The diameter of the solvable graph of a finite group

Mina Hagie
(Received September 27, 1999)

Abstract

Let G be a finite group. We define the solvable graph $\Gamma_{S}(G)$ as follows: the vertices are the primes dividing the order of G and two vertices p, q are joined by an edge if there is a solvable subgroup of G of order divisible by $p q$. We will prove that the diameter of $\Gamma_{S}(G)$ is less than or equal to 4 for any finite group G. We use the classification of finite simple groups.

Key words: finite simple groups, prime graphs, solvable graphs.

1. Introduction

Let G be a finite group and $\pi(G)$ the set of primes dividing the order of G. We denote by $\pi(n)$ the set of primes dividing a natural number n.

We define the prime graph $\Gamma(G)$ as follows: the vertices are elements of $\pi(G)$, and two distinct vertices p, q are joined by an edge, we write $p \sim q$, if there is an element of order $p q$ in G. Note that $p \sim q$ if and only if there is a cyclic subgroup of G of order $p q$.

We define the solvable graph $\Gamma_{S}(G)$ as follows: the vertices are the elements of $\pi(G)$, and two distinct vertices p, q are joined by an edge, we write $p \approx q$, if there is a solvable subgroup of G of order divisible by $p q$. The concept of solvable graphs was defined recently in Abe-Iiyori [1].

It has been studied about the connected components of $\Gamma(G)$ in Williams [8], Iiyori and Yamaki [5], Kondrat'ev [6]. Abe and Iiyori [1] proved that $\Gamma_{S}(G)$ is connected. The diameter of $\Gamma(G)$ has been determined by Lucido [7]. We denote the connected components of $\Gamma(G)$ by $\pi_{1}, \ldots, \pi_{n(\Gamma(G))}$, where $n(\Gamma(G))$ is the number of connected components of $\Gamma(G)$. If the order of G is even, we take π_{1} to be the component containing 2. Let $d(p, q)$ (resp. $d_{S}(p, q)$) be the distance between two vertices p, q in $\Gamma(G)$ (resp. $\Gamma_{S}(G)$). We can define the diameter of $\Gamma_{S}(G)$ as follows:

$$
\operatorname{diam}\left(\Gamma_{S}(G)\right)=\max \left\{d_{S}(p, q) \mid p, q \in \pi(G)\right\}
$$

The purpose of this paper is to prove:

[^0]Theorem 1 Let G be a finite group. Then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.
Corollary If G is a non-abelian simple group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right)=2,3$ or 4 .

Theorem 2 Let G be a finite group. Then $d_{S}(2, p) \leq 3$ for any $p \in \pi(G)$.
Example Let G be the Mathieu simple group M_{23} of degree 23. We can draw easily $\Gamma_{S}(G)$ by the table of the maximal subgroups of M_{23} in Atlas [4]. Indeed, $\Gamma_{S}(G)$ is:

Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right)=4$, since $d_{S}(7,23)=4$.

2. Preliminaries

The following Lemma is fundamental to the study of solvable graphs.
Lemma 2.1 (Abe-Iiyori [1]) We take two distinct vertices $p, q \in \pi(G)$.
(1) If $p \sim q$, then $p \approx q$.
(2) Let H be a subgroup of G. If $p \approx q$ in $\Gamma_{S}(H)$, then $p \approx q$ in $\Gamma_{S}(G)$.
(3) If G has a non-trivial normal subgroup K, then $p \approx q$ in $\Gamma_{S}(G)$ for $p \in \pi(K)$ and $q \in \pi(G / K)$.
(4) Let K be a normal subgroup of G. If $p \approx q$ in $\Gamma_{S}(G / K)$, then $p \approx q$ in $\Gamma_{S}(G)$.

We will apply the following propositions.
Proposition 1 (Williams [8]) Let G be a non-abelian simple group such that $n(\Gamma(G)) \geq 2$. Then
(1) G has a Hall π_{i}-subgroup H_{i} for a connected component $\pi_{i}(i \geq 2)$ of $\Gamma(G)$,
(2) H_{i} is an isolated abelian subgroup of G.

Note A subgroup H of G is called isolated if $H \cap H^{g}=\langle 1\rangle$ or H for any $g \in G$, and for any $h \in H-\{1\}, C_{G}(h) \subseteq H$.

Proposition 2 (Abe-Iiyori [1]) The following claims hold:
(1) Let G be a non-abelian simple group such that $n(\Gamma(G)) \geq 2$. If H_{i} is a Hall π_{i}-subgroup $(i \geq 2)$, then H_{i} is a proper subgroup of $N_{G}\left(H_{i}\right)$.
(2) $\Gamma_{S}(G)$ is connected.
(3) If G is a non-abelian simple group, then $\Gamma_{S}(G)$ is incomplete, i.e., $\operatorname{diam}\left(\Gamma_{S}(G)\right) \geq 2$.

Proposition 3 (Chigira-Iiyori-Yamaki [2], [3], Lucido [7]) If G is a simple group, then $d(2, p) \leq 2$ for any $p \in \pi_{1}$.

Lemma 2.2 If $|\pi(G)| \leq 4$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$ and $d_{S}(2, p) \leq 3$ for any $p \in \pi(G)$.

Proof. This is immediate from Proposition 2(2).
Lemma 2.3 Let G be a simple group with $n(\Gamma(G)) \geq 2$. Suppose that G has a subgroup H_{p} such that $p \in \pi\left(H_{p}\right)$ and $\left|N_{G}\left(H_{p}\right): H_{p}\right|$ is even for any $p \in \pi(G)-\pi_{1}$. Then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Proof. As G is simple, $d(2, r) \leq 2$ for any $r \in \pi_{1}$. Since $\left|N_{G}\left(H_{p}\right)\right|$ is even, $2 \approx p$ for any $p \in \pi_{i}(i \geq 2)$. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Notation Put $\pi\left(C_{I}\right)=\bigcup_{t \in I(G)} \pi\left(C_{G}(t)\right)$, where $I(G)$ is the set of all involutions in G. Put $\pi\left(C_{J}\right)=\bigcup_{u \in J(G)} \pi\left(C_{G}(u)\right)$, where $J(G)$ is the set of all elements of order 3 in G.

Lemma 2.4 Let G be a non-abelian simple group. If $n(\Gamma(G))=2$ and $\pi_{1}=\pi\left(C_{I}\right)$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Proof. There is an abelian Hall π_{2}-subgroup H by Proposition 1. Proposition 2(1) claims the existence of $p \in \pi_{1}$ such that $p\left|\left|N_{G}(H)\right|\right.$. For any $q \in \pi_{2}, p \approx q$. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Lemma 2.5 Let G be a non-abelian simple group. If $n(\Gamma(G))=2$ and G has an abelian subgroup H satisfying $\pi(G)-\left(\pi\left(C_{I}\right) \cup \pi_{2}\right) \subseteq \pi(H)$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Proof. There is $p \in \pi_{1}$ such that $p \approx q$ for any $q \in \pi_{2}$ by Proposition 2(1). If $p \in \pi\left(C_{I}\right)$, then $d_{S}(2, r) \leq 2$ for any $r \in \pi(G)$ by Proposition 3. If $p \in$ $\pi(H)$, then $d_{S}(2, q) \leq 3$ for any $q \in \pi_{2}$. Since H is abelian, $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq$ 4.

3. Proof of Theorem 1

We will give a proof of Theorem 1.
Lemma 3.1 If G is not a simple group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right)=1$ or 2 .
Proof. Suppose G has a non-trivial proper normal subgroup N. It follows from Lemma 2.1(3) that there is $q \in \pi(N)$ such that $p_{1} \approx q \approx p_{2}$ for any $p_{1}, p_{2} \in \pi(G / N)$. Similarly, there is $p \in \pi(G / N)$ such that $q_{1} \approx p \approx q_{2}$ for any $q_{1}, q_{2} \in \pi(N)$. Since $\pi(G)=\pi(G / N) \cup \pi(N), \operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 2$.

Lemma 3.2 If G is the alternating group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.
Proof. \quad Suppose that G is the alternating group A_{n} of degree $n(n \geq 5)$. If $n=5,6$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right)=2$. Suppose $n \geq 7$. If there is a prime p such that $n-2 \leq p \leq n$, then Sylow p-subgroups of G are cyclic. There is $q \in \pi((p-1) / 2) \cup\{2\}$ such that $p \approx q$. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Remark Let A_{n} be the alternating group of degree $n(n \geq 5)$. If $\operatorname{diam}\left(\Gamma_{S}\left(A_{n}\right)\right)=3$, then either n or $n-1$ is a prime p such that $p \equiv 3 \bmod$ 4.

Proof. \quad Suppose n and $n-1$ are not prime $p \equiv 3 \bmod 4$. Since A_{n} has a subgroup which is isomorphic to a symmetric group of degree $n-2,2 \approx p$ for any prime $p \leq n-2$. If n or $n-1$ is a prime p such that $p \equiv 1 \bmod$ 4 , then A_{n} has a dihedral subgroup of order $2 p$, and so $2 \approx p$. Thus $2 \approx p$ for any $p \in \pi\left(A_{n}\right)$. It follows from Proposition $2(3)$ that $\operatorname{diam} \Gamma_{S}\left(A_{n}\right)=2$.

Lemma 3.3 If G is a sporadic simple group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.
Proof. We can draw $\Gamma_{S}(G)$ for a sporadic simple group G by tables of maximal subgroups and p-local subgroups in Atlas [4] using Lemma 2.1. It have been completely classified that the maximal subgroups of the Baby Monster simple group B by Wilson [9].

For example, let M be the Monster simple group. Then $\pi(M)=$ $\{2,3,5,7,11,13,17,19,23,29,31,41,47,59,71\} . M$ has a 2-local subgroup isomorphic to $2 B, \pi(B)=\{2,3,5,7,11,13,17,19,23,31,47\}$. For any $p \in \pi(B), p \approx 2$. M has p-local subgroups isomorphic to $71: 35,59: 29$, $41: 40,29: 14$ for $p=71,59,41,29$. It follows that $59 \approx 29 \approx 7 \approx 71$. Since $d_{S}(59,71)=3, \operatorname{diam}\left(\Gamma_{S}(M)\right)=3$.

The following table shows the diameter of $\Gamma_{S}(G)$ for a sporadic simple group G.

Sporadic simple group	Diameter
$J_{1}, J_{2}, H e, R u, S u z, O O^{\prime} N, F i_{22}$,	2
$L y, T h, F i_{23}, C o_{1}, J_{4}, F i_{24}^{\prime}$	
$M_{11}, M_{12}, M_{22}, H S, J_{3}, M_{24}$,	3
$M^{c} L, C o_{3}, C o_{2}, H N, B, M$	
M_{23}	4

Lemma 3.4 If G is either $E_{6}(q)$ or ${ }^{2} E_{6}\left(q^{2}\right)$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.
Proof. Let $G=E_{6}(q)$. Suppose that q is odd. Then $\pi\left(\left(q^{6}+q^{3}+\right.\right.$ 1) $\left.\left(q^{4}-q^{2}+1\right) /(3, q-1)\right)$ contains $\pi(G)-\pi\left(C_{I}\right)$ by [8]. $\pi\left(C_{I}\right) \ni 2,3$ and $p_{1} \approx 3$ for any $p_{1} \in \pi\left(\left(q^{6}+q^{3}+1\right) /(3, q-1)\right), p_{2} \approx 2$ for any $p_{2} \in$ $\pi\left(q^{4}-q^{2}+1\right)$ by [1]. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$. Suppose that q is even. Then $\pi\left(\left(q^{6}+q^{3}+1\right)\left(q^{4}+1\right)\left(q^{4}-q^{2}+1\right) /(3, q-1)\right)$ contains $\pi(G)--\pi\left(C_{I}\right)$ by [5]. $\pi\left(C_{I}\right) \ni 2,3$ and $p_{1} \approx 3$ for any $p_{1} \in \pi\left(\left(q^{6}+q^{3}+1\right) /(3, q-1)\right), p_{2} \approx 2$ for any $p_{2} \in \pi\left(q^{4}+1\right), p_{3} \approx 2$ for any $p_{3} \in \pi\left(q^{4}-q^{2}+1\right)$ by [1]. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Let $G={ }^{2} E_{6}(q)$. Suppose that q is odd. Then $\pi\left(\left(q^{6}-q^{3}+1\right)\left(q^{4}-q^{2}+\right.\right.$ 1)/(3,q+1)) contains $\pi(G)-\pi\left(C_{I}\right)$ by [8]. $\pi\left(C_{I}\right) \ni 2,3$ and $p_{1} \approx 3$ for any $p_{1} \in \pi\left(\left(q^{6}-q^{3}+1\right) /(3, q+1)\right), p_{2} \approx 2$ for any $p_{2} \in \pi\left(q^{4}-q^{2}+1\right)$ by [1]. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$. Suppose that q is even. Then $\pi\left(\left(q^{6}-q^{3}+1\right)\left(q^{4}-q^{2}+\right.\right.$ $\left.1)\left(q^{4}+1\right) /(3, q+1)\right)$ contains $\pi(G)-\pi\left(C_{I}\right)$ by [5]. $\pi\left(C_{I}\right) \ni 2,3$ and $p_{1} \approx 3$ for any $p_{1} \in \pi\left(\left(q^{6}-q^{3}+1\right) /(3, q+1)\right), p_{2} \approx 2$ for any $p_{2} \in \pi\left(q^{4}-q^{2}+1\right)$, $p_{3} \approx 2$ for any $p_{3} \in \pi\left(q^{4}+1\right)$ by [1]. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Lemma 3.5 If G is a simple group of Lie type such that $n(\Gamma(G))=1$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Proof. For any $p \in \pi(G), d(2, p) \leq 2$ by Proposition 3.
Thus diam $\left(\Gamma_{S}(G)\right) \leq 4$.
Lemma 3.6 If G is a simple group of Lie type such that $n(\Gamma(G))=3,4$ or 5 , then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Proof. If G satisfies the hypotheses of Lemma 2.2 or Lemma 2.3, then
$\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$. Thus we can assume that G is one of the following groups by the tables of [8], [5] and [1].

$$
\begin{array}{ll}
A_{1}(q), & q \equiv-1(\bmod 4), \quad q \geq 19, \\
{ }^{2} A_{5}(2), & \\
{ }^{2} D_{p}\left(3^{2}\right), & p=2^{n}+1, \quad n \geq 2, \\
{ }^{2} E_{6}\left(2^{2}\right) . &
\end{array}
$$

It follows that $\operatorname{diam}\left(\Gamma_{S}\left(A_{1}(q)\right)\right) \leq 3$. Indeed, $\operatorname{diam}\left(\Gamma_{S}\left({ }^{2} A_{5}(2)\right)\right)=3$ by Atlas [4]. We showed $\operatorname{diam}\left(\Gamma_{S}\left({ }^{2} E_{6}\left(2^{2}\right)\right)\right) \leq 3$ in Lemma 3.4. Let G be ${ }^{2} D_{p}\left(3^{2}\right)$. G has an abelian subgroups H_{2} such that $\pi_{2} \subseteq \pi\left(H_{2}\right)$ and $\left|N_{G}\left(H_{2}\right): H_{2}\right|$ is a power of 2 . Since we can know that $\pi_{1}=\pi\left(C_{I}\right)$ from [8], $2 \approx r$ for any prime r in $\pi_{1} \cup \pi_{2}$. There is $r \in \pi_{1} \cup \pi_{2}$ such that $r \approx s$ for any $s \in \pi_{3}$ from Proposition 1. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Lemma 3.7 If G is a simple group of Lie type such that $n(\Gamma(G))=2$, then $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$.

Proof. If G satisfies the hypotheses of Lemma 2.2 or Lemma 2.3, then the result is trivial. Groups in the following list satisfy the hypotheses of Lemma 2.4.

$$
\begin{array}{ll}
A_{p-1}(q), & \\
B_{2^{n}}(q), & n \geq 2, \\
B_{p}(3), & \\
C_{2^{n}}(q), & n \geq 1, \\
C_{p}(3), & \\
D_{p}(3), & p \geq 5, \\
D_{p+1}(3), & p \geq 3, \\
{ }^{2} A_{p-1}\left(q^{2}\right), & \\
{ }^{2} A_{p}\left(q^{2}\right), & q+1 \mid p+1, \\
{ }^{2} D_{2^{n}}\left(q^{2}\right), &
\end{array}
$$

where q is odd and p is an odd prime.

$$
C_{2^{n}}(q), \quad n \geq 1,
$$

where q is even.

Groups in the following list satisfy the hypotheses of Lemma 2.5.

$$
\begin{array}{ll}
A_{p}(q), & q-1 \mid p+1 \\
D_{p}(5), & p \geq 5 \\
{ }^{2} D_{l}\left(3^{2}\right), & l \neq 2^{n}+1, \quad l=p \\
{ }^{2} D_{l}\left(3^{2}\right), & l=2^{n}+1, \\
l \neq p,
\end{array}
$$

where q is odd and p is an odd prime.

$$
\begin{array}{ll}
A_{p-1}(q), & p \geq 5, \\
A_{p}(q), & q-1 \mid p+1, \\
C_{p}(2), & \\
{ }^{2} A_{p-1}\left(q^{2}\right), & \\
{ }^{2} A_{p}\left(q^{2}\right), & q+1 \mid p+1,
\end{array}
$$

where q is even and p is an odd prime.
Lemma 3.7 holds for these groups by [8] and [5].
Thus we can assume that G is one of the following groups:

$$
\begin{array}{ll}
D_{p}(2), & \\
D_{p+1}(2), & \\
{ }^{2} D_{2^{n}}\left(q^{2}\right), & n \geq 2, \\
{ }^{2} D_{2^{n}+1}\left(q^{2}\right), & n \geq 2, \\
A_{2}\left(2^{n}\right), & n \geq 3,
\end{array}
$$

where q is even and p is an odd prime.
Suppose that G is $D_{k}(2) . \quad G$ contains a subgroup isomorphic to $D_{k-1}(2) \times Z_{3}$. We have $\left|D_{k}(2): D_{k-1}(2)\right|=2^{2(k-1)}\left(2^{k}+1\right)\left(2^{k-1}+1\right)$. There is a maximal torus $T\left(D_{k}\right)$, of order $3\left(2^{k-1}+1\right) . \pi\left(D_{k}(2)\right)=\pi\left(C_{J}\right) \cup \pi_{2}$. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Suppose that G is ${ }^{2} D_{k}(q) . \quad G$ contains subgroups isomorphic to $D_{k-1}(q) \times Z_{q+1},{ }^{2} D_{k-1}(q) \times Z_{q-1}$. We have $\left.\right|^{2} D_{k}(q): D_{k-1}(q) \mid=q^{2(k-1)}\left(q^{k}+\right.$ 1) $\left(q^{k-1}+1\right),{ }^{2} D_{k}(q):{ }^{2} D_{k-1}(q) \mid=q^{2(k-1)}\left(q^{k}+1\right)\left(q^{k-1}-1\right)$. There are maximal tori T_{1}, T_{2}, T_{3} such that $\left|T_{1}\right|=q^{k}+1,\left|T_{2}\right|=\left(q^{k-1}+1\right)(q-1)$, $\left|T_{3}\right|=(q+1)\left(q^{k-1}-1\right)$. Suppose $q=2^{\alpha}\left(\alpha\right.$ is even), then $3| | T_{2}|, 3|\left|T_{3}\right|$. Suppose $q=2^{\alpha}\left(\alpha\right.$ is odd) and $k=2^{n}$, then $3| | T_{2}|, 3|\left|T_{3}\right|$. Suppose $q=2$, $k=2^{n}+1$, then $3\left|\left|T_{1}\right|, 3\right|\left|T_{3}\right|$. Thus $\pi(G)=\pi\left(C_{J}\right) \cup \pi_{2}, \operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Suppose that G is $A_{2}\left(2^{n}\right), n \geq 3$. Then $\pi\left(C_{I}\right)=2(q-1) /(3, q-1)$. There are tori of order $(q-1)^{2} /(3, q-1),\left(q^{2}-1\right) /(3, q-1)$ and $\left(q^{2}+q+\right.$

1) $/(3, q-1)$ in G. It follows that $r \sim s$ for any $r \in \pi(q-1 /(3, q-1))$, $s \in \pi_{1}$. Thus $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 3$.

Proof of Theorem 1. If G is not simple group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right)=1$ or 2 from Lemma 3.1. We may assume that G is isomorphic to one of the following simple groups:
(1) an alternating group A_{n} with $n \geq 5$,
(2) one of the 26 sporadic simple groups,
(3) a simple group of Lie type.

Thus we have proved that $\operatorname{diam}\left(\Gamma_{S}(G)\right) \leq 4$ for a non-abelian simple group G. This completes the proof of Theorem 1.

Proof of Corollary. If G is a non-abelian simple group, then $\operatorname{diam}\left(\Gamma_{S}(G)\right)$ ≥ 2 from Proposition 2(3). Thus this is trivial from Theorem 1.

4. Proof of Theorem 2

We can assume that G is a simple group by Lemma 3.1 and G is not an alternating group by Lemma 3.2. The diameter of any sporadic simple group is 2 or 3 , except for M_{23}. If G is M_{23}, then $d_{S}(2, p) \leq 3$ for any $p \in \pi(G)$ by $\Gamma_{S}\left(M_{23}\right)$.

Proof of Theorem 2. We can assume that G is a simple group of Lie type. Actually, we have also proved that $d_{S}(2, p) \leq 3$ for $p \in \pi(G)$ in Lemmas $3.4,3.5,3.6$ and 3.7. The proof of Theorem 2 is complete.

Acknowledgment The author would like to thank her supervisor, Professor Hiroyoshi Yamaki. He took time off to help her and gave her a lot of suggestions.

References

[1] Abe S. and Iiyori N., A generalization of prime graphs of finite groups. Hokkaido Math. J. 29 No. 2 (2000), 391-407.
[2] Chigira N., Iiyori N. and Yamaki H., Nonabelian Sylow subgroups of finite groups of even order. ERA Amer. Math. Soc. 4 (1998), 88-90.
[3] Chigira N., Iiyori N. and Yamaki H., Non-abelian Sylow subgroups of finite groups of even order. Invent. Math. 139 (2000), 525-539.
[4] Conway J.H., Curtis R.T., Norton S.P., Parker R.A. and Wilson R.A., "Atlas of finite groups.". Clarendon Press, Oxford, (1985).
[5] Iiyori N. and Yamaki H., Prime graph components of the simple groups of Lie type over the field of even characteristic. J. Algebra 155 (1993), 335-343; Corrigenda 181 No. 2 (1996), 659.
[6] Kondrat'ev A.S., Prime graph components of finite simple groups. Math. USSR Sbornik 67 (1990), 235-247.
[7] Lucido M.S., The diameter of the prime graph of a finite group. J. Group Theory 2 (1999), 157-172.
[8] Williams J., Prime graph components of finite groups. J. Algebra 69 (1981), 487513.
[9] Wilson R.A., The maximal subgroups of the Baby Monster, I. J. Algebra 211 (1999), 1-14.

Graduate School of Science and Technology Kumamoto University
Kumamoto 860-8555, Japan
E-mail: mina@math.sci.kumamoto-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : 20D05.

