g\in C^{\infty}(\mathbb{R}^{n}) has the zero property and g\not\equiv 0 then
Int V(g)=\emptyset .

Proof. Suppose that Int V(g)\neq\emptyset . If Int V(g)=IntV(g) then Int V(g)=
\mathbb{R}^{n} . since \mathbb{R}^{n} is connected. Then V(g)=\mathbb{R}^{n} , which contradicts g\not\equiv 0 .
Hence there exists a point p\in\overline{IntV(g)}\backslash Int V(g) . On the other hand, it
is known that if \phi\in C^{\infty}(\mathbb{R}^{n}) is flat on V(\psi) , where \psi : \mathbb{R}^{n}

-arrow \mathbb{R} is real
analytic, then \phi/\psi\in C^{\infty}(\mathbb{R}^{n}) ([2, Chapter IV] ). Now, g is flat at p . Hence
g/||x-p||^{2}\in C^{\infty}(\mathbb{R}^{n}) . Obviously, g/||x-p||^{2} vanishes on V(g) . Since g has
the zero property, there exists Q\in C^{\infty}(\mathbb{R}^{n}) such that g/||x-p||^{2}=gQ , then
Q=1/||x-p||^{2} off V(g) . For any open neighborhood U(p) of p in \mathbb{R}^{n} , we
have U(p)\not\subset V(g) . In fact, if U(p)\subset V(g) , then it follows U(p)\subset IntV(g) .
This contradicts the fact that p\in\overline{IntV(g)}\backslash Int V(g) . Hence there exists
a sequence of points \{p_{i}\} which converges to p such that p_{i}\not\in V(g) for all
i . Then Q(p_{i})=1/||p_{i}-p||^{2} - \infty(i -\infty) . This contradicts that Q is
continuous at p and proves that Int V(g)=\emptyset . \square

Proposition 3 If g\in C^{\infty}(\mathbb{R}^{n}) has the zero property and g\not\equiv 0 then g
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is not a zerodivisor.

Proof. If g is a zerodivisor, then there exists an h\in C^{\infty}(\mathbb{R}^{n}) such that
h\not\equiv 0 and gh\equiv 0 . Hence V(g)\cup V(h)=\mathbb{R}^{n} . Therefore V(g)\supset V(g)\backslash

V(h)=\mathbb{R}^{n}\backslash V(h)\neq\emptyset . Hence V(g) has an interier point. This contradicts
that Proposition 2. \square

Proposition 4 If g\in C^{\infty}(\mathbb{R}^{n}) has the zero property and g\not\equiv 0 , then
\overline{G(g)}=V(g) .

Proof. See [1], Proposition 1. \square

(1)\Rightarrow(2) . This follows immediately from the definitions of the zero
property and a real ideal.

(2)\Rightarrow(3) . This is trivial.

(3)\Rightarrow(4) . Suppose that \psi\in C^{\infty}(\mathbb{R}^{n}) vanishes on V(f) . Since f_{i}

have the zero property, it follows \psi\in(f_{i}) . Hence \psi^{k}\in(f) . Since (f)
is a radical, it follows \psi\in(f) . Therefore f has the zero property. From
Proposition 3, it follows f=f_{1} , . \vee f_{k}\not\equiv 0 . Hence from Proposition 4, we
have \overline{G(f)}=V(f) .

(5)\Rightarrow(6) . We consider the non trivial case when V(f_{i})\neq\emptyset . Then

V(f_{i})\backslash V(f_{j_{1}} , . . f_{j_{m}})=\cap\{V(f_{i})\backslash V(f_{j_{p}})\}p=1m .

Since V(f_{i})\backslash V(f_{j_{p}}) are open dense in V(f_{i}) , so is V(f_{i})\backslash V(f_{j_{1}}\cdot\cdot f_{j_{m}}) .

(6)\Rightarrow(7) . This is trivial.

(7)\Rightarrow(1) . We proceed by induction on k . In the case of k=1 ,
it is trivial. Suppose that it holds in the case of k-1 and that V(f_{i})=

\overline{V(f_{i})\backslash V(f_{1}\cdots f_{i-1})}(1<i\leqq k) and V(f)\subset V(\psi) . Clearly, V(f_{i})=

\overline{V(f_{i})\backslash V(f_{1}\cdot\cdot f_{i-1})}(1<i\leqq k-1) and V(f_{1} , . .f_{k-1})\subset V(\psi) . From
the induction hypothesis, we can write \psi=f_{1}\cdot\cdot\vee f_{k-1}Q_{k-1} for some
Q_{k-1} \in C^{\infty}(\mathbb{R}^{n}) . It follows that V(f_{k}) =\overline{V(f_{k})\backslash V(f_{1}|\cdot\cdot f_{k-1})}\subset

\overline{V(\psi)\backslash V(f_{1},..f_{k-1})}\subset\overline{V(Q_{k-1})}=V(Q_{k-1}) . Since f_{k} has the zero prop-
erty, there exists a Q_{k}\in C^{\infty}(\mathbb{R}^{n}) such that Q_{k-1}=f_{k}Q_{k} . Therefore
\psi=f_{1} , . . f_{k}Q_{k} .

(4)\Rightarrow(5) . We proceed by induction on k . In the case of k=1 , it is
trivial. Let us assume that Theorem is proved in the case of k-1 .
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Suppose that there exist i and j with i\neq j such that V(f_{i}) \neq\supset

\overline{V(f_{i})\backslash V(f_{j})} . If we put g=f_{1}\cdot\cdot f_{i-1}f_{i+1} , . f_{k} , then it follows that
V(f_{i})\neq\supset\overline{V(f_{i})\backslash V(g)} . Set W=V(f_{i})\backslash \overline{V(f_{i})\backslash V(g)} . Then W is nonempty
and open in V(f_{i}) . Hence there exists an open set U in \mathbb{R}^{n} such that
W=U\cap V(f_{i}) . Clearly, W\subset V(g) . Since f_{i} has the zero property, we can
write g=f_{i}Q on U from Proposition 1. Therefore f=f_{i}g=f_{i}^{2}Q on U .
Hence W\cap G(f)=\emptyset . It is easily seen that

G(f)\cap U=[\{G(f_{i})\backslash V(g)\}\cup\{G(g)\backslash V(f_{i})\}]\cap U\subset W\cup G(g) .

Since W\cap G(f)=\emptyset it follows G(f)\cap U\subset G(g)\cap U . Therefore from the
hypothesis \overline{G(f)}=V(f) it follows

V(g)\cap U\subset V(f)\cap U=\overline{G(f)}\cap U\subset\overline{G(g)}\cap U.

Clearly, \overline{G(g)}\cap U\subset V(g)\cap U . Hence \overline{G(g)}\cap U=V(g)\cap U . Since we now
suppose that Theorem holds in the case of k-1 , this equality shows that g
has the zero property in U .

Now, suppose that W\subset V(g)\backslash W Then it follows that V(g)\cap U=
V(Q)\cap U . Since g has the zero property in U, we can write Q=gQ’
on U . Hence g=f_{i}Q=f_{i}gQ’ Therefore f_{i}Q’=1 on U\backslash V(g) . From
Proposition 2, U\backslash V(g) is open dense in Ur Therefore f_{i}Q’=1 on U . This
contradicts that f_{i}=0 on W and proves that W\not\subset\overline{V(g)\backslash W} Therefore
there exists a point p\in W such that V(g)\backslash W is not adherent to p . Namely,
there exists an open neighborhood V\subset U ofp such that V(f)\cap V=W\cap V\subset

V\backslash G(f) . Then V(f)\cap V\neq\emptyset and V(f)\cap G(f)\cap V=\emptyset . This contradicts
the assumption that \overline{G(f)}=V(f) . Thus we have completed.
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