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On the theory of KM_{2O}-Langevin equations for
stationary flows (3): extension theorem
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Abstract. In this paper, we prove an extension theorem for a given stationary flow
from the pointview of the fluctuation-dissipation theorem and apply it to an extension
problem for a given positive definite matrix function with Toeplitz condition defined on
a finite set.
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1. Introduction

From a practical and theoretical motivation to get a method that stands
the test of analysis for time series in complex system, we have in the previous
two papers ([2], [3]) studied the pair of flows in a metric vector space. We
have in [2] characterized a notion of stationarity for the pair of flows in terms
of the fluctuation-dissipation theorem ((DDT) and (FDT)) that hold among
the KM_{2O}-Langevin matrix associated with the pair of flows. Moreover, we
have obtained a formula ((PAC)) which builds a bridge between the KM_{2O}-

Langevin matrix and the covariance matrix function of the stationary pair
of flows.

In [3], for any positive definite matrix function R defined on a finite
set \{0, 1, \ldots, N\} with Toeplitz condition, we have constructed a KM_{2O}-

Langevin matrix \mathcal{L}\mathcal{M}(R) associated with R, by using (DDT), (FDT) and
(PAC) as an algorithm that holds among \mathcal{L}\mathcal{M}(R) . Further, we have con-
structed a stationary pair of flows with the matrix function R its covariance
matrix function, by solving the KM_{2O}-Langevin equation describing the
time evolution for the pair of flows.
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The purpose of this paper is to prove an extension theorem of a given
stationary flow X=(X(n);0\leq n\leq N) from the pointview of the fluctua-
tion-fluctuation theorem ((FFT)) and to apply it to an extension prob-
lem for a given positive definite matrix function defined on a finite set
\{0, 1, \ldots, N\} with Toeplitz condition.

2. An extension problem for stationary flow

Let X=(X(n);N_{1}\leq n\leq N_{2}) be any d-dimensional flow in a met-
ric vector space W with an inner product (\star, *) over real field R. We
shall say that the flow X has a linearly independent property if and only
if \{X_{j}(n);1\leq j\leq d, N_{1}\leq n\leq N_{2}\} is linearly independent in the vector
space W On the other hand, we shall say that the flow X has a stationary
property if and only if there exists a matrix function R : {N_{1}-N_{2} , N_{1} -

N_{2}+1 , . , N_{2}-N_{1}-1 , N_{2}-N_{1} } - M(d;R) such that

(X(m),{}^{t}X(n))=R(m-n) (N_{1}\leq m, n\leq N_{2}) . (2.1)

Then we call the function R the covariance matrix function of the stationary
flow X. When it needs to manifest the time domain of the flow X and the
function R, we shall write X and R into X^{(N_{1},N_{2})} and R^{(N_{2}-N_{1})} , respectively.

Throughout the remainder of this section, it will be assumed, un-
less stated otherwise, that the flow X=(X(n);0\leq n\leq N) is a d-
dimensional stationary flow in the space W with the covariance matrix
function R=(R(n);|n|\leq N) . Moreover we assume that the flow X has a
linearly independent property. We denote by \mathcal{L}\mathcal{M}(R) the KM_{2O}-Langevin
matrix associated with the matrix function R:

\mathcal{L}\mathcal{M}(R)=\{\gamma\pm(n, k), \delta\pm(n), V_{\pm}(\ell);0\leq k<n\leq N, 0\leq\ell\leq N\} .
(2.2)

In order to treat an extension problem for the stationary flow X, for any
d-dimensional vector \eta_{-} in W^{d} , we define a d-dimensional vector X(-1) in
W^{d} and two d\cross d-matrices R(\pm(N+1)) by

X(-1) \equiv-\sum_{k=0}^{N-1}\gamma_{-}(N, k)X(N-k-1)+\eta_{-} , (2.3)

R(N+1)\equiv(X(N),{}^{t}X(-1)) , (2.4)
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R(-N-1)\equiv {}^{t}R(N+1) . (2.5)

We note that any d-dimensional vector can be represented into the righthand
side of (2.3) with some d-dimensional vector \eta_{-} . Then we shall consider the
flow X^{(-1,N)}\equiv\{X(n);-1\leq n\leq N\} and the matrix function R^{(N+1)}\equiv

\{R(n);|n|\leq N+1\} .
The first aim is to obtain a necessary and sufficient condition for the

flow X^{(-1,N)} to satisfy the following conditions:

X^{(-1,N)} is a stationary flow with its covariance matrix R^{(N+1)} ,

(2.6)

X^{(-1,N)} has a linearly independent property. (2.7)

For convenience, we shall define a d-dimensional flow Y=(Y(\ell);-N\leq
\ell\leq 0) by

Y(\ell)\equiv X(N+\ell-1) (-N\leq\ell\leq 0) . (2.8)

We note that equation (2.3) can be rewritten into

Y(-N)\equiv-\sum_{k=0}^{N-1}\gamma_{-}(N, k)Y(-k)+\eta_{-} . (2.8)

Then it can be seen that

Lemma 2.1 Condition (2.6) holds if and only if the pair [X, Y] of flflows
has a stationary property.

Moreover, we shall show

Lemma 2.2 The pair [X, Y] of flflows has a stationary property if and
only if the vector \eta_{-} satisfifies the following properties:

\{

(X(n),{}^{t}\eta_{-})=0 (0\leq n\leq N-1) ,
(\eta_{-},{}^{t}\eta_{-})=V_{-}(N) .

Proof. We assume that the pair [X, Y] of flows has a stationary property.
Then we can see from Lemma 2.1 and (2.9) that \eta_{-}=\nu_{-}(Y)(-N) , where
\nu_{-}(Y) is the backward KM_{2O}-Langevin fluctuation flow associated with the
flow Y Therefore, the necessary part follows from Theorem 2.2 in [2]. The
sufficient part follows from the characterization theorem for the sationarity
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(Theorem 4.2 in [2]). \square

Concerning (2.7), we can show

Lemma 2.3 Condition (2.7) holds if and only if the subset \{X_{j}(n) , \eta_{k}^{-}; 1\leq

j , k\leq d , 0\leq n\leq N\} is linearly independent in W , where \eta_{k}^{-} is the kth
component of the vector \eta-(1\leq k\leq d) .

By combining Lemmas 2.1, 2.2 alld 2.3, we have

Theorem 2.1 The necessary and sufficient condition for the flflow X^{(-1,N)}

to have both the stationarity and the linearly independence is that the vector
\eta_{-} satisfifies the following conditions:

\{\{X_{j}(n),\eta_{k}^{-},\cdot 1\leq j,k’\leq d, 0\leq n\leq N\}(\eta_{-},{}^{t}\eta_{-})=V_{-}(N)(X(n),{}^{t}\eta_{-})=0(0\leq n\leq N-1)

,

is independent in W.

The results we have obtained so far for the stationary flow X=(X(n) ;
0 \leq n\leq N ) can be generalized for any d-dimensional stationary flow
X^{(N_{1},N_{2})}=(X(n);N_{1}\leq n\leq N_{2}) satisfying the linearly independent prop-
erty. We denote by R^{(N_{2}-N_{1})}=(R(n);|n|\leq N_{2}-N_{1}) and \mathcal{L}\mathcal{M}(R)=

\{\gamma_{\pm}(n, k), \delta_{\pm}(n), V_{\pm}(\ell);0\leq k<n\leq N_{2}-N_{1},0\leq\ell\leq N_{2}-N_{1}\} the c0-

variance matrix function and the KM_{2O}-Langevin matrix associated with
the stationary flow X^{(N_{1},N_{2})} . Similarly as in (2.3) and (2.4), for any d-
dimensional vector \eta_{-} in W^{d} , we define a d-dimensional vector X(N_{1}-1)

in W^{d} and two d\cross d-matrices R(\pm(N_{2}-N_{1}+1)) by

X(N_{1}-1) \equiv-\sum_{k=0}^{N_{2}-N_{1}}\gamma_{-}(N_{2}-N_{1}, k)X(N_{2}-k-1)+\eta_{-} , (2.10)

R(N_{2}-N_{1}+1)\equiv(X(N_{2}),{}^{t}X(N_{1}-1)) , (2.11)

R(-N_{2}-N_{1}-1)\equiv {}^{t}R(N+1) . (2.12)

Then we consider the flow X^{(N_{1}-1,N_{2})}\equiv\{X(n);N_{1}-1\leq n\leq N_{2}\} and
the matrix function R^{(N_{2}-N_{1}+1)}\equiv\{R(n);|n|\leq N_{2}-N_{1}+1\} . By applying
Theorem 2.1 to the new flow (X(N_{1}+n);0\leq n\leq N_{2}-N_{1}) , we can obtain

Theorem 2.2 The necessary and sufficient condition for the flflow
X^{(N_{1}-1,N_{2})} to have both the stationarity and the linearly independence with
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R^{(N_{2}-N_{1}+1)} its covariance matrix function is that the vector \eta_{-} satisfifies the
following conditions:

\{\{X_{j}(n),\eta_{k}^{-},\cdot 1\leq j,k\leq d,’ N_{1}\leq n(\eta_{-},{}^{t}\eta_{-})=V_{-}(N_{2}-N_{1})(X(n),{}^{t}\eta_{-})=0(N_{1}\leq n\leq N_{2}\leq N_{2}\}-1)

,

is independent in W.

By making a repeated use of Theorem 2.2, we have one of the main
theorems in this paper.

Theorem 2.3 If the dimension of the vector space W is not less than
2Nd, then any stationary flflow X=(X(n);0\leq n\leq N) in the space W
satisfying the linearly independence can be extended to a stationary flflow in
W with the linearly independence whose time domain is the set \{-N, -N+
1 , . , N-1 , N }. That is, there exist d-dimensional vectors X(-j)(1\leq j\leq

N) in W^{d} such that X^{(-N,N)}=(X(n);|n|\leq N) has both the stationarity
and the linearly independence.

The following algorithm gives the proof of Theorem 2.3.

Algorithm 2.1
(step 0) Since dim W\geq 2Nd , we can choose a system—=\{\xi_{jn}^{-} ; 1\leq

j\leq d, -N\leq n\leq-1\} of vectors in the vector space W such that

\{\begin{array}{l}(\xi_{jm}^{-},\xi_{kn}^{-})=\delta_{jk}\delta_{mn} (1\leq j,k\leq d,-N\leq m,n\leq-1),(X_{j}(m),\xi_{kn}^{-})=0 (1\leq j,k\leq d,0\leq m\leq N-1,-N\leq n\leq-1),\{X_{j}(m),\xi_{kn}^{-}\cdot,1\leq j,k\leq d,0\leq m\leq N,-N\leq n\leq-1\}islinearlyindependentinW,\end{array}

and construct d-dimensional vectors \xi_{-}(n)\equiv{}^{t}(\xi_{1n}^{-}, \xi_{2n}^{-}, . , \xi_{dn}^{-}) (-N\leq n\leq

-1) .
(step 1-1) Calculate \mathcal{L}\mathcal{M}([X,\tilde{X}])=\mathcal{L}\mathcal{M}(R)=\{\gamma_{\pm}(n, k) , \delta_{\pm}(n) ,

V_{\pm}(m);0\leq k<n\leq N , 0\leq m\leq N\} , where \tilde{X}=(\tilde{X}(\ell);-N\leq\ell\leq 0) is
defined by \tilde{X}(\ell)\equiv X(N+\ell) (-N\leq\ell\leq 0) .

(step 1-2) Choose W_{-}(N)\in M(d;R) such that V_{-}(N)=

W_{-}(N)^{t}W_{-}(N) .
(step 1-3) Define a d-dimensional vector \eta_{-}(-1)\equiv W_{-}(N)\xi_{-}(-1) .
(step 1-4) Define a d-dimensional vector X(-1) \equiv-\sum_{k=0}^{N-1}\gamma_{-}(N, k)

X(N-k-1)+\eta_{-}(-1) .
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It is easy to see that \eta_{-}(-1) satisfies

\mathfrak{l}((\{X_{j}(n),\eta_{k}^{-}(-1)\cdot,1\leq j,k\leq d’, 0\leq is1inearlyn\leq N\}\eta_{-}(-1),{}^{t}\eta_{-}(-1))=V_{-}(N)X(n),{}^{t}\eta_{-}(-1))=0(0\leq n\leq N-l)

,

independent in W,

where \eta_{k}^{-}(-1) denotes the kth component of the vector \eta_{-}(-1) . Hence the
extended flow X^{(-1,N)}=(X(n);-1\leq n\leq N) is a stationary flow satisfying
the linearly independence with N_{1}=-1 and N_{2}=N .

Let p be any integer such that 1\leq p\leq N-1 . We assume that the flow
X^{(-p,N)}=(X(n);-p\leq n\leq N) obtained through (step 0) \sim(stepp\cdot\cdot 4)

is a stationary flow satisfying the linearly independence with N_{1}=-p and
N_{2}=N . We now construct a d-dimensional vector X(-p-1) as follows:

(step (p+1)-1 ) Calculate R(-N-p) , \delta_{\pm}(N+p) , \gamma_{\pm}(N+p, k) ,
V_{\pm}(N+p) by using (DDT), (FDT) and (PAC):

R(-N-p)=(X(-p),{}^{t}X(N)) , (2.13)

\delta_{-}(N+p)=-\{R(-N-p) (2.14)

+ \sum_{k=0}^{N+p-2}\gamma_{-} (N+p-1, k)R(-k-1)\}V_{+}(N+p-1)^{-1} ,

\delta_{+}(N+p)=V_{+}(N+p-1)^{t}\delta_{-}(N+p)V_{-}(N+p-1)^{-1} , (2.15)

\gamma\pm(N+p, k)=\gamma_{\pm}(N+p-1, k-1) (2.16)
+\delta_{\pm}(N+p)\gamma_{\mp}(N+p-1, N+p-k-1) ,

V_{\pm}(N+p)=(I-\delta_{\pm}(N+p)\delta_{\mp}(N+p))V_{\pm}(N+p-1) . (2.17)

(step (p+1)-2 ) Choose W_{-}(N+p)\in M(d;R) such that V_{-}(N+p)=

W_{-}(N+p){}^{t}W_{-}(N+p) .
(step (p+1)-3) Define a d-dimensional vector \eta_{-}(-p-1)\equiv W_{-}(N+

p)\xi_{-}(-p-1) .
(step (p+1)-4) Define a d-dimensional vector X(-p-1) by

X(-p-1) \equiv-\sum_{k=0}^{N+p-1}\gamma_{-}(N+p, k)X(N-k-1)+\eta_{-}(-p-1) .

(2.18)
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It is easily verified that \eta_{-}(-p-1) defined in (step p-3) satisfies

1 \{X_{j}(n),\eta_{k}^{-}(-p-1)\cdot, 1\leq j, k\leq d,-p\leq n’\leq N’\}(X(n),{}^{t}\eta_{-}(-p-1))=0(-p\leq n\leq N-l)(\eta_{-}(-p-1),{}^{t}\eta_{-}(-p-1))=V_{-}(N+p)is1inear1yindependent

in W,

where \eta_{k}^{-}(-p-1) denotes the kth component of the vector \eta_{-}(-p-1) . Hence
from Theorem 2.2, the extended flow X^{(-p-1,N)}=(X(n);-p-1\leq n\leq N)

has both the stationarity and the linealry independence with N_{1}=-p-1

and N_{2}=N .
Thus we can extend the stationary flow X=(X(n);0\leq n\leq N) to a

stationary flow X^{(-N,N)}=(X(n);|n|\leq N) .
Theorem 2.2 gives the solution of the backward extension problem for

the stationary flows. Similar results can be obtained for the forward exten-
sion problem. Let X^{(N_{1},N_{2})}=(X(n);N_{1}\leq n\leq N_{2}) be any d-dimensional
stationary flow satisfying the linearly independence in the space Wr Let
R^{(N_{2}-N_{1})}=(R(n);|n|\leq N_{2}-N_{1}) be the covariance matrix function of the
stationary flow X and \mathcal{L}\mathcal{M}(R)=\{\gamma\pm(n, k) , \delta_{\pm}(n) , V_{\pm}(l);0\leq k<n\leq

N_{2}-N_{1},0\leq l\leq N_{2}-N_{1}\} be the KM_{2O}-Langevin matrix associated
with the matrix function R^{(N_{2}-N_{1})} . Then we define a d-dimensional vector
X(N_{2}+1) by

X(N_{2}+1) \equiv-\sum_{k=0}^{N_{2}-N_{1}-1}\gamma_{+}(N_{2}-N_{1}, k)X(N_{1}+k+1)+\eta+ ,

(2.19)

where \eta+ is some vector in W^{d} .
Then the same techniques as those developed in the course of proving

Theorem 2.2 are applicable to the forward extension problem and thereby
we have the following theorem.

Theorem 2.4 (i) The flflow X^{(N_{1},N_{2}+1)}=(X(n);N_{1}\leq n\leq N_{2}+1) has
a stationary property if and only if \eta_{+} satisfifies the following properties:

\{

(X(n),{}^{t}\eta_{+})=0 (N_{1}+1\leq n\leq N_{2}) ,
(\eta_{+},{}^{t}\eta_{+})=V_{+}(N_{2}-N_{1}) .
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(ii) The flflow X^{(N_{1},N_{2}+1)} satisfifies the linearly independent property if
and only if \eta_{+} satisfies the following property

\{X_{j}(m), \eta_{k}^{+} ; 1\leq j, k\leq d, N_{1}\leq m\leq N_{2}\}

is linearly independent in W,

where \eta_{k}^{+} denotes the kth component of the vector \eta_{+} .

One conclusion from Theorems 2.2 and 2.4 is the following.

Theorem 2.5 Let M_{1} and M_{2} be two integers such that M_{1}\leq N_{1} and
N_{2}\leq M_{2} . If the dimension of the vector space W is not less than (M_{2}-

M_{1})d , then any stationary flflow X^{(N_{1},N_{2})}=(X(n);N_{1}\leq n\leq N_{2}) in the
space W satisfying the linearly independent property can be extended to a
stationary flflow the linearly independent property whose time domain is the
set \{M_{1}, M_{1}+1, \ldots, M_{2}-1, M_{2}\} .

3. The fluctuation-fluctuation theorem

Let X=(X(n);|n|\leq N) be any d-dimensional stationary flow in the
metric vector space W and R=(R(n);|n|\leq 2N) the covariance matrix
function of the flow X. We define two flows X_{+}=(X_{+}(n);0\leq n\leq N) and
\tilde{X}=(\tilde{X}(\ell);-N\leq\ell\leq 0) by

\{

X_{+}(n)\equiv X(n) (0\leq n\leq N) ,
\tilde{X}(\ell)\equiv X(\ell) (-N\leq l\leq 0) .

(3.2)

Then the pair [X_{+},\tilde{X}] of flows has a stationary property. Moreover the
pair [X_{+},\overline{X}] of fiows satisfies

\{

X_{+}(0)=\tilde{X}(0) ,
(X_{+}(n),{}^{t}\tilde{X}(-m))=R(n+m) (0\leq n, m\leq N) .

(3.2)

In [1], we have used the above relation (3.2) to derive the s0-called
fluctuation-fluctuation theorem ((FFT)) which gives a relation between the
forward KM_{2O}-Langevin fluctuation flow associated with X_{+} and the back-
ward KM_{2O}-Langevin fluctuation flow associated with \tilde{X} , that is, a relation
among the d\cross d matrces I(m, n) defined by

I(m, n)\equiv(\nu_{+}(m),{}^{t}\nu_{-}(-n)) (1\leq m, n\leq N) . (3.3)
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In \S 2, we have used (3.2) to get (2.14) and (2.15) in Algorithm 2.1
which gives the structure of extension of the stationary flow X_{+} (TheO-
rem 2.3). We shall show that the latter derives (FFT). Let \mathcal{L}\mathcal{M}([X_{+},\tilde{X}])=

\{\gamma\pm(n, k), \delta_{\pm}(n), V_{\pm}(l);0\leq k<n\leq N, 0 \leq l\leq N\} be the KM_{2O}-

Langevin matrix associated with the pair [X_{+},\tilde{X}] of flows. By replac-
ing p by p-1 in (2.18) and noting the stationary property of the flow
X^{(-p,N)}=(X(n);-p\leq n\leq N) , we have

R(-N-P)=(X(-p),{}^{t}X(N))

=- \sum_{k=0}^{N+p-2}\gamma_{-} (N+p-1, k)R(-k-1)

+(\eta_{-}(-p),{}^{t}X(N)) .

Hence (2.14) and (2.15) in (step (p+1) - 1) are reduced to

\delta_{-}(N+p)=-(\eta_{-}(-p),{}^{t}X(N))V_{+}(N+p-1)^{-1} , (3.4)

\delta_{+}(N+p)=-(X(N),{}^{t}\eta_{-}(-p))V_{-}(N+p-1)^{-1} . (3.5)

From (3.4) and (3.5), we have

Fluctuation-Fluctuation Theorem-l

(i) I(0,0)=V_{+}(0) ,

(ii) I(n, 0)=I(0, n)=0 (1 \leq n\leq N) ,

(iii) I(n, 1)=I(1, n)=-\delta_{+}(n+1)V_{-}(n) (1 \leq n\leq N-1) .

More generally, by taking the same procedure as in [1], we have

Fluctuation-Fluctuation Theorem-l

(i) For any m, n(1\leq m\leq N-1, 2\leq n\leq N) ,

I(m, n)=I(’m+1, n-1)+ \{\sum_{k=1}^{n-2}I(m+1, k){}^{t}\delta_{+}(k+1)\}{}^{t}\delta_{-}(n)

- \delta_{+}(m+1)\{\sum_{k=1}^{m-1}\delta_{-}(k+1)I(k, n)\}



378 Y. Okabe and M. Matsuura

(ii) For any m, n(2\leq m\leq N, 1\leq n\leq N-1) ,

I(m, n)=I(m-1, n+1)+ \delta_{+}(m)\{\sum_{k=1}^{m-2}\delta_{-}(k+1)I(k, n+1)\}

- \{\sum_{k=1}^{n-1}I(m, k){}^{t}\delta_{-}(k+1)\}{}^{t}\delta_{-}(n+1) .

4. An extension problem for positive definite matrix function

For an M(d;R)Revalued function R=(R(n);|n|\leq N) defined on the set
\{-N, -N+1, . , N-1, N\} , we say that R is a positive definite matrix
function if and only if the following Toeplitz conditions hold:

{}^{t}R(n)=R(-n) (0\leq n\leq N) , (4.1)

(T_{\pm}(n)\xi, \xi)\geq 0 for any \xi\in R^{nd} (1 \leq n\leq N+1) , (4.2\pm)

T_{\pm}(n)\in GL(nd;R) (1 \leq n\leq N) , (4.3_{\pm})

where for each integer n(1\leq n\leq N+1) two nd\cross nd block matrices T_{\pm}(n)

are defined by

T_{\pm}(n)=(_{R(\mp(n-1))}^{R(\mp 1)}R(...0) R(\mp(n..\cdot-2))R(\pm 1)R(0) ... R(\pm(n..\cdot-2))R(\pm(n-1))R(0))

(4.4_{\pm})

Let R^{(N)}=(R(n);|n|\leq N) be any positive definite matrix function.
By a construction theorem in [3], we can construct the KM_{2O}-Langevin
matrix associated with the matrix function R^{(N)} by

\mathcal{L}\mathcal{M}(R) (4.5)
=\{\gamma\pm(R)(n, k), \delta_{\pm}(R)(n), V_{\pm}(R)(l);0\leq k<n\leq N, 0\leq l\leq N\} .

In order to extend the matrix function R^{(N)} on the set { -N-1, -N, \ldots .
N, N+1\} , for any element Q of M(d;R) , we define R(\pm(N+1))(\in M(d;R))
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by

R(N+1) \equiv-\sum_{k=0}^{N-1}\gamma_{+}(R)(N, k)R(k+1)+Q , (4.6)

R(-N-1)\equiv {}^{t}R(N+1) . (4.7)

It is to be noted from Burg’s relation that (4.6) and (4.7) can be rewrit-
ten into

R(-N-1) \equiv-\sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+{}^{t}Q , (4.6’)

R(N+1)\equiv {}^{t}R(-N-1) . (4.7’)

We now prove the following theorem.

Theorem 4.1 The function R^{(N+1)}=(R(n);|n|\leq N+1) is a positive
defifinite matrix functon if and only if there exist two d-dimensional vectors
(and \eta in some metric vector space W^{d} such that

\{\{\zeta_{j}’,,\eta_{k};1(\zeta,{}^{t}\eta)=(\zeta^{t}\zeta)=(\eta^{t}\eta)=\leq’ j,k\leq d\}V_{+}(R)(N)QV_{-}(R)(N)’

,

is linearly independent in W.

(4.8)

where \zeta_{j} denotes the jth component of the vector \zeta and \eta_{k} denotes the kth
component of the vector \eta .

Proof. We assume that R^{(N+1)}=(R(n);|n|\leq N+1) is a positive definite
matrix function. By the construction theorem obtained in [3], there exist
a d-dimensional stationary flow X=(X(n);0\leq n\leq N+1) satisfying
the linearly independent property in some metric vector space W such that
(X(n),{}^{t}X(m))=R(n-m)(0\leq n, m\leq N+1) . We define a flow X^{\prime(-1,N)}=

(X’(n);-1\leq n\leq N) by X’(n)\equiv X(n+1) (-1 \leq n\leq N) . Then we see
that (X’(n),{}^{t}X’(m))=R(n-m) (-1 \leq n, m\leq N) . Hence it follows from
Theorem 2.1 that X’(-1) can be written into

X’(-1)=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)X’(N-k-1)+\eta_{-} , (4.9)
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where \eta_{-} is a d-dimensinal vector in W^{d} such that

(X’(n),{}^{t}\eta_{-})=0 (0\leq n\leq N-1) , (4.10)

(\eta_{-},{}^{t}\eta_{-})=V_{-}(R)(N) , (4.11)

\{X_{j}’(n), \eta_{k}^{-} ; ^{1}\leq j, k\leq d, 0\leq n\leq N\} is linearly independent in W.
(4.12)

Thus, we find from (4.9) that

R(-N-1)=(X’(-1),{}^{t}X’(N))

=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+(\eta_{-},{}^{t}X’(N)) .

(4.13)

On the other hand, X’(N)=- \sum_{k=0}^{N-1}\gamma_{+}(R)(N, k)X’(k)+\nu_{+}(X’)(N) ,
where \nu_{+}(X’) is the forward KM_{2O}-Langevin fluctuation flow associated
with the flow X’ . It follows from (4.10) that (\eta_{-}, ^{t}X’(N))=(\eta_{-}, {}^{t}\nu_{+}

(X’)(N)) , which derives with (4.13) that

R(-N-1)

=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+(\eta_{-},{}^{t}\nu_{+}(X’)(N)) . (4.14)

Here we note that \nu_{+}(X’)(N) satisfies

(\nu_{+}(X’)(N),{}^{t}\nu_{+}(X’)(N))=V_{+}(R)(N) , (4.15)

\{X_{j}’(n), \nu_{+k}(X’)(N);1\leq j, k\leq d, 0\leq n\leq N-1\}

is linearly independent in W. (4.16)

Thus from (4.11), (4.12), (4.14), (4.15) and (4.16), we find that condition
(4.8) holds with \zeta=\nu_{+}(X’)(N) and \eta=\eta_{-} .

We now prove the converse. That is, under condition (4.8), we derive
the positive definite property of the matrix function R^{(N+1)}=(R(n);|n|\leq

N+1) . From the construction theorem and the arguments in the course of
proving it, we know that there exists a stationary flow X=(X(n);0\leq n\leq
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N) in the metric vector space W appearing in (4.8) such that

\{

(X(n),{}^{t}X(m))=R(n-m) (0\leq n, m\leq N) ,
(X(n),{}^{t}\eta)=0 (0\leq n\leq N-1) ,

(4.17)
\nu_{+}(X)(N)=\zeta ,
\{X_{j}(n), \eta_{k};1\leq j, k\leq d, 0\leq n\leq N\} is linearly independent in W.

From Theorem 2.1, we can extend the stationary flow by defining

X(-1) \equiv-\sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)X(N-k-1)+\eta .

By noting that X(N)=- \sum_{k=0}^{N-1}\gamma_{+}(R)(N, k)X(k)+\zeta , we have

(X(-1),{}^{t}X(N))=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+(\eta,{}^{t}X(N))

=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+(\eta,{}^{t}\zeta)

=- \sum_{k=0}^{N-1}\gamma_{-}(R)(N, k)R(-k-1)+{}^{t}Q

=R(-N-1) ,

which shows that the matrix function R^{(N+1)}=(R(n);|n|\leq N+1) is a
covariance matrix function of the stationary flow X^{(-1,N)}=(X(n);-1\leq

n\leq N) . Thus R^{(N+1)} is a positive definite matrix function. \square

Given an M(d;R)Revalued positive definite matrix function R^{(N)}=

(R(n);|n|\leq N) , we can always choose two d-dimensional vectors ( and
\eta in some metric vector space W^{d} such that

\{\{\zeta_{j}’,\eta_{k};1(\eta^{t}\eta)=(\zeta,{}^{t}\zeta)=\leq j,k\leq d\}t_{+}^{r}(R)(N)V_{-}(R)(N)’,

is linearly independent in W
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Then Theorem 4.1 tells us that by defining

\{\begin{array}{l}R(N+1)\equiv-\sum_{k=0}^{N-1}\gamma_{+}(R)(N,k)R(k+1)+(\zeta,{}^{t}\eta),R(-N-1)\equiv {}^{t}R(N+1),\end{array}

we obtain an extended positive definite matrix function R^{(N+1)}=(R(n) ;
|n|\leq N+1) . Repeating this process, we can conclude that the following
statement holds.

Theorem 4.2 Let M be any integer such that M>N ‘ Then the posi-
tive defifinite matrix function R^{(N)}=(R(n);|n|\leq N) can be extended to a
positive defifinite matrix function R^{(M)}=(R(n);|n|\leq M) defifined on the set
\{-M, -M+1, . . , M-1, M\} .
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