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Characterizations of Bloch space and Besov spaces
by oscillations

Rikio YONEDA
(Received July 2, 1999; Revised August 16, 1999)

Abstract. We characterize the Bloch space and the Besov spaces on the open unit disc
D by using many kinds of oscillations. We give new characterizations with known ones.
For example, we use the oscillation and the mean oscillation as the following:

sup (1 - [2[)*(1 — jw[?)? ’L("'Lf_(w_)’
w€D(z,r) 2 — w
and

1
|D(z,7)| JD(z,r)

R B LX)
z—w
Key words: Bloch space, Besov space, oscillation, mean oscillation.

1. Introduction

Let D = {z € C;|2| < 1} denote the open unit disc in C and let
0D = {z € C;|z| = 1} denote the unit circle. Let H(D) denote the space of
analytic functions on D. For 1 < p < +o00, the Lebesgue space LP(D,dA)
is defined to be the Banach space of Lebesgue measurable functions on the
open unit disc D with

1

£ lisiany = ( [ F@PAE)" < +oc

where dA(z) is the normalized area measure on D. The Bergman space
LE(D) is defined to be the subspace of LP(D,dA) consisting of analytic
functions. For 0 < p < +oo, the Hardy space HP is defined to be the
Banach space of analytic functions f on D with

1 2w . '11;
Ilfllp:=<sup 1 |f('re’0)|pd9> < oo,

0<r<1 2T 0
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For z,w € D, let B(z,w) := %log ifiiig'z;{, where @, (w) = 22, We

will repeatedly use the following properties of ¢,:

2 _ (1—[z)(1 - wf’)
1*l902(w)l - |1—Ew|2 ’

0:(2) =0, ¢.(0)=2, ¢,0p,(w)=w.

For 0 < r < +o00, let D(z) = D(2,7) = {w € D; B(z,w) < r} denote the
Bergman disc. |D(z, )| denotes the normalized area of D(z,7) and |D(z,7)|
is comparable to (1 — |z|?)2. The Bloch space B of D is defined to be the
space of analytic functions f on D such that

17115 = sup{(1 = |2|*)| f"(2)]; 2 € D} < +o0.

This defines a semi-norm and it is Mobius invariant in the sense of || f o
ollB=|fllg for all f € B and ¢ € Aut(D), where Aut(D) is the Mobius
group of bi-analytic mappings of D. The Bloch functions form a Banach
space with the norm || f| = |f(0)| + || f||g. If f is an analytic function
on D, then f € B if and only if sup,ep || f o . — f(2) [12(a4) < +00 ([7,
p.101]). The little Bloch space of D, denoted By, is the closed subspace
of B consisting of functions f with (1 — |2|2)fM(z) — 0 (]z| — 17). If
f is an analytic function on D, then f € Bp if and only if lim,_,;- || f o
92 — f(2) |lL2(a4) = 0 ([7, p.101]). The space of analytic functions on D of
bounded mean oscillation, denoted by BMOA, consists of functions f in
H? for which

I flBMoa :=sup{]| f o @, — f(2)||2;2 € D} < 4o0.

It is clear that |g(1(0)| < || g ||2 for every analytic function g on D. Applying
g=fop:— f(2), it follows that (1 —[2[*)|fV(2)] < || f o ¢z = f(2) |2 for
an analytic function f on D and z € D. Thus it follows that the inclusion
BMOA C B.

For 1 < p < +o00, the Besov space B, of D is defined to be the space of
analytic functions f on D such that

1£1, = { [ (1= RPIFOEPIAE ) <+,

dA(z)

where d)\(Z) = m
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We will also use the following property:

dA(pz(w)) = dA(w).

It is easy to show that || * ||, is a complete semi-norm on B,. Moreover,
it is Mobius invariant in the sense of || fo ¢|lg, = || f||B, for all f € B,
and ¢ € Aut(D). For convenience of notation, we also write B,, = B, the
Bloch space. Note that B, is the classical Dirichlet space. The Besov space
By consists of analytic functions f on D such that f(z) = Y72 anpa, (2)
with 3% |a,| < +oo, where )\, € D. Put

+o0 +o00
1 £l = inf{Zlanl f(z) = Zanwn(z)}.
n=1 n=1

It is clear that B; C H®.

Let a > 0. Then a-Bloch space B* of D is defined to be the space of
analytic functions f on D such that

1 £ llBe := sup{(1 - |z[)*|f M (2)l; 2 € D} < +o0.
And the little a-Bloch space of D, denoted Bg, is the closed subspace of
B* consisting of functions f with (1 — |2|2)*f()(2) — 0 (Jz] — 17). And

for 1 < p < 400, pa > 1, the a-Besov space By of D is defined to be the
space of analytic functions f on D such that

/ (1= |22 f O () PdA(z) < +oo.
D

Note that B!, By and B are the Bloch space, the little Bloch space and
the Besov space, respectively.

Let 0 < r < +00. Then for a function f on D, let
~ 1
fr(z2) i= ——— f(w)dA(w) (z € D).
( |D(Z,7’)| D(z,r) ( ) ( ) ( )

For a function f on D, the following is called the oscillation of f at z in the
Bergman metric ([8, p.327)):

sup |f(z) ~ f(w)],

weD(z,r)

and the following is called the mean oscillation of f at z in the Bergman
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metric:
1
|D(z,7)| Jp(z,m)

In this paper, we also call the following the oscillation of f at z in the
Bergman metric: Fora+8=1, o, 8 € R,

sup | (2) — f(w)],

weD(z,r)

sup (1 —[[*)*(1~ |
weD(z,r)

|r(2) = f(w)|dA(w).

2)ﬂ‘f(zi:{v(w)\_

And we also call the following the mean oscillation of f at z in the Bergman
metric: For a+B: 1, a,0 € R,

=T (w)| dA(w),
zr)

B R

Then by elementary calculatlon, we see that there are some constants
Ci1,Cq, Ky, Ky, K3 > 0 such that

sup {fr(2) = f(w)|

w€D(z,r)

<Cr sup |f(z) - f(w)|
weD(z,r)

-

<Cp sup (1—|z|2)°‘(1—|w|2)ﬂ‘_f(zz_:_£(w)|

weD(z,r)
L[ 1R - fw)ldAw)
ID(Z’T” D(z,r) "
K,
< By, FO) Sl dAw)
K>

_ Z2a B f ) w
< ey fo (= P = ) |—|dA( )

< Kz sup |f(z)— f(w)l.
weD(z,r)

Using these oscillations and mean oscillations, in Section 2 we characterize
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the Bloch space B as the following;:

Theorem 1.1 Let p > 0 and a+ 8 =1, a,8 € R. Then for an ana-
lytic function f on D and for r € (0,400), the following statements are
equivalent:

(1) feB;
(2) sup( sup |f(2) - f(w)]) < +oo;
2€D *weD(z,r)
1 . .
) S (BEr] o, )~ F@PAAW))” < +oc,
1
@) 3 (BEr o, 08 1) = F@))dA@w)) < +oo;
(5) sup( sup |fi(z) = f(w)]) < +oo;
2€D MweD(z,r)
1 :
© sp (im0 - SPaA@w)” < oo
1 ~
O s (i L g 15 )~ Fw)ddw)) < oo

z€D, z;éw}<+oo;

==

© sup(ipry L 0 et = oty LI )

< 400;

su L 0 — z/H2(1 = |w]?)?
00) sup(pry .. o (= eyt = )

zeD
LEES (I

The above equivalences of (1), (2), (3), (6) were proved by K. Zhu (|8,
p.328]) in the case of p > 1. Similarly, in Section 3 we also characterize the
Besov spaces B, as the following:

Theorem 1.2 Let a+ (3 =1, a,8 € R. Then for an analytic function
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fonD and p > 1 and for v € (0,+00), the following statements are
equivalent:

(1) f € By

@ [ (s 15~ f)l) dr(e) < +oo

O [ (B Lo, 17~ FP dA)are) < +oo

O [ (e L, 1)~ F0)]daw) i) < +oc

© [ (s[5 ) ixe) < oo

© | (B L, @) - s d4w)are) < +oo

D | (B L, @)~ #)] d4w) 0 < oo

® [ (s 0=l P LY 0 < oo
O [ (B L, (= i)

‘ﬁ_zz_:fu_(w_)‘pdA(w))d)\(z) < +o0;

1 _ 2yar1 ,w2,6
(|D<z,r>|/p(z,r>“ 22)2(1 - [w]?)

'Li%(’”)‘dfx(w))pdx(z) < +00.

=
"
I

The above equivalences of (1), (2), (3), (4), (6), (7) were proved by
K. Zhu ([8, p.328)).

f(w)-f(2)

u—=z

Remark 1.3 For any z € D, let g(u) = , h(uw) = |f(u) — f(2)]
(u € D) be subharmonic function on D. Then we can prove that the
following quantities are equivalent:

(a) sup |f(z) = f(w)l;

weD(z,r)
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1
ID(z’ T)l D(z,r)

|£(2) = f(w)| dA(w);

@ s (-l | L2

weD(z,r) ’
1

C1212)(1 — |wl2)? f(z) = f(w) w
By (= ) |————[dA< )

<z —Ww

The following Theorem A explains why B; as defined above is compat-
ible with the other Besov spaces By, (1 < p < 00).

Theorem A ([7,p.90])) If f is an analytic function on D, 1 < p < 400
and n > 2 is an integer, then f € By if and only if

(1 - 2™ (2) € LP(D, d).

On account of Theorem A, we would like to give characterizations of the
Besov spaces By, (1 < p < 00) using the n times derivative of a function on
D by the oscillations which are used in Theorems [.1 and 1.2. In Section 2
we give Theorems and 2.7 generalizing [Theorem 1.1. And in Section 3
we give Theorems and generalizing [Theorem 1.2. We should note
that [I’heorem 1.2 does not hold for p = 1 while Theorems and do
forp=1.

Finally, we define the spaces B(™), B(()") , B,(;n) (p > 1) as the following:
Fix n > 1; integer, then

B™ .= {f € H(D); sup{(1 — |27 (1 - |w|?)2

lf("“l)(Z) - f*D(w)

Z—Ww

s z,w € D, w;éz}<+oo},

B = { f € HD); lim sup{(l— 12132 (1 - |w]?)?

2| =1~

F0(z) = f D (w)

Z— W

;wED,w;ﬁz}=0},
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B = {renwy [ [a-lapEa-upie
f(n—l)(z) _ f(n-—l)(w) P

Z—Ww

dA(z)d\(w) < +oo}.

For n = 1, B® = B is just the result which was proved by F. Holland
and D. Walsh [3], and B(()l) = By is just the result which was proved by K.
Stroethoff [6]. We prove B® = B and B(()Q) = DBy in Section 4 (Theorem
4.2 and [Corollary 4.3|, respectively). However for n > 3, B™ = B does not
hold because the function f(z) = log(l — z) is in B but it is not in B"
(Example 4.1). As a result we see the following: For n > 3,

B c BY =B" =By, B™ c B® =W =B, B+BM.

Moreover it holds that BMOA c B® = B() = B, but it does not hold
that BMOA C B™ for n > 3 because the function f(z) = log(1 — z) is
in BMOA. On the other hand, for n = 1, Bél) = B, (p > 2) is just the
result which was proved by K. Stroethoff . For n > 2, we could not prove
B,(,n) = B, but we see the following: For n = 2, ngz) C B, (p > 1). For any
n >3, B,(,n) C B, (p>1).

In Section 5 we will also characterize the a-Bloch space B® and the
little a-Bloch space By and the a-Besov space By as well as the Bloch
space B and the little Bloch space By and the Besov space By, respectively.

Throughout this paper, C;, K; for : = 0,1,2, C, K will denote positive
constant whose value is not necessary the same at each occurrence.

The author wishes to express his sincere gratitude to Professor Takahiko
Nakazi for his many helpful suggestions and advices.

2. Criteria for membership of the Bloch space

In this section we shall use the following Theorems A, B, C, D to prove
Theorems 2.1, and and Corollaries 2.2, 2.5 and 2.9. Theorem 2.1
and (Corollary 2.2 were proved by K. Stroethoff [5] in the case of n = 0.

Theorem B ([4, p.409]) Let n > 1; integer. If f is an analytic function
on D, then the following quantities are equivalent:

(A) 1 flls;
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n—1
(B) sup{(1 - [2|})"|f™(2)];z€ D} +>_1f*(0)].
k=1

Corollary C ([4, p.410]) If f is an analytic function on D and n > 1;
integer, then f € By if and only if

(L= 1= (z) = 0 (Jz] = 17).

Theorem D ([7, p.83]) If f is an analytic function f on D, then
f € By if and only if

I f=filsB—0 (t—17),
where fi(z) = f(tz) for all z € D and t € (0,1).

Thoerem 2.1 Let 0 < r < 1 and fix n > 0; integer. For an analytic
function f on D, the following quantities are equivalent:

(A) 1 F s

(B) sup sup (1—|A*)" | (2) - fM(N),
AeD zeA(Ar)

where AN\, 1) = {z € D;|pr(2)| <1}

Proof. When n = 0, it was proved by K. Stroethoff [5, p.129]. Since the
proof of the case n = 1 is simpler than the proof of the case n = 2, we shall
prove it only for the case n = 2. In the case of n > 3, because it is proved
easily by induction, we shall omit to prove it.

When n = 2, fix 0 < r < 1, and let f be an analytic function on D.
The following identity is easily proved by a direct calculation:

f“%0)=-%}/ 7@ (2)dA(z).
T JA(0,r)
Hence we have

FOOI<2 swp 1)

2€A(0,r)

Replacing f@ by 3 o @y — f(X), we have the following inequality:

A-DOFOWI <2 s [70() - fAN)
2€A(A)
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Hence we get

2
sup(1 — APPIfPN < Ssup sup (1—APP?IFP(2) = fA(N)].
xeD T XeD zeA(\r)

By Theorem A, it follows that f € B.
To prove the converse, let |w| < r. Then for all w € D

FV(w) — f(l)(())‘ < /01 |w| )f@)(tw)l dt

w
< Ol o ins
r
< Ol flsy. - (210)
Replacing f by f o ¢y, we get
W (pa(w)) r
1 - | L) (1>,\|<C — . (212
=) G~ 10| <Ol - 1)

We have also for all w € D

19w) - 120 < [ | O a

< OIS ls =y

Replacing f by f o ), we get

(1= dw)4 (1 - w)3
— fAMNA = A2 =22 DN (AP - 1)

T

<C|f “Bm-

Hence we get the following estimation by (2.1.2)

(2) w
T f<2><A)|
: O pp
< Ol =gy + 201~ ) T2 — o
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=C|fls +2A1 (1=~ AI%)

(1—r2)?
If(l) Aw)  fU(px(w)) N FO (pa(w))
— dw)3 (1 — dw)? (1 - dw)?

+2[A1 (1~ [A]%)

_f(l)(,\)‘
| 1 (f(”(m('w))
(1—=Aw)2\ (1 - )w)

FD (pr(w))
(1= w)?

<C|fls

- 19ps(0))

+2 A (1= AP

—ﬂWM‘

<Cl|flls

r (1= Jor(w)) 1)
(1—T2)2+2| |(1—| RIEPY |lf )‘

r
2| ———
+ | IC”f ”B(l — ,r2)2
<CK|| f B
Hence we get for |w| < r

(1= AP | FD oaw)) - FO)

< (1= AP £ (oa(w)) (1~ )

< K| fls.

Thus we have

sup sup (1= [A)?|£2(z) - FA(N)] < +oo.
AeD zeA(A,r)

Corollary 2.2 Let 0 < r < 1 and fix n > 0; integer. For an analytic
function f on D, the following statements are equivalent:

(A)  f € Bo;
(B) sup (1= A" [f™(z) = fM )] =0 (A -17)
zEA(AT)

where A(N,r) = {z € D;|par(2)| < r}.



420 R. Yoneda

Proof. ~ When n = 0, it was proved by K. Stroethoff [5, p.131]. When
n > 1, this is an immediate consequence of Theorem 2.1. O

Theorem 2.3 Let p > 0 and fir n > 0; integer such that n = a + 8,
a,3 € R. Then for an analytic function f on D and for r € (0,400), the
following statements are equivalent:

(1) feB;
) sup( sup (1 [zP) (1~ [wPIf™(z) ~ FP(w)]) < +oo
ze€D *weD(z,r)

u 1 412\ . ’UJ2 16}
) sup( 5o /D R Tk

o=

£ (z) = £ (W) PdAw) )7 < +o0;

1 (87
O 38D o o (0 PO 0
£ (@) = £ w)])dA(w)) < +oo;

(5) sup( sup (1= [zP) (1 = w)P|f,(2) - fP(w)] ) < +oo;
z€D *weD(z,r)

(6) sup !

e 1— |2|?)°P(1 — |w|?)PP
zeD(|D(Z,7")| D(z,r)( 270 =)

S =

79,(2) = £ (w) PdA(w) ) < +oo;

su 1 ogt —12|2)%(1 = |w|?)?
M 3305 o, o (= = wP)

F,(2) = £ (w)] ) dA(w)) < +oo.

Proof.  Firstly, we prove that (2) implies (1). Fix 0 < r < 400, and let f
be an analytic function on D. The following identity is easily proved by a
direct calculation:

2

where D(0,7) = {u € D;|u|] < s}, s = tanhr € (0,1). Hence we have

|f("“)(0)’ <2 sup

S ueD(0yr)

™).
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Replacing f(™ by f(™ o, — f™(z), we have

(1= 22 £+ (z)| < f w) - f0)(2)|.

sup

2
$ weD(z,r)

Since (1 — |z[?) is comparable to (1 — |w|?) for w € D(z,r),

sup(1 — [2[2)™+ | f4D) 2)|
z€D

2
<Zsup sup (1—[z*)"
S 2D weD(z,r)

<Cswp swp (1— o)1~ ) [0 ) - £ (2)
2€D weD(z,r)

)(w) - F2)|

By Theorem A, it follows that f € B. Thus we have proved that (2) implies
(1).

To prove that (1) implies (3), assume that f € B. Then by Theo-
rem 5.6 in and by making a change of variable formura and by using
JD@wry@M(z) < C < 400 and the fact that (1 — |2|?) is comparable to
|1 —wz|, (1 —|wl|?) and ]D(z,r)|% when w € D(z,r), there exists a constant
K > 0 (independent of f) such that

_1 _a2yer( — ) (1) — £ z
(Bl fop, 1~ A= PO ) ~ () Paw))
L 2vep e) oy p(n) e (L= 12]9)? >
<osp([ 0l - sOep T daw)

3=

= Csup / (1= 12221 0 p.(w) — £ 0 0.(0) PdA(w))
D(0,r)

z€D

AL

<Kisp(f =P = PP 0 ) O w)PaAw))

z€D

o =

— su 212y (1 — Pl f(n+1) o & (w)PdA(w
~ Kis /D«m ~ 2B = [ (w) P 0 . () PAA(w))

np 2\p| £(n+1) p(l — |Z|2)2 P
-Klsup( (1= |21 = PP LD () P dA(w)
26D\ D(zr) |1 — 2|
< Ky sup(
z€D

_ Z2 2
sup_ (1= o0 ( [ B g

weD(z r) D(z,r) |1 - Zw|4

N——
o=
N———"
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< C1Ky sup(1 — Jw[?) D] £+ ().
zeD
Hence we have by Theorem A

) w) — £ <z>|PdA<w>) < +oo.

Q=

Thus we have proved that (1) implies (3).
We prove that (3) implies (2). In fact, since |g(u)|P is subharmonic for
all analytic function g on D for 0 < p < 400,

C

9P < BT o

|g9(u)[PdA(u), - (2.3.2)

for all analytic function g on D. Replacing g by f™ — f((z),

C

(n) _ f(n) Pl ———
) = 7P < Bl Jogn

[F () = f™(2)PdA(w).

Since D(w,r) C D(z,2r) for w € D(z,7) and there is a constant K > 0
such that

C K
D(w, )]~ [D(z, 2]

and that (1 — |z|?) is comparable to (1 — |w|?) for w € D(z,r), we have

sup (1 —|2[%)*(1 = [wl)’| 5™ (w) - £ (2)]

weD(z,r)
<01 sup (1-[z2)"f™(w) - f™(z)]
weD(z,r)
Ky _ np| p(n)(, N _ £(n) ;
< Bz Jogany 1 O 0) = 1O @PAA)
K 2YaB(1 1 [2\8P] ) (o) _ £(m) z

. (2.3.3)

Thus we have proved that (3) implies (2).
Next we prove that (2) implies (5). Since (1 — |z|?) is comparable to
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(1 — |w|?) and |D(z,r)|% for w € D(z,r), we see

sup (1= 122)°(1 = Jwl)| 1, (2) - £ (w)])

weD(z,r)
L2yn 1 (1) () — £(7)

<oy sw (ol (590 - 19w )aaw))

<C-|z)" sup ( sup |f™(w)- ()
weD(z,r) Y*u€eD(z,r)

<o-lz?" swp { sup (If™(w)=f™) + 157 ()~ D)) |
we€D(z,r) ~u€D(z,r)

<= swp |fP(w)-fP@I+ sup [fOw)- ().
weD(z,r) u€D(z,r)

Hence we have

sup (1= [2%)7(1 = [wf)?| 7, (2) = £ (w)])

weD(z,r)
<20 sup (1-[22)"f™(w) - f(2)
weD(z,r)
<20K sup ((1—]22)(1 - w17 w) - £7(2)]).

weD(z,r)
. (2.3.4)

Thus we have proved that (2) implies (5). That (5) implies (6) is trivial.
Next we prove that (6) implies (5). Applying g = f™ — f(n) (2) to

(2.3.2),

C

D(w.n)| ™) (w) ~ F®, () PdA(u).
Bl o, 1170 = O (PG

£ (w) — F® ()P <

Hence we have the following as well as (2.3.3):

sup (1 [22)%(1 = [w]2)8| ™ (w) — ), (2)
weD(z,r)

K 2 2
< (=i (1 - |22)°P(1 — |uf?)PP
(a2 pean L EDTA =)

o -

£ ) - £, (2) PdAw) )

Thus we have proved that (6) implies (5).
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Next we prove that (5) implies (1). In fact, we also get the following
equation as well as (2.3.1): For all analytic function g on D,

2
d(0) =2 / Tg(u)dA(w),
S D(0,r)

where D(0,7) = {u € D;|u| < s}, s = tanhr € (0,1). By using the above
equation, we get

2
9O < 5 [ e dAw), - (2:3.5)

Applying g = fMop, —f/(\")r(z) and using Holder’s inequality and using the
fact that (1 — |2|?) is comparable to |1 — Zu| and |D(z,r)|% for u € D(z,7),
forp>1

(1= [z ()

~ T P (1= [2?)? )
=x(f [ 70,0 S i)
¢ (n) o (AP Z
SK(|D(Z,T)| [P =50 dA(u))
< KC sup f(")(u)—f/(;)r(z)l. -+ (2.3.6)
u€D(z,r)

Multiplying the both sides by (1 — |z|?)", we see that

(1 N |Z|2)(n+1) lf(n+l)(z)‘

<K sup (1= [z)%(1 = [u)? [ £ () - £, ().
u€D(z,r)

By Theorem A, that (5) implies (1) is proved.
To prove that (4) implies (2), suppose that

sup

1
YRS logt (1 = |2]2)%(1 — |w]?)?
zeD(|D(z»7')| D(z,r) (( [21%)* (1 = |wl*)

F(2) - f<">(w)|)dA(w>> < +oo.
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Since log™ |g(w)| is subharmonic for all analytic function g on D,
C
log™ lg(w)] < T [ log" lg(w)ldA(w)
|D(w7 T)| D(w,r)

Applying g = (1 — |2>)" (f™ — f(™(z)), there is a constant C > 0 such
that

log* (1= |z2)"1£™ (w) - £™(2)])

_¢ oot (1 — L2127 £ () — £, "
< Bl oy 8 (0 EDP1P0) = 19 dAw)

Since D(w,r) C D(z,2r) for w € D(z,r) and there is a constant K > 0
such that

C < K
|D(w,7)| = [D(z,2r)]

log* (1 = |37 (1 = [w?)?1£™ (w) - £ (2)])
< Cilog* (1= o)™ (w) - £)(2)])

ClC n n n
K R (L )8
< (TBGa] Jog o (KL= a0 = )

£ ) = ) (2)] ) dA(w))

1 log* (1 = [2P)°(1 — [ul?)?

Ky (—
P =K ({5 am) D(si2r)
F™ (u) — f(")(Z)l)dA(u) + log* K)

= M < +o0. . (2.3.7)

Since z < exp (log*™ z) (z > 0), for any z € D

sup (1= 12%)(1 = w1 ™ (w) - £)(2)]) < exp M < +oo.
weD(z,r)

Thus we have proved that (4) implies (2). That (2) implies (4) follows from
logT¥z < z (z > 0) easily. We can also prove the equivalence of (5) and



426 R. Yoneda

(7) as well as the equivalence of (2) and (4). This completes the proof of
(I'heorem 2.3 U

Remark 2.4 Carefully examining the proof of the above theorem, we see
that they also hold for (4*) and (7*) instead of (4) and (7), respectively:
For a monotonically increasing convex function ¢ on R! such that ¢(0) = 0
and for some constants C, K > 0,

K
4*)  sup _1< C(1-z»)*(1 - |w|?)8
@) s (B o, PO =)= ol

1) - £ w))dA(w) ) <-+oc,
K

) sup —1(—~—— C(1 - |21 = |w|?)8
1) s (Bom o, #(CA D = ful)

If(;)r(z) - f(")(w)l)dA(w)) < +00.
Corollary 2.5 Let p > 0 and fix n > 0; integer such that n = a + (3,

a,B € K. Then for an analytic function f on D and for r € (0,+00), the
following statements are equivalent:

(1) f € Bo;
(2) lim_( sup (1 |2[%)*(1 = [w?)?| ) (z) - f(")(w)l) = 0;
|z|—1 weD(z,r)

im 1 — [2[2)2P(1 — |w|?)BP
®) |zL1—<|D<z,r>| /Dw)“ 27 = el
£ (z) - F (w>|PdA<w>) o,

(4) lim ( sup (1—|z|2>a<1—|w|2)f’|ﬁ?>r<z>—f(")<w)|)=o;

|z|—1~ weD(z,r)
(5) lim ( (1= |2%)°P(1 — |w|?)PP
|z|—1~ ID(Z,T)| D(z,r) I l ) (

7™, (2) - f(")(w)l”dA(w)> 0.

Proof.  This is an immediate consequence of [Theorem 2.3 In fact, let
0 < r < +o00 and fix n > 1; integer such that n = a + 8, a,0 € R. For an
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analytic function f on D and for 2r > 0, suppose that

1
lim | 1—|2|)2P(1 — [w|?)PP
(1B 0 )

F™(z) - f(")(w)l”dA(w)) _o.
Then by (2.3.3)
sup (1 - |2[2)%(1 = [w]?)P|f™(2) — ) (w)]

weD(z,r)

1
SC(———— 1 —|2|2)°P(1 — |w|?)PP
|D(z,2'r')| D(z,2r)( l I ) ( | I )

7 (z) = o (w)|pd,4(w)) .

S =

Thus we proved that (3) implies (2).
To prove that (1) implies (2), suppose that f € By. Let fi(z) := f(t2)
(0 <t <1). Then for 8(z,w) < r, by Theorem 2.3

sup (1= [2)(1 = i) |(f = £)™ () - (f = )™ (w)|

weD(z,r)
<C|f-filB
Hence
sup (1 —|2)*(1 — |w>)P|f™(2) — f™ (w)]
weD(z,r)
<ClIf=fills+ s (1 22)2(1 ~ [w)P| £ (2) — £ (w)]
n 1 — 2\n
<clf - filo + KDY
sup (1 — [tz[2)*(1 — [tw|?)P| FM (t2) — F™)(tw)]
we€D(z,r)

z n
<ol -l + ker G g
In the above inequality, letting |2| — 17, the second term on the right
side converges to 0, and moreover letting ¢ — 17, by Theorem D the first
term on the right side also converges to 0. Thus we have proved that (1)
implies (2). That (2) implies (3) is trivial. That (2) implies (4) follows from
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(2.3.4). That (4) implies (5) is trivial. That (5) implies (1) follows from
(2.3.6). That (4) implies (2) follows from [2.3.7). That (2) implies (4) is
trivial. This completes the proof of Corollary 2.5, O

Remark 2.6 Carefully examining the proof of the above corollary, we see
that the following are also the equivalent conditions: For a monotonically
increasing convex function ¢ on R! such that ©(0) = 0 and for some
constants C, K > 0,

1m -1 ___K—_ _ z2a _ ,w2ﬂ

© Jm o (1o L e(c0 - e - )
1) - 1 w))dA(w) ) <o

im K — 1212)%(1 — |w|2)8

M Jm o (i (00 =1 )

£, (2) - f(")(w)l)dA(w)) —0.

Theorem 2.7 Let p > 0 and fit n > 1; integer such that n = a + (3,
a,B € . Then for an analytic function f on D and for r € (0,+00), the
following statements are equivalent:

(1) feB;
@) sup{ sup (1 — |22)°(1 = [w])?

weD(z,r)
lf(”_l)(z) — S (w)

< —Ww

i 2€ D, z;éw}<+oo;

su 1 — z19)2P(1 — |w|?)PP
® sz /D P ol

F(z) - f D (w)

Z—w

1 o 3
@ sop( oy Joe o8 (2P0 )

£ 0 <

£ — W

p 1
dA(w)) < +oo;
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Proof.  This theorem can be proved in the same order with that of Theo-
rem 2.3, but we prove it in different order. Firstly, we prove that (1) implies
(2) by using the induction. Suppose f € B. By Theorem B, we have

V() - F7D(0)] < / u £ ) at
0
waﬁu "

IA

1 — t2|ul|?)"
el dg
=Clfls | o
u
< Ol I

for all w € D. For any z,w € D, replacing f by f o ¢, and applying
U = @y(2), we have

(f 0 0w) " D(pu(2)) = (f 0 0u)"7D(0)

I‘Pw(z l

< C“ fopuw ”B (1 _ |(pw(z)|2)n—l'

Moreover by an elementary calculation, we get

(f © 0w) "V (puw(2)) = (f 2 0u) ™~ 1(0)

(1= [eP)E (1 - w3

zZ—w
<Ol fllp(1 =122 (1~ [w])?
1 |w-—2z| |1 — Wz~
[w = 2| |1 = wz| (1 - [2[?)"=1D(1 = [w|?)(~)

|1 _ wzl2n—3
n

(1= 121201 = [w}2)(z 7D
<Cl flsll —wz|"".

=C| fls

The last inequality follows from the fact that |1 — wz| is comparable to
(1 - |2]?), (1 — |w|?) because B(z,w) < r. By an elementary calculation,
there are some constants {Ci}7_] such that
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(L= 23— )}

|2 — w|

n-1 wz — n—1+k
Z{f(k)(z) ((|w|2 i)l)n.: _ f(k)(w)(|w|2 _ 1)k}(w)n—k—lck
k=1

<Cl flsll —wz",

where C,_; = 1. Dividing the both sides by |1 — wz|"~!, we have

(1= 2P (1 = )

2 — w)
z{f (o) e — M }(m)n_kmlck'
<clflls
Moreover

(1= 122 (1~ wP)? fwz -1
|2 — wl (1 = |wf?)»1

n—1

__1\k+n—-1
S {0 @) @: - 1y - ) WL A gpniig,

— 1)2(n-1
Pt (wz — 1)2(n-1)

<C| fls.

— n—1
Since (lli_zl—l—zl%l?—,—q > C for B(z,w) < r, we get

(1— |22 (1~ w)3

[z = wl

N0 et gy (DR

;{f ()@= =1 = {0 ) E ey H@) TG
<C| flls-

By the way, we put

n—1

k4+n—
N = S - - U

)21
k=1 (wz - 1)2=1
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2

{0 @2 - 1)F - 1R (w)

3
|

(|w|2 _ 1)k+n—1
(;wz _ 1)2(71.—1)
2 _ 1)2(n-1)
(n=1)y _ p(n=1), 4 Lw|* = 1)
+ f (Z) f (w) (_’II)-Z _ 1)2(n_1)
(fw? — 1)2-D)
(EZ _ 1)2(n——1) )

}(w)n—k—-lck

kol
Il
[o=

= M+ f7D(2) - {7V (w)

Then we have
fFeD(2) — frD(w)
zZ—w

N + fo=1) () (=020 f(n—l)(w)l

(1= )3 (1 - wP)?

(rw-z_l)2(n—l)

Z—w

= (1= [2P)E (1~ Jwf?)3

<ClflB+1—|z2)2(1- w2
_ wl|2—=1)2(n-1) n—
\f(" D(””)%%:fljﬁ_M_f( ”(w)'

Z—w

=C|fls + L.

The triangular inequality shows that

1< A= 12P)E—[wP)? (] (w® — 1>
|z — w| (wz — 1)2n-1)

= 1l + o}

The following inequalities are proved by using an elementary induction:

(1 [2P)3(1 - )}
2~ w]

2 _ 1)2(n-1)

(L= |22 (1~ |w)?
|2 = w|

(M| <C| £l

Hence we have that

sup{ sup (1|31 = |w]?)?
weD(z,r)

F& () — f D (w) l

Z—w

z€D, z#w}<+oo.
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Since 1 — |2|? is comparable to 1 — |w|? for w € D(z,r), we have

F V() — D (w)

Z—Ww

)

sup{ sup (1 - |#2)%(1 = Jul?)?
weD(z,r)

z€D, z;éw}<+oo.

Thus we have proved that (1) implies (2). That (2) implies (3) is trivial.
We prove that (3) implies (1). In fact, since |g(2)|P is subharmonic for
all analytic function g on D and p > 0, we have

C P
o)1 < o) dA(w))
|D(Z,’I‘)| D(z,r) | l ( )
for all analytic function g on D. Applying g(w) = ! (nnl)(zg;f)(n-l)(w), then
C f V(@) = f D (w) [P Z
(n) l < .
‘f (=)] < <|D(Z7"’)| D(z,r) z—w dA(w))
- (2.7.1)
Multiplying the both sides by (1 — |z|?)", we have
sup(1 - [2[%)" | /) (2)
z€D
<sup( oy [ QR )
" 2ep\|D(2,7)| Jp(zr)
(n—1) _ f(n—1) p 1
‘f (z; — i (w) dA(w)) " < +00.

By Theorem A, we have f € B. Thus we have proved that (3) implies (1).
To prove that (4) implies (1), suppose that

su log™ 1_z2a1_w25
Zeg(lD(Z’T)l D(z,r) 8 (( I I) ( | I)

Z—w

22 =100 o)) < oo

Since log™ |g(w)| is subharmonic for all analytic function g on D,

log™ |g(2) log™" |g(w)|dA(w).

< -
<D Joen
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Applying g(w) = (1 — |z|2)"f(n_l)(zg:f;(n_l)(w), there is a constant C > 0
such that

log* ((1— |12/ (2)])

c / ,
G T— log+< 1—[z[5)"
D) Joen & (7D

< C'sup (
z€D

F(z) - fO D (w)

Z—w

)aacw

log* (K(l 22 = [w]2)?
ID(Z’ T’)| D(z,r)

L = ) )

—w

1
:Csup( / log+(1— 2|92 — |w|?)P
S\ B e 8 (L7 = 1wl

[70() — 1" D (w) D dA(w)) 4 Clogt K

zZ—Ww
= M < +00. . (27.2)

Since x < exp (log+ :c) (x > 0), we have

(1= [

f(")(z)‘ <expM < +o0 (z€ D).

By Theorem A, we have f € B. Thus we have proved that (4) implies (1).

That (2) implies (4) follows from the fact that log™ z < z (z > 0) easily.
This completes the proof of [Theorem 2.7 O

Remark 2.8 Carefully examining the proof of the above theorem, we see
that the following are also the equivalent conditions: For a monotonically
increasing convex function ¢ on R! such that ¢(0) = 0 and for some
constants C, K > 0,

K
5) su —1( (C1-z“1—w”
(5) zegcp D] D(Z,T)so (1= 2]9)*(1 = |w|)

F V() - D (w)

Z—w

DdA(w)) < 4o0.

Corollary 2.9 Let p > 0 and fit n > 1; integer such that n = a + 8,
a,B € R. Then for an analytic function f on D and for r € (0,+00), the
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following statements are equivalent:
(1) f € By;

@) nm{ sup (1 [22)°(1 - [wf?)?
|21~ LweD(z,r)

F& () = f D (w)

Z—Ww

1
3 lim / 1 — |z]2)2P(1 — |w|?)PP
3) Izl—>1‘<|D(z,7‘)| D(z,r)( 2971 =l

F V() — D (w)

Z— W

1 z€ D, z#w}zo;

pdA(w)) —o.

Proof.  This is an immediate consequence of [Theorem 2.7. In fact, let
0 < r < 400 and fix n > 1; integer such that n = a + 3, o, 8 € R. For an
analytic function f on D, suppose that

lim sup{(l — 231 ~ |w|? . —w

)/3‘ F D (z) — fD(w) |;
{z|—-1—

w € D, B(z,w) <r, z;éw} = 0.
Then we have

(1 - 22" ™ (2)]
= lim (1 — |2|%)*(1 - |w|?)?

‘f("‘”(Z) — f* D (w) ‘

w—2z L-w
e f2ysl £ ) f(n_l)(w)‘.
Ssup{U |2]“)*(1 |w|)’ z—w ’

w € D, B(z,w) <'r,z;£w} -0 (|z|—=17).

Hence Thorem C implies that f € By. Thus we proved that (2) implies (1).
To prove that (1) implies (2), suppose that f € By. Let fi(2) := f(t2)
(0 <t < 1). Then for f(z,w) < r, by the proof of [Theorem 2.7

(1 |2P)(1 - e |20 = ft><"—1>(w>|

Z—w

<C| f- ftls-
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Hence we have

(1= |21 - )| 2=

F& () ~ f(”"”(w)‘

<SCIf=fells+ (1 =241 = [w?)?
tn—lf(n—l)(tz) _ tn—lf(n—-l)(tw) l

Z—Ww

Next estimating the second term on the right side of the above inequality,
by the proof of [Theorem 2.7

(1= 121 ~ |wf?)?

tn—lf(n—l)(tz) _ tn—lf(n——l)(t,w)
=
— " (1 — |z|2)a(1 — lwl2)'3 (1 . |tz|2)a(1 _ |tw|2)ﬁ

(1 = Jtz*)a(L — [tw]")?
f O (tz) — f D (tw) ‘

tz — tw
< Kl (1= ) = o)) £ s
- (1-¢)n
Since (1 — |2|?) is comparable to (1 — |w|?) for B(z,w) < r, we see that

(n=1) () _ f(n=1)(y,
sup{u—lzn?)a(l—w)ﬂ’f (z) = 7 )\;

- W

w € D, B(z,w) <, w;éz}

n
<CIf = folls + K gyl = =) £ s
In the above inequality, letting |z| — 17, the second term on the right side
converges to 0, and moreover letting t — 17, by Theorem D the first term
on the right side also converges to 0. Thus we have proved that (1) implies
(2). That (2) implies (3) is trivial. That (3) implies (1) is clear by (2.7.1).
This completes the proof of [Corollary 2.9, O

Remark 2.10 Carefully examining the proof of the above corollary, we
see that the following is also the equivalent condition: For a monotonically
increasing convex function ¢ on R! such that ¢(0) = 0 and for some
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constants C, K > 0,

@ Jm o (it (et ey
‘f(n D, - _ fn=1) (4 DdA(w)) Y

3. Criterior for membership of the Besov space

The following [Lemma 3.1, Lemma 3.2 are used to prove Theorems
and B.5.

Lemma 3.1 ([7, p.75]) Let 0 < r < +o0o. For any p > 1, there is a
constant Cp, > 0 such that

/ FPdA() < G, / 2f ()P dA(2)
sD sD

for any analytic function f on D, where sD = {w € D;|w| < s} = D(0,r),
s = tanhr.

Lemma 3.2 Let 0 <r < 400. For any p > 1, there is a finite constant
C > 0 such that

/ 9(z) — 9(0)|?
sD

2
for any analytic function g on D, where sD = {w € D;|w| < s} = D(0,r),
s = tanhr.

dA(z) < C / V@[ @ - l=praac)

Proof. Let g be an analytic function on D and let
sD = {w € D;|w| < s} = D(0,r), s = tanhr.

Then for any p > 1, there is a constant Cj, > 0 such that

[ [e2zs0r
sD
<K/ |g<l (1= e PaAC).

z
The first inequality above follows from Lemma 3.1], and the second inequal-
ity follows from Theorem 5.6 in . |

dA(z) < C / (0)IP dA(2)
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Theorem 3.3 Fiz n > 0; integer such thatn = a+ 8, a,8 € R. Then
for an analytic function f on D and for r € (0,400), for p > 1 in the case
of n =0, and for p > 1 in the case of n > 1, the following statements are
equivalent:

(1) fEBp§
su — 1221 = |w]?)?| F™ (2)— £ (w g z 00;
@ [ (s 0= Y1)~ £ w)]) D) < oo

1 — 1212)eP(1 — |w|2)PP
S AC e MG
7() = £ (w)PdA(w) ) AN(z) < +o0o;

@ [ (e L, 0 =y
F7() = FP w)ldAw) ) dA(z) < +oo;
) /D (sup (1—IZIZ)“(l—leg)ﬁlf/(;)r(Z)—f(")(w)l)pdA(Z)<+00;

weD(z,r)

— [21%)%P(1 — |w]?)7P
| zr)

1760,(2) = f (w)PdA(w) ) dA(z) < +oo;

O [ (e L, 0 =y’

if/(-;)r(z) - f(")(w)ldA(w))pd)\(z) < +o0.

Proof. Let 0 < r < 400 and fix n > 0; integer such that n = o + 3,
a,3 € R. Let 0 < s <1 such that s = :jr — = tanhr € (0,1). Inthe case
of n = 0, this theorem does not hold for p = 1 because of the definition of

By, but in the case n > 1 it does for all p > 1.

Firstly, we show that (1) implies (3). Assume that f € B,. Then by
Theorem 5.6 in and by making a change of variable formura and by
using fD(w ") d\(z) < C < +oo and the fact that (1 — |z|?) is comparable to

|1 — wz|, (1-]wl|?) and |D(z,r)|% when w € D(z,r), there exists a constant
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K > 0 (independent of f) such that

_ _1212)2P(1 — |w[2)?
/D<lD(z,r>| OIS o Pt i
1) () — f(")(z)lpdA(w))dA(Z)

< KC / / 1P — [P £ () PdA(w)dA(2)
— KC /D /D xD(w,r)(Z)(l—|Z|2)"”(1—|’w|2)”|f("+l)(w)I”d/\(z)d/\(w)

< CKC / (1= Juf2) ™R 1) (40) P (w).
D

The first inequality follows from the proof that (1) implies (3) in Theo-
rem 2.3. And the second equation follows from X pyr)(2) = Xpz,r)(w)
and Fubini’s theorem. Thus we have proved that (1) implies (3). That (3)
implies (4) follows from Hoélder’s inequality easily.

To prove that (4) implies (1), we assume that

/,;>(|D(z,7~)| ooy D=
1F™(z) - f(n)(w)|dA(w)) dA(z) < +oo.

By an elementary calculation, we have the following

Jovor<z [ gt - g<o>\ dA(w)
sD

for all analytic function g on D, where sD = {z € D;|z| < s}. Replacing g
by f ™o Pz

$4(1 — [ f D ()] < 2 / F™ 0 a(w) — £™(2)]dA(w).

D(0,r)

By making a change of variable formura, we have

/ (1 = |22 0P| D) ()P 2)
D

<c[([ o (PP o) — FE@lAW) D)
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_14]2)2 p
—cf ( [ ( )(1—|z|2>"|f<"><w>—f<n>(z)|“—U—)—dA<w>) aA(2)

|1 — zw|*

1 ype AY-TE 2\6
< CK /D(w(z,r)l RS PSR p
17 (w) — f‘")(z)ldA(w)> dA(2)

< +00.

By Theorem A, we have f € B,. Thus we have proved that (4) implies (1).
That (2) implies (4) is trivial. That (4) implies (2) follows from (2.3.3).
That (2) implies (5) is clear by using (2.3.4). That (5) implies (6) is trivial.
And by using Holder’s inequality, that (6) implies (7) is proved easily.

It /Izmains to prove that (7) implies (1). In fact, applying g = f(™ o
0. — f™_(2) to and multiplying the both sides by (1 — |z|?)® and
making a change of variable formula, we get

(1 — [z ()

¢ — |2]?) —uzﬂ(")u—/("\)z u
< 5 (g o, (A 0 = W) - 7O, ).

Thus we have proved that (7) implies (1). This completes the proof of
(I’heorem 3.3. O

Remark 3.4 Carefully examining the proof of the above theorem, we see
that the following are also the equivalent conditions: For a monotonically
increasing convex function ¢ on R! such that ¢(0) = 0 and for some
constants C, K > 0,

® [« (womf,, ploa-trra-jwey

1) - 9w )dA(w) ) ) 0N6) < +oo

0 [ (e (ipmy L, e(ca—Tra— ey

N

17 (2) - f(")(w)|>dA(w))>pdA(z) < +00.

Theorem 3.5 Fiz n > 1; integer such thatn = a+ 3, a,B € R. Then
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for an analytic function f on D and for r € (0,400), for p > 1 in the case
of n =1, and for p > 1 in the case of n > 2, the following statements are
equivalent:

(1) f € By;
@ [ ( sup (1 — |2)°P(1 — [w]?)?

weD(z,r)
F(z) = D (w)

Z—Ww

1 _ 22 ap _ w2 Bp
3) /D(w(z,r)l/mz,r)“ 2P (1 wf?)
FOD(z) — F0D) (a0) P

Z—Ww

1 . 22 a1 _ ’I.U2 J¢]
(4) /D(|D<z,r>|/D(z,,~)“ 2P — )
D (2) — f0-D) ()

Z— W

)pd/\(z) < +00;

dA(w)) dA(z) < +o0;

‘dA(w))pd)\(z) < +00.

Proof.  Firstly, we show that (1) implies (3). This can be proved by using
the induction as well as the proof of Theorem 2.7, but we prove it in another

way. Suppose that f € B,. For any p > 1, the following inequality follows
from lemma 3.2:

/ g(u) — g(0)
sD

u
for all analytic function g on D, where sD = {w € D;|w| < s} = D(0,r),
s = tanhr. Applying ¢ to f(®~1 o ¢,, we have

/ (f(n_l) o, )(w) — (f(n_l) 0 ,)(0)
D(0,r)

w
<C (F D 0 p)D(w)P(1 - [wf)PdA(w).  --- (35.1)
D(0,r)

"dAw) < C [l @ - raaw

pdA(w)

Then by using (3.5.1) and by making a change of variable formura and by
using fD(w " d\(z) < C < 400 and the fact that (1 — |z|?) is comparable to

|1 —wz|, (1—|w|?) and |D(z,'r)|% when w € D(z,r), there exists a constant
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C,C1,0C,,C5,K, Ky, K2 > 0 (independent of f) such that

/D(|D(z,r)| D(z,r)(l 122)2P(1 — |w|?)PP
f(n_l)(zi : i}(n—l)(w) pdA(w))d)\(z)
; e 2\np
SC/D<|D(z,r)| R
(n—1) 2) — (n—1) w) |P
P2 i) )anes)
_ 152\ FO D (w) — fFr-D () P
- CCI/DUD(z,r)(1 o pz(w)
— Zw p(_l..:_.‘_Z_IQ_)?. w .
1 - Zw| T 7wl dA( ))d)\( )
F=D 6 o, (w) — F™D 0 0, (0) |P

w

1= 2. (0)PdA(w) ) AC:)

ey (L= 2P

SK/D</D(o,r)(1 =) 11 —Zwl?
(£ o)D) P(1 - |w|2>pdA<w>)dA<z>
_ — |z 2 np(]' — |Z|2)2p
- K/D(/D(O,r)“ SRl T
7 (s (w))P(1 |w|2>PdA<w))dA<z>
<k [ ( [ L0 |z|2)np|f<">(soz<w>)|PdA<w>)dA(z)
_ 4122

<t [ ([ 0=ty p i dam o)

<o ( i - )1 )P A w) ) dA:)
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= z — [w|?)™| £ (w)[PdA (w
CQ/D(/D(W’T)M >)<1 w[2)7] £ (1) P (w)
<Gy /D (1 = [w2)™| £ (w)PdA(w).

The last equation follows from Xxp(wr)(2) = Xp(zr)(w) and Fubini’s
theorem. That (1) implies (3) follows from Theorem Al That (3) implies
(4) follows from Holder’s inequality easily.

To prove that (4) implies (1), we assume that

1 g AT w 2\
/D(lD(Z?r)l D(z,r)(1 | | ) (1 | I )
f () - 0D (w)

Z—w

P
‘dA(w)) dA(z) < 4o0.
By (2.7.1), we have

1
ID(zv T)I D(z,r)

F V() = D (w)

Z—wWw

‘f(n)(z)' < dA(w).

Hence we have

[ =iy [fo@) ae

1
<
C/( lzl D(z,r)| D(z,r)

Cl | =— 1— 2|21 = |w|?)?

s /D(lD(ZaT)l D(z,r)( lZI ) ( |w| )
fln— 1)
—

f0V(z) = D (w)

Z—w

‘dA(w))pd)\(z)

=/ (n-l)(w) IdA(w))pd)\(z) < +o0.

By Theorem A, we have f € B,. Thus we have proved that (4) implies (1).
That (2) implies (4) is trivial.

It remains to prove that (4) implies (2). In fact, we have for all analytic
function g on D

5 < oy 904G
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FP @G e

Applying g(u) =
fO D (w) = f=D(z)

w—=z

wr'»/wr)

for all analytic function f on D. Since D(w,r) C D(z,2r) for w € D(z,r)
and there is a constant K > 0 such that
1 < K
|D(w,r)| ~ |D(z,2r)]’

170w = 1) | 44

U—=z

“Dw) - F" V()

w—z

sup (1 —[2[*)"
weD(z,r)

CK
< —
|D(Z, 2T)l D(z,2r)

Since (1—|z|?) is comparable to (1 — |w|?) for w € D(z,r) and that (1—|z|?)
is comparable to (1 — |u|?) for u € D(z,2r),

[(sw - pra —|w|2>f’|f("'”<w>—f(n-1><z>

weD(z,r) w—=z

- afq _ g
<C [ (5 [0, 0~ R0~ )
FrDw) - FrD(a)

u—=z

F V@) = £ ()

u—=z

(1= )"

dA(u).

)pd/\(z)

dA(u))pd)\(z)

< +00.

Thus we have proved that (4) implies (2). This completes the proof of
Theorem 3.5. O

Remark 3.6 Carefully examining the proof of the above theorem, we see
that the following is also the equivalent condition: For a monotonically
increasing convex function ¢ on R! such that ©(0) = 0 and for some
constants C, K > 0,
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o [« (5 D(”)w(cu—tz|2>a<1—|w12>f’
'f MGt (n—l)(w)DdA(w)))pd)\(z) < +oo.

Z—w

4. The spaces B("), B(()n) and Bg")

In this section we study the spaces B(™, B(()n) and B,(gn) :

Example 4.1 The function f(z) = log(1 — z) is in B but it is not in B
for n > 3. In fact for n > 3,

") ~ D (w) ‘

< —w

(1 =122 (1 - Jwl*)?
— |w[2)3 (n - |Z 0 (") (L —w)n k(1 - Z)k|'

[T — 2T —

= (1-:P)ia

Fix w such that |w| = s € [0, 1) and let |z| =7 € [0,1). Then we have

“V(z) — f D (w)

Z—w

sup{<1 )R- ul?)E

12, wE D, z#w}

N3

n-2 m—2) (1 _ \n-2-k(] _ p\k
>(1—-r ) (1-— 32)%(71 —1)! k=0((1 Ii Z"g’ll‘l(l)— S)"E} )
— 400 (r—17).

O
Theorem 4.2 For an analytic function f on D, f € B if and only if
(1)
sup{( — 21 = |w|?) ‘f ?J; (w )I;z,wED, z;éw}<+oo.
Proof.  Suppose that

supd (1= 221 - o) L2 L0

iz,w € D, z;éw}<+oo.
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Then for any z € D, we have
(1= 1222 £ (2)|
= lim (1~ [2]*)(1 - |w[?)

W(z) - fM(w) l

w—z Z—Ww

W () — FD (g
< sup{ (1~ =) (1 — )| T2 2T, e b, 2 )
< +00.

Thus Theorem A implies that f € B.
To prove the converse, assume that f € B. By (2.1.1),

|ul

‘f(l)(u) — fM(0)] < C”f“B a2

for all w € D. For any z,w € D, replacing f by f o ¢, and applying
u = @yu(2), we see that

(£ 0 0u) V(@) = (o 0u) (0)] < Cllf o pullas ﬁ?f()z'ﬂ?

= C| f 55 ﬁ;ﬂ)lf

Hence by an elementary calculation, we get

(1= 2[4 = Jw])

[w - 2|

W, (1= Jw?)?
) - Sl o) < i e

Thus we have

(1121 - Jwl?)

£0(z) - fO(w)|

w7
_ 00 ) 0 B2 g
L - S o)
+ S j00) — 10w

(1= =)= ) | sy, (L= )
< SRR e - e

| Sl 0w - 0}

f“)(w)’
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1—|w]®+1-—we|
11 — wz|?

11— |wP| | 11—z

11 —wz|? u—amﬁ)

< (L4 )Cl s+ = =PI £ 15

<20 fls+ - |22 f ||B(
< @C+6)|| £ 5.

Hence

FN () — N (w)

Z—Ww

sup{<1 2P~ wf?)

1z,w € D, z;éw}<+oo.

g

Theorem 4.2 implies that B(?) = B. The equivalence of (1) and (2) in
Thorem 2.7, Example 4.1 and Theorem 3 of [3] imply that

BW cB@=BW =B BM™M£B (n>23).

Corollary 4.3 For an analytic function f on D, f € By if and only if
FO(z) = fO(w)

Z—w

|2|—1-

lim sup{(l ~ 1221 = |w|?)

sw € Dy z;éw}=0.

Proof.  This is an immediate consequence of [Theorem 4.2. O

Corollary 4.3 implies that B(()2) = By. The equivalence of (1) and (2) in
Corollary 2.9 and Theorem 2 of [6] imply that

B cBP =B =B, (n>3).

For the space B,S.”), we don’t know whether B, = B;(,2) holds or not. The
equivalence of (1) and (3) in [Theorem 3.5 implies that B,(,") C B, (n>1).
In the case of n = 1, B,(,l) = B, for any p > 2. In the case of n = 2,
B,(,z) C By, for any p > 1. In the case of n > 3, B;,n) C By, for any p > 1.

For p > 1, it is clear that B, C By C B (p > 1). And we also see that
B,(,n) C B((,n) C B™ (p > 1) for n > 1. As we stated in Example 4.1, for
n > 3, the function f(2) = log(1 — 2) (z € D) gives an example that the
implication B(™ C B is strict. Moreover it holds that BMOA c B® =
B = B, but in the case of n > 3, BMOA is not contained in B(™ because
f(2) =log(1 — z) € BMOA is not in B™. Moreover for n > 3, we also see
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that the little 113100h space By is not contained in B(™ too. In fact, letting
f(z) = (1 — 2z)4, then

1= PO = 70 =[P - 2|73
11— |z )
3 — 0 (|Zi——>1 )

4(1 - |2))3

Hence f € By, but

1— 12123 (1 = |w|?)3
(1-1ePia - )t 2T

ﬂ”@%—ﬂ”@%

= (- )

1 (1 —w)i — (1 - 2)7]
16 '

11— 2|41 — w|t |2 — wl

Fix w such that |w| = s € [0,1) and let |z| =7 € [0,1). Then we have
FP(2) = fO(w)

iz, w € D, z;éw}

Loy aig 20 1 (1— )7 — (1= 7)d]
ST S)(1~@%u_rﬁ |s =7

— 400 (r—17).

Hence f ¢ B®) . And for n > 3, this also gives an example that the
implication B((,n) C By is strict.

5. The a-Bloch space B“, the little a-Bloch space Bg and the
a-Besov space Bg

In Section 2 and Section 3 we characterized the Bloch space B and the
little Bloch space Bp and the Besov space By, but similar characterizations
also hold for the a-Bloch space B* and the little a-Bloch space Bf and the
a-Besov space By by using the following Theorem E and Corollary F and
Theorem G as well. Since most proofs are also similar to ones of the case
of a = 1, we’ll only present results. For example, we give Theorems b.1],
5.2, 5.3 and 5.4 which are correspond to Theorems 2.3, 2.7, 8.3 and B.5,
respectively. On the other hand, we could not characterize ones which are
correspond to the results of Section 4.

Theorem E ([9, p.1148]) Let a > 0 and n > 2; integer. For an analytic
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function f on D, f € B* if and only if

(1 = |21 f " (2) € L2(D, dA).
Corollary F ([9, p.1148]) Let a > 0 and n > 2; integer. For an analytic
function f on D, f € B§ if and only f

(1= |2 f(z) =0 (2] = 17).
Theorem G ([9, p.1174]) Let o > 0 and n > 2; integer. For an analytic
function f on D and for 1 <p < 400, pla+n—1) > 1, f € By if and only
if t

(1= [2)+ 1 £ (2) € LP(D, dN).
Theorem 5.1 Let a > 0 and p > 0 and fir n > 0; integer such that

n=a1+pf—a+1l, a,B € R. Then for an analytic function f on D and
for r € (0,400), the following statements are equivalent:

(1) feB%
@) sup( sup (1—izl2>‘“(1—|w|2>ﬂ1|f<">(z>-f<"><w>|)<+oo;
2€D \weD(z,r)
; _|.12yoaprq _ 2\61p
(3) jlelg(|D(z’7”)| D(z,r)(1 |zl ) (1 |w| )

1

£ (z) - f(”)(w)lpdA(w)) ' < foo;

su 1 + — 2|2 (1 — 261
(4) zeB(wu,m /| o8 (1 1o (L~ )

77 = £ )dA(w) ) < oo

(5) sup( sup <1—|z|2>a1<1—|w|2>ﬁ1|f’<?>r(z>—f<n><w>|)<+oo;
2€D \weD(z,r)

(6) sup

1
- - 1 — [212)*P(1 — |w|?)PrP
ZGD(ID(ZarN D(z,r)( I ‘ ) ( I l )

I

70,(2) - f(")(w)l”dA(w)> < too;
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1
7 sup(——— logt (1= |2/5)* (1 — |w>)™
( ) zeD |D(Z, T)‘ D(z,r) (( | |

|J@r(z) - f(")(w)|)dA(w)> < +00.

Theorem 5.2 Let o > 0 and p > 0 and fir n > 1; integer such that

n=a;+pP1 —a+1l,a,B1 €R. Then for an analytic function f on D and
for r € (0,+00), the following statements are equivalent:

(1) feB%
@) sup{ sup (1= 22 (1 = fw]?)®
weD(z,r)

\ﬂ”—”(z) — f= U (w)

Z—w

1 2 €D, z;éw}<+oo;

su L — [2[2)1P(1 — |w|?)PrP
50Dt Lt )

lﬂ"-”(z) — fD(w)

p

=

Z—wW

dA(w)) < +00;

() S‘QB(iD(i,r)l /D(z,r) log* ((1 ~ =Py = ey
[ F N ) <

Z— W

Theorem 5.3 Let a > 0 and fix n > 0; integer such thatn = ay+ 01 —a+
1, a1, 51 € R. Then for an analytic function f on D and for r € (0, +00),
for 1 < p < o0, p(a+n) > 1, the following statements are equivalent:

(1) feBy

® [ ( sup (1—|z|2>a1<1—|w12)ﬁ1|f<n>(z)—f<">(w>l)pdx<z>

weD(z,r)
< +00;

1 2Yer(] — )P
3) /D<|D(z,r)| [ty

£ (z) - f<"><w>|PdA<w))dA(z> < +oo;
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_1__ — 21321 (1 — |w]?)5
@ [ (e f, 0 tBma =)

70 (z) - f<"><w>|dA(w))pdA<z> < +o0;

o [ ( sup (1 [22)* (1~ fwl?)®

weD(z,r)

7, (2) - f<”><w>|)pdA<z> < oo,

1 — [z]2)21P(1 — |w]?)P
O [ (e i, 0= = e

7, () - f<"><w)|pdA(w>)dA<z> < +o0;

/D(|D(i,r)| /D(z,r)(l —22)* (1 = Jw|?)A

£, (2) f(")(w)ldA(w))pd/\(z) < 400.

—~
~J
~—

Theorem 5.4 Let o > 0 and fiz n > 1; integer such thatn = a3+ 08, —a+
1, an, 51 € R. Then for an analytic function f on D and for r € (0, +00),
for 1 <p < +oo, p(a+n—1) > 1, the following statements are equivalen:

(1) fe€ By;

(2) /D( sup (1 — |2[2)*@P(1 — |w|?)PrP

weD(z,r)
fD(z) = fe=D(w)

Z—w

1 _ z2 ag — |lw 2\(1
& [ (e, 0 -
FoD(z) — FoD(a) P

< —w

1 21291 (1 — [op]2)8:
(4) /D(w(z,rn/mz,r)“ 222 (1 - JuP?)
1) (z) — F=D) ()

Z—w

)pd)\(z) < +00;

dA(w)) dA(z) < +o0;

IdA(w))pd/\(z) < +o0.
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