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Singularities of \mathbb{R}P^{2}-valued Gauss maps
of surfaces in Minkowski 3-space

Donghe PEI*
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Abstract. We define the notion of \mathbb{R}P^{2} -valued Gauss maps of surfaces in Minkowski
3-space and study the singularities of the these maps.
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1. Introduction

In [1], D. Bleecker and L. Wilson studied the classification of singular-
ities and the stability of the Gauss map of a closed surface in Euclidean
3-space. In this paper, we study the same theme as in [1] for a closed sur-
face in Minkowski 3-space. Classically, for an oriented surface in Euclidean
3-space, the Gauss map sends each point on the surface to the unit normal,
so the value of Gauss map is in the unit sphere S^{2} . In Minkowski 3-space,
there are three kinds of vectors named space-like, time-like and light-like.
In particular, the norm of a light-like vector is zero.

On the other hand, we can always determine the pseud0-normal vector
of the surface associated with the Minkowski metric. When the pseud0-
normal vector of the surface is light-like, we can not consider the unit vec-
tor along it. Because of this reason, the notion which is analogous to the
Euclidean Gauss map can only be defined at the points where the pseud0-
normal direction is not light-like. In order to avoid the above difficulty, we
consider \mathbb{R}P^{2}-valued Gauss maps.

Let \mathbb{R}^{3}=\{(x_{1}, x_{2}, x_{3})|x_{1}, x_{2}, x_{3}\in \mathbb{R}\} be a 3-dimensional vector space,
x=(x_{1}, x_{2}, x_{3}) and y=(y_{1}, y_{2}, y_{3}) be two vectors in \mathbb{R}^{3} . the pseudo scalar
product of x and y is defined by {x ,y\rangle=-x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3} . (\mathbb{R}^{3}, \langle, \rangle) is
called a 3-dimensional pseudo Euclidean space, or Minkowski 3-space. We
denote \mathbb{R}_{1^{3}} as (\mathbb{R}^{3}, \langle., \rangle) . For any x=(x_{1}, x_{2}, x_{3}) , y=(y_{1}, y_{2}, y_{3})\in \mathbb{R}_{1}^{3} ,
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the pseudo vector product of x and y is defined by

x\wedge y=|\begin{array}{lll}-e_{1} e_{2} e_{3}x_{1} x_{2} x_{3}y_{1} y_{2} y_{3}\end{array}|

=(-(x_{2}y_{3}-x_{3}y_{2}), x_{3}y_{1}-x_{1}y_{3}, x_{1}y_{2}-x_{2}y_{1}) .

We say that x is pseudo perpendicular to y if \langle x, y\rangle=0 . Clearly, we get
\langle x\wedge y, x\rangle=\langle x\wedge y, y\rangle=0 , so that x\wedge y is pseudo perpendicular to both of
x and y . Moreover, x in \mathbb{R}_{1}^{3} is called a space-like vector, a light-like vector
or a time-like vector if \langle x, x\rangle>0 , \langle x, x\rangle=0 or \langle x, x\rangle<0 respectively. Let
a= (a_{1} , a_{2} , a3) be a point and n=(n_{1}, n_{2}, n_{3}) a vector in \mathbb{R}_{1}^{3} . Then the
equation \langle n, x-a\rangle=0 ( i.e . -n_{1}(x_{1}-a_{1})+n_{2}(x_{2}-a_{2})+n_{3}(x_{3}- a3) =0) of
the plane which passes through the point a and is pseudo perpendicular to
the vector n is called an equation of the plane, where x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}_{1^{3}} ,
and n is called a pseudo normal vector of the plane. We also say that the
plane is time-like, light-like or space-like if the pseudo normal vector n
is space-like, light-like or time-like respectively. Let M be a compact 2-
dimensional manifold and f : M -arrow \mathbb{R}_{1}^{3} be an immersion. We now define
a map N(f) : Marrow \mathbb{R}P^{2} by

M\ni x-\langle X_{u}(x)\wedge X_{v}(x)\rangle_{\mathbb{R}} .

We call N(f) the \mathbb{R}P^{2} -valued Gauss map associated with the immersion

f . Here, X=X(u, v) is a local parametrization of f(M) . By the previous
argument, X_{u}(x)\wedge X_{v}(x) is the pseudo normal vector of the tangent plane
T_{f(x)}f(M) . We can separate M into three parts as follows:

M_{s}^{f}= {x\in M|X_{u}(x)\wedge X_{v}(x) is time-like};
M_{l}^{f}= {x\in M|X_{u}(x)\wedge X_{v}(x) is light-like};
M_{t}^{f}= {x\in M|X_{u}(x)\wedge X_{v}(x) is space-like}.

We respectively call M_{s}^{f} , M_{l}^{f} or M_{t}^{f} a space-like part, a light-like part or
a time-like part. It is clear that M_{s}^{f} , M_{t}^{f} are open submanifolds. We now
formulate the main result in this paper as follows:

Let M be a compact 2-dimensional manifold and I(M, \mathbb{R}_{1}^{3}) the space of
C^{\infty} immersions f : M -arrow \mathbb{R}_{1}^{3} equipped with the Whitney C^{\infty} -topology.
For any f\in I(M, \mathbb{R}_{1}^{3}) , the singular set of \mathbb{R}P^{2}-valued Gauss map N(f)
is called a parabolic set of f . Moreover, when g : N – P is a C^{\infty} map
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between two 2-dimensional manifolds, a point x\in N is called a fold point
of g if there exist local coordinates (x_{1}, x_{2}) and (y_{1}, y_{2}) in neighbourhoods
of x and g(x) respectively, such that y_{1}og=x_{1} and y_{2}og=x_{2^{2}} . A point
x\in N is called a cusp point of g if there exist local coordinates (x_{1}, x_{2}) and
(y_{1}, y_{2}) such that y_{1}og=x_{1} and y_{2}\circ g=x_{2^{3}}+x_{1}x_{2} . Our main theorem is
as follows.

Theorem A There exists a dense set O\subset I(M, \mathbb{R}_{1}^{3}) such that the fold
lowing conditions hold for any f\in O .
(1) The parabolic set of f consists of regular curves (called a parabolic

locus in M).
(2) The set of cusp points on parabolic locus of f is a finite set and other

points are fold points.
(3) The light-like part M_{l}^{f} is a union of regular curves (called a light-like

locus in M).
(4) The light-like locus and the parabolic locus in M intersect transversally,

the intersections consist of fold points of N(f) .
(5) The set of points in M_{l}^{f} consisting of the points where the tangent line

of M_{l}^{f} is light-like is a set of isolated points.
(6) The set of points in the parabolic locus consisting of the points where

the tangent line of the parabolic locus is light-like is a set of isolated
points.

Remark. We can show that there exists an open dense set O\subset I(M, \mathbb{R}_{1}^{3})

such that N(f) is stable for any f\in O . Nevertheless, we omit the proof.
In \S 2 we give the proof of Theorem A. The proof of the assertions (1)

(2) of Theorem A is given in Proposition 2.3 which is exactly the same
arguments as that of Theorem 1.1 in Bleecker and Wilson [1]. Nevertheless,
we give the proof of these in this paper, because we need these arguments
for the proof of other parts of the theorem. The geometric meanings and
properties of the \mathbb{R}P^{2} -valued Gauss map will be discussed in \S 3. Especially,
Theorem A will be interpreted geometrically (cf., Theorem 3.5). Some
examples will be given in \S 4.

All the manifolds and maps we consider in this paper are of class C^{\infty}

unless otherwise specified.
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2. Proof of Theorem A

Let M be a compact 2-dimensional manifold. For any f\in I(M, \mathbb{R}_{1^{3}}) , we
have the \mathbb{R}P^{2} -valued Gauss map N(f) : Marrow \mathbb{R}P^{2} . This correspondence

induces a map N : I(M, \mathbb{R}_{1}^{3}) – C^{\infty}(M, \mathbb{R}P^{2}) . Then we have the following

lemma.

Lemma 2.1 The map N : I(M, \mathbb{R}_{1^{3}}) – C^{\infty}(M, \mathbb{R}P^{2}) is continuous,

where we also consider the Whitney C^{\infty} -topology on C^{\infty}(M, \mathbb{R}P^{2}) .

Proof. Define I^{1}(2,3)= {j^{1}f(0)\in J^{1}(2,3)| rank J_{f}|_{0}=2 }. For an
open set U\subset M , we also define I^{1}(U, \mathbb{R}_{1^{3}})=\{j^{1}f(x)\in J(U, \mathbb{R}_{1^{3}})|

rank J_{f(x)}=2 }. Let u_{x} denote the partial derivative of a function u :
Uarrow \mathbb{R} with respect to a coordinate x . We can choose (f_{x}, f_{y})(0)=

(u_{x}, v_{x}, w_{x}, u_{y}, v_{y}, w_{y})(0) as coordinates of j^{1}f(0)\in J^{1}(2,3) , where f=
(u, v, w) . If j^{1}f(0)\in I^{1}(2,3) , then

\gamma=(u_{x}, v_{x}, w_{x})\wedge(u_{y}, v_{y}, w_{y})\neq 0

and \gamma is pseudo normal to the image of f .

We now define a map \rho : I^{1}(2,3)arrow \mathbb{R}P^{2} by

\rho(j^{1}f(0))=\langle\gamma\rangle_{\mathbb{R}} .

Then we can extend the map to the C^{\infty} map on I^{1}(M, \mathbb{R}_{1}^{3}) . In fact

I^{1}(M, \mathbb{R}_{1^{3}}; p, q)=I^{1}(U, V;p, q)

=I^{1}(\varphi(U), \psi(V);0,0)=I^{1}(\mathbb{R}_{1}^{2}, \mathbb{R}_{1^{3};}0,0) .

i.e .

\Phi : I^{1}(U, V;p, q=f(p))arrow I^{1}(\varphi(U), \psi(V);0,0)

\Phi(j^{1}f(p))=j^{1}(\psi\circ f\circ\varphi^{-1})(0)

is an isomorphism, where (U, \varphi) is a coordinate neighbourhood of M and
(V, \psi) a coordinate neighbourhood of \mathbb{R}_{1^{3}} The map

j^{1} : I(M, \mathbb{R}_{1^{3}})arrow C^{\infty}(M, I^{1}(M, \mathbb{R}_{1^{3}}))

is continuous by II 3.4 of [3], \rho_{*} is continuous by II 3.5 of [3]. Thus \rho_{*}\circ

j^{1}(f)=N(f) is also continuous. Therefore N(f) is continuous. \square

Since f : M –
\mathbb{R}_{1^{3}} is an immersion, f(M) can be at least locally
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written as the graph of a function on a neighbourhood of each point. We can
distinguish three cases for the local representation as the graph of functions.

Case 1): When f(M)=\{(x, y, F(x, y))|(x, y)\in \mathbb{R}^{2}\} , we may write
f(x, y)=(x, y, F(x, y)) . Let [\chi;\eta; (] denote homogeneous coordinates on
\mathbb{R}P^{2} , then we have N(f)(x, y)=[F_{x};-F_{y}; 1] . Hence N(f)(x, y)=(F_{x}, -F_{y})

in the affine coordinate neighbourhood (U_{\zeta}, (X, Y)) , where U_{\zeta}=\{[\chi;\eta;\zeta]|

( \neq 0\} , X= \frac{\chi}{\zeta} and Y= \frac{\eta}{\zeta} . If we consider the linear transformation
(X, Y)arrow A(X, -Y) , then A\circ N(f)(x, y)=(F_{x)}F_{y})=gradF(x, y) .

Case 2): When f(M)=\{(x, F(x, z), z)|(x, z)\in \mathbb{R}^{2}\} , we may also write
f(x, z)=(x, F(x, z), z) , so we have N(f)(x, z)=[-F_{x};-1;F_{z}] . By the
same arguments as in the Case 1), we have N(f)(x, z)=(F_{x}, -F_{z}) in
the affine coordinate neighbourhood (U_{\eta}, (X, Z)) . Hence A oN(f)(x, z)=
(F_{x}, F_{z})=gradF(x, z) by the linear transformation (X, Z)\underline{A}(X, -Z) .

Case 3): When f(M)=\{(F(y, z), y, z)|(y, z)\in \mathbb{R}^{2}\} , we may also write
f(y, z) = (F(y, z), y , z) , then N(f)(y, z) = [-1;-F_{y};-F_{z}] . Hence
N(f)(y, z)=(F_{y}, F_{z})=gradF(y, z) in the affine coordinate neighbour-
hood (U_{\chi}, (Y, Z)) .

For each pair of manifolds M, N and nonincreasing, finite sequence
\omega= (i_{1}, i_{2}, \ldots, i_{k}) of nonnegative integers there is a fiber subbundle S^{(v}

of J^{k}(M, N) called a Thom-Boardman singularity. Let S^{i_{1}}(f)=\{x\in

M|\dim(kerT_{x}f)=i_{1}\} , S^{i_{1},i_{2}}(f)=\{x\in M|\dim(kerT_{x}f|_{S^{i_{1}}(f)})=i_{2}\}

(S^{\omega}(f)=\{x\in M|j^{k}f(x)\in S^{\omega}\}) , etc. then J^{3}(\mathbb{R}^{3}, \mathbb{R}^{2})=S^{0}\cup S^{1}\cup S^{2} .
Here, S^{1}=S^{1,0}\cup S^{1,1} ; S^{1,1}=S^{1,1,0}\cup S^{1,1,1} . Let I_{k} denote (1, 1, \ldots , 1)
k-times, then we have codim S^{2}=4 ; codim S^{I_{k}}=k (c.f. , [3], II.5.4).

We define a map \Gamma : J^{4}(\mathbb{R}^{2}, \mathbb{R}) – J^{3}(\mathbb{R}^{2}, \mathbb{R}^{2}) by \Gamma(j^{4}F(x))=

j^{3} grad F) (x) . Let T^{\omega}=\Gamma^{-1}S^{\omega} for each \omega . Then we have the following
lemma.

Lemma 2.2 (Bleecker-Wilson [1], the proof of Proposition 2.2)
(1) T^{0} , T^{I_{k}} , T^{2} are submanifolds of J^{4}(\mathbb{R}^{2}, \mathbb{R}) with codim T^{0} =0,

codim T^{I_{k}}=k and codim T^{2}=4 .
(2)

j^{4}FS^{I_{k}}

.
is transversal to T^{I_{k}} if and only if j^{3} grad F) is transversal to

We say that a map g\in C^{\infty}(\mathbb{R}^{2}, \mathbb{R}^{2}) is excellent (respectively, good) if
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j^{3}g rh S^{2} (respectively, j^{1}g rh S^{2} ), and j^{3}g rh S^{I_{k}} (respectively, j^{1}g rh S^{I_{k}} ).
Where rh denotes the transversal intersection. When g is excellent, it is
well-known that S^{1,0} is the fold points set, S^{1,1,0} is the cusp points set (c.f.,
[3] ) . Since codim S^{i,1,1}>2 and codim S^{2}>2 , S^{1,1,1}(f)=S^{2}(f)=\phi .

Proposition 2.3 Let M be a compact 2-dimensional manifold. We de-
note that

Q_{e}= { f\in I (M, \mathbb{R}_{1^{3}} ) |N(f) is excellent},

then Q_{e} is an open and dense subset of I(M, \mathbb{R}_{1}^{3}) .

Proof. Since S^{1,0}=(S^{1}-S^{1,1}) is the set of fold points and S^{1,1,0}=

(S^{1,1}-S^{1,1,1}) is the set of cusp points, Q_{e} is the set of f\in I(M, \mathbb{R}_{1}^{3}) which
satisfies j^{3}N(f)\cap(S^{2}\cup S^{1,1,1})=\phi . Since S^{2} , S^{1,1,1} are closed sets and N
is continuous by Lemma 2.1, Q_{e} is an open set. Define

I(M, \mathbb{R}_{1^{3}})= { j^{4}f(x)\in J^{4}(M, \mathbb{R}_{1^{3}})| rank df(x)=2 },

then it is an open subset of J^{4}(M, \mathbb{R}_{1}^{3}) . We also define

O_{1}= { z=j^{4} ( f_{1} , f_{2} , f_{3} ) (x)|H_{1}=(f_{2}, f_{3}) is nonsingular at x },

then O_{1} is also an open subset of I^{4}(M, \mathbb{R}_{1^{3}}) , and O_{2} , O_{3} are defined anal-
ogously. In this case, the map \pi_{1} : O_{1} – J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1}) defined by

\pi_{1}(z)=j^{4}(f_{1}oH_{1}^{-1})(y)

is a submersion, where z\in O_{1} and y=H_{1}(x) . We define a map

\overline{H_{4}} : J^{4}(U, \mathbb{R}^{1})arrow J^{4}(U, \mathbb{R}^{1}) ;

by

\overline{H_{4}}(j^{4}g(x))=j^{4}goH_{1}^{-1}(y)

(U is an open subset of \mathbb{R}^{2} ), then the differential map

d\overline{H^{4}} : T_{x}J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1})arrow T_{x}J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1})

is an isomorphism. And the map P:O_{1} – J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1}) defined by

P(z)=j^{4}f_{1}(x) ,
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Then the differential map

dP : T_{z}O_{1}arrow T_{x}J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1})

is onto. Thus d\pi_{1} is surjective by the following commutative diagram, so
\pi_{1} is a submersion.

d\pi_{1}\downarrow T_{z}O_{1}

arrow dP
T_{x}J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1})\iota dH^{4}-

T_{x}J^{4}(U, \mathbb{R}^{1}) T_{x}J^{4}(U, \mathbb{R}^{1})

Similarly

\pi_{i} : O_{i}arrow J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1}) (i=2,3)

is also a submersion. Moreover, for each \omega ,

(\pi_{i}|o_{i}no_{j})^{-1}(T^{\omega})=(\pi_{j}|o_{i}no_{j})^{-1}(T^{\omega}) (i,j=1,2,3)

holds. In fact, without the loss of generality, we consider the case that i=2,
j=3, For any j^{4}f(x)\in(\pi_{2}|o_{2}no_{3})^{-1}T^{\omega} , we denote that

\{

f=(f_{1}, f_{2}, f_{3})

g=(f_{1}, f_{3}, f_{2})=(g_{1}, g_{2}, g_{3})

G_{2}=(f_{1}, f_{2})=H_{3;}G_{3}=(f_{1}, f_{3})=H_{2} .

Then we have

\pi_{2}(j^{4}f(x))=j^{4}(f_{2}oH_{2}^{-1})(y)\subset\pi_{2}(\pi_{2}^{-1}T^{\omega})\subset T^{\omega}

for x\in M , y=H_{2}(x) . Since j^{4}g_{2}(x)=j^{4}f_{3}(x)\in O_{2}\cap O_{3} , we have

\pi_{3}(j^{4}f(x))=j^{4}(f_{3}\circ H_{3}^{-1})(y)=j^{4}(g_{2}\circ G_{2}^{-1})(y)\in T^{\omega}

It follows that j^{4}f(x)\in(\pi_{3}|o_{2}no_{3})^{-1}(T^{\omega}) . Hence, we have

(\pi_{2}|0_{2}\cap 0_{3})^{-1}(T^{\omega})\subset(\pi_{3}|0_{2}\cap 0_{3})^{-1}(T^{\omega}) .

Similarly, we have

(\pi_{2}|0_{2}\cap 0_{3})^{-1}(T^{\omega})\supset(\pi_{3}|0_{2}\cap 0_{3})^{-1}(T^{\omega}) .

By the same arguments as the above, we also have the inclusion of the
converse direction. Then we have (\pi_{2}|o_{2}no_{3})^{-1}(T^{\omega})=(\pi_{3}|o_{2}no_{3})^{-1}(T^{\omega}) .
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Therefore we have a submanifold

W^{\omega}=\cup\pi_{i}^{-1}T^{\omega}i=13

for each \omega . Since \pi_{i} rh T^{\omega} . then codim W^{\omega}=co\dim T^{\omega} . For i=1 , the
following diagram is commutative:

W^{\omega}\subset O_{1}
arrow\pi_{1}

J^{4}(\mathbb{R}^{2}, \mathbb{R}^{1})
arrow\Gamma

J^{3}(\mathbb{R}_{1^{2}}, \mathbb{R}_{1}^{2})\supset S^{\omega}

\uparrow j^{4}f \uparrow j^{4}\overline{f_{1}} \uparrow j^{3}grad\overline{f1}

M M M,

where j^{4}\overline{f_{1}}(x)=j^{4}(f_{1}oH_{1}^{-1})(y) and \Gamma is the mapping defined by Lemma
2.2. Since

\Gamma^{-1}(S^{\omega})=T^{\omega} . W^{\omega}|0_{1}=\pi_{1}^{-1}T^{\omega} ,

j^{4}f rh W^{\omega} if and only if j^{4}\overline{f_{1}} rh T^{\omega} . When \omega=I_{k} , j^{4}\overline{f_{1}}r\Uparrow T^{\omega} if and
only if j^{3}(grad(f_{1}\circ H_{1}^{-1})) rh S^{\omega} by Lemma 2.2. For i=2,3 the same
assertion as in case i=1 holds. By Thom’s Transversality theorem, the
set of the immersions f such that j^{4}f rh W^{\omega} is dense in I(M, \mathbb{R}_{1}^{3}) . If we
choose coordinate neighbourhood at every point of M and \mathbb{R}P^{2} , N(f) can
be written in the form grad(f_{io}H_{i}^{-1}) with respect to i=1,2,3 . This
means that N(f) is excellent for such f . \square

We consider the light-like part as follows.

Proposition 2.4 Let I(M, \mathbb{R}_{1}^{3})\supset Q_{l}= { f|M_{l}^{f} is a regular curve},
then Q_{l} is a residual set.

Proof. We define an open subset O_{1}\subset I^{2}(M, \mathbb{R}_{1}^{3}) exactly the same
way as O_{1} in Proposition 2.3. For any p\in M_{f}^{l} , we consider the local
parametrization X(u, v)=(X_{1}(u, v), X_{2}(u, v) , X_{3}(u, v)) of f(M) around
f(p)\in f(M) .

Since \langle X_{u}(p)\wedge X_{v}(p), X_{u}(p)\wedge X_{v}(p)\rangle=0 , we have

|\begin{array}{ll}X_{2u}(p) X_{3u}(p)X_{2v}(p) X_{3v}(p)\end{array}|\neq 0 .

It follows that j^{2}f(M_{f}^{l})\subset O_{1} . We also have the submersion \pi_{1} : O_{1} -

J^{2}(\mathbb{R}^{2}, \mathbb{R}^{1}) .
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On the other hand, we denote \alpha=(y, z, w, a_{1}, a_{2}, a_{11}, a_{12}, a_{22}) the c0-

ordinates of J^{2}(\mathbb{R}^{2}, \mathbb{R}^{1}) , where, w=f(y, z) , a_{1}=f_{y} , a_{2}=f_{z} , a_{11}=f_{yy} ,
a_{12}=f_{yz} , a_{22}=f_{zz} . We now define a map \rho : J^{2}(\mathbb{R}^{2}, \mathbb{R}^{1}) – \mathbb{R} by

\rho(\alpha)=a_{1^{2}}+a_{2^{2}}-1 .

On the graph \{(g(y, z), y, z)|(y, z)\in \mathbb{R}^{2}\} of function g(y, z) , the light-like
part is the set satisfying g_{y}^{2}+g_{z}^{2}=1 . Thus we have

(j^{2}f)^{-1}(\pi_{1}^{-1}(\rho^{-1}(0)))=M_{l}^{f}

Since \pi_{1} is a submersion, \pi_{1}^{-1}(\rho^{-1}(0)) is a submanifold of O_{1} with codi-
mension 1. Hence, Q_{l} is residual set by Thom’s Transversality theorem.

\square

Moreover, we have the following proposition.

Proposition 2.5 There exists a residual subset Q_{l}’\subset I(M, \mathbb{R}_{1^{3}}) such that
the condition (5) in Theorem A holds for any f\in Q_{l}’ .

Proof. Here, we use the same notation as those of the proof of Proposition
2.4. Since j^{2}f(M_{l}^{f})\subset O_{1} , we may consider that f(M) is the graph of a
function. If f(M) is the graph \{(g(y, z), y, z)|(y, z)\in \mathbb{R}^{2}\} and M_{l}^{f} is a
regular curve, then the tangent line of the light-like locus T_{x_{0}}M_{l}^{f} is the set

of vectors of the form (\begin{array}{l}\zeta\xi\eta\end{array})\in T_{x_{0}}\mathbb{R}^{3} such that ( =g_{y}’\xi+g_{z}\eta and

(g_{y}g_{yy}+g_{z}’ g_{zy})\xi+(g_{y}g_{yz}+g_{z})g_{zz})\eta=0 .

If the direction of the line T_{x_{0}}M_{l}^{f} is light-like, then we have

(g_{y}\xi+g_{z}\cdot\eta)^{2}=\xi^{2}+\eta^{2} ,

so we have

\{g_{y}(g_{y}g_{yz}+g_{z}g_{zz})-g_{z}(g_{y}g_{yy}+g_{z}g_{zy})\}^{2}

=(g_{y}\cdot g_{yz}+g_{z})g_{zz})^{2}+(g_{y}g_{yy}+g_{z}g_{zy})^{2}

We also denote \alpha=(y, z, w, a_{1}, a_{2}, a_{11}, a_{12}, a_{22}) the coordinates of J^{2}(\mathbb{R}^{2}, \mathbb{R}) .
Thus we have the following equations:

a_{1^{2}}+a_{2^{2}}-1=0
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and

\{a_{1} ( a_{1}\cdot a_{12}+a_{2}|a_{22} ) -a_{2}(a_{1} ) a_{11}+a_{2}|a_{12})\}^{2}

= ( a_{1}
, a_{12}+a_{2}|a_{22} ) +(a_{1} , a_{11}+a_{2} , a_{12})^{2} .

These equations give an algebraic subset V of J^{2}(\mathbb{R}^{2}, \mathbb{R}) and the codimen-
sion of V is two. By Thom’s Transversality theorem, there exists a residual
set Q’\subset I(M, \mathbb{R}_{1}^{3}) such that (j^{2}f)^{-1}(\pi_{1}^{-1}(V)) is the set of isolated points.
If we put Q_{l}’=Q_{l}\cap Q’ , it is also a residual set in I(M, \mathbb{R}_{1^{3}}) and the condi-
tion (5) in Theorem A holds for any f\in Q_{l}’ \square

Similarly, we have the following proposition.

Proposition 2.6 There exists a residual subset Q_{e}’\subset I(M, \mathbb{R}_{1}^{3}) such
that the condition (6) in Theorem A holds for any f\in Q_{e}’

Proof We adopt the residual set Q_{e} which is given in Proposition 2.3.
For any f\in Q_{e} , the parabolic set is a union of regular curves. As in the
previous arguments, it suffices to consider the case, when f(M) is the graph
\{(g(y, z), y, z)|(y, z)\in \mathbb{R}^{2}\} . In this case the parabolic locus P_{f} is given by
the equation g_{yy}g_{zz}-g_{yz}^{2}=0 . So the tangent line of the parabolic locus

T_{oe_{0}}P_{f} is the set of vectors (\begin{array}{l}\zeta\xi\eta\end{array})\in T_{ir_{0}}\mathbb{R}^{3} such that ( =g_{y}\xi+g_{z}\eta and

(g_{yyy}g_{zz}+g_{yy}g_{zzy}-2g_{yz}g_{yzy})\xi

+(g_{yyz}\rangle g_{zz}+g_{yy}g_{zzz}-2g_{yz}g_{yzz})\eta=0 .

If the direction of the line T_{oe_{0}}P_{f} is light-like, then we have

(g_{y}\xi+g_{z}\cdot\eta)^{2}=\xi^{2}+\eta^{2} .

In this case, we also denote \alpha=(y, z, w, a_{1}, a_{2}, a_{11}, a_{12}, a_{22}) the coordinates
of J^{2}(\mathbb{R}^{2}, \mathbb{R}) . It follows that the condition that the parabolic locus is light-
like is given by the equations

a_{11}|a_{22}-a_{12^{2}}=0

and

(a_{1} (a_{112}’ a_{22}+a_{11}\cdot a_{222}-2a_{12}’ a_{122})

-a_{2} (0111 a_{22}+a_{11})a_{122}-2a_{12} , a_{112}))^{2}
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=(a_{112}\cdot a_{22}+a_{11}a_{222}-2a_{12}\cdot a_{122})^{2}

+(a_{222}\cdot a_{22}+a_{11}a_{122}-2a_{12}\cdot a_{112})^{2} .

This condition gives an algebraic subset of J^{3}(\mathbb{R}^{2}, \mathbb{R}) with the codimension
2. It also follows from Thom’s Transversality theorem that there exists a
residual set Q_{e}’ and the condition (6) in Theorem A holds for any f\in Q_{e}’ .

\square

Proof of Theorem A. By Propositions 2.5 and 2.6, Q_{e}’ and Q_{l}’ are residual
sets, then the intersection Q_{e}’\cap Q_{l’} is also a residual set. By definition of Q_{e}’

and Q_{l}’ , f\in Q_{e}’\cap Q_{l’} satisfies the condition (1), (2), (3), (5), (6) of Theorem
A. Thus, we only need to prove that the immersion f\in Q_{e}’\cap Q_{l}’ has the
property (4). Since we study the property (4) on the light-like locus M_{l}^{f} ,
we may only consider the property on the open subset O_{1}\subset I^{2}(M, \mathbb{R}_{1^{3}}) by
the similar reason as that of Proposition 2.4. Since the Gauss map is locally
given by N(f)(y, z)=[-1;-g_{y};-g_{z}] on graph{(g(y, z), y , z)|(y , z)\in \mathbb{R}^{2} }
of function g(y, z) , it ’s parabolic locus satisfies the equation g_{yy}\cdot g_{zz}-g_{yz}^{2}=

0 .
On the other hand, since the point in M_{l}^{f} satisfies the equation g_{y}^{2}+

g_{z}^{2}=1 , the intersection of M_{l}^{f} and the parabolic locus is given by the
equations

\{

g_{yy}g_{zz}-g_{yz^{2}}=0

g_{y}^{2}+g_{z}^{2}=1 .

We define functions

\sigma_{i} : J^{2}(\mathbb{R}^{2}, \mathbb{R})arrow \mathbb{R} (i=1,2)

by

\{

\sigma_{1}(\alpha)=a_{11}a_{22}-a_{12^{2}}

\sigma_{2}(\alpha)=a_{1^{2}}+a_{2^{2}}-1 .

The Jacobian matrix of the map (\sigma_{1}, \sigma_{2}) is calculated as follows:

J(\sigma_{1}, \sigma_{2})=(\begin{array}{lllll}0 0 a_{22} -2a_{12} a_{11}2a_{1} 2a_{2} 0 0 0\end{array})

Since (a_{1}, a_{2})\neq(0,0) on a_{1^{2}}+a_{2^{2}}=1 , rank J(\sigma_{1}, \sigma_{2})=2 if and only if
(a_{11}, a_{12}, a_{22})\neq 0 . It follows that the singular set \sum(\sigma_{1}, \sigma_{2}) of \sigma_{1}^{-1}(0)\cap
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\sigma_{2}^{-1}(0) is given by the equations

\{

a_{1^{2}}+a_{2^{2}}=1

a_{11}=a_{12}=a_{22}=0

and codim \sum(\sigma_{1}, \sigma_{2})=3 . Since \pi_{1} : O_{1} – J^{2}(\mathbb{R}^{2}, \mathbb{R}) is a submersion,
the pull-back \pi_{1}^{-1}(\sigma_{1}^{-1}(0)\cap\sigma_{2}^{-1}(0)) is a submanifold with codimension 2,
except the singular set \pi_{1}^{-1}(\sum(\sigma_{1}, \sigma_{2})) . And \pi_{1}^{-1}(\sum(\sigma_{1}, \sigma_{2})) is a sub-
manifold with codimension 3. If j^{2}f rh \pi_{1}^{-1}(\sigma_{1}^{-1}(0)\cap\sigma_{2}^{-1}(0)) , then
(j^{2}f)^{-1}(\pi_{1}^{-1}(\sigma_{1}^{-1}(0)\cap\sigma_{2}^{-1}(0))) is an isolated point of M, which is a both
of parabolic point and light-like point of f .

On the other hand, under the above condition, (\sigma_{1}, \sigma_{2})\circ\pi_{1}oj^{2}f is
submersion if and only if it is a local diffeomorphism. Hence, \sigma_{1}\circ\pi_{1}\circ j^{2}f

and \sigma_{2}0\pi_{1}\circ j^{2}f are submersion. It follows that (\sigma_{1}0\pi_{1}oj^{2}f)^{-1}(0) is
a parabolic locus and (\sigma_{2}\circ\pi_{1}\circ j^{2}f)^{-1}(0) is a light-like locus. Then these
curves intersect transversally if and only if d(\sigma_{1}0\pi_{1}oj^{2}f) and d(\sigma_{2}0\pi_{1}oj^{2}f)

are linearly independent if and only if d((\sigma_{1}, \sigma_{2})\circ\pi_{1}\circ j^{2}f) is a submersion
if and only if (\sigma_{1}, \sigma_{2})0\pi_{1}\circ j^{2}f is local-diffeomorphism. Thus, the light-like
locus and the parabolic locus in M intersect transversally.

Moreover, we can show that the intersection consists of fold points of
the Gauss map. In fact, if the intersection is a cusp point, then it satisfies
9yyg_{zz}-g_{yz}^{2}=0 , and can be expressed as an algebraic condition of 3rd-
order partial derivative of g at (y, z) . In this case, S^{1,1,0} is a submanifold
with codimension 2. Since the equations of S^{1,1,0} are described in terms of
2rd and 3rd order derivatives of 3-jets, these equations and g_{y}^{2}+g_{z}^{2}=1 are
linearly independent except at the points which satisfy g_{yy}=g_{zz}=g_{yz}=0 .
So the set of 3-jets which correspond to cusp points of N(f) on M_{l}^{f} is an
algebraic set in O_{1} whose codimension is greater than three. Thus, the set
of immersions which satisfy the conditions (1)-(6) in Theorem A is a dense
set by Thom’s Transversality Theorem. \square

3. Gauss maps on non-light like surfaces

In this section we consider the geometric meaning of singularities of the
\mathbb{R}P^{2}-valued Gauss map restricted on the space-like part or the time-like
part.

Define

H_{1}^{2}=\{p\in \mathbb{R}_{1}^{3}|\langle p,p\rangle=-1\} ;
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S_{1}^{2}=\{p\in \mathbb{R}_{1^{3}}|\langle p,p\rangle=1\} .

We respectively call H_{1}^{2} , S_{1}^{2} a hyperbolic-plane, a pseudo sphere. And for
x\in \mathbb{R}_{1^{3}} , the norm of x is defined by |x|=\sqrt{\epsilon(x)\langle x,x\rangle} , and x is called unit
vector if |x|=1 , where \epsilon(x)=sign(x) denotes the signature of x which is
given by

sign(x)=\{

1 x is space-like

0 x is light-like
-1 x is time-like.

So we can distinguish two cases for the local representation of the Gauss
map at a nonlight-like point on the surface.

For convenience we identify (at least locally) M and f(M) for any
f\in I(M, \mathbb{R}_{1}^{3}) .

Case 1): When p\in M_{s}^{f} . since \langle X_{u}(p)\wedge X_{v}(p), X_{u}(p)\wedge X_{v}(p)\rangle<0 , we
have

\frac{X_{u}(p)\wedge X_{v}(p)}{|X_{u}(p)\wedge X_{v}(p)|}\in H_{1}^{2} .

Here, X=X(u, v)((u, v)\in U_{s}) is a local parametrization of f(M) and U_{s}

is an open neighbourhood of p in M_{s}^{f} , and the subscripts u and v indicate
partial differentiation. So N(f)|_{U_{s}} can be considered as a map from U_{s} to
H_{1}^{2} . We call N(f)|_{U_{s}} the space-like Gauss map or S- Gauss map associated
with the immersion f , and denoted by N_{U_{s}}^{s}(f) . That is

N_{U_{s}}^{s}(f) : U_{s} arrow H_{1;}^{2}N^{s}(f)(p)=\frac{X_{u}(p)\wedge X_{v}(p)}{|X_{u}(p)\wedge X_{v}(p)|} .

In this case, the derivative of N_{U_{s}}^{s}(f) is denoted by

dN^{s}(f)_{p} : T_{p}(M_{s}^{f})arrow T_{N^{s}(f)(p)}(H_{1}^{2}) .

Under the identification of M_{s}^{f}=f(M_{s}^{f}) , since T_{p}(M_{s}^{f}) and T_{N^{s}(f)(p)}(H_{1}^{2})

are parallel planes at p , the map dN_{U_{s}}^{s}(f)_{p} can be looked upon as a linear
map on T_{p}(M_{s}^{f}) . And K_{S}:=\det dN^{s}(f)_{p} is called a space-like Gauss
curvature or S-Gauss curvature at p\in M_{s}^{f} on the surface M_{s}^{f}

Case 2): When p\in M_{t}^{f} . we also have

\frac{X_{u}(p)\wedge X_{v}(p)}{|X_{u}(p)\wedge X_{v}(p)|}\in S_{1}^{2} .
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Here, X=X(u, v)((u, v)\in U_{t}) is a local parametrization of f(M) and U_{t}

is an open neighbourhood of p in M_{t}^{f} , and the subscripts u and v indicate
partial differentiation. So N(f)|_{U_{t}} can be considered as a map from U_{t} to
S_{1}^{2} . We call N(f)|_{U_{t}} the time-like Gauss map or T-Gauss map associated
with the immersion f . and denoted by N_{U_{t}}^{t}(f) . That is

N_{U_{t}}^{t}(f) : U_{t} arrow S_{1;}^{2}N^{t}(f)(p)=\frac{X_{u}(p)\wedge X_{v}(p)}{|X_{u}(p)\wedge X_{v}(p)|} .

In this case, the derivative of N_{U_{t}}^{t}(f) is denoted by

dN_{U_{t}}^{t}(f)_{p} : T_{p}(M_{t}^{f})arrow T_{N^{t}(f)(p)}(S_{1}^{2}) .

Under the identification of M_{t}^{f}=f(M_{t}^{f}) , since T_{p}(M_{t}^{f}) and T_{N^{t}(f)(p)}(S_{1}^{2})

are parallel planes at p , the map dN^{t}(f)_{p} can also be looked upon as a
linear map on T_{p}(M_{t}^{f}) . And K_{T}:=\det dN^{t}(f)_{p} is called a time-like Gauss
curvature or T-Gauss curvature of the surface M_{t}^{f} at p\in M_{t}^{f}

By definition and the above local representation, a non-light like point
p is a parabolic point if and only if the space-like (or time-like) Gauss
curvature vanishes at p . Since the induced metric on the space-like part
M_{s}^{f} is positive definite, the space-like Gauss map has almost the same
properties as those of Gauss maps of surfaces in Euclidean space. So we
only discuss the properties on the time-like Gauss map in \mathbb{R}_{1^{3}} as follows:

For \forall v\in T_{p}(M_{t}^{f}) , the quadratic form II_{p} defined by

II_{p}(v)=-\langle dN^{t}(f)_{p}(v), v\rangle

is called the second fundamental form of M_{t}^{f} at p . Let \alpha : I – M_{t}^{f}

be a regular curve (i.e. \alpha’(t)\neq 0 , \forall t\in I) which passes through the point
p\in M_{t}^{f} , k a curvature and n a unit normal vector of the curve \alpha at p,
and N a unit normal vector of the surface M_{t}^{f} at p . If k\neq 0 then we call
k_{n}=k\langle n, N\rangle the normal curvature of the curve \alpha\subset M_{t}^{f} at p, where I is an
open interval of \mathbb{R} . In this case, for the T Gauss map N^{t}(f)_{p} associated with
f\in I(M, \mathbb{R}_{1^{3}}) and v\in T_{p}M_{t}^{f} . we have II_{p}(v)=k_{n}(p) by the Frenet-Serret
type formula (cf., [4]).

In order to consider the principal curvature, we consider the eigen-
vectors of dN^{t}(f)_{p} . Let \mathbb{C}^{2}= { (u_{1}, u_{2})|u_{1} , u_{2}\in \mathbb{C} is complex} be a
2-dimensional complex vector space, u=(u_{1}, u_{2}) and v=(v_{1}, v_{2}) be two
vectors in \mathbb{C}^{2} , the pseudo Hermitian-scalar product of u and v is defined
by \langle u, v\rangle=-u_{1}\overline{v}_{1}+u_{2}\overline{v}_{2} . (\mathbb{C}^{2}, \langle. \rangle) is called a 2-dimensional complex
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Minkowski space or 2-dimensional pseudo complex Hermitian space. We
denote \mathbb{C}_{1}^{2} as (\mathbb{C}^{2}, \langle, \rangle) . Then we have the following simple lemma in linear
algebra [6].

Lemma 3.1 If N^{t} : U_{t} – S_{1}^{2} is a T-Gauss map associated with f\in
I(M, \mathbb{R}_{1^{3}}) at p\in M_{t}^{f} , then the differential dN^{t}(f)_{p} of N^{t}(f) at p is a self-
adjoint linear map. The eigenvalues and corresponding eigenvectors are
real

Proposition 3.2 Let N^{t} : U_{t} -arrow S_{1}^{2} be a T-Gauss map associated with
f\in I(M, \mathbb{R}_{1}^{3}) , the numbers \lambda_{1} and \lambda_{2} in \mathbb{C} with \lambda_{1}\neq\lambda_{2} {in this case
\lambda_{1} , \lambda_{2}\in \mathbb{R} , by the Lemma 3.1). If the map dN^{t}(f)_{p} : T_{p}(M_{t}^{f}) – T_{p}(M_{t}^{f})

satisfies dN^{t}(f)_{p}(e_{1})=-\lambda_{1}e_{1} and dN^{t}(f)_{p}(e_{2})=-\lambda_{2}e_{2} , then e_{1} and e_{2}

are pseudO-Orthogonal.

Proof. Since dN^{t}(f)_{p} is self-adjoint, we have

\langle dN^{t}(f)_{p}(e_{1}), e_{2}\rangle=\langle e_{1}, dN^{t}(f)_{p}(e_{2})\rangle .

It follows that

\langle\lambda_{1}e_{1}, e_{2}\rangle=\overline{\lambda}_{2}\langle e_{1}, e_{2}\rangle=\lambda_{2}\langle e_{1}, e_{2}\rangle ,

thus we have

(\lambda_{1}-\lambda_{2})\langle e_{1}, e_{2}\rangle=0(\lambda_{1}\neq\lambda_{2}) .

\square

Proposition 3.2 implies that there exists a pseudo orthonormal basis
consisting of nonlight-like vectors associated with the pseudo scalar product
on M_{t}^{f} induced from \mathbb{R}_{1^{3}} .

Proposition 3.3 If p\in M_{t}^{f} , and \{e_{1}, e_{2}\} is an orthogonal basis of the
tangent plane T_{p}(M_{t}^{f}) , then the vectors e_{1} and e_{2} are nonlight-like.

Proof. We may consider that T_{p}M_{t}^{f} is \mathbb{R}^{2} with the pseud0-inner product
\langle x, y\rangle=-x_{1}y_{1}+x_{2}y_{2} . If one of the pseudo orthogonal basis is given by
e_{1}=(1,1) and e_{2}=(x, y) is another vector of the pseudo orthogonal basis
in \mathbb{R}_{1^{2}} . Then we have x=y by \langle e_{1}, e_{2}\rangle=0 . This means that e_{1} and e_{2} are
linear dependent. \square

Theorem 3.4 Let \{e_{1}, e_{2}\} be a pseudO-Orthonormal basis of the tangent



112 D. Pei

plane T_{p}(M_{t}^{f}) at p\in M_{t}^{f} , then for any v\in T_{p}(M_{t}^{f}) which is given by
v=x\cdot e_{1}+y\cdot e_{2} ,

II_{p}(v)=k_{n}(p)=\lambda_{1} , \epsilon(e_{1})x^{2}+\lambda_{2}\cdot\epsilon(e_{2})y^{2}

\# ere dN^{t}(f)_{p}(e_{i})=-\lambda_{i}\cdot e_{i}(i=1,2;\lambda_{1}\neq\lambda_{2}) , and \epsilon(e_{i})=sign(e_{i})_{i=1,2} .

Proo/.

II_{p}(v)=-\langle dN^{t}(f)_{p}(v), v\rangle

=-\langle-\lambda_{1}xe_{1}-\lambda_{2}y\cdot e_{2}, xe_{1}+y\cdot e_{2}\rangle

=\lambda_{1}\rangle\epsilon(e_{1}) , x^{2}+\lambda_{2})\epsilon(e_{2})y^{2}

\square

Let

k_{i}=\lambda_{i} , \epsilon(e_{i})=\lambda_{i}\langle e_{i}, e_{i}\rangle ,

then

k_{n}(p)=II_{p}(v)=k_{1} x^{2}+k_{2}|y^{2}

We say that the numbers k_{1} , k_{2} are principal curvatures at p\in M_{t}^{f} The
corresponding directions that are given by the eigenvectors e_{1} , e_{2} are called
principal directions at p\in M_{t}^{f} It follows that K_{T}=k_{1} k_{2} as in the
Euclidean case.

Now suppos that f\in I(JI, \mathbb{R}_{1}^{3}) satisfies the properties of Theorem A.
Let p\in M_{t}^{f} be a parabolic point, \{e_{1}, e_{2}\} be a pseudo orthonormal basis
of the T_{p}(M_{t}^{f}) and k_{1} and k_{2} be eigenvalues of dN^{t}(f)_{p} with eigenvectors
e_{1} and e_{2} respectively. Then e_{1} and e_{2} are nonlight-like by Proposition
3.3. Since K_{T}=0 and dK_{T}\neq 0 at the parabolic point p\in M_{t}^{f} . we have
k_{1}=0 and k_{2}\neq 0 . In this case, both of e_{1} and e_{2} are not light-like vectors.
Moreover, the dimension of ker dN_{p} is one by Theorem A. The kernel of the
derivative of N^{t}(f)_{p} is a line corresponding to the zero principal curvature
direction. This line is called a zero principal curvature line. So we have the
following theorem which describe the generic geometric properties of the
parabolic set on the nonlight-like part.

Theorem 3.5 Let f\in I(M, \mathbb{R}_{1}^{3}) be an immersion which has properties
(1)-(6) of Theorem A. Then
(1) p\in M_{t}^{f} (respectively, p\in M_{s}^{f} ) is a fold point of the T-Gauss map
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N^{t}(f) (respectively, S Gauss map N^{s}(f) ) if and only if a zero principal
curvature line of f is transverse to the parabolic locus of f at p .

(2) p\in M_{t}^{f} (respectively, p\in M_{s}^{f} ) is a cusp point of the T- Gauss map
N^{t}(f) (respectively, S Gauss map N^{s}(f) ) if and only if a zero principal
curvature line of f is tangent to the parabolic locus of f at p .

Proof. We only consider the case that p\in lIp_{t}f Locally, f(M) can be
written as the graph of a function h\in C^{\infty}(\mathbb{R}^{2}, \mathbb{R}^{1}) , and N^{t}(f)=grad(h|_{U})

by \S 2. Let g=grad(h|_{U}) , so the smooth map N^{t}(f)=g : U -arrow \mathbb{R}^{2} is
good by Theorem A , where U is an open neighbourhood of p in \mathbb{R}^{2} . If p is
a singular point of the good map g , then we have

det J_{g}(p)=0 , grad det J_{g}(p)\neq 0 .

In general, if g is a good map, the singular locus C of g is a regular curve in
M. Moreover, it has been known that a singular point of g is a fold point
if and only if the tangent line of the singular locus C of g is transverse to
the direction of ker dg_{p} (cf., \S 3 in [1]).

On the other hand, if g is the T Gauss map, K_{T}=\det J_{g}(p) . A singular
point of g is a cusp point if and only if the zero principal direction line is
tangent to the direction of ker dg_{p} . This completes the proof. \square

4. Examples

We now give some examples which are illustrating the main results:

Example 1. The shoe surface:

X(x, y)=(x, y, f(x, y))=(x, y , \frac{1}{3}x^{3}-\frac{1}{2}y^{2})

The local representation of the Gauss mapping is N(f)=(f_{x}, f_{y})=(x^{2}, -y) ,
and the parabolic locus is obtained by solving \triangle=f_{xx}\cdot f_{yy}-f_{xy}^{2}=-2x=

0 . Since grad \triangle=(-2,0)\neq 0 on the parabolic locus, N is good. The
light-like locus is obtained by equation -f_{x}^{2}+f_{y}^{2}+1=0 , so the light-like
locus is given by -x^{4}+y^{2}-1=0 . The parabolic locus can be parametrized
by x(t)=0, y(t)=t . So the Gauss mapping restricted to the parabolic
locus is N(t)=(0, -t) , with N’(t)=(0, -1)\neq 0 , hence N is excellent.
Moreover, N has no cusp points.
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Example 2. The Menn’s surface:

X(y, z)=(f(y, z), y , z)=(- \frac{1}{2}y^{4}+y^{2}z-z^{2} , y , z)

The local representation of the Gauss mapping is N(f)=(f_{y}, f_{z})=

(-2y3+2yz, y^{2}-2z) , and the parabolic locus is 8y^{2}-4z=0 . Since
grad \triangle=(16y, -4)\neq 0 on the parabolic locus, N is good. The light-like
locus is (-2y^{3}+2yz)^{2}+(y^{2}-2z)^{2}-1=0 . The parabolic locus can be
parametrized by y(t)=t, z(t)=2t^{2} , so the Gauss mapping restricted to the
parabolic locus is N(t)=(2t^{3}, -3t^{2}) , N’(t)=(6t^{2}, -6t) , N’(t)=(12t, -6) ,
hence N’(0)=(0,0) , N’(0)=(0, -6)\neq 0 . The Gauss map has a cusp
point (0, 0) , and N is excellent. Clearly (0, 0)\not\in M_{l}^{f}

Example 3. The saddle surface:

X(y, z)=(f(y, z), y, z)=( \frac{1}{3}y^{3}-yz^{2}+\frac{1}{2}(y^{2}+z^{2}))

The local representation of the Gauss mapping is N(f)=(y^{2}-z^{2}+y, -2yz+
z) , and the parabolic locus is y^{2}+z^{2}= \frac{1}{4} . So grad \triangle=4(-2y, -2z)\neq 0 on
the parabolic locus, N is good. The light-like locus is (y^{2}-z^{2}+y)^{2}+(-2yz+

z)^{2}-1=0 . The parabolic locus can be parametrized by y(t)= \frac{1}{2} cos t ,
z(t)= \frac{1}{2} sin t , so the Gauss mapping restricted to the parabolic locus is

N(t)=( \frac{1}{4} cos 2t+ \frac{1}{2} cos t, - \frac{1}{4} sin 2t+ \frac{1}{2} sin t) ,

N’(t)=(- \frac{1}{2} sin 2t- \frac{1}{2} sin t, - \frac{1}{2} cos 2t+ \frac{1}{2} cos t) ,

N’(t)=(- cos 2t- \frac{1}{2} cos t , sin 2t - \frac{1}{2} sin t)

Hence t =0, \frac{2\pi}{3} , \frac{4\pi}{3} by N’(t)=0 . And N’(t)=0 implies N’(t)\neq 0 . We

have cusp points ( \frac{1}{4},0) , (- \frac{1}{4}, \frac{\sqrt{3}}{4}) , (- \frac{1}{4}, -\frac{\sqrt{3}}{4}) , and N is excellent. Clearly,

cusp points ( \frac{1}{4},0) , (- \frac{1}{4}, \frac{\sqrt{3}}{4}) , (- \frac{1}{4}, -\frac{\sqrt{3}}{4})\not\in M_{l}^{f}
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