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Putnam’s theorems for \omega-hyponormal operators
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Abstract. Three theorems on hyponormal operators due to Putnam are generalized to
apply to the broader class of w-hyponormal operators. In particular, it is shown that if
an operator T is w-hyponormal and the spectrum of |T^{*}| is not an interval, then T has
a nontrivial invariant subspace.
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1. Introduction

Let T be a bounded linear operator on a Hilbert space H with inner
product (\cdot, \cdot) and p>0 . The operator T is said to be p-hyponormal if
(T^{*}T)^{p}\geq(TT^{*})^{p} . A p-hyponormal operator is said to be hyponormal if
p=1 , semi-hyponormal if p=1/2 . It is a consequence of the well-known
L\"owner-Heinz inequality that if T is p-hyponormal, then it is q-hyponormal
for any 0<q\leq p . An invertible operator T is said to be log-hyponormal
if log |T|\geq\log|T^{*}| . Clearly, every invertible p-hyponormal operator is log-
hyponormal Let T=U|\underline{T}| be the polar decomposition of the operator T
Following [1], we define T=|T|^{1/2}U|T|^{1/2} . An operator T is said to be
w hyponormal if

|\overline{T}|\geq|T|\geq|\overline{T}|* . (1.1)

Inequalities (1.1) show that if T is w-hyponormal, then \overline{T} is semi-hyp0-
normal. The classes of \log- and w-hyponormal operators were introduced
and their spectral properties studied in [2]. It was shown in [2] and [3]
that the class of w-hyponormal operators contains both the p- and log-
hyponormal operators. {\rm Log}-hyponormal operators were independently in-
troduced by Tanahashi in the paper [8]. There he gave an example of a
\log-hyponormal operator which is not p-hyponormal for any p>0 . Thus,
neither the class of p-hyponormal operators nor the class of log-hyponormal
operators contains the other. In [4], we pointed out that if T is the
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Tanahashi operator on H, then T\oplus 0 on H\oplus H is a w-hyponormal op-
erator which is neither \log-hyponormal nor p-hyponormal for any p>0 .
Thus, the class of w-hyponormal operators properly contains both the p-
and \log-hyponormal operators.

Putnam [7] proved, among other things, three theorems concerning the
spectral properties of hyponormal operators. These theorems were recently
generalized to p-hyponormal operators by others. Here we generalize fur-
ther these theorems to w-hyponormal operators. In Section 2, we prove
the first generalization concerning points in the approximate point spec-
trum of a w-hyponormal operator. The second generalization, proven in
Section 3, concerns the relationship between the spectra of T and |T| of
a w-hyponormal operator T Finally, drawing on the results obtained in
Sections 2 and 3, we prove the third generalization that if a w-hyponormal
operator T is such that the spectrum of |T^{*}| is not an interval, then T has
a nontrivial invariant subspace.

2. The Approximate Point Spectrum

A complex number \lambda\in \mathbb{C} is said to be in the approximate point spec-
trum \sigma_{a}(T) of the operator T if there is a sequence \{x_{n}\} of unit vectors
satisfying (T-\lambda)x_{n} -0. The boundary \partial\sigma(T) of the spectrum \sigma(T) of
an operator T is a subset of \sigma_{a}(T) . For bounded linear operators S and
T, it is known that the nonzero points of \sigma(ST) and \sigma(TS) are identical.
Thus, if T=U|T| is the polar decomposition of T, then the facts that
|T^{*}|=U|T|U^{*} and |T|=U^{*}U|T| imply that the nonzero points of \sigma(|T^{*}|)

and \sigma(|T|) are identical.
In this section we prove a result concerning the approximate point spec-

trum of a w-hyponormal operator. Two consequences of this result will be
drawn. The first (Corollary 1) is a generalization of a theorem, due to
Putnam, concerning the boundary points of the spectrum of a hyponormal
operator. The second consequence (Theorem 3) will be given in Section 4.
The main result of this paper, concerning the existence of nontrivial invari-
ant subspaces for w-hyponormal operators, is based in part on this second
result. Two observations are needed in order to prove the main result of
this section.

Let T be a bounded linear operator and \lambda\in \mathbb{C} . One readily checks that
the following equations hold.
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(|T|+|\lambda|)(|T|-|\lambda|)=T^{*}(T-\lambda)+\lambda(T^{*}-\overline{\lambda}) . (2.1)

(|T^{*}|+|\lambda|)(|T^{*}|-|\lambda|)=T(T^{*}-\overline{\lambda})+\overline{\lambda}(T-\lambda) . (2.2)

Stronger than its statement [9, Theorem 2.5, p.12], Xia actually proved the
following:

Lemma 1 (Xia) Let T be semi-hyponormal and \lambda\in \mathbb{C} . If the sequence
\{x_{n}\} of unit vectors is such that (T-\lambda)x_{n}arrow 0 , then (T^{*}-\overline{\lambda})x_{n}arrow 0 .

Theorem 1 Let T=U|T| be w-hyponormal and \lambda\neq 0 . If the sequence
\{x_{n}\} of unit vectors is such that (T-\lambda)x_{n}arrow 0 , then (|T^{*}|-|\lambda|)x_{n}arrow 0 . If
in addition, T is invertible, then (T^{*}-\overline{\lambda})x_{n}arrow 0 .

Proof. Since ||(T-\lambda)x_{n}||\geq||\lambda|-||Tx_{n}||| , passing to a subsequence
if necessary, we may assume that the sequence \{||Tx_{n}||\}=\{|||T|x_{n}||\} is
bounded away from 0. Let y_{\underline{n}}=|T|^{1/2}x_{n} . The bounded sequence \{||y_{n}||\} is
bounded away from 0 and (T-\lambda)y_{n}arrow 0 . Since \overline{T} is semi-hyponormal, it
follows from Lemma 1 that (\overline{T}-\overline{\lambda})y_{n}*-arrow 0 . Since |\overline{T}|+|\lambda| and |\overline{T}*|+|\lambda| are
invertible, (2.1) and (2.2), with T in place of T., imply that (|\overline{T}|-|\lambda|)y_{n}arrow 0 ,
and (|\overline{T}*|-|\lambda|)y_{n}arrow 0 . By (1.1), we have

0\leq((|T|-|\overline{T}|)y_{n}, y_{n})*

\leq\{((|\overline{T}|-|\lambda|)y_{n}, y_{n})-((|\overline{T}|*-|\lambda|)y_{n}, y_{n})\}arrow 0 ,

and hence

(|T|-|\overline{T}|)y_{n}*arrow 0 .

Therefore,

(|T|-|\lambda|)y_{n}=\{(|T|-|\overline{T}|)y_{n}+(|\overline{T}|-|\lambda|)y_{n}\}**arrow 0 ,

and

|T|(|T|-|\lambda|)x_{n}=|T|^{1/2}(|T|-|\lambda|)y_{n}arrow 0 . (2.3)

Multiplying each side of (2.1) on the left by \lambda^{-1}|T| , it follows from (2.3)
that |T|(T^{*}-\overline{\lambda})x_{n}arrow 0 , and that

T(T^{*}-\overline{\lambda})x_{n}=U|T|(T^{*}-\overline{\lambda})x_{n}arrow 0 . (2.4)

Since |T^{*}|+|\lambda| is invertible, (2.2) together with (2.4) imply ( |T^{*}| -
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|\lambda|)x_{n}arrow 0 . If T is invertible, it follows from (2.4) that (T^{*}-\overline{\lambda})x_{n} -0.
The proof is complete. \square

Corollary 1 Let T be w-hyponormal. If \lambda\neq 0 is such that \lambda\in\sigma_{a}(T) ,
then |\lambda|\in\sigma(|T|)\cap\sigma(|T^{*}|) .

Corollary 2 Let T=U|T| be p-hyponormal. If \lambda\in\sigma_{a}(T) , then |\lambda|\in

\sigma(|T|)\cap\sigma(|T^{*}|) .

Proo/. Since ||Tx||=|||T|x|| for any vector x , if 0\in\sigma_{a}(T) , then 0\in

\sigma(|T|) . The assumption that T is p-hyponormal implies O\in\sigma(|T^{*}|) . This
proves the corollary for the case \lambda=0 . For the case \lambda\neq 0 , the result follows
from Corollary 1. \square

With the added assumption that the polar factor U is unitary, Corol-
lary 2 was proven for \lambda\in\partial\sigma(T) in the case T is hyponormal by Putnam
[7, Theorem 1], and the case T is p-hyponormal, by Ch\={o}, Huruya and Itoh
[5, Theorem 2].

3. The Spectra of T and |T|

Let T=U|T| be a p-hyponormal operator. Does it follow that if
z\in\sigma(T) , then |z|\in\sigma(|T|) ? Apparently, by Corollary 2, the answer is
in the affirmative if z\in\sigma_{a}(T) . In general, the answer to the question
is in the negative [7] even if T is hyponormal and the polar factor U is
unitary. However, the converse is true for p-hyponormal operators. Indeed,
the following Lemma 2 was proven for the case T is hyponormal by Putnam
[7], for the case T is semi-hyponorma by Xia [9], and the general case by
Ch\={o} and Itoh [6].

Lemma 2 If T is p-hyponormal, then \sigma(|T|)\subset\rho(\sigma(T)) , where \rho : \mathbb{C}arrow \mathbb{R}

is defined by \rho(z)=|z| .

In this section we extend this result to w-hyponormal operators with
connected spectra. Recall that the numerical range W(T) of an operator T
is defined by

W(T)= { (Tx, x) : x\in H is a unit vector}.
Let \overline{W}(T) denote the closure of W(T) . It is known that for any operator
T, W(T) is a convex set and \sigma(T)\subset\overline{W}(T) . Moreover, if T is normal, then
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\overline{W}(T)=conv\sigma(T) , the convex hull of \sigma(T) . The next lemma is well-known;
its proof is therefore omitted.

Lemma 3 If T=U|T| is the polar decomposition of the operator T. and
\overline{T}=|T|^{1/2}U|T|^{1/2} , then \sigma(T)=\sigma(\overline{T}) .

Lemma 4 If T is w-hyponormal, then \overline{W}(|\overline{T}|)\subset\overline{W}(|\overline{T}*|) .

Proof. Let \overline{T}=V|\overline{T}| be the polar decomposition of \overline{T} The nonzero points
of \sigma(|\overline{T}*|) and \sigma(|\overline{T}|) are identical. Since T is w-hyponormal, |\overline{T}|\geq|\overline{T}*| .
It follows that 0\in\sigma(|\overline{T}*|) if 0\in\sigma(|\overline{T}|) . Therefore, \sigma(|\overline{T}|)\subset\sigma(|\overline{T}*|) , and
hence

\overline{W}(|\overline{T}|)=conv\sigma(|\overline{T}|)\subset conv\sigma(|\overline{T}*|)=\overline{W}(|\overline{T}*|) .

\square

Lemma 5 If T is w-hyponormal, then \sigma(|T|)\subset\overline{W}(|\overline{T}*|) .

Proof. The assumption that T is w-hyponormal implies

(|\overline{T}|x, x)\geq(|T|x, x)\geq(|\overline{T}*|x, x)

for any unit vector x . By Lemma 4, (|\overline{T}|x, x)\in W(|\overline{T}|)\subset\overline{W}(|\overline{T}*|) . The
convexity of W(|\overline{T}*|) and the above inequalities imply (|T|x, x)\in\overline{W}(|\overline{T}*|) ,
and hence \sigma(|T|)\subset conv\sigma(|T|)=\overline{W}(|T|)\subset\overline{W}(|T|) . \square

Theorem 2 If T is w -hyponormal and \sigma(T) is connected, then \sigma(|T|)\subset

\rho(\sigma(T)) , where \rho : \mathbb{C}arrow \mathbb{R} is defined by \rho(z)=|z| .

Proof. Since \overline{T} is semi-hyponormal, it follows from Lemma 2 and Lemma 3
that

\sigma(|\overline{T}|)\subset\rho(\sigma(T)) .

Since the nonzero points of \sigma(|\overline{T}*|) and \sigma(|\overline{T}|) are identical, and since 0\in

\sigma(|\overline{T}*|) implies that \overline{T}*is not invertible, and hence 0\in\sigma(T) by Lemma 3,
the above containment may be modified to become

\sigma(|\overline{T}|)*\subset\rho(\sigma(T)) .

Now, since \sigma(T) is compact and connected, \rho(\sigma(T)) is a closed convex subset



388 A. Aluthge and D. Wang

of \mathbb{R} . Therefore, Lemma 5 implies

\sigma(|T|)\subset\overline{W}(|\overline{T}*|)=conv\sigma(|\overline{T}*|)\subset conv\rho(\sigma(T))=\rho(\sigma(T)) .

The proof is complete. \square

4. Invariant Subspaces

Putnam [7, Theorem 10] proved that if T is hyponormal and \sigma(|T^{*}|)

is not an interval, then T has a nontrivial invariant subspace. This result
was generalized to hold for p-hyponormal operators by Ch\={o}, Huruya and
Itoh [5, Theorem 4]. If T is p-hyponormal, then O\in\sigma(|T|) implies 0\in

\sigma(|T^{*}|) . Consequently, if \sigma(|T|) is not an interval, then \sigma(|T^{*}|) is not.
Thus, Putnam’s result holds if one assumes instead that \sigma(|T|) is not an
interval. In this section we give a further generalization to w-hyponormal
operators.

A complex number \lambda is in the compression spectrum \sigma_{c}(T) of an open
ator T if the range of T-\lambda is not dense in H. It is known that \sigma(T)=

\sigma_{a}(T)\cup\sigma_{c}(T) for any operator T Moreover, if \lambda\in\sigma_{c}(T) , then it is readily
seen that the closure of the range of T-\lambda is a nontrivial invariant subspace
of T

Theorem 3 Let T be w -hyponormal. If there is a \lambda\in\sigma(T) , \lambda\neq 0 , for
which |\lambda|\not\in\sigma(|T|)\cap\sigma(|T^{*}|) , then T has a nontrivial invariant subspace.

Proof. By Corollary 1, \lambda\not\in\sigma_{a}(T) . Therefore, \lambda\in\sigma_{c}(T) , and hence T
has a nontrivial invariant subspace. \square

Theorem 4 Let T be w-hyponormal. If either \sigma(|T|) or \sigma(|T^{*}|) is not an
interval, then T has a nontrivial invariant subspace.

Proof. We will only give the proof for the case \sigma(|T^{*}|) is not an interval,
for the proof can be easily modified to apply to the other case. If \sigma(T)

is not connected, then clearly the theorem is proven. Thus assume \sigma(T)

is connected. The assumption that \sigma(|T^{*}|) is not an interval implies there
exist s , t\in\sigma(|T^{*}|) , 0\leq s<t for which the open interval (s, t) is such that

(s, t)\cap\sigma(|T^{*}|)=\emptyset . (4.1)

Let N=\{z : s<|z|<t\} . Since the nonzero points of \sigma(|T|) and \sigma(|T^{*}|)

are identical, Theorem 2 implies there is a lJ \in\sigma(T) for which |\nu|=t .
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Similarly, if s>0 , then there is a \mu\in\sigma(T) for which |\mu|=s . On the
other hand, if s=0, then T^{*} is not invertible and hence O\in\sigma(T) . In either
case, both the outer and inner boundaries of the annulus N contain a point
of \sigma(T) . Since \sigma(T) is connected; we must have N\cap\sigma(T)\neq\emptyset . Therefore,
there is a \lambda\in N\cap\sigma(T) . It follows that |\lambda|\in(s, t) , and hence |\lambda|\not\in\sigma(|T^{*}|)

by (4.1). Thus, T has a nontrivial invariant subspace by Theorem 3. The
proof is complete. \square
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