Moser type theorem for toric hyperKähler quotients

Masato Ikeda

(Received October 22, 1999)

Abstract

We consider the symplectic geometry of toric hyperKähler quotients. Under a mild condition, we obtain that toric hyperKähler quotients have stability about its underlying symplectic structures.

Key words: hyperKähler quotients, symplectic manifolds, Hamiltonian torus actions, Moser theorem.

1. Introduction

Symplectic manifolds have the properties of both softness and hardness. For softness, there is a classical theorem due to Moser [6].

Theorem 1.1 (Moser) Let M be a closed manifold and $\left\{\omega_{t}\right\}_{0 \leq t \leq 1} a$ smooth family of cohomologous symplectic forms on M. Then there exists $\left\{\phi_{t}\right\}_{0 \leq t \leq 1}$ a smooth family of diffeomorphisms of M such that $\phi_{t}^{*} \omega_{t}=\omega_{0}$ for all $t \in[0,1]$.

This theorem is proved by constructing a family of vector fields $\left\{Z_{t}\right\}_{0 \leq t \leq 1}$ whose integral flows induce $\left\{\phi_{t}\right\}_{0 \leq t \leq 1}$. Therefore the completeness of these vector fields is necessary. But this is automatically satisfied since M is compact. In this paper, we prove that an analog of this theorem holds in the case of not necessarily compact but complete hyperKähler quotients under a mild condition.

Let (M, g, I, J, K) be a complete hyperKähler manifold, i.e. g is a complete Riemannian metric and I, J, K are almost complex structures of M satisfying
(i) g is Hermitian with respect to I, J, K,
(ii) $I^{2}=-1, J^{2}=-1, K^{2}=-1, I J=K, J K=I, K I=J$,
(iii) $\nabla I=0, \nabla J=0, \nabla K=0$,
where ∇ is the Levi-Civita connection of g.
We define the 2 -forms $\omega_{I}, \omega_{J}, \omega_{K}$ by $\omega_{I}(X, Y)=g(I X, Y)$, etc. From the condition above, it follows that I, J, K are integrable and $\omega_{I}, \omega_{J}, \omega_{K}$

[^0]are Kähler with respect to I, J, K respectively.
Let G be a compact connected Lie group and \mathfrak{g} its Lie algebra. We assume that G acts on M preserving its hyperKähler structure with a moment map
$$
\mu=\left(\mu_{I}, \mu_{J}, \mu_{K}\right): M \rightarrow \mathfrak{g}^{*} \times \mathfrak{g}^{*} \times \mathfrak{g}^{*}
$$
i.e. G preserves the metric g and acts on M in a Hamiltonian way for every symplectic forms $\omega_{I}, \omega_{J}, \omega_{K}$ with moment maps $\mu_{I}, \mu_{J}, \mu_{K}$ respectively. Note that μ is a G-equivariant map.

We denote by \mathcal{C} the set of G-invariant elements of \mathfrak{g}^{*}. Let $\xi=$ $\left(\xi_{I}, \xi_{J}, \xi_{K}\right) \in \mathcal{C} \times \mathcal{C} \times \mathcal{C}$ be a regular value of μ. Then $M^{\xi}=\mu^{-1}(\xi)$ is a G-invariant smooth submanifold of M. If G acts on M^{ξ} freely, the quotient manifold M^{ξ} / G has the three induced Kähler forms $\omega_{I}^{\xi}, \omega_{J}^{\xi}, \omega_{K}^{\xi}$ from $\omega_{I}, \omega_{J}, \omega_{K}$ and the induced metric from g^{ξ} as the Riemannian submersion $M^{\xi} \rightarrow M^{\xi} / G$. These define the hyperKähler structure on M^{ξ} / G. This manifold M^{ξ} / G is called the hyperKähler quotient of M by the moment map μ. For further detail, we refer to Section 3 in [4].

In Section 2, we prove the Moser type theorem for hyperKähler quotients. Roughly speaking, under a mild condition, the symplectic diffeomorphism class of the hyperKähler quotient $\left(M^{\xi} / G, \omega_{I}^{\xi}\right)$ is independent of ξ_{J} and ξ_{K} (Theorem 2.1). By Duistermaat and Heckman [3], we note that the cohomology class of ω_{I}^{ξ} changes for various choice of ξ_{I} in general.

The idea of the proof is as follows. We take an embedded path $\gamma=$ $\left(\gamma_{I}, \gamma_{J}, \gamma_{K}\right):[0,1] \rightarrow(\mathcal{C} \times \mathcal{C} \times \mathcal{C}) \cap \mu(M)$ such that γ_{I} is a constant ξ_{I} which is a regular value of μ_{I}. We also denote by γ its image. Then $M^{\gamma}=\mu^{-1}(\gamma)$ is a G-invariant smooth submanifold of M. If G acts on M^{γ} freely, we obtain a family of symplectic manifolds $\left(M^{\gamma(t)} / G, \omega_{I}^{\gamma(t)}\right), t \in[0,1]$ in the manifold M^{γ} / G. These manifolds are considered as symplectic submanifolds of the symplectic quotient of $\left(M, \omega_{I}\right)$ by the moment map μ_{I} at the point ξ_{I}. Because γ_{I} is constant, M^{γ} / G has the induced closed 2-form ω_{I}^{γ} from ω_{I}. This closed 2-form is necessarily degenerate. By using the kernel of ω_{I}^{γ}, we construct the vector field Z on M^{γ} / G. If Z is complete, we can construct symplectic diffeomorphisms between $\left(M^{\gamma(0)} / G, \omega_{I}^{\gamma(0)}\right)$ and $\left(M^{\gamma(t)} / G, \omega_{I}^{\gamma(t)}\right)$ for all $t \in[0,1]$ by using its integral flows.

The assumptions we used here consist of two parts:
(i) the action of G on M^{γ} is free.
(ii) the vector field Z on M^{γ} / G is complete.

In Section 3, we consider toric hyperKähler linear actions on quarternionic vector spaces with certain moment maps. A sufficient condition for (i) is given by Konno [5]. We prove that the assumption (ii) holds for this case (Theorem 3.1).

This problem was suggested to me by Professor K. Ono. I should like to express my gratitude to him for suggesting this problem.

2. Moser type theorem

We use here the same notations in introduction.
Let (M, g, I, J, K) be a complete hyperKähler manifold and G a compact connected Lie group. We denote by \mathfrak{g} its Lie algebra. We assume that G acts on M preserving its hyperKähler structure with a moment map

$$
\mu=\left(\mu_{I}, \mu_{J}, \mu_{K}\right): M \rightarrow \mathfrak{g}^{*} \times \mathfrak{g}^{*} \times \mathfrak{g}^{*} .
$$

Let $\xi_{I} \in \mathcal{C}$ be a regular value of μ_{I}. We define the space \mathcal{B} by

$$
\mathcal{B}=\left(\xi_{I} \times \mathcal{C} \times \mathcal{C}\right) \cap \mu(M)
$$

We take an embedded path

$$
\gamma=\left(\gamma_{I}, \gamma_{J}, \gamma_{K}\right):[0,1] \rightarrow \mathcal{B} .
$$

Let Y^{1}, \ldots, Y^{n} be a basis of \mathfrak{g}. We define the matrix $g(x)=\left(g_{i j}(x)\right)$ by

$$
g_{i j}(x)=g\left(\underline{Y}_{x}^{i}, \underline{Y}_{x}^{j}\right), \quad x \in M^{\gamma}
$$

where we denote by \underline{Y} the fundamental vector field associated to $Y \in \mathfrak{g}$. By Lemma 2.2 below, every point of \mathcal{B} is a regular value of μ. So the action of G on M^{γ} is locally free. Hence we have $\operatorname{det} g(x) \neq 0$.
We denote by $g^{-1}(x)=\left(g^{i j}(x)\right)$ the inverse matrix of $g(x)$. We define the function $\nu: M^{\gamma} \rightarrow \mathbb{R}$ by

$$
\nu(x)=\left|g^{-1}(x)\right|=\left(\sum_{i, j=1}^{n}\left|g^{i j}(x)\right|^{2}\right)^{\frac{1}{2}}
$$

Note that the boundedness of ν does not depend on the choice of a basis of \mathfrak{g}.

The main theorem in this section is the following:
Theorem 2.1 If G acts on M^{γ} freely and $\nu: M^{\gamma} \rightarrow \mathbb{R}$ is a bounded
function, then the manifolds $\left(M^{\gamma(t)} / G, \omega_{I}^{\gamma(t)}\right), t \in[0,1]$ are symplectic diffeomorphic each other.

This theorem follows from the arguments below.
First of all, we shall review the tangent spaces of the manifolds M^{γ} and M^{ξ}. We set $\xi=\mu(x)=\gamma(t)$. The tangent space of M^{γ} at x is the inverse image of $T_{\mu(x)} \gamma$ by $(d \mu)_{x}$. The tangent vector $X_{x} \in T_{x} M$ belongs to $T_{x} M^{\gamma}$ if and only if there exists $s \in \mathbb{R}$ and the following equations are satisfied:

$$
\begin{align*}
g\left(I \underline{Y}_{x}, X_{x}\right) & =0 \\
g\left(J \underline{Y}_{x}, X_{x}\right) & =s\left\langle\dot{\gamma}_{J}(t), Y\right\rangle \\
g\left(K \underline{Y}_{x}, X_{x}\right) & =s\left\langle\dot{\gamma}_{K}(t), Y\right\rangle \quad \text { for all } Y \in \mathfrak{g} \tag{2.1}
\end{align*}
$$

The tangent space of M^{ξ} at x is the kernel of $(d \mu)_{x}$. The tangent vector $X_{x} \in T_{x} M$ belongs to $T_{x} M^{\xi}$ if and only if we can take $s=0$ in the above condition. The tangent space of G-orbit at x is generated by the fundamental vector fields. Every element of $T_{x}(G x)$ is represented by \underline{Y}_{x} for some $Y \in \mathfrak{g}$. It is easy to see that $T_{x}(G x) \subset T_{x} M^{\xi} \subset T_{x} M^{\gamma}$.

Lemma 2.2 The vector subspaces of $T_{x} M$

$$
T_{x}(G x), I T_{x}(G x), J T_{x}(G x) \text { and } K T_{x}(G x)
$$

are mutually orthogonal with respect to g.
Proof. \quad Since $\mu_{I}(h x)=\mu_{I}(x)$ for all $h \in G$, it follows that $\left(d \mu_{I}\right)_{x} \underline{X}_{x}=0$ for all $X \in \mathfrak{g}$. By the property of moment maps, for every $X, Y \in \mathfrak{g}$, we have $g\left(I \underline{Y}_{x}, \underline{X}_{x}\right)=\left\langle\left(d \mu_{I}\right)_{x} \underline{X}_{x}, Y\right\rangle=0$. Hence $T_{x}(G x)$ and $I T_{x}(G x)$ are mutually orthogonal. The other cases are proved in the same way.

Lemma 2.3 Every point of \mathcal{B} is a regular value of μ.
Proof. Take an arbitrary $\left(\xi_{I}, \xi_{J}, \xi_{K}\right) \in \mathcal{B}$ and an arbitrary $x \in$ $\mu^{-1}\left(\xi_{I}, \xi_{J}, \xi_{K}\right)$. Because x is a regular value of μ_{I}, we have $g_{i i}(x) \neq 0$. For every $\left(\xi_{I}^{\prime}, \xi_{J}^{\prime}, \xi_{K}^{\prime}\right) \in \mathfrak{g}^{*} \times \mathfrak{g}^{*} \times \mathfrak{g}^{*}$, we define the tangent vector in $T_{x} M$

$$
X_{x}=\sum_{i=1}^{n} \frac{1}{g_{i i}(x)}\left(\left\langle\xi_{I}^{\prime}, Y^{i}\right\rangle I \underline{Y}_{x}^{i}+\left\langle\xi_{J}^{\prime}, Y^{i}\right\rangle J \underline{Y}_{x}^{i}+\left\langle\xi_{K}^{\prime}, Y^{i}\right\rangle K \underline{Y}_{x}^{i}\right)
$$

By using Lemma 2.2, it is easy to see that $(d \mu)_{x} X_{x}=\left(\xi_{I}^{\prime}, \xi_{J}^{\prime}, \xi_{K}^{\prime}\right)$. Therefore $(d \mu)_{x}$ is surjective.

We assume that G acts on M^{γ} freely. Then the canonical projection

$$
p: M^{\gamma} \rightarrow M^{\gamma} / G
$$

is submersion.
Lemma 2.4 The closed 2-form ω_{I} on M^{γ} induces the closed 2-form ω_{I}^{γ} on M^{γ} / G by

$$
\begin{equation*}
\left(\omega_{I}^{\gamma}\right)_{p(x)}\left(X_{p(x)}, Y_{p(x)}\right)=\omega_{I}\left(X_{x}, Y_{x}\right), \quad X_{p(x)}, Y_{p(x)} \in T_{p(x)}\left(M^{\gamma} / G\right), \tag{2.2}
\end{equation*}
$$

where X_{x} and Y_{x} are any tangent vectors in $T_{x} M^{\gamma}$ which project to $X_{p(x)}$ and $Y_{p(x)}$ respectively.
Proof. First, we show that the definition (2.2) is independent of the choice of a point in the G-orbit $p(x)$. From (2.1), we obtain that

$$
\begin{equation*}
\omega_{I}\left(T_{x} M^{\gamma}, T_{x}(G x)\right)=0 . \tag{2.3}
\end{equation*}
$$

For any $h \in G$, we take tangent vectors $X_{h x}^{\prime}$ and $Y_{h x}^{\prime}$ in $T_{h x} M^{\gamma}$ which project to $X_{p(x)}$ and $Y_{p(x)}$ respectively. Because of $p(h x)=p(x)$, it follows that both $(d h)_{x} X_{x}-X_{h x}^{\prime}$ and $(d h)_{x} Y_{x}-Y_{h x}^{\prime}$ belong to $T_{h x}(G x)$, where we identify the element $h \in G$ and the diffeomorphism $M^{\gamma} \rightarrow M^{\gamma}, x \mapsto h x$. By (2.3) and the G-invariance of ω_{I}, we have $\omega_{I}\left(X_{h x}^{\prime}, Y_{h x}^{\prime}\right)=\omega_{I}\left(X_{x}, Y_{x}\right)$. So (2.2) is well-defined.

Next, we show that ω_{I}^{γ} is closed. By construction, we have $p^{*}\left(d \omega_{I}^{\gamma}\right)=$ $d\left(p^{*} \omega_{I}^{\gamma}\right)=d \omega_{I}$. Since p is submersion and ω_{I} is closed, so is ω_{I}^{γ}.

Because the manifold $\left(M^{\xi} / G, \omega_{I}^{\xi}\right)$ has codimension one in ($M^{\gamma} / G, \omega_{I}^{\gamma}$) and the 2 -form ω_{I}^{ξ} is non-degenerate, the 2 -form ω_{I}^{γ} has 1-dimensional kernel.

We define the submersion

$$
\bar{\mu}: M^{\gamma} / G \rightarrow \gamma
$$

by

$$
\bar{\mu}(p(x))=\mu(x) .
$$

Lemma 2.5 The restriction of the differential of $\bar{\mu}$

$$
(d \bar{\mu})_{p(x)}: \operatorname{ker}\left(\omega_{I}^{\gamma}\right)_{p(x)} \rightarrow T_{\mu(x)} \gamma
$$

is a linear isomorphism.
Proof. Because $(d \bar{\mu})_{p(x)}$ is a linear map between 1-dimensional vector spaces, it is enough to show that $(d \bar{\mu})_{p(x)}$ is non-trivial. Let $X_{p(x)} \in$ $\operatorname{ker}\left(\omega_{I}^{\gamma}\right)_{p(x)}$ be a non-zero element. We take a tangent vector $X_{x} \in T_{x} M^{\gamma}$ which project to $X_{p(x)}$. If X_{x} belongs to $T_{x} M^{\xi}$, it follows that $X_{x}=0$ from the non-degeneracy of ω_{I} on $T_{x} M^{\xi}$. This contradicts that $X_{p(x)}$ is non-zero. Hence X_{x} does not belong to $T_{x} M^{\xi}$. This means that $(d \mu)_{x} X_{x} \neq 0$. Hence we conclude that $(d \bar{\mu})_{p(x)} X_{p(x)} \neq 0$.

We define the vector field Z on M^{γ} / G by the following conditions:

$$
\begin{align*}
(d \bar{\mu})_{p(x)} Z_{p(x)} & =\dot{\gamma}(t) \\
Z_{p(x)} & \in \operatorname{ker}\left(\omega_{I}^{\gamma}\right)_{p(x)} \\
\mu(x) & =\gamma(t) \tag{2.4}
\end{align*}
$$

By Lemma 2.5, Z is uniquely determined by these conditions. Because $\dot{\gamma}(t)$ is non-zero, Z is a nowhere vanishing vector field.

We shall consider the submersion

$$
p: M^{\gamma} \rightarrow M^{\gamma} / G
$$

The vertical subspace V_{x} of $T_{x} M^{\gamma}$ is defined by $T_{x}(G x)$. The horizontal subspace H_{x} of $T_{x} M^{\gamma}$ is defined by the orthogonal complement of $T_{x}(G x)$ in $T_{x} M^{\gamma}$. The restriction of $(d p)_{x}$ to the horizontal subspace H_{x} is a linear isomorphism between H_{x} and $T_{p(x)}\left(M^{\gamma} / G\right)$. Therefore any tangent vector $X_{p(x)} \in T_{p(x)}\left(M^{\gamma} / G\right)$ has a unique horizontal lift $\widetilde{X}_{x} \in H_{x}$.

Lemma 2.6 The horizontal lift of $Z_{p(x)}$ is given by

$$
\widetilde{Z}_{x}=\sum_{i=1}^{n} a_{J}^{i}(x) J \underline{Y}_{x}^{i}+a_{K}^{i}(x) K \underline{Y}_{x}^{i}
$$

where $a_{J}^{i}(x)$ and $a_{K}^{i}(x)$ are uniquely determined by the following equation

$$
\left(\begin{array}{ccc}
g_{11}(x) & \cdots & g_{1 n}(x) \\
\vdots & & \vdots \\
g_{n 1}(x) & \cdots & g_{n n}(x)
\end{array}\right)\left(\begin{array}{cc}
a_{J}^{1}(x) & a_{K}^{1}(x) \\
\vdots & \vdots \\
a_{J}^{n}(x) & a_{K}^{n}(x)
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\left\langle\dot{\gamma}_{J}(t), Y^{1}\right\rangle & \left\langle\dot{\gamma}_{K}(t), Y^{1}\right\rangle \tag{2.5}\\
\vdots & \vdots \\
\left\langle\dot{\gamma}_{J}(t), Y^{n}\right\rangle & \left\langle\dot{\gamma}_{K}(t), Y^{n}\right\rangle
\end{array}\right)
$$

Proof. From $(2.1),(2.5)$ and Lemma 2.2, it is easy to check that $(d p)_{x} \widetilde{Z}_{x} \in$ $\operatorname{ker}\left(\omega_{I}^{\gamma}\right)_{p(x)}, \widetilde{Z}_{x} \in H_{x}$ and $(d \bar{\mu})_{p(x)}(d p)_{x} \widetilde{Z}_{x}=(d \mu)_{x} \widetilde{Z}_{x}=\dot{\gamma}(t)$. Because the restriction of $(d \bar{\mu})_{p(x)}$ to $\operatorname{ker}\left(\omega_{I}^{\gamma}\right)_{p(x)}$ is a linear isomorphism, we conclude that $(d p)_{x} \widetilde{Z}_{x}=Z_{p(x)}$. Therefore \widetilde{Z}_{x} is the horizontal lift of $Z_{p(x)}$.

Lemma 2.7 There exists some constant $K>0$ such that

$$
g\left(\widetilde{Z}_{x}, \widetilde{Z}_{x}\right) \leq K \nu(x) \quad \text { for all } x \in M^{\gamma}
$$

Proof. We put

$$
K_{1}=\max _{t \in[0,1]}\left(\sum_{i=1}^{n}\left\langle\dot{\gamma}_{J}(t), Y^{i}\right\rangle^{2}+\left\langle\dot{\gamma}_{K}(t), Y^{i}\right\rangle^{2}\right)^{\frac{1}{2}}
$$

It follows from (2.5) that

$$
\left|a_{J}^{i}(x)\right|,\left|a_{K}^{i}(x)\right| \leq K_{1} \nu(x)
$$

By using Lemma 2.2 and (2.5), $g\left(\widetilde{Z}_{x}, \widetilde{Z}_{x}\right)$ is estimated as follows:

$$
\begin{aligned}
g\left(\widetilde{Z}_{x}, \widetilde{Z}_{x}\right) & =\sum_{i, j=1}^{n} a_{J}^{i}(x) a_{J}^{j}(x) g_{i j}(x)+a_{K}^{i}(x) a_{K}^{j}(x) g_{i j}(x) \\
& =\sum_{i=1}^{n} a_{J}^{i}(x)\left\langle\dot{\gamma}_{J}(t), Y^{i}\right\rangle+a_{K}^{i}(x)\left\langle\dot{\gamma}_{K}(t), Y^{i}\right\rangle \\
& \leq 2 K_{1}^{2} \nu(x)
\end{aligned}
$$

Proposition 2.8 If G acts on M^{γ} freely and $\nu: M^{\gamma} \rightarrow \mathbb{R}$ is a bounded function, then the vector field Z is complete. Its integral curves induce the symplectic diffeomorphism

$$
\phi_{t}:\left(M^{\gamma(0)} / G, \omega_{I}^{\gamma(0)}\right) \rightarrow\left(M^{\gamma(t)} / G, \omega_{I}^{\gamma(t)}\right) \quad \text { for every } t \in[0,1]
$$

Proof. By the boundedness of ν and Lemma 2.7, there exists some con-
stant K^{\prime} such that

$$
g\left(\widetilde{Z}_{x}, \widetilde{Z}_{x}\right) \leq K^{\prime} \quad \text { for all } x \in M^{\gamma}
$$

From this estimate and the completeness of M, it follows that \widetilde{Z} is complete. By using its integral flows and the formulation (2.4), we can construct canonical identifications

$$
\phi_{t}: M^{\gamma(0)} / G \rightarrow M^{\gamma(t)} / G
$$

From (2.4) and the closedness of ω_{I}^{γ} from Lemma 2.4, we have

$$
\frac{d}{d t}\left(\iota_{t} \circ \phi_{t}\right)^{*} \omega_{I}^{\gamma}=\left(\iota_{t} \circ \phi_{t}\right)^{*} \mathcal{L}_{Z} \omega_{I}^{\gamma}=\left(\iota_{t} \circ \phi_{t}\right)^{*}\left(d i_{Z} \omega_{I}^{\gamma}+i_{Z} d \omega_{I}^{\gamma}\right)=0
$$

where ι_{t} denotes the inclusion map $M^{\gamma(t)} / G \rightarrow M^{\gamma} / G$. Therefore we conclude that $\phi_{t}^{*} \omega_{I}^{\gamma(t)}=\omega_{I}^{\gamma(0)}$.

3. Toric hyperKähler linear actions

In this section, we consider toric hyperKähler linear actions on quarternionic vector spaces.

Let $\mathbb{H}=\{a+b I+c J+d K: a, b, c, d \in \mathbb{R}\}$ be the quarternion algebra and $\operatorname{Im} \mathbb{H}$ the purely quarternions in \mathbb{H}. The right \mathbb{H}-linear vector space

$$
\mathbb{H}^{N}=\left\{x=\left(x_{1}, \ldots, x_{N}\right): x_{j} \in \mathbb{H}\right\}
$$

has the Euclidean metric g of $\mathbb{R}^{4 N}$ and the three complex structures I, J, K. These define the hyperKähler structure on \mathbb{H}^{N}. We denote by ω_{I}, ω_{J}, ω_{K} the associated Kähler forms.

The real torus

$$
T^{N}=\left\{z=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}:\left|z_{j}\right|=1\right\}
$$

acts on \mathbb{H}^{N} by

$$
z \cdot x=\left(z_{1} x_{1}, \ldots, z_{N} x_{N}\right)
$$

This action preserves the hyperKähler structure on \mathbb{H}^{N}. We denote by \mathfrak{t}^{N} the Lie algebra of T^{N}. Let X^{1}, \ldots, X^{N} be a basis of \mathfrak{t}^{N} satisfying

$$
\exp \left(\sum_{j=1}^{N} t_{j} X^{j}\right)=\left(e^{2 \pi \sqrt{-1} t_{1}}, \ldots, e^{2 \pi \sqrt{-1} t_{N}}\right)
$$

where exp: $\mathfrak{t}^{N} \rightarrow T^{N}$ is the exponential map. We denote by $\mathfrak{t}_{\mathbb{Z}}^{N}$ the kernel of exp. Let u_{1}, \ldots, u_{N} be the dual basis of X^{1}, \ldots, X^{N}. We identify $\left(\mathfrak{t}^{N}\right)^{*}$ with \mathbb{R}^{N} by using this basis. The moment map

$$
\mu_{0}: \mathbb{H}^{N} \rightarrow\left(\mathfrak{t}^{N}\right)^{*} \otimes \operatorname{Im} \mathbb{H}
$$

is given by

$$
\mu_{0}(x)=\pi\left(\overline{x_{1}} I x_{1}, \ldots, \overline{x_{N}} I x_{N}\right),
$$

where \bar{x} denotes the quarternionic conjugate of x.
Let G be an n-dimensional subtorus of T^{N} and \mathfrak{g} its Lie algebra. We define the lattice $\mathfrak{g}_{\mathbb{Z}}=\mathfrak{g} \cap \mathfrak{t}_{\mathbb{Z}}^{N}$. The basis Y^{1}, \ldots, Y^{n} of \mathfrak{g} is represented by

$$
Y^{i}=\sum_{j=1}^{N} a_{i j} X^{j}, \quad i=1, \ldots, n,
$$

where the matrix

$$
A=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 N} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n N}
\end{array}\right)
$$

is a rational matrix of maximal rank. We identify \mathfrak{g}^{*} with \mathbb{R}^{n} by using the dual basis of Y^{1}, \ldots, Y^{n}. We denote by ι^{*} the dual of the inclusion map $\mathfrak{g} \rightarrow \mathfrak{t}^{N}$. Note that

$$
\begin{equation*}
\iota^{*} u_{j}={ }^{t} \mathbf{a}_{j}, \quad j=1, \ldots, N . \tag{3.1}
\end{equation*}
$$

The group G also acts on \mathbb{H}^{N} preserving its hyperKähler structure. The moment map

$$
\mu: \mathbb{H}^{N} \rightarrow \mathfrak{g}^{*} \otimes \operatorname{Im} \mathbb{H}
$$

is given by

$$
\mu(x)=\left(\iota^{*} \circ \mu_{0}\right)(x)=\pi\left(\sum_{j=1}^{N} a_{1 j} \overline{x_{j}} I x_{j}, \ldots, \sum_{j=1}^{N} a_{n j} \overline{x_{j}} I x_{j}\right) .
$$

It is easy to see that μ is surjective. We put $M=\mathbb{H}^{N}$ and use the same notations M^{ξ} and M^{γ} in the preceding sections.

The main theorem in this section is the following:

Theorem 3.1 Suppose a subtorus G of T^{N} satisfies the condition (ii) of Proposition 3.2 below. For an arbitrary $\xi=\left(\xi_{I}, \xi_{J}, \xi_{K}\right) \in \mathfrak{g}^{*} \times \mathfrak{g}^{*} \times$ \mathfrak{g}^{*} such that ξ_{I} is a regular value of μ_{I}, the toric hyperKähler quotient M^{ξ} / G is smooth and the symplectic diffeomorphism class of $\left(M^{\xi} / G, \omega_{I}^{\xi}\right)$ is independent of ξ_{J} and ξ_{K}.

This theorem follows from Theorem 2.1 and Propositions 3.2 and 3.5 below.

Proposition 3.2 (Konno) Let ξ be a regular value of μ. Then following (i) and (ii) are equivalent:
(i) The action of G on M^{ξ} is free.
(ii) For every $\mathcal{J} \subset\{1,2, \ldots, N\}$ such that $\left\{\iota^{*} u_{j}\right\}_{j \in \mathcal{J}}$ forms a basis of \mathfrak{g}^{*},

$$
\mathfrak{t}_{\mathbb{Z}}^{N}=\mathfrak{g}_{\mathbb{Z}} \oplus \bigoplus_{j \in \mathcal{J}^{c}} \mathbb{Z} X^{j}
$$

holds as a \mathbb{Z}-module, where \mathcal{J}^{c} denotes $\{1, \ldots, N\}-\mathcal{J}$.
Proposition 3.3 (Konno) Fix an element $\xi=\left(\xi_{I}, \xi_{J}, \xi_{K}\right) \in \mathfrak{g}^{*} \times \mathfrak{g}^{*} \times \mathfrak{g}^{*}$. Then the following (i) and (ii) are equivalent:
(i) ξ is a regular value of μ.
(ii) For any $\mathcal{J} \subset\{1, \ldots, N\}$, whose number of elements is less than n, ξ_{I}, ξ_{J}, ξ_{K} are not simultaneously contained in the linear subspace of \mathfrak{g}^{*} spanned by $\left\{\iota^{*} u_{j}\right\}_{j \in \mathcal{J}}$.

For the proofs of these propositions, we refer to [5].
The fundamental vector field \underline{Y}^{i} associated to $Y^{i} \in \mathfrak{g}$ is

$$
\underline{Y}_{x}^{i}=\left(2 \pi a_{i 1} I x_{1}, \ldots, 2 \pi a_{i N} I x_{N}\right) \in \mathbb{H}^{N}, \quad i=1, \ldots, n .
$$

So we have

$$
g_{i j}(x)=g\left(\underline{Y}_{x}^{i}, \underline{Y}_{x}^{j}\right)=4 \pi^{2} \sum_{k=1}^{N} a_{i k} a_{j k}\left|x_{k}\right|^{2} .
$$

We denote by $\widetilde{g_{i j}}(x)$ the cofactor of $g(x)$ associated to $g_{i j}(x)$. For further discussions, we shall calculate $\operatorname{det} g(x)$ and $\widetilde{g_{i j}}(x)$ explicitly.

Lemma 3.4 The determinant and the cofactor of $g(x)$ are calculated as follows:

$$
\begin{equation*}
\operatorname{det} g(x)=\left(4 \pi^{2}\right)^{n} \sum_{1 \leq l_{1}<\cdots<l_{n} \leq N}\left(\operatorname{det}\left(\mathbf{a}_{l_{1}} \cdots \mathbf{a}_{l_{n}}\right)\right)^{2}\left|x_{l_{1}}\right|^{2} \cdots\left|x_{l_{n}}\right|^{2} . \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{g_{i j}}(x)=\left(4 \pi^{2}\right)^{n-1} \sum_{1 \leq l_{1}<\cdots<l_{n-1} \leq N} L_{i j}^{l_{1} \cdots l_{n-1}}\left|x_{l_{1}}\right|^{2} \cdots\left|x_{l_{n-1}}\right|^{2}, \tag{ii}
\end{equation*}
$$

where the constant $L_{i j}^{l_{1} \cdots l_{n-1}}$ vanishes if $\mathbf{a}_{l_{1}}, \ldots, \mathbf{a}_{l_{n-1}}$ are linearly dependent.
Proof. (i) is followed by a direct computation. So we prove (ii). We denote by \mathfrak{S}_{n} the symmetric group of order n. The matrix $g(x)$ can be written as

$$
g(x)=4 \pi^{2} \sum_{k=1}^{N} A^{k}\left|x_{k}\right|^{2},
$$

where $A^{k}=\mathbf{a}_{k}{ }^{t} \mathbf{a}_{k}$ is $n \times n$-matrix. We denote by $A_{i j}^{k}$ the minor matrix obtained by deleting both the i-th row and the j-th column from A^{k}. By the definition of the cofactor $\widetilde{g_{i j}}(x)$, we have

$$
\begin{equation*}
\widetilde{g_{i j}}(x)=(-1)^{i+j}\left(4 \pi^{2}\right)^{n-1} \operatorname{det}\left(\sum_{k=1}^{N} A_{i j}^{k}\left|x_{k}\right|^{2}\right) . \tag{3.2}
\end{equation*}
$$

We calculate the constant $L_{i j}^{l_{1} \cdots l_{n-1}}$ in (ii). For $\sigma \in \mathfrak{S}_{n-1}$, we denote by $A_{i j}^{\sigma, l_{1} \cdots l_{n-1}}$ the matrix whose k-th column consists of the $\sigma(k)$-th column of $A_{i j}^{l_{k}}$. From (3.2), we have

$$
L_{i j}^{l_{1} \cdots l_{n-1}}=(-1)^{i+j} \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{det}\left(A_{i j}^{\sigma, l_{1} \cdots l_{n-1}}\right) .
$$

Note that every column of $A_{i j}^{\sigma, l_{1} \cdots l_{n-1}}$ is a constant multiple of

$$
{ }^{t}\left(\begin{array}{llllll}
a_{1 l_{k}} & \cdots & a_{i-1 l_{k}} & a_{i+1 l_{k}} & \cdots & a_{n l_{k}}
\end{array}\right)
$$

for some $k=1,2, \ldots, n-1$. Therefore if $\mathbf{a}_{l_{1}}, \ldots, \mathbf{a}_{l_{n-1}}$ are linearly depen$\operatorname{dent}, \operatorname{det} A_{i j}^{\sigma, l_{1} \cdots l_{n-1}}$ vanishes. In particular, if at least two of l_{1}, \ldots, l_{n-1} are equal, we have $L_{i j}^{l_{1} \cdots l_{n-1}}=0$.
Proposition 3.5 Let $\xi_{I} \in \mathfrak{g}^{*}$ be a regular value of μ_{I}. For every embedded path

$$
\gamma=\left(\gamma_{I}, \gamma_{J}, \gamma_{K}\right):[0,1] \rightarrow\left\{\xi_{I}\right\} \times \mathfrak{g}^{*} \times \mathfrak{g}^{*},
$$

the function $\nu: M^{\gamma} \rightarrow \mathbb{R}$ is bounded.
Proof. Because of Lemma 3.4 (ii), for an arbitrary path

$$
p=\left(p_{1}, \ldots, p_{N}\right):[0,1) \rightarrow M^{\gamma}
$$

it is enough to show the boundedness for

$$
H(x)=\frac{\left(4 \pi^{2}\right)^{n-1} L_{i j}^{l_{1} \cdots l_{n-1}}\left|x_{l_{1}}\right|^{2} \cdots\left|x_{l_{n-1}}\right|^{2}}{\operatorname{det} g(x)}
$$

along p. Without loss of generality, we may assume that $l_{k}=k$ for $k=$ $1,2, \ldots, n-1$. We define

$$
q_{k}(s)=\frac{p_{k}(s)}{|p(s)|}, \quad r(s)=|p(s)| \quad \text { for all } s \in[0,1)
$$

Since M^{γ} do not contain the origin $0 \in \mathbb{H}^{N}, q_{k}(s)$ is well-defined. We consider the limit of

$$
H(p(s))=\frac{\left(4 \pi^{2}\right)^{n-1} L_{i j}^{1 \cdots n-1}\left|q_{1}(s)\right|^{2} \cdots\left|q_{n-1}(s)\right|^{2}}{r(s)^{2} \operatorname{det} g(q(s))}
$$

as $s \rightarrow 1$. If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}$ are linearly dependent, by Lemma 3.4 (ii), we have $L_{i j}^{1 \cdots n-1}=0$. So we may assume that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}$ are linearly independent and $L_{i j}^{1 \cdots n-1}=1$. The equation of M^{γ} is given by

$$
\pi r(s)^{2}\left(\mathbf{a}_{1} \cdots \mathbf{a}_{N}\right)\left(\begin{array}{c}
\overline{q_{1}(s)} I q_{1}(s) \\
\vdots \\
\overline{q_{N}(s)} I q_{N}(s)
\end{array}\right)=\left(\begin{array}{c}
\gamma^{1}(t) \\
\vdots \\
\gamma^{n}(t)
\end{array}\right)
$$

where γ is considered as

$$
\gamma=\left(\gamma^{1}, \ldots, \gamma^{n}\right):[0,1] \rightarrow \operatorname{Im} \mathbb{H} \times \cdots \times \operatorname{Im} \mathbb{H}
$$

By taking some regular $n \times n$-matrix $P=\left(p_{i j}\right)$, we obtain that

$$
P\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{a}_{n} \cdots \mathbf{a}_{N}\right)=\left(\begin{array}{cccccc}
a_{11}^{\prime} & \cdots & a_{1 n}^{\prime} & a_{1 n+1}^{\prime} & \cdots & a_{1 N}^{\prime} \tag{3.3}\\
& \ddots & \vdots & \vdots & & \vdots \\
0 & & a_{n n}^{\prime} & a_{n n+1}^{\prime} & \cdots & a_{n N}^{\prime}
\end{array}\right)
$$

where at least one of the entries $a_{n n}^{\prime}, \ldots, a_{n N}^{\prime}$ is non-zero because A has the
maximal rank. Therefore we have an equation

$$
\begin{align*}
& \pi r(s)^{2}\left(a_{n n}^{\prime} \overline{q_{n}(s)} I q_{n}(s)+\cdots+a_{n N}^{\prime} \overline{q_{N}(s)} I q_{N}(s)\right) \\
&=p_{n 1} \gamma^{1}(t)+\cdots+p_{n n} \gamma^{n}(t) \tag{3.4}
\end{align*}
$$

We define

$$
\delta=\min _{t \in[0,1]}\left|p_{n 1} \gamma^{1}(t)+\cdots+p_{n n} \gamma^{n}(t)\right| .
$$

Suppose that $\delta>0$. From (3.4), we obtain an estimate

$$
\frac{1}{r(s)^{2}} \leq \frac{\pi}{\delta}\left(\left|a_{n n}^{\prime} \| q_{n}(s)\right|^{2}+\cdots+\left|a_{n N}^{\prime}\right|\left|q_{N}(s)\right|^{2}\right)
$$

From this and Lemma 3.4 (i), it follows that $H(p(s))$ is less than or equal to

$$
\begin{equation*}
\frac{\left|q_{1}(s)\right|^{2} \cdots\left|q_{n-1}(s)\right|^{2}\left(\left|a_{n n}^{\prime} \| q_{n}(s)\right|^{2}+\cdots+\left|a_{n N}^{\prime}\right|\left|q_{N}(s)\right|^{2}\right)}{4 \pi \delta \sum_{1 \leq l_{1}<\cdots<l_{n} \leq N}\left(\operatorname{det}\left(\mathbf{a}_{l_{1}} \cdots \mathbf{a}_{l_{n}}\right)\right)^{2}\left|q_{l_{1}}(s)\right|^{2} \cdots\left|q_{l_{n}}(s)\right|^{2}} . \tag{3.5}
\end{equation*}
$$

Note that

$$
\operatorname{det}\left(P\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{a}_{k}\right)\right)=a_{11}^{\prime} \cdots a_{n-1 n-1}^{\prime} a_{n k}^{\prime}, \quad k=n, \ldots, N .
$$

Because $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}$ are linearly independent, the entries $a_{11}^{\prime}, \ldots, a_{n-1 n-1}^{\prime}$ are all non-zero. Therefore $\operatorname{det}\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{a}_{k}\right) \neq 0$ if and only if $a_{n k}^{\prime} \neq 0$. In other words, the numerator of (3.5) has the non-trivial term

$$
\left|a_{n k}^{\prime}\right|\left|q_{1}(s)\right|^{2} \cdots\left|q_{n-1}(s)\right|^{2}\left|q_{k}(s)\right|^{2}
$$

if and only if the denominator of (3.5) has the non-trivial term

$$
\left(\operatorname{det}\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n-1} \mathbf{a}_{k}\right)\right)^{2}\left|q_{1}(s)\right|^{2} \cdots\left|q_{n-1}(s)\right|^{2}\left|q_{k}(s)\right|^{2}
$$

This means that the numerator of (3.5) can be dominated by the denominator of (3.5). Since each summand of the denominator of (3.5) is always positive, we obtain that

$$
H(p(s)) \leq \frac{C}{4 \pi \delta} \quad \text { for all } s \in[0,1)
$$

where C is some constant.
Finally, we prove that $\delta>0$. Suppose that $\delta=0$. Then there exists
some $t_{0} \in[0,1]$ and the following three equations hold:

$$
\begin{align*}
p_{n 1} \gamma_{I}^{1}\left(t_{0}\right)+\cdots+p_{n n} \gamma_{I}^{n}\left(t_{0}\right) & =0 \\
p_{n 1} \gamma_{J}^{1}\left(t_{0}\right)+\cdots+p_{n n} \gamma_{J}^{n}\left(t_{0}\right) & =0 \\
p_{n 1} \gamma_{K}^{1}\left(t_{0}\right)+\cdots+p_{n n} \gamma_{K}^{n}\left(t_{0}\right) & =0 \tag{3.6}
\end{align*}
$$

where $\gamma_{I}\left(t_{0}\right)=\left(\gamma_{I}^{1}\left(t_{0}\right), \ldots, \gamma_{I}^{n}\left(t_{0}\right)\right) \in \mathfrak{g}^{*}$ and $\gamma_{J}^{i}\left(t_{0}\right), \gamma_{K}^{i}\left(t_{0}\right)$ are defined in a similar fashion. Because A has the maximal rank, there exists some $k=n, \ldots, N$ such that $\left\{\iota^{*} u_{j}\right\}_{j=1, \ldots, n-1, k}$ forms a basis of \mathfrak{g}^{*}. Then $\gamma_{I}\left(t_{0}\right)$ can be written as

$$
\gamma_{I}\left(t_{0}\right)=\sum_{j=1}^{n-1} c_{j} \iota^{*} u_{j}+c \iota^{*} u_{k}
$$

for some constants c_{1}, \ldots, c_{n-1} and c. From (3.1), (3.3) and (3.6), we have

$$
0=\sum_{i=1}^{n} p_{n i} \gamma_{I}^{i}\left(t_{0}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n-1} p_{n i}\left(c_{j} a_{i j}+c a_{i k}\right)=c a_{n k}^{\prime}
$$

Since $a_{n k}^{\prime} \neq 0$, we have $c=0$. Hence we obtain that

$$
\gamma_{I}\left(t_{0}\right)=\sum_{j=1}^{n-1} c_{j} \iota^{*} u_{j}
$$

In the same way, we obtain that both $\gamma_{J}\left(t_{0}\right)$ and $\gamma_{K}\left(t_{0}\right)$ can be represented by linear combinations of $\iota^{*} u_{1}, \ldots, \iota^{*} u_{n-1}$. Therefore, from Proposition 3.3, $\gamma\left(t_{0}\right)$ is a critical value of μ. This is a contradiction. So at least one of the equations (3.6) does not hold. Hence we have $\delta>0$.

References

[1] Audin M., The Topology of Torus Actions on Symplectic Manifolds. Birkhäuser, Boston, 1991.
[2] Bielawski R. and Dancer A., The Geometry and Topology of Toric HyperKähler Manifolds. to appear in Commun. Anal. Geom.
[3] Duistermaat J.J. and Heckman G.J., On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69 (1982), 259-269.
[4] Hitchin N.J., Karlhede A., Linström U. and Roček M., HyperKähler metrics and Supersymmetry. Commun. Math. Phys. 108 (1987), 535-589.
[5] Konno H., Cohomology Rings of Toric HyperKähler Manifolds. Preprint.
[6] Moser J., On the volume elements of a manifold. Trans. Amer. Math. Soc. 120 (1965), 286-294.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: m-ikeda@math.sci.hokudai.ac.jp

[^0]: 1991 Mathematics Subject Classification : Primary 53C25; Secondary 14M25.

