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Asymptotic behaviour of fundamental solutions of elliptic
operators with order higher than two

Susumu TANAB\’E
(Received August 18, 1996)

Abstract. One studies asymptotic behaviour at infinity of fundamental solutions to
elliptic PDE order higher than two. The main tool to be used is estimates for oscillatory
integrals obtained by A.N . Varchenko.
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Introduction

In this article, we shall investigate the following problem. Let F(D)
be a homogeneous elliptic differential operator of order 2m(m\geq 2) with
constant coefficients on \mathbb{R}^{N} :

F(D)= \sum_{|\alpha|=2m}F_{\alpha}D^{\alpha}
, (0.1)

where F(\xi)>0 for \xi\in \mathbb{R}^{N}\backslash 0 , F_{\beta}=1 for \beta=(0,0, \ldots 0, 2\check{m}i, _{0}, . . . 0) ,
1\leq i\leq N .

Let E(x) be the fundamental solution to the operator F(D)-I that is
bounded as x tends to infinity,

F(D)E(x)-E(x)=\delta(x) . (0.2)

The problem is to know asymptotic behaviour of E(x) as x tends to infinity,
starting from the coefficients F_{\alpha} , \alpha\in \mathbb{N}^{N} . In the case when the energy
surface S=\{F(\xi)=1\} has no point where its total curvature vanishes, the
answer to this problem has already been gotten by B.R. Vainberg [Vai], as
we shall review in \S 1. Therefore we are interested in the cases where the
total curvature may vanish at some points on the energy surface.

In \S 1 we remember the fundamental tools that help us to reduce the
study on E(x) to that of oscillatory integrals with degenerate phases.
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In \S 2 we will treat general operators of the following form:

F(\xi)=\xi_{1}^{2m}+ \sum a_{j\alpha}\xi_{1}^{j}\xi^{\prime\alpha}+\xi_{2}^{2m}\cdot\cdot+\xi_{N)}^{2m}

|\alpha|+j=2m ,
|\alpha|>0 , j>0

\xi’=(\xi_{2}\cdots\xi_{N}) , m\geq 2 ,
\alpha=(\alpha_{2}, \alpha_{3}, \ldots\alpha_{N})\in \mathbb{N}^{N-1} ,

where the coefficients a_{j\alpha} will be assumed to be small enough so that the
positivity of F(\xi) is guaranteed everywhere except the origin and that
F(1, \xi’) appears to be a strong {\rm Min}-function (Definition 2.6) with some
supplementary conditions (Condition 2.8). In this situation, we give an es-
timate on the decaying order of E(x) as xarrow\infty with |x/|x|-(1,0. . 0)|<\epsilon

for some \epsilon>0 (Theorem 2.11):

|E(x)|\leq|x|^{-1/d(\Gamma)}(\log|x|)^{\overline{\ell}(\Gamma)} ,

where the meaning of notations \Gamma , d(\Gamma) and \overline{\ell}(\Gamma) will be explained in PropO-
sition 2.3 and Theorem 2.5. The statement of Theorem 2.11 can be in-
terpreted as an affirmation of the upper semicontinuity (with respect to
x-variables) of the oscillatory index for oscillatory integrals of type

\int\varphi(\xi’)e^{i(x_{1}f(\xi’)+x_{2}\xi_{2}+\cdots+x_{N}\xi_{N})}d\xi’ ,

where f(\xi’) is a strong {\rm Min} function on \mathbb{R}^{N-1} with df(0)=0 . We shall
remark here that it has been pointed out by Varchenko [Var, example 1], the
upper semicontinuity of the oscillatory index does not hold for deformations
of a smooth function f(\xi’) in general.

Moreover we give a result on the stratification structure of

{ x\in \mathbb{R}^{N} ; |x/|x|-(1, 0. . 0) |<\epsilon for some \epsilon>0 },

under the condition that the principal part of f(\xi’) consists only of terms
with even powers and positive coefficients. Under this condition, on each
stratum

\sigma_{I}=\{x\in \mathbb{R}^{N} ; x_{i}\neq 0 for i\in I and x_{j}=0 for j\not\in I ,

where 1\in I\subset\{1, \ldots, N\}\} ,

of this stratification we have

|E(x)|\leq C(\omega)|x|^{(I-1)/2-1/d(\Gamma(I))} ( log |x|)^{\overline{\ell}(\Gamma(I))} ,
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(Theorem 2.11).
In \S 3 we treat 4-th order elliptic operators on \mathbb{R}^{2} i.e.

F(\xi)=\xi_{1}^{4}+p\xi_{1}^{2}\xi_{2}^{2}+q\xi_{1}\xi_{2}^{3}+r\xi_{2}^{4} . (0.3)

Here we impose no condition on the coefficients (p, g, r) except the one which
guarantees the positivity of (0.3). In contrast with \S 1, no restriction on the
size of the coefficients (p, q, r) is assumed.

Evidently when p=q=0 and r>0 , the curvature of surface (curve in
this case) S vanishes at the points (\xi_{1}, \xi_{2})=(\pm 1,0) and (0, \pm r^{-1/4}) . But in
general cases where the coefficients p and q are different from zero, it is not
so easy to see what kind of vanishing of the curvature may take place on S .
Therefore at first we give a classification of the quadratic curves in terms of
the coefficients (p, q, r) in Proposition 3.5, then we obtain the asymptotic
behaviour of the oscillatory integral whence that of E(x) can be obtained
(Theorem 3.7).

In \S 4, we apply the results of \S 3 to estimates of 1) error term in Weyl
type formula and 2) the eigenfunctions of Dirichlet problem to an elliptic
operator F(D) like (0.3).

We would like to mention here that the problem 2) above was the basic
motivation of the investigations of this paper. This setting of question was
given by Yu.V. Egorov during my stay at the Moscow State University in
1990. The author expresses his hearty gratitude to Prof. Akira Kaneko, and
to the referee for detailed proof reading.

1. Preparatory propositions

First of all, we shall prove and review results about the energy surface
S so as to use them in subsequent situations.

Lemma 1.1 F(\xi) is a strictly positive function as in (0.1), the energy
surface S=\{\xi\in \mathbb{R}^{N} ; F(\xi)=1\} is a connected and analytic hypersurface
in \mathbb{R}^{N} Furthermore the inhomogeneous function F(\xi)-1 has the following

o

factorization in some neighbourhood of every point \xi\in S\backslash \{\xi_{i}=0\} :

F(\xi)-1=G_{i}(\xi)T_{i}(\xi) (1.1)

where G_{i}(\xi) is analytic function of the form G_{i}(\xi)=\xi_{i}^{2}-\overline{G}_{i}(\xi’) , and it
vanishes on S, \xi’= (\xi_{1}, . . ’ \check{\xi}_{i}, \ldots , \xi_{N}) , |\nabla G_{i}(\xi)|\neq 0 on S and T_{i}(\xi)\neq 0

on S .
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Proof. Let us assume that \min_{|\xi|=1}F(\xi)=F([mathring]_{\xi})=c>0 . Because of the
positivity and homogeneity of F , we have F(\xi)=|\xi|^{2m}F(\xi/|\xi|)>c|\xi|^{2m} for
all \xi . This means the boundedness of the surface S . Furthermore for each
direction \omega\in S^{N-1} one can always find unique value \overline{t} such that F(\overline{t}\omega)=2c .
This implies the connectedness of the surface S .

As for factorization (1.1), we may choose the analytic function \overline{G}_{i}(\xi’)

as follows. As it is easily seen from the non-vanishing property of \nabla F(\xi) on

S , for every [mathring]_{\xi}\in S one can choose an index i such that \frac{\partial}{\partial\xi_{i}}F(\xi)\neq 0 . This
implies that S can be considered as a graph of a function \xi_{i}(\xi’) , \xi_{i}=\xi_{i}(\xi’) , in

some neighbourhood of the point [mathring]_{\xi} where \frac{\partial}{\partial\xi_{i}}F(\xi) does not vanish. Further
we suppose i=1 by juxtaposition of the indices of variables. While the
roots of equation F(\xi_{1}, \xi’)=1 depends on \xi’ continuously, the function

\xi_{1}(\xi’) that describes the surface S in the neighbourhood of the point [mathring]_{\xi} can
be expressed by the following complex integral:

\xi_{1}(\xi’)=\frac{1}{2\pi i}\int_{\gamma}\frac{zF_{z}(z,\xi’)}{F(z,\xi)-1},dz (1.2)

where \gamma denotes a circle on z complex plane with center z=[mathring]_{1}_{\xi} that does

not touch the other roots of F(z,[mathring]_{\xi})=1 . We may express the function
\xi_{1}(\xi’) in terms of the above integral by moving the circle \gamma towards left side
and shrinking it not to touch the other roots of the equation with respect

to z , F(z,[mathring]_{\xi})=1 . Thus we have shown that the surface S|_{\xi_{1}<0} can be
expressed by an analytic function \xi_{1}=\xi_{1}(\xi’) in some neighbourhood of the

point [mathring]_{\xi} . The other half of the surface S|_{\xi_{1}>0} also has a similar expression

\xi_{1}^{-}(\xi’)=-\xi_{1} (-\xi_{-}’) in the neighbourhood of the antipodal point [mathring]_{\xi} , and we
have only to set G_{1}(\xi’)=\xi_{1}(\xi’)\xi_{1}^{-}(\xi’) . The non-vanishing property of \nabla G(\xi)

on S can be shown as follows. It is easy to see that

\nabla G(\xi)=\frac{\nabla F(\xi)}{T(\xi)} on S,

by differentiating the expression F=G\cdot T From the Euler equality

\sum_{j=1}^{N}\xi_{j}\frac{\partial F}{\partial\xi_{j}}(\xi)=2mF(\xi)
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the non-nullity of \nabla F can be deduced. Hence \nabla G(\xi)\neq 0 on S. \square

Let us assume that the direction \omega=x/|x| is parallel to the normal
to the surface S at a point \xi^{*} We may suppose that a function G(\xi) as
Lemma 1.1 describes the surface S in some neighbourhood of the surface S
in \mathbb{R}_{\xi}^{N} swept by the surface S(t) , -\delta\leq t\leq\delta where S(t)=\{F(\xi)=1+t\} .
Let \varphi(\xi)\in C_{0}^{\infty}(\mathbb{R}^{N}) be a function that vanishes outside U and \varphi(\xi)=1 for
\xi\in U with |F(\xi)-1|<\delta/2 . According to [Vai], there exists a fundamental
solution E(x) that can be expressed as follows:

E(x)=(2\pi)^{-N}(v.p. \int_{U}\frac{\varphi(\xi)}{F(\xi)-1}e^{-ix\xi}d\xi

- \pi i\int_{S}\frac{e^{-ix\sigma}}{T(\sigma)|\nabla F(\sigma)|}dS)+R(x) (1.3)

where R(x) denotes a rapidly decreasing smooth function. In this way to
get an asymptotic behaviour of the fundamental solution E(x) , we are asked
to know that of the above two integral expressions. For this, we write the
integral over U as a repeated integral, first over the surface S(t) and then
with respect to t . If we denote the line element of the normal to S(t) by d\ell ,
then d\ell =dT/|\nabla F(\sigma)| . Therefore the volume element d \xi=\frac{dSdt}{|\nabla F|} , where dS
denotes the surface element of S . We set

\Phi(t, \omega, r)=-i(2\pi)^{1-N}\int_{S(t)}\frac{\varphi(\xi)e^{-ix\xi}}{T(\xi)|\nabla F(\xi)|}dS (1.4)

where \omega=x/|x| , r=|x| . Then the fundamental solution can be written
down as follows:

E(x)= \frac{1}{2}(\frac{-1}{\pi i}v.p. \int_{-\delta}^{\delta}\frac{\Phi(t,\omega,r)}{t}dt+\Phi(0, \omega, r))+R(x) .

Before going into further analysis of these integrals, we recall a lemma from
[Vai]

Lemma 1.2 Suppose that \phi(\omega, t) , f(\omega, t)\in C^{\infty}(S^{N-1}\cross \mathbb{R}^{1}) , \phi is real
valued, f=0 for t>\delta>0 and that \phi_{t}’\neq 0 for |t|\leq\delta . Then

v.p . \int t^{-1}f(\omega, t)e^{ir\phi(\omega,t)}dt=[sign\phi_{t}’(\omega, 0)]i\pi f(\omega, 0)e^{i\phi(\omega,0)r}+F(\omega, r)

Here F(\omega, r) satisfifies the following estimate: For every (\alpha,j)\in \mathbb{N}^{N}\cross \mathbb{N}^{1} ,
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there exists a positive constant C_{\alpha,j} such that

|( \frac{\partial}{\partial\omega})^{\alpha}(\frac{\partial}{\partial r})^{j}F(\omega, r)|\leq C_{\alpha,j}r^{-L} for any L>0 .

By the aid of the above lemma, we have only to know asymptotic be-
haviour of \Phi(0, \omega, r) in order to get that of E(x) . Thus the problem is
reduced to determine the asymptotic behaviour of the integral of type

I(x)= \int_{S}f(\sigma)e^{-ix\sigma}dS .

In the case that the curvature of the surface S never vanishes, the following
result is known.

Theorem 1.3 [Vai] Suppose that on the surface S there is a fifinite num-
ber of points \sigma^{j}(\omega_{0}) , (j=1, . , J) at which the normal vector to the surface
S is parallel to the vector \omega_{0} . Assume that at the point \sigma(\omega_{0}) the curvature
of S does not vanish. In this situation there exists \epsilon>0 such that for
|\omega-\omega_{0}|<0 , the following asymptotic expansion holds modulo rapidly de-
creasing smooth functions.

\Phi(0, \omega, r)\sim\sum_{j=1}^{J}e^{-i\mu_{j}(\omega)r}\{\sum_{s=0}^{\infty}a_{js}r^{(1-r)/2-s}\} (1.5)

where
a_{js}=(2\pi)^{(N-1)/2}|\kappa_{j}(\omega)|^{-1/2}e^{-\gamma_{j}\pi/4} .
\kappa_{j} : the curvature of S at the point \sigma^{j}(\omega) .
\mu_{j}(\omega)=\langle\sigma^{j}, \omega\rangle : the projection of the point \sigma^{j}(\omega) on the line parallel

to \omega passing through the origin.
\gamma_{j} : inertia index of the curvature form at \sigma^{j}(\omega) .

We review the proof of this theorem so as to use it in our problem.
Let \{\phi\} be the partition of the unity on S subordinate to covering U_{j} . We
choose U_{j} in such a way that on every U_{j} there is only one point \sigma^{j}(\omega) at
which the normal to the surface S is parallel to \omega .

We adop\underline{t} such a coordinate system \overline{\xi} that S can be written down
in the form \xi_{1}=\overline{\xi}_{1}(\underline{\xi}^{\overline{\prime}}) on U_{j} , where \overline{\xi’}=(\overline{\xi}_{2} , . . ’

\tilde{\xi}_{N})\in V_{j}\subset \mathbb{R}^{N-1} .
\sigma(\overline{\xi})=(\overline{\xi}_{1}(\overline{\xi}’), \xi_{2}^{\overline{\prime}}, . . ’ \xi_{N}’) .
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Then we have:

\Phi(0, \omega, r)=\sum_{j=1}^{J}\int_{U_{j}}\phi(\sigma)f(\sigma)e^{-ir\omega\sigma}dS

= \sum_{j=1}^{J}\int_{V_{j}}\phi(\sigma(\overline{\xi}))f(\sigma(\overline{\xi}))e^{-ir\omega\sigma(\overline{\xi)}}d\overline{\xi}. (1.6)

Thus the phase function r\omega\sigma(\overline{\xi}) reads as r\overline{\xi}_{1}(\overline{\xi’}) in this coordinate sys-
tem. Hence the problem has been reduced to know the as\underline{y}mptotic be-
haviour of the oscillatory integrals like (1.6) with \omega\sigma(\overline{\xi})=\xi_{1}(\overline{\xi’}) . As is
easily seen, under the non-vanishing assumption on the curvature of S such
kind of integrals can be calculated with use of ordinary version of the sta-
tionary phase method with nondegenerate phases.

In the following sections, the information of the Taylor’s expansion of
the function \xi_{1}(\overline{\xi’}) with respect to \overline{\xi’} will be studied as our main subject.

2. Local estimates of the fundamental solution of the elliptic
operator in general case

Let us consider a symbol of homogeneous elliptic operator of order 2m :

F_{a}( \xi)=F_{0}(\xi)+|\alpha|+j=2m\sum_{0<j<2m}a_{j\alpha}\xi_{1}^{j}\xi^{\prime\alpha}

(2.1)

where

F_{0}(\xi)=\xi_{1}^{2m}+\xi_{2}^{2m}+ , . +\xi_{N}^{2m} , m\geq 2 .

and \sum_{|\alpha|+j=2nl}|a_{j\alpha}|<1 . We have imposed this condition so that the
positivity of F except the origin should hold.

In this section, we shall study the asymptotic behaviour of the funda-
mental solution E(x) of the operator F_{a}(D)-I , that is bounded as x tends
to infinity, i.e.

(F_{a}(D)-I)E(x)=\delta(x)

Let us regard F_{a}(\xi) a a function depending on N dimensional variables
\xi and L dimensional variables a , where L=N+2m-1C_{N} . Then we may
regard the germ \xi_{1}(\xi’, a) , representing the branch of the root of the equation
F_{a}(\xi_{1}, \xi’)=1 with \xi_{1}(0,0)=1 , as a real valued continuous function on
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D=\{(\xi’)a)\in \mathbb{R}^{N}\cross \mathbb{R}^{L}; |\xi’|<\delta, |a|<\delta\} .

Lemma 2.1 The function germ \xi_{1}(\xi’, a) satisfying \xi_{1}(0,0)=1 is an an-
alytic germ on D .

One can prove this lemma by means of a similar argument to that of
Lemma 1.1, in using an integral expression of the germ \xi_{1}(\xi’, a) :

\xi_{1}(\xi’, a)=\frac{1}{2\pi i}\int_{\gamma}\frac{z\frac{\partial}{\partial z}F_{a}(z,\xi’)}{F_{a}(z,\xi)-1},dz .

To state further information on \xi_{1}(\xi’, a) , we prepare the following funda-
mental notions on analytic functions.

Definition 2.2 (Newton’s diagram) Let f( \xi)=\sum_{\alpha\in N^{N}}a_{\alpha}\xi^{\alpha} be an ana-
lytic function in some neighbourhood of the origin.

We temporarily use the notation supp f=\{\alpha\in \mathbb{N}^{N} ; a_{\alpha}\neq 0\} . Newton’s
polyhedron \Gamma_{+}(f) of a series f is defined by the convex hull in \mathbb{R}_{+}^{N} of the set
\bigcup_{\alpha\in\sup pf}(\alpha+\mathbb{R}_{+}^{N}) . The union of all compact faces, of Newton’s polyhedron
\Gamma_{+}(f) will be called Newton’s diagram and denoted by \Gamma(f) . The principal
part of a series f is defined by the polynomial

\hat{f}=\sum_{\alpha\in\Gamma(f)}a_{\alpha}\xi^{\alpha}

For any compact face \gamma\subset\Gamma(f) we will denote by f_{\gamma} the polynomial

f_{\gamma}= \sum_{\alpha\in\gamma}a_{\alpha}\xi^{\alpha}
.

In order to know the informations on Newton’s diagram and the prin-
cipal part of the function \xi_{1}(\xi’, a) , we employ a heuristic argument. Let us
differentiate the equation F_{a}(\xi)-1=0 with respect to a_{j\alpha} and we get,

2m \frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{2m-1}+\xi_{1}^{j}\xi^{\prime\alpha}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}=0

or

\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’.a)

=- \xi_{1}^{j}\xi^{\prime\alpha}/\{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\} (2.2)
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We shall derive some informations on Taylor series of \xi_{1}(\xi’, a) with respect
to (\xi’, a)\in \mathbb{R}^{N-1}\cross \mathbb{R}^{L} , from the above nonlinear equations.

As we consider the behaviour of \xi_{1}(\xi’, a) in the neighbourhood of
(\xi_{1}, \xi’, a)=(1,0,0) , we assume that \xi_{1}(\xi’, a) has a Taylor expansion

\xi_{1}(\xi’, a)=1+\sum_{1\leq|\gamma|}\xi_{\gamma}(a)\xi^{\prime\gamma}

in the neighbourhood of the origin after Lemma 2.1.
Therefore we have

\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)=-\xi_{1}^{j}\xi^{\prime\alpha}/\{2m+(2m-1) \sum\xi_{\gamma}(a)\xi^{\prime\gamma}+\cdot\cdot\}

=- \xi_{1}^{j}\xi^{\prime\alpha}/\{2m+\sum_{|\beta-\alpha|>0}b_{\beta}\xi^{\prime\beta}\} .

These equalities hold in the sense of Taylor expansion for analytic function
germs in the neighbourhood of (\xi’, a)=(0,0) . Furthermore, to know the
dependence of \xi_{1}(\xi’, a) on the variables a , we differentiate once more the
above expression (2.2) with respect to a_{i\mu} . We get,

\frac{\partial}{\partial a_{i\mu}} \frac{\partial}{\partial a_{j\alpha}}\xi_{1}(\xi’, a)

=-j \frac{\partial\xi_{1}}{\partial a_{i\mu}}(\xi’, a)\cdot\xi_{1}^{j-1}\xi^{\prime\alpha}

\cross\{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-1}

- \xi_{1}^{j}\xi^{\prime\alpha}\{2m(2m-1)\xi_{1}^{2m-2}\frac{\partial\xi_{1}}{\partial a_{i\mu}}(\xi’, a)

+ \frac{\partial\xi_{1}}{\partial a_{i\mu}}\sum_{|\beta|+k=2m}k(k-1)a_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-2}\xi^{\prime\beta}\}

\cross\{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-2}+

=-j \frac{\partial\xi_{1}}{\partial a_{i\mu}}(\xi’, a)
, \xi_{1}^{j-1}\xi^{\prime\alpha}

[ \{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-1}
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- \frac{1}{j}\xi_{1}\{2m(2m-1)\xi_{1}^{2m-2}

+ \sum_{|\beta|+k=2m}k(k-1)a_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-2}\xi^{\prime\beta}\}

\cross\{2m\xi_{1}^{2m-1}+ \sum ka_{k\beta} \frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-2}+\cdot\cdot]

|\beta|+k=2m

=\xi_{1}^{j-1}\xi^{\prime\alpha}\xi_{1}^{i}\xi^{\prime\mu}

\{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-1}

\cross[-j+\xi_{1}\{ 2m(2m-1)\xi_{1}^{2m-2}

+ \sum_{|\beta|+k=2m}k(k-1)a_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-2}\xi^{\prime\beta}\}

\cross\{2m\xi_{1}^{2m-1}+\sum_{|\beta|+k=2m}ka_{k\beta}\frac{\partial\xi_{1}}{\partial a_{j\alpha}}(\xi’, a)\xi_{1}^{k-1}\xi^{\prime\beta}\}^{-1}+\cdots]

(2.3)

Thus it is seen that if there is some term \xi^{\prime\gamma} with coefficient including
a_{j\alpha} a_{j\mu} , then \gamma\ell-\alpha_{\ell}-\mu_{\ell}>0 for 2\leq\ell\leq N . Let us denote this kind
of situation for the multi-indices by [\gamma-\alpha-\mu]>0 . By the induction ar-
gument, for a term a_{j_{1}\alpha_{1}}a_{j_{2}\alpha_{2}}\cdots a_{j_{p}\alpha_{p}}\xi^{\gamma} appearing in the Taylor expansion
of \xi_{1}(\xi’, a) , the equality [\gamma-\alpha_{1}-\alpha_{2}- -\alpha_{p}]>0 holds. Thus we have
gotten the following:

Proposition 2.3 The function germ \xi_{1}(\xi’, a) with \xi_{1}(0,0)=1 has the
following Taylor expansion in some small neighbourhood of the origin.

\xi_{1}(\xi’, a)=1-\frac{1}{2m}\{\xi_{2}^{2m}+ \cdot

r+\xi_{N}^{2m}+\sum_{\alpha\in\Gamma(f)}a_{j\alpha}\xi^{\prime\alpha}\}+R(\xi’)

(2.4)

where the Newton polyhedron of R(\xi) is strictly contained in the set

\Gamma_{+}=convex hull of ({the Newton polyhedron of f(\xi’)=F(1, \xi’)-1 }
\cup\{(\gamma_{2}, \ldots, \gamma_{N});|\gamma_{2}+|\cdot\cdot\gamma_{N}|>2m\}) .

To state the main theorem, we introduce some conditions that will be
imposed on F(1, \xi’) .
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In the sequel a real function germ \varphi at the origin will always be as-
sumed to satisfy \varphi(0)=0 and d\varphi(0)=0 . Then, we will be interested
in the following type of oscillatory integrals with phase function \varphi(\xi) and
an amplitude function \chi(\xi) that has a very small compact support in the
neighbourhood of the origin:

I( \tau)=\int_{\mathbb{R}^{N}}e^{i\tau\varphi(\xi)}\chi(\xi)d\xi . (2.5)

As it is well known an oscillatory integral of type (2.5) has an asymptotic
expansion in \tau (see for example [M]):

I( \tau)=e^{i\tau\varphi(0)}\sum_{p}\sum_{k=1}^{N-1}a_{pk}\tau^{p}(\log\tau)^{k} (2.6)

where p runs through finitely many arithmetic progressions independent of
\chi .

We define the oscillation index of the asymptotic expansion (2.6) to
be the number \beta(f) that is the maximal of the numbers p with following
property:

For any neighbourhood of zero in \mathbb{R}^{N} , there exists a \chi\in C_{0}^{\infty} with
support in this neighbourhood such that there exists an integer k with
a_{pk}\neq 0 . Let us specify a coordinate system (\xi_{1}, . . ’ \xi_{N}) on \mathbb{R}^{N} and by \varphi(\xi)

the Taylor series of the function \varphi at zero in this coordinate system. Let
us denote by d(\Gamma(\varphi)) the values of the parameter of the intersection of the
straight line \alpha_{1}=\alpha_{2}=| . =\alpha_{N}=t , t\in \mathbb{R}_{+} , with the boundary of the
Newton polyhedron \Gamma(\varphi) . We call this number d(\Gamma(\varphi)) the height of the
Newton polyhedron \Gamma(\varphi) .

Definition 2.4 The principal part of a series \varphi(\xi) at 0\in \mathbb{R}^{N} is said
to be non-degenerate if for any closed face \gamma\subset\Gamma(\varphi) the polynomials
\xi_{1}\frac{\partial\varphi_{\gamma}}{\partial\xi_{1}} , . . ’

\xi_{N}\frac{\partial\varphi_{\gamma}}{\partial\xi_{N}} do not vanish simultaneously on { \xi\in \mathbb{R}^{N} ; \xi_{1}\xi_{2}\cdots\xi_{N}\neq

0\} .

We shall review here the fundamental theorem for the asymptotic be-
haviour under question.

Theorem 2.5 ([Var]) Suppose that the principal part of the series \varphi is
non-degenerate at \xi=0 .

Then
(1) There exist fifinitely many arithmetic progressions consisting of negative
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rational numbers which include all p such that a_{pk}\neq 0 .
(2) If the height of the Newton polyhedron is not larger than 1, then the

oscillation index \beta(\varphi) of (2.6) will not exceed - 1/d\Gamma(\varphi) .
(3) If the height of the Newton polyhedron is strictly larger than 1, then

the oscillation index \beta(\varphi) of (2.6) will be equal to - 1/d\Gamma(\varphi) .
(4) If the height of the Newton polyhedron is strictly larger than 1 and the

point (d(\Gamma), \ldots, d(\Gamma)) lies at the intersection of \ell pairs of (N-1)-
dimensional faces of the Newton diagram \Gamma(\hat{\varphi}) , then for any non-
negative \chi\in C_{0}^{\infty}(\mathbb{R}^{N}) with \chi(0)\neq 0 and a support lying in a suffiffiffi-
ciently small neighbourhood of zero in \mathbb{R}^{n} , we shall have a coeffiffifficient
a_{\beta(\varphi),\overline{\ell}-1}(\chi)\neq 0 in (2.6), where \overline{\ell}=\min\{\ell, N\} . Moreover, in this
situation we have a_{\beta(\varphi),k}(\chi)=0 for all k\geq\overline{\ell} .

As we shall treat the oscillatory integral like (1.6), we will introduce
a class of function that may appear as the function germ \xi_{1}(\xi’, a) that we
have investigated in the proof of Proposition 2.3.

Definition 2.6 An analytic function germ \varphi(\xi)\in A(\mathbb{R}^{N}, 0) at the origin
that satisfies the following conditions will be called a strong Min-function.
(1) The Newton diagram \Gamma(\varphi) meets all the coordinate axes and all of its

vertices have only even coordinates.
(2) All the coefficients of the germ \varphi corresponding to the vertices of \Gamma(\varphi)

are positive.
(3) For any face \gamma\subset\Gamma(\varphi) of arbitrary dimension \varphi_{\gamma}(\xi)>0 for \xi\neq 0 .

Remark 2.7 V.A . Vasiliev [Vas2] used the term of “ {\rm Min} function to de-
note the analytic function germ that has isolated minimum at the origin.
Therefore all the strong {\rm Min}-function defined above belong to the set of
{\rm Min}-function in the sense of Vasiliev.

From now on, let us impose the following condition on F(1, \xi’) .

Condition 2.8

f(\xi’):=F(1, \xi’)-1= \sum a_{j\alpha}\xi^{\prime\alpha}+\xi_{2}^{2m}+ \cdot 1+\xi_{N}^{2m} (2.7)
|\alpha|+j=2m

|\alpha|>0 , j>0

is a strong {\rm Min} function of (N –1) -variables, and its Newton diagram
i

contains no point of the form (0, . , \check{2} , . ,
’ 0 ) , 2\leq i\leq N\iota
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Under this assumption we see that the function germ -\xi_{1}(1, \xi’) also
turns out to be a strong {\rm Min}-function owing to Proposition 2.3.

Lemma 2.9 The principal part of a strong {\rm Min} function \varphi is non-
degenerate.

Proof Take one of the faces \gamma\subset\Gamma(\varphi) . Assume that \gamma lies on the
coordinate plane \{\alpha_{j_{J+1}}= \cdot 1=\alpha_{j_{N}}=0\} . Without loss of generality we
may suppose that j_{J+1}=J+1 , \ldots , j_{N}=N . That is to say, there exists
a point (\alpha_{1}, \ldots, \alpha_{J}, 0, \ldots , 0)\in\gamma such that a_{\alpha_{1}\cdots\alpha_{J}}\neq 0 . Let us show that
\varphi_{\gamma} cannot have singular points other than 0. As is easily seen there exists
integer \ell(\gamma) such that

\hat{\varphi}_{\gamma}(\xi_{1}, \ldots, \xi_{J}):=\varphi(\xi_{1}, . , \xi_{J}, o. . ’ 0)

is a quasihomogeneous function of order \ell(\gamma) , i.e.

\hat{\varphi}_{\gamma}(t^{\beta_{1}}\xi_{1}, \ldots, t^{\beta_{J}}\xi_{J})=t^{\ell(\gamma)}\hat{\varphi}_{\gamma}(\xi_{1}, , \xi_{J})

where \ell(\gamma) is defined by \ell(\gamma)=\langle\alpha, \beta\rangle for a fixed \beta\in \mathbb{Q}^{J} , |\beta|=1 .
Therefore \varphi_{\gamma} satisfies Euler’s equality:

\beta_{1}\xi_{1}\frac{\partial}{\partial\xi_{1}}\varphi_{\gamma}+\cdots\beta_{J}\xi_{J}\frac{\partial}{\partial\xi_{J}}\varphi_{\gamma}=\ell(\gamma)\varphi .

Hence, if there is some point \xi^{*}\in \mathbb{R}^{J}\backslash 0 such that \nabla\varphi(\xi^{*})=0 , then
\varphi(\xi^{*}) itself must also be zero. But this cannot take place because of the
condition (3) of Definition 2.6. As the above argument can be applied to all
the faces \gamma\subset\Gamma(\varphi) , strong {\rm Min}-function must be non-degenerate. \square

Remark 2.10 Owing to this lemma, we can apply Theorem 2.5 to oscilla-
tory integrals with a strong {\rm Min}-function as the phase.

After these preparations we can state the following main theorem of
this section.

Theorem 2.11 Assume that the homogeneous polynomial F(\xi) satisfifies
the condition 2.8 and that the energy surface S=\{\xi\in \mathbb{R}^{N}; F(\xi)-1=0\}

has only two points (\pm 1,0, \ldots, 0) at which the normal to S is parallel to \omega_{0}=

(1, 0, \ldots, 0) . Then there exists \delta>0 small enough such that the following
estimate holds for the fundamental solution of the operator F(D)-I fifigured
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in (1.3). If |\omega-\omega_{0}|<\delta with \omega=x/|x|

|E(x)|\leq|x|^{-1/d(\Gamma)}(\log|x|)^{\overline{\ell}(\Gamma)} (2.8)

where d(\Gamma) denotes the height of the Newton’s diagram of the following New-
ton polyhedron \Gamma_{+} :

\Gamma_{+}=convex hull of ({the Newton polyhedron of f(\xi’)=F(1, \xi’) }
\cup\{(\gamma_{2}, \ldots, \gamma_{N});|\gamma_{2}+ \cdot. ^{\gamma_{N}1}>2m\}) .

The integer \overline{\ell}(\Gamma) denotes the one introduced in (4) of Theorem 2.5. In other
words, E(x) decays asymptotically less slower than E(x_{1},0) as |x| -arrow\infty

within a conical neighbourhood of the form |x/|x|-\omega_{0}|<\delta .

Proof From Proposition 2.3, Theorem 2.5 and Lemma 2.9, we have the
estimate (2.8) for x=(x_{1},0, \ldots, 0) . That we should observe the oscillatory
integral with the phase x_{1}\xi_{1}(\xi’) can show this.

\xi_{1}(\xi’)=1-\frac{1}{2m}\{\xi_{2}^{2m}+ \cdot (

+ \xi_{N}^{2m}+\sum_{\alpha\in\Gamma(f)}a_{j\alpha}\xi^{\prime\alpha}\}+R(\xi’) (2.9)

where the Newton Polyhedron of R(\xi’) is contained the set \Gamma_{+}:

\Gamma_{+}=convex hull of ({the Newton polyhedron of f(\xi’)=F(1, \xi’) }
\cup\{(\gamma_{2}, \ldots, \gamma_{N});|\gamma_{2}+ \cdot. \gamma_{N}|>2m\}) . (2.10)

To show the estimate (2.8) for x=(x_{1}, x_{2}, \ldots, x_{N}) with x_{j}\neq 0 at least
for some j\in\{2, . . ’ N\} , firstly we will observe the case when x_{2}\neq 0 and
x_{j}=0 for 3\leq j\leq N , because the estimate for this case contains essential
points of the proof. The general situation will be explained after the proof
of the case for x= (x_{1}, x_{2},0, . . , 0) . To see the asymptotic behaviour
of E(x_{1}, x_{2},0, \ldots, 0) it is enough to see that of \Phi(0, x/|x|, x) (defined in
(1.4) or (1.6) ) for x=(x_{1}, x_{2},0, \ldots, 0) . As it has been studied in the
sketchy proof of Theorem 1.3, our center of interest will be the shape of the

surface S around the point [mathring]_{\xi}= (\xi_{1}\circ, , ^{o}\xi_{N}) at which the normal to S is
parallel to \omega= (x_{1}/|x|, x_{2}/|x|, 0, , 0) . As it has been done in the proof of
Theorem 1.3,we- shall choose a suitable coordinate system (\overline{\xi}_{1},\overline{\xi}_{2}, . . ’ \overline{\xi}_{N})

such that the \xi_{1} -axis \underline{is} parallel to \omega , in order to describe the surface S in the
form \overline{\xi}_{1}=\tilde{\xi}_{1} (\overline{\xi}_{2}, \ldots , \xi_{N}) . As the solution of the equation to determine the
stationary points grad \xi_{1}(\xi’)=(-1/x_{1})(x_{2}, \ldots, x_{N}) depends continuously
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on \omega=x/|x| , for every \epsilon>0 , there exists \delta>0 such that if |\omega-\omega_{0}|<\delta

then

|
(\xi_{1}, \xi_{2}\circ\circ, . . ’ \xi_{N}\circ)-(1, o, \ldots, 0)|<\epsilon . (2.11)

Because of this continuity, we see that there exists small \delta_{0} such that if
|\omega-\omega_{0}|<\delta_{0} then there exists only two points on S at which the normal
to S is parallel to \omega , in view of the assumption imposed on the number
of points on S at which the normal to S is parallel to \omega_{0} . If one of them
is (\xi_{1}\circ, . , \xi_{N}\circ) the other has the form (-[mathring]_{1}_{\xi}, . , -[mathring]_{N}_{\xi}) . We will study the
situation around the point with \xi_{1}>\circ 0 (let us denote it by \sigma^{+}(\omega) ) because
the following argument is completely parallel for another point (denoted by
\sigma^{-}(\omega)) . Furthermore we assume that \overline{\xi}_{1}(0)=\mu_{+}(\omega):=\langle\omega, \sigma^{+}(\omega)\rangle in the
above coordinate system. As is seen from these setting of the situation, it
is the oscillatory integral with phase |x|\overline{\xi}_{1}(\overline{\xi’}) that should be estimated. For
this purpose it is enough to know the Newton diagram of \overline{\xi}_{1}(\overline{\xi’})\in \mathbb{R}^{N-1} .
To see the degeneracy of this the coordinate change \xiarrow\overline{\xi}.

\{

\xi_{1}\backslash

\overline{\xi}_{2}

.\cdot

.

.\cdot

.

\overline{\xi}_{N/}

=(\begin{array}{lllll}\omega_{1} -\omega_{2} 0 \omega_{2} \omega_{1} 1 0 .. 1\end{array}) \backslash /_{\xi_{1}^{\backslash }}\xi_{N_{J}}\xi_{2}.\cdot.\cdot.\cdot+
(\begin{array}{l}\epsilon_{1}\epsilon_{2}\vdots\epsilon_{N}\end{array})

where (\epsilon_{1}, \epsilon_{2}, . ’ \epsilon_{N})=([mathring]_{1}_{\xi}\omega_{1}-[mathring]_{2}_{\xi}\omega_{2}-\mu_{+}(\omega), -([mathring]_{1}_{\xi}\omega_{2}+[mathring]_{2}_{\xi}\omega_{1}), \xi_{3}\circ , \ldots , [mathring]_{N}_{\xi} )
denotes the shift between the line with direction \omega passing through \sigma(\omega)

and the line with the same direction passing through the origin. Thus
the function \overline{\xi}_{1}(\overline{\xi’}) of which behaviour we want to know around \overline{\xi}’=0 is
determined by the equation

F(\omega_{1}(\overline{\xi}_{1}-\epsilon_{1})+\omega_{2}(\overline{\xi}_{2}-\epsilon_{2}), +\omega_{1}(\overline{\xi}_{2}-\epsilon_{2})-\omega_{2}(\overline{\xi}_{1}-\epsilon_{1}) ,
\overline{\xi}_{3}-[mathring]_{3}_{\xi} , \ldots,\overline{\xi}_{N}-\xi_{N})=\circ 1

The claim to be shown is the following.

Claim

(The height d(\Gamma) of the Newton diagram \Gamma corresponding to \Gamma_{+}

of (2.11) )>(the height of the Newton diagram
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of \overline{\xi}_{1}
(\overline{\xi}_{2}, . , \overline{\xi}_{N}) as an analytic function germ at \overline{\xi}’=0 ).

Proof of Claim.
We consider following two cases independently.

(1) There exist 3\leq j_{1} , j_{2} , \ldots , j_{n}\leq N such that [mathring]_{j_{1}}_{\xi} \cdot\cdot[mathring]_{j_{2}}_{\xi} [mathring]_{j_{n}}_{\xi}\neq 0 ,

and [mathring]_{j}_{\xi}=0 for j\not\in\{j_{1}, j_{2}, \ldots , j_{n}\} .

(2) For all j(3\leq j\leq N),[mathring]_{j}_{\xi}=0 .
Case 1)
Under the above noted situation, we shall show that

-( \frac{\partial}{\partial\xi_{j_{i}}})^{2}\overline{\xi}_{1}>0 for 1\leq i\leq N . (2.12)

When the above inequalities are shown, we can directly conclude the fol-
lowing inclusion relation between the Newton polyhedra in question.

Newton polyhedron of \overline{\xi}_{1}(\overline{\xi}_{2}, \ldots,\overline{\xi}_{N})

\supset convex hull of (_{1<i<N}\cup\{(0, . . , ^{j_{i}}\check{2}’, . . ’ 0)+\mathbb{R}^{N-1}\}\cup\Gamma_{+})\supset\neq\Gamma_{+} .
-

This proves Claim in this case.
Let us begin to study the function germ \overline{(}0 , , \overline{\xi_{j_{1}}} , \ldots , 0) of one vari-

ables with the following principal part,

- \frac{1}{2m}

\alpha’’=(\alpha_{j_{1}},\ldots,\alpha_{jn}’)(j,k,\ell,\alpha’)\in\Gamma\sum_{+}a_{jk\ell\alpha}\prime\prime(-\omega_{1}\epsilon_{1}-\omega_{2}\epsilon_{2})^{j}(-\omega_{1}\epsilon_{2}+\omega_{2}\epsilon_{1})^{k}

\cross(\overline{\xi_{j_{1}}}+[mathring]_{j_{1}}_{\xi})^{\ell}[mathring]_{\xi}j_{2}\alpha_{j_{2}} [mathring]_{j_{n}}_{\xi}\alpha_{jn}+\mu(\omega) .

From Proposition 2.3, 1 -\xi_{1}(\xi’) is a strong {\rm Min}-function and so is the

function \mu^{+}(\omega)-\overline{\xi}_{1}(0 , . , 0, \xi_{j_{1}} , . . ’ 0 ) (where \xi_{j_{1}}=\overline{\xi}_{j_{1}}+[mathring]_{j_{1}}_{\xi} ) that is pos-
itive except the point \xi_{j_{1}}=0 . From Bertini-Sard’s theorem (see [AVG])

the points where Hessian of an analytic function of one variable vanish
must be located in a discrete manner. Together with the positivity of
\mu^{+}(\omega)-\overline{\xi}_{1}(0 , . . ’

\xi_{j_{1}} , . . ’ 0 ) except at the origin it is concluded that there
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exists small \epsilon_{j_{1}}>0 such that for 0<|\xi_{j_{1}}|<\epsilon_{j_{1}} ,

-( \frac{\partial}{\partial\xi_{j_{1}}})^{2}\overline{\xi}_{1}(0, \ldots, \xi_{j_{1}}, \ldots, 0)>0 .

Therefore, if we take \epsilon=\epsilon_{j_{1}} and choose some \delta such that (2.11) holds, we
see that for such \delta

-( \frac{\partial}{\partial\xi_{j_{1}}})2\overline{\xi}_{1}(0, \ldots, -\xi_{j_{1}}\circ, \ldots, 0)>0 .

For the other function germs \overline{\xi}_{1} (0, . , \xi_{j_{i}}, \ldots, 0) with 2\leq i\leq n , similar
argument holds with other \epsilon_{j_{i}} . Thus, if we set \epsilon=\min_{1\leq i\leq n}\epsilon_{j_{i}} and choose
some \delta anew such that (2.11) holds, we can conclude (2.12).

Case 2)

Further we suppose that [mathring]_{3}_{\xi}=’\cdot t =[mathring]_{N}_{\xi}=0 .
In this case we shall observe the Newton polyhedron of the function

germ x_{1}\xi_{1}(\xi’)+x_{2}\xi_{2} at its singular point ([mathring]_{2}_{\xi}, o, . . , 0) . To see this, it is
enough to check that there exists \epsilon>0 such that if 0<|\xi_{j_{1}}|<\epsilon then

-( \frac{\partial}{\partial\xi_{2}})^{2}\overline{\xi}_{1}([mathring]_{2}_{\xi},0, \ldots, 0)>0 .

From the assumption that -\xi_{1}(\xi’) is a strong {\rm Min}-function, we see that
-\xi_{1} (\xi_{2},0, \ldots, 0) is a strong {\rm Min}-function of one variable \xi_{2} and

( \frac{\partial}{\partial\xi_{2}})^{2}\overline{\xi}_{1}(0,0, \ldots, 0)=0 .

From Theorem of Bertini-Sard and the fact that \xi_{1} (\xi_{2},0, \ldots , 0) is a strong
{\rm Min}-function, we see that the required statement is obtained. Hence we
have shown the following inclusion relation between Newton polyhedra

Newton polyhedron of \overline{\xi}_{1}(\overline{\xi}_{2}, . , \overline{\xi}_{N})

\supset convex hull of (_{1\leq i\leq N}\cup\{(2, 0, \ldots, 0)+\mathbb{R}_{+}^{N-1}\}\cup\Gamma_{+})\neq\supset\Gamma_{+} .

The Claim is shown for x= (x_{1}, x_{2},0, . , 0) .
In more general situations x= (x_{1}, x_{2}, . , x_{n}, o, \ldots, 0) , the proof for

the case 1) can be achieved almost without modifications, while it concerns



18 S. Tanabe’

the positivity of the second derivative of a strong {\rm Min}-function outside the
origin.

As for case 2), we can show the positivity of -( \frac{\partial}{\partial\xi_{j}})^{2}\overline{\xi}_{1}(0) , (2\leq j\leq n)

from the fact that F(\xi_{1}, \xi_{2},0, \ldots , 0) is a {\rm Min}-function with isolated local
minimum together with Theorem of Bertini-Sard. \square

In general it is difficult to determine the Newton diagram of the function

x_{1}\xi_{1}(\xi’)+x_{2}\xi_{2}+\cdot\cdot+x_{N}\xi_{N}

at it’s singular point.
Assume that \xi_{1}(\xi’) is a germ with the Milnor number \mu , and the bases

of its versal deformation are \varphi_{1}(\xi’) , \ldots , \varphi_{\mu-N+1}(\xi’) , \xi_{2} , . . ’
\xi_{N} . That is to

say the versal deformation of \xi_{1}(\xi’) can be written as follows.

\xi_{1}(\xi’)+y_{1}\varphi_{1}(\xi’)+|\cdot\cdot+y_{\mu}-N+1\varphi_{\mu-N+1}(\xi’)+x_{2}\xi_{2}+\cdot\cdot+x_{N}\xi_{N}

(2.13)

where (y_{1}, . . , y_{\mu-N+1}, x_{2}, \ldots, x_{N})\in \mathbb{R}^{\mu} . Therefore the bifurcation set of
the deformation x_{1}\xi_{1}(\xi’)+x_{2}\xi_{2}+\cdots+x_{N}\xi_{N} can be regarded as the restric-
tion of the big bifurcation set \Sigma\subset \mathbb{R}^{\mu} of the deformation (2.13) restricted
on the set \{y_{1}=y_{2}=\rangle\cdot 1=y_{\mu-N+1}=0\} . It also has a structure of a
stratified set. This is the very situation that V.I . Arnol’d studied in [Ar].

He observed the topological metamorphoses (perestroika) that may hap-
pen with the intersection of the bifurcation set \Sigma and a hypersurface t(x)=t
that is defined by a smooth Morsean function t(x) . Arnol’d calls this t(x)

“time function, because we get the pictures of stratified set \Sigma_{t}=\Sigma|_{t(x)=t}

corresponding to each moment t . For the details one may consult [AVG] or
[Z].

Let us define a series of sets \sigma_{p,k}\subset \mathbb{R}^{N} , p\in \mathbb{Q}_{-} , k\in \mathbb{Z}_{+}

\sigma_{p,k}= { (x_{1} , . . , x_{N});|x/|x|-(1,0, \ldots, 0)|<\epsilon for some \epsilon>0 ,

the oscillatory integral of the type (2.6) with the phase
|x|f(\xi’)=x_{1}\xi_{1}(\xi’)+x_{2}\xi_{2}+ \cdot I+x_{N}\xi_{N}(\tau=|x|)

can be dominated by |x|^{p}(\log|x|)^{k} as |x|arrow\infty }.

According to Theorem 2.11,

\sigma_{p,k}\supset\sigma_{p_{1},k_{1}} if p_{1}<p .
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Especially \sigma_{p0,k_{0}} , with p_{0}=-1/d(\Gamma(f)) , k_{0}=\overline{\ell}(\Gamma(f)) , has maximal
codimension N-1 i.e. the line (x_{1},0, . , 0) , x_{1}\neq 0 . As it has been remarked
above, the set \bigcup_{(p,k)\in(\mathbb{Q}_{-},\mathbb{Z})}\sigma_{p,k}+ is stratified. In general it is difficult to
determine this structure of stratification, but in some special cases it is
possible to know the strata.

Theorem 2.12 Assume that following two conditions are imposed on
F(\xi) besides condition 2.8 :

(1) All the coeffiffifficients a_{j\alpha} are positive.
(2) For all \alpha with a_{j\alpha}\neq 0 , \alpha\in(2N)^{n-1} .

Furthermore we assume that there exist only two points (\pm 1,0, \ldots , 0)

at which the normal to S is parallel to \omega_{0}= (1, 0, \ldots, 0) . Then there exists
\epsilon>0 small enough so that for the fundamental solution E(x) determined
by (1.3) and for |x/|x|-(1,0, \ldots, 0)|<\epsilon , we have the following estimate
that holds uniformly on the stratum

\sigma_{I}=\{x\in \mathbb{R}^{N};x_{i}\neq 0 for i=1 and i\in I\subset\{1, \ldots, N\}

and x_{j}=0 for j\not\in I}.

|E(x)|\leq C(\omega)|x|^{-(I-1)/2-1/d(\Gamma(I))}(\log|x|)^{\overline{\ell}(\Gamma(I))} (2.14)

where C(\omega)<\infty for each \omega , 0<|\omega-\omega_{0}|<\epsilon , especially in the case when
I contains single element except 1, I=\{1, i\} , we have

C( \omega)\approx(\frac{x_{i}}{|x|})^{-(j(i)-2)/2(j(i)-1)}
\omega=(\frac{x_{1}}{|x|}, 0 , . , 0, \frac{\check{x^{i}}_{i}}{|x|} , 0, \ldots , 0)

where
\Gamma(I) : { \alpha=0 for i\in I} \cap\Gamma

j(i) : the intersection of the Newton diagram \Gamma with \alpha_{i} -axis.
d(\Gamma(I)) : the height of the Newton diagram \Gamma(I) .
\overline{\ell}(\Gamma(I)) : the integer defifined in Theorem 2.5, (4) for \Gamma(I) .

Proof. The domains in question on the surface S are neighbourhoods
of the points (\pm 1,0, \ldots, 0) . Among these two domains, we observe the
part with \xi>0 only, as the situation is the same for another part. We
proceed by means of an induction on the number of non-zero coordinates
among (x_{2}, . ’ x_{N})\in \mathbb{R}^{N-1} . At first, let us study the case I=\{1, 2\} ,
x= (x_{1}, x_{2},0, \ldots , 0) . Remark that the stationary point \xi^{*} determined
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uniquely by the equations

x_{1} \frac{\partial\xi_{1}}{\partial\xi_{2}}(\xi^{*})+x_{2}=0 ,

\frac{\partial\xi_{1}}{\partial\xi_{j}}(\xi^{*})=0 3\leq j\leq N

has the form \xi^{*}= (\xi_{2}^{*}, 0, \ldots , 0) with \xi_{2}^{*}\neq 0 . This can be seen from the
following argument. Owing to the condition (2), \min\{\alpha_{j} ; (\alpha_{2}, \ldots, \alpha_{N})\in

supp f } \geq 2 . Therefore we get x_{1} \frac{\partial\xi_{1}}{\partial\xi_{j}}

(\xi_{2}, . ’ \xi_{j-1},\check{0}, j \xi_{j+1},. . ’ \xi_{N})=0 .
On the other hand, as \xi_{1} is a strong {\rm Min}-function, there exists an even

number j(2) such that \overline{a}_{j(2)0}>0 with

\frac{\partial\xi_{1}}{\partial\xi_{2}}(\xi^{*})=\sum_{j\geq j(2)}j\overline{a}_{j0}(\xi_{2}^{*})^{j-1} .

As for the uniqueness of the stationary point in the neighbourhood of
(1, 0, . . ’ 0), from the conditions imposed on f(\xi’) , we see that \xi_{1}(\xi’) is
a concave function in some neighbourhood of \xi’=0 .

It is enough to remember the uniqueness of the point where the normal
to S is parallel to \omega_{0} , to see that the surface S= (\xi_{1}(\xi’), \xi_{2}, . . ’ \xi_{N}) has
unique point at which S is tangent to an affine hyperplane with normal
\omega=x/|x| . After a coordinate change \overline{\xi}_{2}=\xi_{2}-\xi_{2}^{*} , we have the following
principal part with Morsean type term with respect to \overline{\xi}_{2}

the principal part of -\xi_{1}(\overline{\xi}_{2}+\xi_{2}^{*}, \xi’)-x_{2}\overline{\xi}_{2}/x_{1}

=\overline{a}_{20}\overline{\xi}_{2}^{2}+ \sum a_{j\gamma}\xi_{2}^{*j}\xi^{\prime\prime\gamma} (2.15)
\gamma\in\{\alpha=0\}\cap\Gamma

with \overline{a}_{20}>0 . This can be proved by a similar argument as case 2) in
Theorem 2.11.

The right hand side has “the convex hull of \{(2, 0, . , 0)\}\cup(\Gamma\cap\{\alpha_{2}=

0\}) ” as its Newton polyhedron. In view of Theorem 2.5, this fact yields
(2.14) on the stratum \{x\in \mathbb{R}^{N}; x_{1}x_{2}\neq 0, x_{j}=0(3\leq j\leq N)\} . As for
the estimate of C(\omega_{2},0) , we begin by determining \xi_{2}^{*} from the following
equation.

x_{1} \frac{\partial\xi_{1}}{\partial\xi_{2}}(\xi_{2}^{*})+x_{2}=x_{1}\sum_{j\geq j(2)}j\overline{a}_{j0}\xi_{2}^{*j-1}+x_{2}=0 .
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So

\xi_{2}^{*}=(x_{2}/j(2)a_{j(2)0}x_{1})^{1/(j(2)-1)}+O(x_{2}^{2/(j(2)-1)}) .

As the oscillatory integral to be estimated has the form

e^{ix_{2}\xi_{2}^{*}} \int e^{ix_{1}\xi_{1}(\xi_{2}^{*},\xi’)}d\xi’\int e^{ix_{1}\overline{a}_{20}\overline{\xi_{2}}^{2}}\varphi(\overline{\xi}_{2}, \xi’)d\overline{\xi}_{2}

it remains to calculate the coefficient to give the estimate. In fact the needed
value can be gotten as follows,

\overline{a}_{20}=(\frac{\partial}{\partial\xi_{2}})^{2}\xi_{1}(\xi_{2}^{*}, 0)=\sum_{j\leq j(2)}j(j-1)\overline{a}_{j0}\xi_{2}^{*j-2}

=j(2)(j(2)-1)a_{j(2)0}(x_{2}/j(2)a_{j(2)0}x_{1})^{(j(2)-2)/(j(2)-1)}

+O(x_{2}^{j(2)-1/(j(2)-1)}) .

By applying the stationary phase method to phases with Morsean singular-
ities, we obtain the required estimate.

For the strata \sigma_{I} with |I|>2 , \{1, 2\}\in I , we have only to show that

the Newton polyhedron of the phase
i(x_{1} \xi_{1}(\xi’)+\sum_{j\in I}x_{j}\xi_{j})

=convex hull of j\in I\cup\{(0, . . ’ 0, _{\check{2}}^{j}, . . ’ ^{0})\}\cup\{\Gamma\cap\{\alpha_{j}=0, j\in I\}\} .

This can be proved from the fact that this phase has the stationary point
\xi^{*}\in {\xi\neq 0 for j\in I and \xi=0 for i\not\in I} and the argument similar to that
of case 2) in Theorem 2.11. \square

3. Estimates of the fundamental solutions of 4-th order elliptic
operators in two independent variables

In this section our aim is to obtain asymptotic behaviour of the fun-
damental solution E(x) of the equation (0.2) with F(D_{1}, D_{2})=D_{1}^{4}+

pD_{1}^{2}D_{2}^{2}+qD_{1}D_{2}^{3}+rD_{2}^{4} . Evidently all 4-th order elliptic operators on \mathbb{R}^{2}

can be written in this form after linear change of coordinates. For this
purpose, our main task will be to classify the singular points on the curve
S=\{(\xi_{1}, \xi_{2})\in \mathbb{R}^{2}; F(\xi_{1}, \xi_{2})=1\} . To establish the relationship between
the vanishing of the Hessian of F(\xi) and that of the curvature, we prepare
the following lemma.
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Lemma 3.1 The curvature of the curve S=\{(\xi_{1}, \xi_{2})\in \mathbb{R}^{2} ; F(\xi_{1}, \xi_{2})=1\}

vanishes at a point [mathring]_{\xi}\in S if and only if the Hessian of the function F(\xi)

vanishes at this point.
Furthermore if we describe the curve S

G(\xi_{1}, \xi_{2})=\xi_{1}^{*2}-[[mathring]_{1}_{\xi}^{*2}+g(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m+1})]=0

(3.1)

in a coordinate system (\xi_{1}^{*}, \xi_{2}^{*}) obtained by a rotation around the origin from
(\xi_{1}, \xi_{2}) and the expression ([mathring]_{1}_{\xi}^{*},[mathring]_{2}_{\xi}^{*}) for the point [mathring]_{\xi}^{*} in (\xi_{1}^{*}, \xi_{2}^{*}) coordinate
system, then the curvature K has the following form

K=-gm(m-1)(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-2}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-1})/

\{[mathring]_{1}_{\xi}^{*2}+[gm(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-1}]^{2})\}^{3/2}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-1})

in the neighbourhood of the point [mathring]_{\xi} .
Therefore the curvature of S has a zero of order (m-2) provided that

the Hessian of the function F has zero of order (m-2) at that point.

Proof. As it is well-known that for curves defined as the zero points of
a function F(\xi_{1}, \xi_{2}) of which gradient never vanishes, its curvature can be
written in the following way:

K= \frac{F_{11}F_{2}^{2}-2F_{12}F_{1}F_{2}+F_{22}F_{1}^{2}}{(F_{1}^{2}+F_{2}^{2})^{3/2}}

expressioncaneinterpretedquadraticformdependingonthevariableswhereF_{j}=\frac{\partial F}{\partial\xi_{jb}}andF_{ij}=\frac{\partial^{2}F}{asa\partial\xi_{i}\partial\xi_{j}}.Weseethatthedenominatorofthis

\xi .

(F_{2} -F_{1}) (\begin{array}{ll}F_{11} F_{12}F_{12} F_{22}\end{array})(\begin{array}{l}F_{2}-F_{1}\end{array})

Let us name this expression L(\xi) . The quadratic form L(\xi) may vanish
either 1) Hess F has indefinite signature, or 2) det Hess F vanishes.

We show that case 1) cannot take place.
Assume that we want to investigate the situation around the point

[mathring]_{\xi}\in S . Owing to Lemma 1.1, we have a factorization of the following form

F(\xi)-1--G(\xi)T(\xi)
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where G=0 on S and T\neq 0 on S . Because of the analyticity of G(\xi)

in (\xi_{1}^{*}, \xi_{2}^{*}) in the neighbourhood of [mathring]_{\xi} , we can choose a special coordinate
system (\xi_{1}^{*}, \xi_{2}^{*}) obtained by a rotation around the origin such that G takes
the form like (3.1). If case 1) takes place, then the function G must have
the form

G(\xi_{1}(\xi^{*}), \xi_{2}(\xi^{*}))=\xi_{1}^{*2}-\{[mathring]_{1}_{\xi}^{*2}+g(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{2}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{3})\}

with g>0 . Therefore in the neighbourhood of the point [mathring]_{\xi} , we have a
non-vanishing expression

L(\xi_{1}(\xi^{*}), \xi_{2}(\xi^{*}))=-g(2[mathring]_{1}_{\xi}^{*})^{2}+2g(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{2}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{3})

that is evidently negative at \xi^{*}=[mathring]_{\xi} .
So we think of the case 2). In the same manner, we may assume that

S is given by

G(\xi_{1}(\xi^{*}), \xi_{2}(\xi^{*}))=0 .

It is easy to see that

det Hess_{\xi}*G(\xi_{1}(\xi^{*}), \xi_{2}(\xi^{*}))

=2gm(m-1)(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-2}+O((\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{m-1}) .

Owing to the fact that det Hess G is invariant under the rotation of coor-
dinates, i.e. det Hess_{\xi}*G(\xi_{1}(\xi^{*}), \xi_{2}(\xi^{*}))=\det Hess_{\xi}G(\xi_{1}, \xi_{2}) , we see that
vanishing order of the curvature coincides with that of det Hess_{\xi}G(\xi_{1}, \xi_{2})

at [mathring]_{\xi} . \square

Thus the problem to know where the curvature of the curve S vanishes
is reduced to the problem to know the location of the zeros of the function
det Hess_{\xi}G(\xi_{1}, \xi_{2}) . It is easy to see the following after direct computation.

Lemma 3.2 For F(\xi)=\xi_{1}^{4}+p\xi_{1}^{2}\xi_{2}^{2}+q\xi_{1}\xi_{2}^{3}+r\xi_{2}^{4} , we have

H(\xi):=\det Hess_{\xi}F(\xi)

=24p\xi_{1}^{4}+72q\xi_{1}^{3}\xi_{2}+12(12-p^{2})\xi_{1}^{2}\xi_{2}^{2}

-12pq\xi_{1}\xi_{2}^{32}+(24pr-9q)\xi_{2}^{4}

The classification of the singular points (the points where the curvature
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vanishes) on S is transformed into the classification of the homogeneous

\mathbb{R}^{3}po1.ynomia1sH(\xi)
, that shall be done in terms of the coefficients (p, q, r)\in

Definition 3.3 We call a point (p, q, r)\in \mathbb{R}^{3} admissible if and only if
F(\xi)=\xi_{1}^{4}+p\xi_{1}^{2}\xi_{2}^{2}+q\xi_{1}\xi_{2}^{3}+r\xi_{2}^{4}>0 for all \xi\in \mathbb{R}^{3}\backslash \{0\} .

The domain consisting of all admissible points is called admissible d0-
main

Remark 3.4 If (p, q, r) belongs to the admissible domain, then r must de
strictly positive. Therefore the admissible domain is contained in the half
space \{(p, q, r)\in \mathbb{R}^{3}; r>0\} .

For the sake of simplicity, we write down the function H(\xi) in the
following form

H(\xi)=24p(\xi_{1}^{\prime 4}+P\xi_{1}^{\prime 2}\xi_{2}^{\prime 2}+Q\xi_{1}’\xi_{2}^{\prime 3}+R\xi_{2}^{\prime 4})

where \xi_{1}’=\xi_{1}+\frac{q}{p}\xi_{2}

\xi_{2}’=\xi_{2}

P=[2^{2}p(2^{2}3r-p^{2})-3^{3}q^{2}]/2^{32}p

Q=[(3q)^{3}-2^{5}3qp(2^{2}3r-p^{2})]/2^{33}p-q/2

R=[3^{2}(2^{2}3r-p^{2})q^{2}]/2^{5354}p-3q/2^{532}p-3q/2^{3}p+r .

(3.2)

Further to judge when the polynomial H(\xi) may have multiple factors,
we study the image of the admissible domain by the mapping \Psi : (p, q, r)\vdasharrow

(P, Q, R) . As this mapping is defined only for p\neq 0 , we restrict ourselves
to this case when we think of the mapping \Psi . Before to mention our main
statement in this section, we shall introduce the notion of a swallow’s tail
that plays important role in singularity theory.

Lemma 3.5
(1) The swallow ’s tail is assimilated to a surface that consists of the points

(P, Q, R) for which the equation x^{4}+Px^{2}+Qx+R=0 has multiple
roots.

(2) It can be parametrized as

R=3t^{4}+Pt^{2}
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Q=-4t^{3}-2Pt , t\in \mathbb{R}

(3) The polynomial with coeffiffifficients (P, Q, R) situated in the domain (n)
have n real roots, n=0,2 or 4. Further we will use the naming
domain (n) ”.

(4) The polynomials corresponding to the generic points on the swallow ’s
tail have a double root.

(5) The two curves (in R<0 ) issued from the origin named “back bones”
(after V.P. Palamodov ’s naming), correspond to the polynomials with
triple roots. It is given by a one parameter expression:

(P, Q, R)=(-6t^{2},8t^{3}, -3t^{4})) t\in \mathbb{R} .

(6) Another curve (R>0) issued from the origin is called the Maxwell
set. It can be given by,

R=P^{2}/4

Q=0.

The polynomials corresponding to the points on this curve have two
double roots.

Proposition 3.6 For p\neq 0 , the Hessian H(\xi) has
(1) no roots if \psi(p, q, r)\in Domain(0) ,
(2) four distinct simple roots if \psi(p, q, r)\in Domain(4) ,
(3) two distinct simple roots and one double root if \psi(p, q, r) falls on the

generic position of the swallow ’s tail,
(4) two distinct simple roots if \psi(p, q, r)\in Domain(2) ,
(5) two distinct double roots if \psi(p, q, r)\in Maxwell set,
(6) There is no admissible point (p, q, r) such that \psi(p, q, r)\in “‘back bone ”.

Here the roots of the Hessian means

{roots of H(\xi_{1},1)=0} \cup { roots of H(1, \xi_{2})=0} /\sim

where the equivalence relation\sim shall be understood as “
\xi_{1}^{*}\sim\xi_{2}^{*} iff \xi_{1}^{*}=

1/\xi_{2}^{*}" .

Before coming into the proof of this Proposition, we will formulate the
main theorem of this section.

Theorem 3.7 We have the following fifive types of the asymptotic behaviour
of the fundamental solution to the 4-th order elliptic operator with coeffiffiffi-
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dents

F(D_{1}, D_{2})-I=D_{1}^{4}+pD_{1}^{2}D_{2}^{2}+qD_{1}D_{2}^{3}+rD_{2}^{4}-I

corresponding to the cases (1)-(5) in Proposition 3.6.
(1) If \psi(p, q, r)\in Domain(0) , then the fundamental solution E(x) has the

asymptotic expansion modulo rapidly decreasing smooth functions like
in (1.5) for x=r\omega for all \omega\in S^{1} .

E(x) \sim\sum_{j=1}^{2}e^{-i\mu_{j}(\omega)r}\sum_{s=0}^{\infty}a_{js}(\omega)r^{-1/2-s} (3.3)

where a_{j0}=(2\pi)^{1/2}|\kappa_{j}(\omega)|^{-1/2}f(\sigma^{j}(\omega))e^{-\gamma_{j}\pi/4}\kappa_{j} : the curvature of S
at the point \sigma^{j}(\omega) . \mu_{j}=\langle\sigma^{j}(\omega), \omega\rangle : the projection of the point \sigma^{j}(\omega)

on the line parallel to \omega passing through the origin, \gamma_{j} : inertia index
of the curvature form at \sigma^{j}(\omega) .

(2) If \psi(p, q, r)\in Domain(4) , then E(x) has the asymptotic expansion
modulo rapidly decreasing smooth functions

E(x) \sim-i(2\pi)^{-1}e^{\pm i\mu(-\xi_{j}^{*})r}\sum_{s=0}^{\infty}a_{js}(\pm\omega)r^{(-1-s)/3} (3.4)

on the eight half lines x=\pm r\omega_{j} , j=1 , \ldots , 4, where

a_{j0}( \pm\omega)=\frac{1}{3|\nabla F(\xi_{j}^{*})|}\Gamma(1/3)(1/g_{j})^{1/3}e^{\pi i/6}

g_{j}= \frac{1}{2\cdot 3!}\{\frac{1}{|\nabla F(\xi_{j}^{*})|}(-F_{1}(\xi_{j}^{*})\frac{\partial}{\partial\xi}+F_{2}(\xi_{j}^{*})\frac{\partial}{\partial\xi})\}^{3}G(\xi_{1}, \xi_{2})|_{\xi=\xi_{j}^{*}}

\mu(\pm\xi_{j}^{*})=\frac{4F(\xi_{j}^{*})}{|\nabla F(\xi_{j}^{*})|} j=1 , \ldots , 4.

Notions that are not specifified here are those that have already been
used in the former part of this paper.

On the lines out of these directions (i.e. x=r\omega , \omega\neq\omega_{j} , j=
1 , \ldots , 4) E(x) has the asymptotic behaviour like (3.3).

(3) If \psi(p, q, r) falls on the generic position of the swallow ’s tail, then
E(x) has the asymptotic expansion modulo rapidly decreasing smooth
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functions

E(x) \sim-i(2\pi)^{-1}e^{-i\mu(\pm\xi_{j}^{*})r}\sum_{s=0}^{\infty}a_{js}(\pm\omega)r^{(-1-s)/4} (3.5)

on two half lines x=\pm r\omega_{3} .

a_{j0}( \pm\omega)=\frac{1}{4|\nabla F(\xi_{j}^{*})|}\Gamma(1/4)(1/g_{j})^{1/4}e^{\pi i/8}

g_{j}= \frac{1}{2\cdot 4!}\{\frac{1}{|\nabla F(\xi_{j}^{*})|}(-F_{1}(\xi_{j}^{*})\frac{\partial}{\partial\xi}+F_{2}(\xi_{j}^{*})\frac{\partial}{\partial\xi})\}^{4}G(\xi_{1}, \xi_{2})|_{\xi=\xi_{j}^{*}}

There are four half lines x=\pm r\omega_{j} , j=1,2 , on which the asymptotic
expansion like (3.4) holds.

On the line out of these directions ( i.e . on the lines x=\pm r\omega_{j} ,
j=1,2 , 3) it has the asymptotic behaviour like (3.3).

(4) If \psi(p, q, r)\in Domain(2) , then there are four half lines x=\pm r\omega_{j} , j=
1 , 2 on which the asymptotic expansion like (3.4) holds.

On the lines out of these directions it has the asymptotic behaviour
like (3.3)

(5) If \psi(p, q, r)\in Maxwell set, then there are four half lines x=\pm r\omega_{j} , j=
1 , 2 on which the asymptotic expansion like (3.5) holds on the lines out
of (3.3).

Proof of Theorem 3.7. We shall estimate the integral

\int_{V_{j}}\frac{\varphi_{j}(\xi)e^{-ir\omega\xi}}{T(\xi)|\nabla G(\xi)|}dS (3.6)

where V_{j}\subset S(j=1,2) contains only one point \sigma^{j}(\omega) where the normal to
S is parallel to \omega .

In the neighbourhood of the stationary point \sigma^{j}(\omega)=([mathring]_{1}_{\xi}^{*},[mathring]_{2}_{\xi}^{*}) , we can
take a suitable coordinate system (\xi_{1}^{*}, \xi_{2}^{*}) so that the curve S should be
expressed as in (3.1).

By the aid of this coordinate change the phase of the integrand (3.6)
can be written a,s follows.

-ir \{\frac{\omega_{1}F_{1}(\sigma(\omega))+\omega_{2}F_{2}(\sigma(\omega))}{|\nabla F(\sigma(\omega))|}\xi_{1}^{*}+\frac{-\omega_{1}F_{2}(\sigma(\omega))+\omega_{2}F_{1}(\sigma(\omega))}{|\nabla F(\sigma(\omega))|}\xi_{2}^{*}\}

Case 1) In view of Lemma 3.1, there is no point where H(\xi) vanishes
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on S . Therefore the same results as in Theorem 1.3 holds.
Case 2) Taking into account Lemma 3.1 and Proposition 3.6, there

exist eight points on S where the curvature vanishes for the first order.

Let us take one of these points \sigma(\omega)=([mathring]_{1}_{\xi}^{*},[mathring]_{2}_{\xi}^{*}) at which the normal to
S is parallel to \omega .

As ( \omega_{1}, \omega_{2})=(\frac{F_{1}(\sigma(\omega))}{|\nabla F(\sigma(\omega))|}, \frac{F_{2}(\sigma(\omega))}{|\nabla F(\sigma(\omega))|}) , the phase will take form

-ir([mathring]_{1}_{\xi}^{*}+ \frac{g_{j}}{2}[\xi_{2}^{*}-[mathring]_{2}_{\xi}]^{3}+R(\xi_{2}^{*}))

with R_{4}=terms higher than 4-th order.
So (3.6) becomes

\int_{V_{j}}\frac{\varphi_{j}(\xi(\xi^{*}))}{T(\xi(\xi^{*}))|\nabla G(\xi(\xi^{*}))|} exp [-ir([mathring]_{1}_{\xi}^{*}+ \frac{g_{j}}{2}[\xi_{2}^{*}-[mathring]_{2}_{\xi}]^{3}+R(\xi_{2}^{*}))]d\xi_{2}^{*} .

To calculate this integral we use the formula by Erd\’elyi [E] in spite of
Theorem 2.6 due to Varchenko.
Erd\’elyi’s formula

\int_{\alpha}^{\beta}e^{irg(\eta)}h(\eta)d\eta

=e^{irg(\gamma)} \sum_{s=0}^{N-1}\frac{\kappa^{(n)}(\gamma)}{s!\rho}\Gamma(\frac{s+\lambda}{\rho}) exp ( \frac{2\pi i(s+\lambda)}{2\rho})r^{-(s+\lambda)/\rho}

+O(r^{-(N+\lambda)/\rho}) as rarrow\infty .

where g(\eta) is a smooth function
g(\eta)=g(\gamma)+(\eta-\gamma)^{\rho}g_{1}(\eta) , \rho>1

h(\eta)=(\eta-\gamma)^{\lambda-1}h_{1}(\eta)

\kappa^{(n)}(\eta) is a function determined by h and h_{1} , where
\kappa^{(0)}=h_{1}(\gamma) .

In our case
g( \xi_{2}^{*})=[mathring]_{1}_{\xi}^{*}+\frac{g_{j}}{2}(\xi_{2}^{*}-[mathring]_{2}_{\xi}^{*})^{3}+R_{4}(\xi_{2}^{*}) , \rho>1

h(\xi_{2}^{*})=|\nabla G(\xi(\xi^{*}))|^{-1}T(\xi^{*})^{-1}=|\nabla F(\xi(\xi^{*}))|^{-1} .
It is enough to remark that

\frac{\partial}{\partial\xi_{2}^{*}}=\frac{1}{|\nabla F([mathring]_{\xi})|}(-F_{1}([mathring]_{\xi})\frac{\partial}{\partial\xi_{2}}+F_{2}([mathring]_{\xi})\frac{\partial}{\partial\xi_{1}})
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in the ancient coordinate system, in order to show that

g_{j}= \frac{1}{3!}\{\frac{1}{|\nabla F([mathring]_{\xi})|}(-F_{1}([mathring]_{\xi})\frac{\partial}{\partial\xi_{2}}+F_{2}([mathring]_{\xi})\frac{\partial}{\partial\xi_{1}})\}^{3}G(\xi)|\circ\xi=\xi .

Thus we have calculated all the quantities that appears in (3.4).
At last, the integration around the point at which the outer normal to

S is directed to -\omega survives among the contributions to E(r\omega) while (1.3)
and Lemma 1.2 shall be taken into account.

For the other cases the integral can be calculated completely in the
similar way as in case 2), except the situation that there may paper points
where the curvature vanishes for 2nd order. \square

Proof of Proposition 3.6. The statements (1)-(5) are clearly seen in view
of Lemma 3.5. What we shall see is that the positivity of F(\xi) for such
(p, q, r) that \psi(p, q, r)\in “back bones” can not take place.

First of all, we should remark that it is enough to grasp the location of
the back bones and the image only in a small neighbourhood of the origin.

One has only to check the invariance of the image of the admissible
domain with respect to translation (p, q, r) – (s^{2}p, s^{3}q, s^{4}r) i.e.

P(s^{2}p, s^{3}q, s^{4}r)=s^{2}P(p, q, r)

Q(s^{2}p, s^{3}q, s^{4}r)=s^{3}Q(p, q, r)

R(s^{2}p, s^{3}q, s^{4}r)=s^{4}R(p, q, r) for all s>0 ,

and to see the fact that if (P, Q, R)\in one of strata of swallow’s tail then
(s^{2}P, s^{3}Q, s^{4}R) also belongs to the same stratum. As we know that the
admissible domain is contained in r>0 , we aim to figure out the image of
the hyperplane r=0 by then mapping \psi . For r>0 , we have

P=-p/2-(3/2)^{3}q^{3}/p^{2}

Q=(3/2)^{3}q^{3}/p^{3}+23q/2

R=-3\cdot 7q2/2^{5}p-3^{54}q/2^{84}p .

Let us denote by \gamma the intersection of the surface \psi(\{r=0\}) and the
parabola R=-P^{2}/12 in order to see the disposition of \gamma and the back
bones, while the back bones lie on the parabola R=-P^{2}/12 . As it is seen
from (3.2) the surface \psi(\{r=0, p<0\}) cannot have intersection with back
bones. For an instant, we will observe the cases p>0 only.
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By substituting (3.2) to the equation R=-P^{2}/12 , we get P^{3}=3^{2}\cdot 5q^{2}

that designates the preimage \psi^{-1}(\gamma) . In other words, the curve \gamma can be
described in (P, Q, R)-space by using p>0 as a parameter.

P=-(1/2+3/2^{3}5)p
Q=1/2\sqrt{5}(1/2^{2}5+23/3)p^{3/2}

R=-1/2^{5}5(7/3+3/2^{3}5)p^{2} .

This means that the projection of this curve on (P, Q)-plane has the form

Q^{2}=(2/23)^{3/2}463\cdot P^{3}/3 .

Meanwhile the projection of the back bone has the form

Q^{2}=(2/3)^{3}P^{3} .

By comparing these two expressions, the openness of the cusp \gamma is bigger
than that of a cusp formed by the back bones. Hence we come to know the
disposition of these two cusps on a parabola.

Further we think of the curve \gamma_{t} that is obtained as the intersection of
\psi(\{r=0\}) and the parabola \Pi_{t}=\{(P, Q, R);R=-tP^{2}, t>0\} . As is
easily seen, the distance between parabola \Pi_{t} and the plane R=0 tends to
zero in the neighbourhood of the origin when t tends to zero. After a messy
calculation, we can conclude that the cusp \gamma_{t} tends to the negative P-axis
in decreasing its openness as a cusp, as t tends to zero. This can be seen
from the following parametrization:

P=-c_{1}p/t+O(t,p^{2})

Q=c_{2}p^{3/2}/\sqrt{t}+O(t,p^{2})

R=-c_{3}p^{2}/t+O(t,p^{3}) .

Hence

tcP^{3}=Q^{2}+O(P^{4}, Q^{3})

where c_{1} , c_{2} , c_{3} and c are some positive constants.
At last we should think of the effect of the positive r-coordinates for

the mapping \psi . From the expression (3.2), it is easily seen that \frac{\partial R}{\partial r}>0 for
fixed (p, r) , p>0 . Therefore in the neighbourhood of the origin, R(p, q, r)>
R(p, q, 0) . Summing up the above results, we can figure out the location of
\psi(\{r>0\}) as a domain lying above the back bone stratum. That is to say
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the R coordinate R_{0} of any point (P_{0}, Q_{0}, R_{0}) of the domain \psi(\{r>0\}) is
strictly larger than the coordinate R_{1} of a point (P_{0}, Q_{0}, R_{1}) located on the
back bones. Hence \psi(\{r>0\}) cannot touch the back bones and required
statement was shown. \square

4. Applications

As applications of the results in \S 3, we will look at two problems.
1. The estimate of error term in Weyl type formula.
2. The estimate of the eigenfunctions of Dirichlet problem to elliptic

operators.
Among these, the second one is the direct motivation for the study of

the oscillatory integrals in question.

4.1. Weyl type formula
Let us think of an operator F(D) of order M acting on the functions

on torus T^{N}=(\mathbb{R}/2\pi \mathbb{Z})^{N}\tau

F(D)e^{ix\xi}=F(\xi)e^{ix\xi} .

The eigenvalues of this operator are evidently \{F(z);z\in \mathbb{Z}^{N}\} . Let us
denote by N(\lambda) the number of eigenvalues less than or equal to \lambda^{M} .

Then it is well known that

N(\lambda)=vol(D)\lambda^{N}+O(\lambda^{N-1}) (4.1)

where D=\{\xi\in \mathbb{R}^{N};F(\xi)\leq 1\} .
Our problem is to know more precise estimate of the asymptotic be-

haviour of N(\lambda) as \lambdaarrow\infty when

F(\xi)=\xi_{1}^{4}+p\xi_{1}^{2}\xi_{2}^{2}+q\xi_{1}\xi_{2}^{3}+r\xi_{2}^{4} . (4.2)

In this respect Y Colin de Verdi\‘ere gave sufficiently general result.

Theorem 4.1 [CV] Suppose m is the maximum order of vanishing of the
curvature of a curve S=\partial D on \mathbb{R}^{2} .

If m\geq 1 , the error estimate in (4.1) is O(\lambda^{1-1/(m+2)}) .
Furthermore, if the normal direction to S at the point where the curva-

ture vanishes is rational, then this estimate is best possible.

Corollary 4.2 For the 4-th order operators with form (4.2), the error
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term in (4.1) can be estimated by

O(\lambda^{3/4}) for the cases (3) and (5)
O(\lambda^{2/3}) for the cases (2) and (4) of Theorem 3.7.

Independent of Theorem 4.1, one can prove the following estimate of
the error term by a simple way.

O(\lambda^{6/7}) for the cases (3) and (5)
O(\lambda^{4/5}) for the cases (2) and (4) of Theorem 3.7.

The obtained result is the same one as in [R], but our proof is several
times simpler than that by Randol.

Let us set \chi_{\lambda}(\xi)=\chi(\xi/\lambda) , where \chi denotes the characteristic function
of D . Then we have

N( \lambda)=\sum_{z\in \mathbb{Z}^{2}}\chi_{\lambda}(z)
.

Let \rho(x) be a positive smooth function with support in the unit ball and
\int\rho(x)dx=1 .

We define the following mollified version of N(\lambda)

N_{\epsilon}( \lambda)=\sum_{z\in \mathbb{Z}^{2}}(\chi_{\lambda}*\rho_{\epsilon})(z)

(4.3)

If z lies a distance greater than \epsilon from the boundary of AD , we see \chi_{\lambda}*

\rho_{\epsilon}(z)=\chi_{\lambda}(z) .
So

N_{\epsilon}(\lambda-\epsilon)\leq N(\lambda)\leq N_{\epsilon}(\lambda+\epsilon) .

If N_{\epsilon}(\lambda) satisfies the estimate

N_{\epsilon}(\lambda)\sim c\lambda^{2}+O(\lambda^{1+\alpha}) (4.4)

then

c(\lambda-\epsilon)^{2}+O(\lambda^{1+\alpha})\leq N(\lambda)\leq c(\lambda+\epsilon)^{2}+O(\lambda^{1+\alpha}) .

Let \epsilon=\lambda^{\alpha} then (\lambda+\epsilon)^{2}=\lambda^{2}+O(\lambda^{1+\alpha}) . Therefore, we should effort to
know the error estimate in (4.4). Applying Poisson’s summation formula to
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(4.3) we get

N_{\epsilon}( \lambda)=\sum_{z\in \mathbb{Z}^{2}}\lambda^{2}\hat{\chi}(2\pi\lambda z)\overline{\rho_{\epsilon}}(2\pi\lambda z)
.

Now \hat{\chi}(0)=vol(D) and \overline{\rho_{\epsilon}}(0)=1 ; the error term to be estimated is

N_{\epsilon}( \lambda)=\sum_{z\in \mathbb{Z}^{2}\backslash 0}\lambda^{2}\hat{\chi}(2\pi\lambda z)\overline{\rho_{\epsilon}}(2\pi\lambda z)

. (4.5)

We have

\hat{\chi}(\tau\omega)=\int_{D}e^{i\tau\omega\cdot\xi}d\xi=\frac{i}{\tau}\int_{\partial D}e^{i\tau\omega\cdot\xi}dS .

This is nothing but the oscillatory integral (1.6) which has been studied in
proving Theorem 3.7.

Thus we get

\hat{\chi}(\tau\omega)=O(\tau^{-3/2+\beta}) (4.6)

where \beta=1/6 (resp. 1/4) when the curvature vanishes for the first (resp.
second) order. In view of (4.6) we can estimate (4.5) by

\lambda^{2-3/2+\beta}\sum_{z\neq 0}|z|^{-3/2+\beta}(1+|\epsilon z|^{2})^{-N}
with large N,

or the integral

\lambda^{1/2+\beta}\int\frac{1}{|x|^{3/2-\beta}}(1+|\epsilon x|^{2})^{-N}dx .

Making the substitution y=\epsilon x

\lambda^{1/2+\beta}\epsilon^{-1/2-\beta}\int\frac{1}{|y|^{3/2}}(1+|y|^{2})^{-N}dy .

As this term shall be estimated by (\lambda)^{1+\alpha} with \epsilon=\lambda^{\alpha} , we have an equation
with respect to \alpha :

\lambda^{1/2+\beta}\lambda^{\alpha(-1/2-\beta)}=\lambda^{1+\alpha}\sim

So we get the aimed estimates

\alpha=\frac{\beta-1/2}{\beta+3/2}

=- \frac{1}{5} if the curvature vanishes for the first order
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=- \frac{1}{7} if the curvature vanishes for the second order.

4.2. The estimate of eigenfunctions of Dirichlet problem of ellip-
tic operators

In their paper [EK], Yu.V. Egorov and V.A . Kondrat’ev considered the
following problem.

Let F(D) be an elliptic PDE of order 2m with constant coefficients:

F(D)= \sum_{|\alpha|=2m}a_{\alpha}D^{\alpha}-

Suppose we have a bounded domain \Omega\subset \mathbb{R}^{N} with smooth boundary
\partial\Omega . The eigenfunction u_{\lambda}(x) of Dirichlet problem for the operator F is
considered:

F(D)u_{\lambda}(x)=\lambda^{2m}u_{\lambda} x\in\Omega

u_{\lambda}(x)= \frac{\partial}{\partial\nu}u_{\lambda}(x)=\cdot\cdot=(\frac{\partial}{\partial\nu})^{2m-1}u_{\lambda}(x)=0 , x\in\partial\Omega

\int_{\Omega}|u_{\lambda}(x)|^{2}dx=1 (4.7)

In [EK] the following estimate was given for the eigenfunction u_{\lambda} .

Theorem 4.3 Let F(D) be such operator that S=\{\xi\in \mathbb{R}^{N};F(\xi)-1=0\}

has no point where the total curvature of S vanishes. Then the eigenfunction
u_{\lambda} satisfifies the following estimate:

|u_{\lambda}(x)|^{2}\leq C|\lambda|^{N-1}\log|\lambda|

for some constant C>0 .

For these F(D) that does not necessarily satisfy the condition imposed
in Theorem 4.3, it is known that the estimate

|u_{\lambda}(x)|^{2}\leq C|\lambda|^{N}

What we shall show is the following.

Theorem 4.4 For 4-th order elliptic operators of the form (4.2) the eigen-
function u_{\lambda} of Dirichlet problem (4.7) satisfifies the following estimate:

|u_{\lambda}(x)|^{2}\leq C|\lambda|^{3/2} for the cases (3) and (5)
|u_{\lambda}(x)|^{2}\leq C|\lambda|^{4/3} for the cases (2) and (4) of Theorem 3.7.
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Proof can be achieved almost in a parallel way to that of Theorem 4.3
except the point where the estimate on the fundamental solution E(x) as
in Theorem 3.7 shall be used in our case.

Let us suppose that \max|u_{\lambda}| is attained at some point x_{0}\in\Omega and
dist(x_{0}, \partial\Omega)>c_{0} with some positive constant c_{0} . This can be guaranteed
for u_{\lambda} with \lambda large enough as it is known from Lemma 4 of [EK] that the
distance between the boundary \partial\Omega and such point x_{0} can be estimated from
below by d\lambda^{-1} for some positive constant d .

Set y=\lambda x , v(y)=u_{\lambda}(x)\lambda^{-1/2} , then F(D_{y})v(y)=v(y) .
Let h(y)\in C_{0}^{\infty}(\mathbb{R}^{2}) such that h(x)=0 for |y-y_{0}|>c_{0}\lambda where y_{0}=\lambda x_{0}

and h(x)=1 for |y-y_{0}|<c_{0}\lambda/2 . Then we have

F(D_{y})h(y)v(y)-h(y)v(y)= \sum_{|\alpha+\beta|\leq 2m,|\alpha|\geq 1}k_{\alpha\beta}D^{\alpha}h(y)D^{\beta}v(y)
.

Let E(x) be the fundamental solution of the operator F-I studied in
Theorem 3.7. The above expression becomes

h(y)v(y)= \int E(y-z)\sum k_{\alpha\beta}D^{\alpha}h(z)D^{\beta}v(z)dz .

Let us make a shift of coordinates that bring the origin to the point y_{0} . In
this situation the integration above shall be done in the domain c_{0}\lambda/2<

|z|<c_{0}\lambda . By the integration by parts we get

h(0)v(0)= \int v(z)\sum k_{\alpha\beta}’D^{\alpha}h(z)D^{\beta}E(-z)dz .

Here we use the estimate of Theorem 3.6.

|v(0)|^{2}=|h(0)v(0)|^{2} \leq C\int|v(z)|^{2}\int\sum|k_{\alpha\beta}’D^{\alpha}h(z)D^{\beta}E(-z)|^{2}dz .

\leq C_{1}\lambda^{-2}\lambda^{-1+2\beta}\int_{c_{0}\lambda/2<|z|<c_{0}\lambda}dz

\leq C_{2}\lambda^{-1+2\beta} .

where \beta=1/6 (resp. 1/4) for the cases (3) and (5) (resp. (2) and (4))
and C_{2} is a positive constant not depending on \lambda . Thus we have gotten
\max|u_{\lambda}|\leq C_{2}\lambda^{1/2+\beta} and the required estimate was shown.
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