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Boundedness of the multiple singular integral
operators on product spaces*

Guoen Hu, Bolin MA and Qiyu SUN
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Abstract. In this paper, we consider the LP(R™ x R™) boundedness for the multiple
singular integral operators of Fefferman type, defined by

Q(y1,3)

n h(|y1 |9 |y2') |y1|m|y2|n

Tf(z1,z2) = p. v./ f(@1 — y1, 72 — y2)dyr1dys,
Rm

xR

where y1 € R™, y2 € R™ and y! = y;/|yi|, h(r, s) is bounded on R4+ X Ry, Q satisfies the
cancellation condition

/ Q(yl,y5)dyy = / Q(y1,y5)dys = 0.
Sm—l sn—1

We show that if @ € L(log™ L)?(S™~! x S*~1), then T is bounded on LP(R™ x R") for
all 1 < p < o0.

Key words: multiple singular integral operator, Fourier transform estimate, Littlewood-
Paley theory.

1. Introduction and Statement of the Result

Let h(r, s) be a bounded function on Ry x Ry, and Q(y;,y2) a function
defined on S™~1 x §”71 (m,n > 2) satisfying

| oG = [ 0t =0, (1)
Sm—1 Sn—1
where S™~1 (resp. S"71) is the unit sphere of R” (resp. R™). For y € R™,
let ¥’ = y/|y|. Define the multiple singular integral operator
Tf(wl’ 172)
vl v2)

= p. v./ h(lyals lyel) 7= f (71 — y1, T2 — yo)dy1dya.  (2)
R™ xR |y1| |y2‘
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Operators of this type have been considered by many authors. For the
special case of h(r,s) = 1, R. Fefferman (2| proved that if {} satisfies ap-
propriate regularity condition, then T is bounded on LP(R™ x R™) for all
1 < p < . By Fourier transform estimate and the Littlewood-Paley esti-
mate, Duoandikoetxea [1] showed that for Q € LI(R™ xR"), T is a bounded
operator on LP(R™ x R™) for 1 < p < co. In this paper, we give a weeker
condition than others under which the bounded result on LP would hold.
Our statement is as following.

Theorem 1 Let ) and h be the same as above. Suppose that €} belongs
to the space L(log™ L)2(S™~! x S™~1), then the operator T defined by (2)
is bounded on LP(R™ x R™) for all 1 < p < oo.

2. Proof of Theorem 1
We begin with some preliminary lemmas.

Lemma 1 Let Q(y,y5) be integrable on S™~1 x S*~1. Then the mazimal

operator
Maq f(z1, 72)
- Qy1, ¥
=supr Ms " / *~(nll——-2—);f(331 — Y1, T2 — y2)dy1dy2
r,s>0 lyrl<r, ly2l<s |y1| |y2|

is bounded on LP(R™ x R™) for all 1 < p < oo with bound Cp m pl|||1-

This Lemma can be proved by the standard method of rotation of
Calderén and Zygmund, see also [2, p. 885].

Lemma 2 Let {0y }uvez be a sequence of Borel measures on R™ x R"
such that ||oy.|| < 1. Suppose that the mazimal operator

0" f(z1,22) = sup ||oue| * f(z1,22)]
w,v

is bounded on LPO(R™ x R™) for some py with 1 < pg < oco. Then the
inequality

(S ), <€ (S )

. 1 1 1
holds for all p with )5 _ §| < oL
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For the proof of Lemma 2, the readers see the analogous result in [1,
p.198].

Lemma 3 Let Q be a bounded function on S™ 1 x 8"~ . For u,v € Z,
denote

Ku,v (iEl, 172)
= |z1|"™x2| " h(|z1], 22 (2], 93/2)X{2n§|x1]§2u+1,2v<|m2|52v+1}(331,332)-

Then there exist positive constants C and € which are independent of , u
and v, such that for & € R™, & € R™, |&], [&| # 0,

| Kuw(€1,6)] < CllQ]loo(12461]|29€2]) 5. (3)

On the other hand, if Q is integrable on S™~ ! x S™1 and satisfies the
cancellation condition (1), then

[ Kuw(€1,82)| < ClIQ1]126112°€2], (4)
where I?u\v is the Fourier transform of K, ,.
The proof of is implied in [1, p.193-194].

Remark Let 0,, = Ky,(21,22) in Lamma 2. In the situation, by the
estimates in (3) and (4), following the same proofs as in [3], we can prove
the maximal operator ¢* is bounded on L?. By boot-strap method, we can

obtain that the maximal operator ¢* is bounded on LP for 1 < p < oo and
holds for all 1 < p < oo.

Proof of Theorem 1. Let ¢! and ¢? be two Schwarz functions on R™ and
R™ respectively, such that U

(a) 0<¢', ¢* <1, supp¢' C {zx € R™, 1/2 < |z| < 2}, supp¢® C {y €
R", 1/2 < |y| < 2}

(b) S ot(2%x)? = 30 #%(2y)? = 1 for x € R™, y € R™ such
that |z|, |y| # 0.

Set ¢L(z) = ¢'(2Fz) and ¢?(y) = #%(2'y). Define the operators S} in R™

and Sl‘r2 in R™ by

SLE) = dh(ENF (&), SPh(&) = BR(E)h(E)



662 G. Hu, B. Ma and Q. Sun

and S,i ®512 in R™ x R™ by

(ST® S21) (€1, £2) = L€ B (E2) F(E1, £2).

For fixed k,l € Z and o0, as in the remark as above, denote by Uy, the
operator defined by

U, f(z1, 22) Z L ® 82 0wy * (S, ®82 ) f)(x1,x0).

and Remark via the Littlewood-Paley theory (see [5]) state that
1Ukifllp < ClIQULNSllp, 1 <p < oo. (5)

Decompose the operator T as

Tf(x1,z2)
== Z Z Si_k ® S?,-;O’z‘,j * ((Szlt—k ® Sg_l)f)(:m, T2)
kl uw
= Uif(zi, o)+ Y Unif(z1,22)
k,1<0 k<0,1>0
+ Z Uk,lf(ﬂn,l”z) + Z Uk,lf($17w2)
k>0,1<0 k>0,0>0

= Tif(x1,x2) + Tunf(z1, z2) + Tin f (1, z2) + Tiv f(z1, z2).

By (5) together with Plancherel’s theorem we see that

LAE]
2
<C Z Jowe < (81 @ 5201
= Z /m an |Gun (&1, 62) f(€1, &) (24 7F¢1) 9 (2V 1) [P e dey
<o@? Y Sk S
< C22Y°|fI13 (6)

Interpolation between the inequalities (5) and (6) shows that for 1 < p < oo,
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there exists a positive constant é = d, > 0 such that
Uk fllp < C22°%| ]l

This in turn leads to the estimate

ITifllp, < Clifllp Y 2% > 2 < Cllfllpy 1<p<oc0.

k<0 <0

Now we turn our attention to Tiy. Let Ey = {(z,z5) € S™1 x §*~1,
1Q(z], 75)| < 1} and Eg = {(z}, ) € S x S71, 2971 < (=, zh)| <
2} for positive integer d. Denote by 4 the restriction of Q on Ez. Our
assumption implies that Y ., d?2%|Ey| < co. Set

Utdt,v(ylva)

= h(ly1ls ly2Dlya| ™™ |yl 7" Qaly1, y2) X (2e <y | <29+, 20 <lyal <2v+1} (Y15 Y2),

and U,‘jl defined in the same way as that in the definition of Uy, but with
0w, Teplacing by ag,v. Again by Lemma 1l and Lemma, 2,

UL fllp < ClQalllIfllps 1 <p < co. (7)

Let N be a integer and N > 2¢~!, where ¢ is the positive constant in
Lemma 3. Write

Try f(z1, x2)

=Y e+ Y. S S Udif(a, )

10 k>0 d>0 0<k<Nd 0<I<Nd
d d
+3 ) D U f(enm)+ ) >N U f(x,30)
d>0 0<k<NdI>Nd d>0 k>Nd >0

= Ty f(z1, 22) + Ty f (21, 22) + T f (21, 72) + Ty f (21, 22)
It follows from that

VR £113
¢y [ (6, 8) (6, 86" 2 )8 ) dedes
< C(|Qallo2™*27H% Y (S ® So_) I3

< O(/1Qalloo2™%27) 2| F113. (8)
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Combining the estimate (7) and (8) we thus have that for 1 < p < oo,
UL fllp < ClQIE27 527 £]),

where 0 <t < 1 is a constant depending only on p. So,

1T fllo <€ ) 27 27| fll, < Cllfllp, 1<p<co.
k,1>0
Similarly, we have

ITRfle < CY . Y UL

d>00<k<Nd,[>Nd

< C Z 2td Z 2—tsk2——tsl||pr

d>0 O0<k<Nd,l>Nd
< O 2N ), < ¢ ],

d>0

and

T Il < ClL Nl

On the other hand, it is easy to see that

I flle < CY 1l Y- Y lIfle

d>0 0<k<NdO<I<Nd
< CY d2UE4||fllp < Clflp
d>0

It remains to estimate 7j; and Ti;;. We only consider T7p, the other can
be treated in the same way. Let Q(z}) = [|Q(, :1:’2)||L1 gm-1). Set Eo = {xf, €
Sm1 Q(z) < 1}, and Eg = {zh, € S71) 241 < Q(xh) < 2%} for positive
integer d. By Jensen’s inequality, we see that Q € L(log™ L)2(s™) and
SO Y 4s0 d22¢|Ey| < +00. Denote by Qg the restriction of Q on S™~! x Ej.
Let

od ,(y1,y2) = h(|y1ls ly2D Iyl ™™yl " Qay1, v2)

X {2u <y |<2u+1, 20 <|ya|<2v+1} (Y1, Y2)

and U,‘j ; be defined in the same way as that in the definition of Uy, but
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——~—

with oy, replacing by ¢ ,. We claim that

———

ot (61,€)| < Cmin {212°61]12°6| 5, 24| Bylj261| .

In fact, the estimate

Ug,v(€1a£2>‘ < C2YEyl|24¢)]

follows from the cancellation property of Q(z1,z2) on z1. Write

2'u+1

ol (6,6)] /
dr ds

‘/ 1362%/ (efréren )Qd($1,$2)d5’71d '
. i T s

For each fixed r, &, set

2u+1

Qusry (@) = [ (e"8m — 1)y(at, ap ).
Sm—l
A well-known result of Duoandikoetxea and Rubio de Francia [2] shows that
2v 41
/ l / e%6272 / (e — )Qd(xl’ 372)dx1d-’52
S’n 1 Sm 1
< C|2°&| ™|, g | Loo (sm-1)
| et bz,
Sm—l

< C24)2°6| % |re|

ds

< Cl2%6|7%ré1 |

Loo(Sn—l)

Straightforward computation then establishes our claim. Plancherel’s the-
orem now tells us that

IUZ,£ll2 < Cmin{2¢2F27!) 2| B[ 2%} £
On the other hand, We know that

U2, £llp < ClIQll1 I fllp < C2UE| fllpy 1< p < oo (9)
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It follows from the last two inequalities that for each 1 < p < oo,

[ fllp < Cmin {29 Byl 227!, 22| By ) £,

< Cmin {2F2d=et atkod g L) ],
with ¢t = t, € (0,1) (note that 24| Ey| < C). Write

TIIf $1,$2 ZZUkl‘f T1,T2 +ZZ Z Ulkf w1a$2)

k<0 1>0 k<0 d>00<I<Nd

£33 Ufhf(en,zo)

k<0d>01>Nd

Therefore,
Y X MRSl <€D 227 fllp < Cllfllp,
k<0 >0 k<0 >0

and

S 3 ST UL Sl < Clifl, Yo 2%y 28 3 a7t < ¢ £l

k<0d>01>Nd k<0 d>0 I>Nd

Finally, we have,

S5 S Ul < Cllflle Y 2% 3 2¢d|Eal < C|lfllp

k<0d>00<I<Nd k<0 d>0

This completes the proof of Theorem 1.
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