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Multiplicity of iterated Jacobian extensions
of weighted homogeneous map germs

C. Bivi\‘a AUSINA and J.J. Nu\~no BALLESTEROS
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Abstract. In this work we study the notion of multiplicity of an analytic map germ

f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) with respect to a Boardman symbol i and obtain some expressions
for this multiplicity when f is a weighted homogeneous map germ. These expressions are
consequences 0_{\wedge}^{f} some formulae given in last section for the multiplicity of determinantal
rings defined by the maximal or submaximal minors of a matrix with homogeneous entries.
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1. Introduction

One of the most known invariants in Singularity Theory is the Milnor
number of an analytic map germ f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}, 0) with an isolated
singularity at the origin. Let O_{n} be the ring of analytic map germs from
(\mathbb{C}^{n}, 0) to \mathbb{C} . Then, the Milnor number is defined as the colength in O_{n} of the
ideal generated by the partial derivatives of f . Another interesting invariant
is the number of cross-caps of a map germ f : (\mathbb{C}^{2},0) -arrow(\mathbb{C}^{3},0) . It is defined
as the colength of the ideal generated by the maximal order minors of its
Jacobian matrix. The number of cusps of a map germ f : (\mathbb{C}^{2},0) – (\mathbb{C}^{2},0) is
also defined as the colength of the ideal generated by the minors of maximal
order of the Jacobian matrix of (J/, f) , where Jf is the Jacobian of f .
In the work [23], the second author and M.J . Saia defined an invariant
that generalizes the above constructions in the general setting of Thom-
Boardman singularities. For a Boardman symbol i= (i_{1}, . . , i_{k}) and an
analytic map germ, they define the number c_{i}(f) as the colength in O_{n} of
an ideal constructed by an iterative process from the minors of the Jacobian
matrix of f . This ideal is called the iterated Jacobian extension of f with
respect to i and is denoted by J_{i}(f) . It is clear that this number is well
defined only when the zero set V(J_{i}(f)) is zero dimensional.

If f is a weighted homogeneous map germ, then it is interesting to obtain
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expressions for the invariant c_{i}(f) that depends only on the weights and
degrees of f . There have been some results in this direction, as can be seen
in [14], [20] and [22]. Here we give some formulae that are a consequence of
a more general result on determinantal rings shown in Section 5. Moreover,
we consider an invariant which is finite even in the case that the Jacobian
extensions have not finite colength and we also give some expressions for
this invariant in the homogeneous case. This invariant is called the algebraic
multiplicity of a map germ with respect to a Boardman symbol and is denoted
by e_{i}(f) . This invariant is equal to the one defined by [23] in the zero
dimensional case and has also a geometrical interpretation, as can be seen
in [2].

2. Thom-Boardman singularities

The aim of this section is to recall some basic facts about Thom-
Boardman singularities we will need. Given an analytic map germ f :
(\mathbb{C}^{n}, 0) -arrow(\mathbb{C}^{p}, 0) , we can make a partition of the source (\mathbb{C}^{n}, 0) accord-
ing to the rank of f , which gives the first order singular sets \Sigma^{i_{1}}(f) , with
i_{1}=0 , . , \min\{n,p\} . But we can make a new partition of each one of
these sets by looking at the higher order derivatives of f . This lead us to
obtain finer invariants. We can do this in a systematic way, so we need
some preliminary definitions to make this notion precise.

Let O_{n} denote the ring of analytic function germs from (\mathbb{C}^{n}, 0) to \mathbb{C} .
For any ideal I\underline{\subseteq}O_{n} , the set germ in (\mathbb{C}^{n}, 0) defined by the zeros of I will
be denoted by V(I) . Moreover, given a matrix U=(u_{ij}) with entries in O_{n}

and t\geq 1 , we shall denote by I_{t}(U) the ideal generated by the t-minors of
U . In the case that the matrix U has size p\cross q and t> \min(p, q) , we will
put I_{t}(U)=\{0\} . In particular, if f:(\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) is an analytic map
germ, I_{t}(Df) is the ideal generated by the t-minors of its Jacobian matrix
Df=(\partial f_{i}/\partial x_{j}) .

Definition 2.1 Given n,p \geq 1 , we define the set B(n,p) of Boardman
symbols in dimensions n and p as the set of k-tuples i= (i_{1}, \ldots, i_{k}) of
integer numbers such that:

1. k\geq 1 ;
2. n \geq i_{1}\geq . t \geq i_{k}\geq 0 ;
3. i_{1}\geq n-p ;
4. if i_{1}=n-p then i_{1}= . =i_{k} .
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If i= (i_{1}, . , i_{k}) , we will say that i has length k and we will denote this
number by |i| .

For each Boardman symbol i= (i_{1}, \ldots, i_{k})\in B(n,p) and an analytic
map germ f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) we can r ssociate an ideal of O_{n} that we
call iterated Jacobian extension of f with respect to i . This ideal is con-
structed by induction on the length of i as follows. If k=1 , then J_{i_{1}}(f)=

I_{n-i_{1}+1}(Df) . For k>1 , suppose that J_{i_{1},\ldots,i_{k-1}}(f)=\langle g_{1}, . , g_{r}\rangle , then

J_{i_{1},\ldots,i_{k}}(f)=J_{i_{1}} ,... , i_{k-1}(f)+I_{n-i_{k}+1}(D(f, g)) ,

where (f, g)=(f_{1}, . . , f_{p}, g_{1}, . . , g_{r}) .
Suppose that F : (\mathbb{C}^{r}\cross \mathbb{C}^{n}, 0) - (\mathbb{C}^{r}\cross \mathbb{C}^{p}, 0) is a map germ written

in the form F(u, x)=(u, f_{u}(x)) , where u\in \mathbb{C}^{r} and x\in \mathbb{C}^{n} . We say that
F is an unfolding of f if f_{0}=f . Observe that for such a map we have
that J_{i}(F)=J_{i}(f_{u}, x) , for any Boardman symbol i\in B(n,p) . That is, to
compute any Jacobian extension of F we only need to consider the partial
derivatives of f_{u} with respect to x .

Now, given an analytic map germ we can define an associated Boardman
symbol using the notion of Jacobian extensions.

Definition 2.2 Let f:(\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) be an analytic map germ and let
i= (i_{1}, \ldots, i_{k}) be a Boardman symbol of B(n,p) . We say that f is a germ
of type \Sigma^{i} when

1. the rank of f is n-i_{1} ;
2. for all s=2 , . , k , the rank of (f, g) is n-i_{s} , being g=(g_{1}, \ldots, g_{r})

and g_{1} , \ldots , g_{r} generators of J_{i_{1},\ldots,i_{s-1}}(f) .

Let us denote by J^{k}(n,p) the k -jet space, that is, the space of polynomial
map germs from (\mathbb{C}^{n}, 0) to (\mathbb{C}^{p}, 0) of degree \leq k . Moreover, the k-jet fiber
bundle is defined as J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p})=\mathbb{C}^{n}\cross \mathbb{C}^{p}\cross J^{k}(n,p) .

Given a map germ f : (\mathbb{C}^{n}, 0) - (\mathbb{C}^{p}, 0) , the k -jet extension of f is
the map germ j^{k}f : (\mathbb{C}^{n}, 0) - J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) given by j^{k}f(x)=(x, f(x), \sigma)

where \sigma is the Taylor expansion of order k at 0 of the map germ g(t)=
f(t+x)-f(x) .

Definition 2.3 For each Boardman symbol i\in B(n,p) of length \leq k , we
can define the following subset of J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) :

\Sigma^{i}= { (x , y , \sigma)\in J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) : \sigma has type \Sigma^{i} }.
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It was proven by Boardman [1] that the sets \Sigma^{i} are in fact submanifolds
of J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) of codimension

\nu(i)=(p-n+i_{1})\mu(i_{1}, \ldots, i_{k})-(i_{1}-i_{2})\mu(i_{2}, \ldots, i_{k})-

-(i_{k-1}-i_{k})\mu(i_{k}) ,

where \mu(i) is the number of symbols j=(j_{1}, . , j_{k}) such that j_{s}\leq i_{s} , \forall s ,
j_{1}\geq \geq j_{k}\geq 0 and j_{1}>0 .

A different proof of the Boardman result was given by Morin in [21].
For each Boardman symbol i\in B(n,p) , he constructed an ideal \triangle^{i} in the
polynomial ring associated to J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) with the following properties:

1. For each map germ f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) , we have that (j^{k}f)^{*}(\triangle^{i})=

J_{i}(f) , where (j^{k}f)^{*} is the homomorphism of local rings induced by
j^{k}f .

2. \Sigma^{i}=V(\triangle^{i})\backslash V(\triangle^{i’}) , where i’ denotes the successor of i in the lexic0-
graphical order.

3. V(\triangle^{i}) is regular of codimension \nu(i) along \Sigma^{i} .
For the sake of simplicity, we do not include here aI1 explicit expres-

sion for the Morin ideal. We refer to the cites [2], [11] and [21] to see a
construction of this ideal.

Definition 2.4 For each map germ f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) and Boardman
symbol i\in B(n,p) , we define the algebraic multiplicity of f with respect to
i , denoted by e_{i}(f) , as the the multiplicity, in the Hilbert-Samuel sense, of
the local ring O_{n}/J_{i}(f) . It can be expressed using the limit formula for the
multiplicity (see [3]) as

e_{i}(f)= \lim_{karrow\infty}\frac{d!}{k^{d}}\dim_{\mathbb{C}}\frac{O_{n}}{m_{n}^{k}+J_{i}(f)} ,

where m_{n} is the maximal ideal of O_{n} and d is the dimension of O_{n}/J_{i}(f) .

When the ring O_{n}/J_{i}(f) has dimension zero, this invariant is given by

e_{i}(f)= \dim_{\mathbb{C}}\frac{O_{n}}{J_{i}(f)} .

In this case, this invariant coincides with the invariant c_{i}(f) defined by
the second author and Saia in [23], which in turn generalizes the invariants
mentioned in the Introduction. One of the advantages of this number is that
it is finite even in the case in which the singular set V(J_{i}(f)) has positive
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dimension. In [2] there is a geometric interpretation of this number in terms
of the set of singular points in generic deformations of a given map germ,
even in the case in which these points are not isolated.

Now, we will expose some preliminary results about multiplicity the-
ory to clarify the number we have just defined. If R is a d dimensional
Noetherian local ring and I is an ideal of definition of I , we denote the
multiplicity of I , in the Hilbert-Samuel sense, as e(I, R) . The multiplicity
of the maximal ideal of R is also denoted by e(R) .

It is well known that if I is a parameter ideal and R is Cohen-Macaulay,
this multiplicity can be expressed as the length of R/I (see [3] for basic n0-

tions about multiplicity theory and its relation with Cohen-Macaulay rings).
Next proposition shows that the multiplicity of an arbitrary definition ideal
can be always computed as the multiplicity of a parameter ideal (see also
[3] for details).

Proposition 2.5 Suppose that (R, m) is a local ring of dimension d such
that the ground fifield k=R/m is infifinite. Let I be a defifinition ideal of R .
Then, there exists elements a_{1} , \ldots , a_{d} such that

1. e(\langle a_{1}, \ldots, a_{d}\rangle, R)=e(I, R) ;
2. a_{i} can be found among k -linear combinations of any given set of gen-

erators of I .

Now, consider a map germ f : (\mathbb{C}^{n}, 0) -arrow(\mathbb{C}^{p}, 0) and a Boardman
symbol i\in B(n,p) such that the ring O_{n}/J_{i}(f) has dimension d. If we
apply the previous proposition to the maximal ideal of O_{n}/J_{i}(f) , we have
that there exists a family of d linear forms g_{1} , . , g_{d} such that e_{i}(f) is
expressed as

e_{i}(f)=e( \frac{O_{n}}{J_{i}(f)})=e(\langle\overline{g}_{1}, . . , \overline{g}_{d}\rangle , \frac{O_{n}}{J_{i}(f)}) ,

where \overline{g}_{i} denotes the image of g_{i} in On/J\{(f) . Moreover, it is well known
that this expression holds for almost all choice of d linear forms. We will
say that L=V(g_{1}, . , g_{d}) is a generic plane for O_{n}/J_{i}(f) , when g_{1} , \ldots , g_{d}

is such a family of linear forms. The ideal in On/J[(f) generated by these
forms is also called a reduction of the maximal ideal.

If in addition, we suppose that the ring O_{n}/J_{i}(f) is Cohen-Macaulay,
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we have that

e_{i}(f)= \dim_{\mathbb{C}}\frac{O_{n}}{J_{i}(f)+\langle g_{1},\ldots,g_{d}\rangle} .

We can interpret geometrically e_{i}(f) as i(L V(J_{i}(f))_{0} , the local in-
tersection number of V(J_{i}(f)) with a generic plane L at 0 (see [13]). But
there are some other intersection numbers that can give interesting informa-
tion. For instance, if \sigma=j^{k}f(0) , we can also consider i(j^{k}f(L) V(\triangle^{i}))_{\sigma} ,
the intersection number of j^{k}f(L) and V(\triangle^{i}) in J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) at \sigma . It has
been shown in [2] that this number does not depend on the generic plane
L and is called the deformation multiplicity of f with respect to i . Finally,
if F(u, x)=(u, f_{u}(x)) is an r-parameter unfolding of f , we can look at
i(\{0\} \cross L V(J_{i}(F)))_{0} . The following lemma shows the relation between
these three intersection numbers.

Lemma 2.6 Let i\in B(n,p) be a Boardman symbol and let f : (\mathbb{C}^{n}, 0) -

(\mathbb{C}^{p}, 0) be an analytic map germ such that co\dim V(J_{i}(f))=co\dim_{\sigma}V(\triangle^{i})=

n-d, where \sigma=j^{k}f(0) . For any r -parameter unfolding F(u, x)=(u, f_{u}(x))
and for any generic plane L we have

i(j^{k}f(L)V(\triangle^{i}))_{\sigma}\leq i(\{0\}\cross LV(J_{i}(F)))_{0}\leq i(LV(J_{i}(f)))_{0} .

Moreover, V(\triangle^{i}) is Cohen-Macaulay at \sigma if and only if both inequalities are
actually equalities and V(J_{i}(f)) is Cohen-Macaulay.

Proof. We will denote the coordinates in J^{k}(\mathbb{C}^{n}, \mathbb{C}^{p}) by x_{i} , z_{\alpha}^{j} with i=
1 , \ldots , n , j=1 , \ldots , p and \alpha a multiindex such that 0\leq|\alpha|\leq k and so
that z_{\alpha}^{j}\circ j^{k}f=\partial^{|\alpha|}f_{j}/\partial x^{\alpha} . Then, it follows that i(j^{k}f(L) V(\triangle^{i}))_{\sigma}=

e(I_{1}A+I_{2}A, A) , where

A= \frac{O_{J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),\sigma}}{\triangle^{i}O_{J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),\sigma}} , I_{1}=\langle g_{1}, . , g_{d}\rangle , I_{2}= \langle z_{\alpha}^{j}-\frac{\partial^{|\alpha|}f_{j}}{\partial x^{\alpha}}(x)\rangle ,

and g_{1} , \ldots , g_{d} are the defining linear forms of L . Since I_{1}A+I_{2}A is a
parameter ideal of A we have that e(I_{1}A+I_{2}A, A)\leq e(I_{1}(A/I_{2}A), A/I_{2}A) .
Moreover, A is Cohen-Macaulay if and only if the equality holds and A/I_{2}A

is Cohen-Macaulay (see Corollary 4.7.11 of [3]). But note that A/I_{2}A=
O_{n}/J_{i}(f) and the intersection number i(LV(J_{i}(f)))_{0} is equal to e(I_{1}(A/

I_{2}A) , A/I_{2}A) .
Let us consider now O_{J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),\sigma} as a subring of O_{\mathbb{C}^{r}\cross J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),(0,\sigma)} .
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Then, u_{1} , \ldots , u_{r} is a regular sequence in

B= \frac{O_{\mathbb{C}\cross J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),(0,\sigma)}}{\triangle^{i}O_{\mathbb{C}\cross J^{k}(\mathbb{C}^{n},\mathbb{C}^{p}),(0,\sigma)}} ,

and thus e(I_{1}A+I_{2}A, A)=e(uB+I_{1}B+I_{2}B, B) , where uB denotes
\langle u_{1}, \ldots, u_{r}\rangle B . Moreover, nB+I_{1}B+I_{2}B=uB+I_{1}B+I_{2}’B , being

I_{2}’= \langle z_{\alpha}^{j}-\frac{\partial^{|\alpha|}f_{u,j}}{\partial x^{\alpha}}(x)\rangle .

This implies that e(I_{1}A+I_{2}A, A)\leq e(uC+I_{1}C, C) , where C=B/I_{2}’B=
O_{n+1}/J_{i}(F) . Observe that this last multiplicity is equal to i(\{0\}\cross L

V(J_{i}(F)))_{0} . Finally, taking quotient by uC, we get

e(uC+I_{1}C, C)\leq e(I_{1}(C/uC), C/uC)

=e ( \langle\overline{g}_{1}, . , \overline{g}_{d}\rangle;\frac{O_{n}}{J_{i}(f)})=i(L1V(J_{i}(f)))_{0} .

\square

Remark 2.7 From the above lemma we can deduce that, under the same
hypotheses, V(\triangle^{i}) is Cohen-Macaulay at \sigma if and only if O_{n+r}/J_{i}(F) is
Cohen-Macaulay for any r -parametric unfolding F of f .

3. Invariance of the multiplicity

Given an r-parametric unfolding F(u, x)=(u, f_{u}(x)) of a map germ
f : (\mathbb{C}^{n}, 0) -arrow(\mathbb{C}^{p}, 0) and a Boardman symbol i\in B(n,p) , we can consider
the problem of determining the invariance of the number e_{i}(f_{u}) for all u
in a neighbourhood of 0\in \mathbb{C}^{r} These problem makes sense only if \mathbb{C}^{r}\cross

\{0\}\subseteq V(J_{i}(F)) . As we shall see, the concept of equimultiplicity along
subvarieties will be the key to characterize this invariance. Now, we give
some preliminary definitions and results that can be found in the work [19]
of J. Lipman.

Definition 3.1 Let V\subseteq \mathbb{C}^{n} an analytic subset, v a point of V and R=
O_{V,v} the ring of germs of analytic functions near v . If W\subseteq V is an analytic
subspace such that the germ of W at v is irreductible and P\subseteq R denotes the
prime ideal of germs of analytic functions vanishing on W, we say that V is
equimultiple along W at v if R and R_{P} have the same multiplicity, where R_{P}

denotes the localization of R at P . This is equivalent to say that e(O_{V,v})=
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e(O_{V,y}) , for all y in a neighbourhood of v in W (see [19], Proposition 4.1).
Moreover, we also have some other interesting equivalences:

1. Let C(V, y) be the Zariski tangent cone of V at y . Then, V is equi-
multiple along W at v if and only if there exists a linear projection
\phi : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{d}, 0) , where d=\dim_{v} V., such that for each point y in
a neighbourhood of v in W ,

\phi^{-1}(\phi(y))\cap V=\{y\} and \phi^{-1}(\phi(y))\cap C(V, y)=\{y\} .

2. Let \pi : Xarrow \mathbb{C}^{n} denote the blowup of \mathbb{C}^{n} at W and let V’ be the
strict transform of V by \pi . Then, V is equimultiple along W at v if
and only if all the fibers over W near v of the restriction \pi : V’ -arrow V

are pure dimensional, of dimension equal to co\dim_{V}W-1 .

If we suppose that \mathbb{C}^{r}\cross\{0\}\subseteq V(J_{i}(F)) , it makes sense to ask about
the equimultipicity of V(J_{i}(F)) along \mathbb{C}^{r}\cross\{0\} at 0. Let \pi : X -arrow \mathbb{C}^{r}\cross

\mathbb{C}^{n} denote the blowup of \mathbb{C}^{r}\cross \mathbb{C}^{n} at \mathbb{C}^{r}\cross\{0\} and let V’ be the strict
transform of V(J_{i}(F)) by \pi . Then, in view of the second characterization
of equimultiplicity given above, V(J_{i}(F)) is equimultiple along \mathbb{C}^{r}\cross\{0\} at
0 if and only if the fibers over \mathbb{C}^{r}\cross\{0\} in a neighbourhood of 0 of the
restriction \pi : V’ -arrow V(J_{i}(F)) are pure dimensional of dimension d-1 ,
where d=\dim O_{n}/J_{i}(f) . Now, we will see that this is also equivalent to
the constancy of e_{i}(f_{u}) with respect to u .

Proposition 3.2 Let f : (\mathbb{C}^{n}, 0) - (\mathbb{C}^{p}, 0) be an analytic map germ and
let i\in B(n,p) be a Boardman symbol such that V(\triangle^{i}) is Cohen-Macaulay at
\sigma=j^{k}f(0) and co\dim V(J_{i}(f))=co\dim_{\sigma}V(\triangle^{i}) . Let F(u, x)=(u, f_{u}(x))
be any r -parameter unfolding such that \mathbb{C}^{r}\cross\{0\}\subseteq V(J_{i}(F)) . Then, e_{i}(f)=

e_{i}(f_{u}) for all u , if and only if V(J_{i}(F)) is equimultiple along \mathbb{C}^{r}\cross\{0\} at 0.

Proof. Suppose that L=V(g_{1}, . , g_{d}) is a generic plane for V(J_{i}(f))

and consider the map \phi : V(J_{i}(F)) - \mathbb{C}^{r}\cross \mathbb{C}^{n} defined by \phi(u, x)=

(u, g_{1}(x) , . , g_{d}(x)) . Let R be the ring O_{n+r}/J_{i}(F) and let I the sheaf
of ideals on V(J_{i}(F)) that extends the stalk I_{0}=xR in a natural form,
where x= (x_{1}, . , x_{n}) denote the coordinates in \mathbb{C}^{n} . If we apply [19] Exam-
ple 3.4 to this setup, we observe that the multiplicity that Lipman denotes
by e_{(u,0)}(I) , for a given (u, 0) close enough to 0 in \mathbb{C}^{r}\cross \mathbb{C}^{d} , is equal to the
multiplicity e_{i}(f_{u}) . Now, by [19] Theorem 4b we have that if the multiplic-
ity e_{i}(f_{u}) is independent of u (in a neighbourhood of 0 in \mathbb{C}^{r} ) then V(J_{i}(F))
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is equimultiple along \mathbb{C}^{r}\cross\{0\} at 0. Reciprocally, if this equimultiplicity
condition holds and we add that R is Cohen-Macaulay, as a consequence of
[19] Theorem 4a (see also scholium on page 135) we have that e_{i}(f)=e_{i}(f_{u})

for all u in a neighbourhood of 0 in \mathbb{C}^{r} \square

Now, we apply the notion of equimultiplicity to study the multiplicity
of weighted homogeneous map germs with respect to a Boradman symbol.
A map germ f : (\mathbb{C}^{n}, 0) -arrow(\mathbb{C}^{p}, 0) is said to be weighted homogeneous with
degrees d_{1} , . , d_{p} and weights w_{1} , \ldots , w_{n} if for each i=1 , \ldots , p we have:

f_{i}(\lambda^{w_{1}}x_{1}, \ldots, \lambda^{w_{n}}x_{n})=\lambda^{d_{i}}f_{i}(x) , \forall x\in \mathbb{C}^{n} , \lambda\in \mathbb{C} .

When f is weighted homogeneous, the generators of the ideal J_{i}(f)

are also weighted homogeneous with the same weights, for any Boardman
symbol i . Thus, one expects that the number e_{i}(f) is determined by the
weights and degrees of f .

Given vectors w = (w_{1}, \ldots, w_{n}) and d=(d_{1}, \ldots, d_{p}) such that their
coordinates are nonnegative integer numbers, we will denote by \mathcal{H}(w;d)

the finite dimensional complex vector space of weighted homogeneous maps
of weights w_{1} , \ldots , w_{n} and degrees d_{1} , . . , d_{p} . When w_{1}=’ . =w_{n}=1 , in
the homogeneous case, we will denote H(w;d) by ?t_{n}(d) .

As we shall see, it is important to remark that the Zariski tangent cone
of the zero set V of an homogeneous ideal is equal to V itself. We use
this fact and Proposition 3.2 to prove the invariance of e_{i}(f) for weighted
homogeneous map germs.

Corollary 3.3 Let i\in B(n,p) be a Boardman symbol. Suppose that there
is a Zariski open subset \Omega\subseteq H_{n}(d) such that for all f\in\Omega , the germ
V(\triangle^{i})_{\sigma} is Cohen-Macaulay and co\dim V(J_{i}(f))=co\dim_{\sigma}V(\triangle^{i}) , where
\sigma=j^{k}f(0) . Then, the multiplicity e_{i}(f) is constant on \Omega .

Proof. Let f\in\Omega and consider a one parametric unfolding F(u, x)=
(u, f_{u}(x)) such that f_{u}\in\Omega , for all u . Since f_{u} is homogeneous for all
u , we have that \mathbb{C}^{r}\cross\{0\}\underline{\subseteq}V(J_{i}(F)) and by Proposition 3.2 it suffices
to prove the equimultiplicity of \mathbb{C}^{r}\cross\{0\} along V(J_{i}(F)) . We define \phi :
V(J_{i}(F)) -arrow(\mathbb{C}^{r}\cross \mathbb{C}^{d}, 0) as in the proof of Proposition 3.2. The fact that
J_{i}(f_{u})+\langle g_{1}, . , g_{d}\rangle is homogeneous of finite colength implies, for all u in a
neighbourhood of 0 in \mathbb{C}^{r} , the relation

\phi^{-1}(\phi(u, O))\cap V(J_{i}(F))=(\{u\}\cross L)\cap V(J_{i}(f_{u}))=\{(u, 0)\} .
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Moreover, it is easy to see that the tangent cone of V(J_{i}(F)) at (u, 0) is
equal to \mathbb{C}^{r}\cross V(J_{i}(f_{u})) . Therefore, the equimultiplicity of V(J_{i}(F)) along
\mathbb{C}^{r}\cross\{0\} follows from the first equivalence of equimultiplicity (see Definition
3.1). \square

Corollary 3.4 Let i\in B(n,p) be a Boardman symbol. Suppose that
there is a Zariski open subset \Omega\subseteq H(w, d) such that for all f\in\Omega , the
germ V(\triangle^{i})_{\sigma} is Cohen-Macaulay and co\dim V(J_{i}(f))=co\dim_{\sigma}V(\triangle^{i})=n ,
where \sigma=j^{k}f(0) . Then, the multiplicity e_{i}(f) is constant on \Omega .

Proof. Following the same approach as in the above corollary, we now
consider a one parametric unfolding F(u, x)=(u, f_{u}(x)) of a given weighted
homogeneous map germ f\in\Omega , such that f_{u}\in\Omega , for all u . In this case, we
find that V(J_{i}(F))=\mathbb{C}^{r}\cross\{0\} and therefore the result follows again from
the first equivalence of equimultiplicity and Proposition 3.2. \square

For general weights w_{1} , \ldots , w_{n} and codimension \nu<n , the same result
is not true. For instance, consider in 7{ ((2, 1) ; (2, 3)) the Zariski open subset
\Omega given by the map germs f : (\mathbb{C}^{2},0) -arrow(\mathbb{C}^{2},0) such that the Jacobian
determinant is not identically zero. It follows that for any f\in\Omega and for
any unfolding F of f , the ring O_{3}/J_{1}(F) is Cohen-Macaulay of codimension
1, since this ring defines a hypersurface in this case. However, if we consider
f, g\in\Omega given by f(x, y)=(x, y^{3}) and g(x, y)=(x, y^{3}+xy) , we get
e_{1}(f)=2 and e_{1}(g)=1 .

Note also that the result is true in the special case that i=(1) , n=p
and f : (\mathbb{C}^{n}, 0) - (\mathbb{C}^{n}, 0) is A-finitely determined. In this case, the ideal
J_{1}(f) defines a hypersurface with isolated singularity and it follows that its
multiplicity is determined by the weights and the degree of the generator of
J_{1}(f) (see [24], Lemma 6).

In view of Corollaries 3.3 ans 3.4 it is interesting to provide expressions
for the multiplicity of weighted homogeneous map germs depending only on
the degrees and weights of the germs.

There are some situations where it is possible to ensure that there is a
Zariski open subset \Omega which verifies the hypothesis of Corollaries 3.3 and
3.4, that is, for all f\in\Omega , the ring O_{n+1}/J_{i}(F) associated to any unfolding
F of f is Cohen-Macaulay of codimension \nu\leq n . That condition holds in
each one of the following cases [10]:
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1. i=(1) , n\leq p and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i)\} .
2. i=(n-p+1) , n>p and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i)\} .
3. i=(2) , n=p and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i)\} .
4. i=(1,1) , n=p and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i)\} .
5. i= (i_{1}, \ldots, i_{k}) and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i) and f has type

\Sigma^{i}\} .
6. i= (i_{1}, \ldots, i_{k}, 1) and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i) and f has type

\Sigma^{i_{1},\ldots,i_{k}}\} .
7. i=(n-p+1,2) and \Omega=\{f : co\dim V(J_{i}(f))=\nu(i) and f has type

\Sigma^{n-p+1}\} .
In fact, you can find in [10] or [12] longer lists of Boardman symbols and
map germs which satisfy the required property. Here, we have selected
only those in which computations involve determinantal ideals defined by
maximal or submaximal minors. In next section we will provide formulae
for e_{i}(f) in terms of weights and degrees of f in these cases.

4. Expressions for the multiplicity e_{i}(f)

The results we show here will be consequence of certain more general
formulae about multiplicities of determinantal rings given in the Section 5.

In the case i=(1) , here we give a formula which generalizes the number
of cross-caps of a weighted homogeneous map germ f : (\mathbb{C}^{2},0) -arrow(\mathbb{C}^{3},0)

[22] .

Proposition 4.1 Let f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{p}, 0) be a weighted homogeneous
map germ of degrees d_{1} , . . ’

d_{p} and weights w_{1} , . . , w_{n} . Consider the Board-
man symbol i=(1) when n\leq p or i=(n-p+1) when n>p . Suppose that
\dim O_{n}/J_{i}(f)=n-\nu(i) and that either w_{1}= =w_{n}=1 , or \nu(i)=n .
Then

e_{i}(f)= \frac{1}{w_{1}\cdots w_{n}}\sum_{1\leq i_{1}<\cdots<i_{r+1}\leq\max\{p,n\}}d_{i_{1},i_{1}}
. . d_{i_{r+1},i_{r+1}-r} ,

where r=|p-n| and

d_{ij}=\{
d_{i}-w_{j} , if n \leq p ,
d_{j}-w_{i} , if n>p .

Proof Note that J_{i}(f) has grade \nu(i)=p-n+1 , if n \geq p , or \nu(i)=n-p+
1 , otherwise. Moreover, it is generated by the maximal minors of a matrix
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of size n\cross p , whose entries are weighted homogeneous polynomials of degree
d_{ij} . Thus, the result follows from Lemma 5.5 in the case w_{1}=’ . =w_{n}=1 ,
or Lemma 5.6 in the case \nu(i)=n . \square

We can apply the same argument to obtain the following formula, which
generalizes the number of cusps of a weighted homogeneous map germ f :
(\mathbb{C}^{2},0)arrow(\mathbb{C}^{2},0)[14] .

Proposition 4.2 Let f : (\mathbb{C}^{n}, 0) – (\mathbb{C}^{n}, 0) be a weighted homogeneous
map germ of degrees d_{1} , \ldots , d_{n} and weights w_{1} , \ldots , w_{n} . Suppose that
\dim O_{n}/J_{1,1}(f)=n-2 and that either w_{1}= =w_{n}=1 , or n=2 .
Then

e_{1,1}(f)= \frac{1}{w_{1}\cdot w_{n}}\sum_{1\leq i<j\leq n+1}d_{i,i}d_{j,j-1} ,

where d_{n+1}=d_{1}+ +d_{n}-w_{1} –

\cdot-w_{n} and d_{ij}=d_{i}-w_{j} .

For a general Boardman symbol i= (i_{1}, . , i_{k}) , if co\dim V(J_{i}(f))=

\nu(i) and f has type \Sigma^{i} , it follows that O_{n}/J_{i}(f) is a complete intersection
(see [23]), that is, the ideal J_{i}(f) can be generated by g_{1} , \ldots , g_{\nu(i)}\in O_{n} .
Hence, it follows from B\’ezout Theorem that

e_{i}(f)= \frac{D_{1}\cdot D_{\nu(i)}}{w_{1}\cdot\cdot w_{n}} ,

where D_{j} is the degree of each g_{i} . However, it is very difficult in general, to
obtain an expression of the D_{j} in terms of the degrees d_{j} of the map germ
f . In the following proposition, we do that for the special case i_{1}= =i_{k} .

From now on, we will denote by i=(i_{(k)}) the Boardman symbol in
which the integer i is repeated k times.

Proposition 4.3 Let i=(i_{(k)}) and let f : (\mathbb{C}^{n}, 0) - (\mathbb{C}^{p}, 0) be a map
germ given by f(x)=(g(x), x_{i+1}, . , x_{n}) , where g is weighted homogeneous
of degrees d_{1} , \ldots , d_{p-n+i} and weights w_{1} , . , w_{n} . Suppose that \dim O_{n}/

J_{i}(f)=n-\nu(i) and that either w_{1}= =w_{n}=1 , or \nu(i)=n . Then

e_{i}(f)= \frac{1}{w_{1}\cdots w_{n}}1\leq\ell<\cdots\leq\ell_{\beta}\leq i\alpha=1,\ldots,p-n+i\beta=1,.,k\prod_{1\underline{\backslash }}(d_{\alpha}-w_{\ell_{1}} -, . -w\ell_{\beta})

.

Proof. Since f is written in the form f(x)=(g(x), x_{i+1}, . , x_{n}) , then
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the Jacobian extension J_{i}(f) is equal to J_{i}(g;x_{1}, \ldots, x_{i}) . Using this we find
that:

J_{i}(f)= \langle\frac{\partial g_{1}}{\partial x_{\ell}} , \ldots , \frac{\partial g_{p-n+i}}{\partial x_{\ell}} : \ell=1 , . , i\rangle ,

J_{i,i}(f)=J_{i}(f)+ \langle\frac{\partial^{2}g_{1}}{\partial x_{\ell_{1}}\partial x_{\ell_{2}}} , . . ’
\frac{\partial^{2}g_{p-n+i}}{\partial x_{\ell_{1}}\partial x_{\ell_{2}}} : 1\leq\ell_{1}\leq\ell_{2}\leq i\rangle’.

J_{i_{(k)}}(f)=J_{i_{(k-1)}}(f)+\{ \frac{\partial^{k}g_{1}}{\partial x_{\ell_{1}}\cdot\cdot\partial x_{\ell_{k}}} , . , \frac{\partial^{k}g_{p-n+i}}{\partial_{X\ell_{1}}\cdot\partial x_{\ell_{k}}} :

1\leq\ell_{1}\leq \leq\ell_{k}\leq i\rangle .

As we can see, the number of generators which are necessary to obtain
the Jacobian extension J_{i_{(s)}}(f) from the previous one is equal to (p-n+
1)\#\{(\ell_{1}, . . , \ell_{s}) : 1\leq\ell_{1}\leq \cdot\leq\ell_{s}\leq i\}=(p-n+1) (\begin{array}{l}i+s-1s\end{array}) . It’s easy to
see that this number coincides with \nu(i_{(s)})-\nu(i_{(s-1)}) . Therefore, we have
an explicit presentation of \nu(i) generators for J_{i}(f) and thus, the result
follows from B\’ezout Theorem. \square

In a Cohen-Macaulay ring R the notions of height and grade of an ideal
coincide (see [3] Corollary 2.1.4). Moreover, if R is local we can also use
the relation height(J)+dim R/I =\dim R , for any ideal I of R . Then, it
is interesting to have a method to determine the Cohen-Macaulay property
on a given ring. Next lemma provides a useful method in our case.

Lemma 4.4 [16] Let R be a Noetherian ring of dimension d . Let M be
a p by q matrix with entries in R and let I_{r} be the ideal generated by the
r -minors of Mt Then,

1. \dim(R/I_{r})\geq d-(p-r+1)(q-r+1) ;
2. if R is Cohen-Macaulay and \dim(R/I_{r})=d-(p-r+1)(q-r+1)

then, the ring R/I_{r} is Cohen-Macaulay (in this case R/I_{r} is said to be
a determinantal ring).

Proposition 4.5 Let f be a weighted homogeneous germ expressed as in
Proposition 4.3 and consider the Boardman symbol i=(i_{(k)}, 1) . Suppose
that \dim O_{n}/J_{i}(f)=n-\nu(i) and that either w_{1}= =w_{n}=1 , or
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\nu(i)=n . Then

e_{i_{(k)},1}(f)=e_{i_{(k)}}(f) \sum (D_{\alpha_{1}}-w_{\alpha_{1}})\cdots(D_{\alpha_{r+1}}-w_{\alpha_{r+1}-r}) ,
1\leq\alpha_{1}<\cdots<\alpha_{r+1}\leq t

where t=(p-n+1) (\begin{array}{l}i+k-lk\end{array}) , r=t-i and D_{1} , . , D_{t} are the elements of
the set

\{d_{\alpha}-w_{\ell_{1}}-\cdot\cdot-w_{\ell_{k}} : \alpha=1, . , p-n+i, 1\leq\ell_{1}\leq. \leq\ell_{k}\leq i\} .

Proof. We proceed as in the proof of Proposition 4.3. Just observe that
the Jacobian extension J_{i_{(k)},1}(f) is expressed as

J_{i_{(k)},1}(f)=J_{i_{(k)}}(f)+I_{i}(A) ,

where A is the differential matrix with respect to the variables x_{1} , \ldots , x_{i} of
the map whose coordinates are given by all k-th partial derivatives of the
coordinate functions g_{1} , \ldots , g_{p-n+i} with respect to such variables. Hence
we have, by Lemma 4.4, that:

n- \nu(i_{(k)}, 1)=\dim\frac{O_{n}}{J_{i_{(k)},1}(f)}

\geq\dim\frac{O_{n}}{J_{i_{(k)}}(f)}-(\nu(i_{(k)})-\nu(i_{(k-1)})-i+1)

On the other hand, it is easy to see that

\nu(i_{(k)}, 1)=2\nu(i_{(k)})-\nu(i_{(k-1)})-i+1 ,

which gives

n- \nu(i_{(k)})\geq\dim\frac{O_{n}}{J_{i_{(k)}}(f)} .

Note that the other inequality is always true, since J_{i_{(k)}}(f) is generated by
\nu(i_{(k)}) elements, as we have seen in the proof of Proposition 4.3. Then it
is actually an equality and we deduce that it is a Cohen-Macaulay ring.
Therefore, the ideal J_{i_{(k)},1}(f)/J_{i_{(k)}}(f) has the right grade in

O_{n}/J_{i_{(k)}}(f)\square

and it only remains to apply lemmas 5.5 and 5.6.

Next, we give a pair of formulas for the number e_{i}(f) , when i involves
computations with submaximal minors of squared matrices. These formulas
are consequences of a pair of results also shown in Section 5..



Multiplicity of iterated Jacobian extensions 355

Proposition 4.6 Let f : (\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{n}, 0) a weighted homogeneous map
germ with degrees d_{1} , \ldots , d_{n} and weights w_{1} , \ldots , w_{n} , and consider the
Boardman symbol i=(2) . Suppose that \dim O_{n}/J_{2}(f)=n-\nu(2)=n-4

and that either w_{1}= =w_{n}=1 , or n=4 . Then

e_{2}(f)= \frac{1}{w_{1}\cdot\cdot w_{n}}(\sum_{i<j}d_{ii}d_{jj}d_{ij}d_{ji}+\sum_{i<j<k}d_{ii}d_{jj}d_{kk}(d_{ii}+d_{jj}+d_{kk})

+ \sum_{i<j<k<l}d_{ii}d_{jj}d_{kk}d_{ll})
,

where d_{ij}=d_{i}-w_{j} .

Proof. The ideal J_{2}(f) is generated by the submaximal minors of the
Jacobian matrix of f and has height equal to 4. Then, we only have to
apply Lemma 5.11. \square

Lemma 4.7 [18] Let R be a ring of dimension n and M an m\cross m sym-
metric matrix with entries in R. Let I_{t} the ideal generated by the minors
of order m-t+1 of Mr Then

1. \dim R/I_{t}(U)\geq d-t(t+1)/2 ;
2. if \dim R/I_{t}(U)=d-t(t+1)/2 and R is Cohen-Macaulay, then R/I_{t}

is Cohen-Macaulay.

Proposition 4.8 Let n\geq p\geq 4 and let f : (\mathbb{C}^{n}, 0) - (\mathbb{C}^{p}, 0) be a map
germ given by f(x)=(g(x), x_{n-p+2}, \ldots, x_{n}) , where g is weighted homogen-
eous of degree d and weights w_{1} , \ldots , w_{n} . Consider the Boardman symbol
i=(n-p+1,2) , suppose that \dim O_{n}/J_{i}(f)=n-\nu(i)=p-4 and that
either w_{1}=\cdots=w_{n}=1 , or p=4 . Then

e_{n-p+1,2}(f)= \frac{1}{w_{1}\cdot\cdot w_{n}}(d-w_{1})

(d-w_{n-p\dagger 1})( \sum_{i<j}d_{ii}d_{jj}d_{ij}+\sum_{i<j<k}d_{ii}d_{jj}d_{kk}) ,

where d_{ij}=d-w_{i}-w_{j} , i,j =1 , . , n-p+1 .

Proof. If G denotes the map germ whose components are the partial
derivatives G_{i}= \frac{\partial g}{\partial x_{i}} , for i=1 , \ldots , n-p+1 , then

J_{i}(f)=J_{i}(g;x_{1}, \ldots, x_{n-p+1})=\langle G_{1}, \ldots, G_{n-p+1}\rangle+I_{n-p}(D(g, G)) .

Let’s denote by I_{1} and I_{2} , the two ideals in this sum. If we now apply the
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first part of Lemma 4.7 and the hypotheses, we find that

p-4= \dim\frac{O_{n}}{J_{i}(f)}\geq\dim\frac{O_{n}}{I_{1}}-3 ,

which implies that O_{n}/I_{1} is a complete intersection. In particular, it is
Cohen-Macaulay and the image of I_{2} in O_{n}/I_{1} has height 3. Then it only
remains to apply Lemma 5.12. \square

5. Multiplicity of some determinantal rings

In this section we show the necessary results to obtain the expressions
of Propositions 4.1, 4.2, 4.5, 4.6 and 4.8. They could also provide other
expressions for the multiplicity of map germs in other situations. We will
develop these results in the context of graded rings.

If U is an n\cross m matrix, n\geq m , with homogeneous entries in a graded
ring R=\oplus_{n\geq 0}R_{n} , we look at the multiplicity of the ideal I_{m}(U) generated
by the maximal order minors of U . The main tool we have used in order to
compute this multiplicity, under some restrictions that we will make precise,
is the Eagon-Northcott complex. This complex gives a free resolution of
R/Im(U) when I_{m}(U) has grade n-m+1 , that is, when it is a determinantal
ring. It was used by Eagon and Northcott to compute the normalized
leading coefficient of the Hilbert series of R/Im(U) but they do not give
an explicit formula in terms of the degrees of the entries of the matrix.
As a corollary we give a formula for the length of R/Im(U) that was also
obtained by Damon in [5] for the case R=\mathbb{C}[x_{1}, \ldots x_{n}] using a totally
different approach.

5.1. The Hilbert series of determinantal rings defined by maxi-
mal minors

Let R=\oplus_{n\geq}oR_{n} be a Noetherian graded ring with R_{0} Artinian, and
let M be a finitely generated graded R-module. The Hilbert series of M is
defined as

P(M, t)= \sum_{n=0}^{\infty}\ell(M_{n})t^{n}\in \mathbb{Z}[[t]] ,

where \ell(M_{n}) denotes the length of each piece M_{n} as R_{0}-module (since M_{n}

is finitely generated as R_{0}-module and R_{0} is Artinian, this length is always
finite).
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It is very common to denote by M[\lambda] the same module M but with
its grading shifted by \lambda , that is, M[\lambda]_{n}=M_{n-\lambda} . Its Hilbert series is then
given by

P(M[\lambda], t)=t^{\lambda}P(M, t) . (1)

Suppose now that U=(u_{ij}) is an n\cross m matrix with entries in R, with
n\geq m and so that each u_{ij} is homogeneous of degree d_{ij} . In order to ensure
that all the minors of U are also homogeneous, we have to put the following
condition:

d_{ij}+d_{kl}=d_{il}+d_{kj} , \forall i,j , k , l . (2)

Then the ideal I_{m}(U) defined by the maximal minors of U is 1_{1}omogen-

eous an the quotient ring Rm(U)=R/Im(U) is a finitely generated graded
R-module,

Now, we introduce some notation in order to construct the Eagon-
Northcott complex. This will lead us to the Hilbert series of R_{m}(U) , when
the ideal I_{m}(U) has grade n-m+1 .

Definition 5.1 Let r=n-m. For each k=0, \ldots , r we consider the
following free R-module,

F_{k}=1\leq i_{1}<\cdots<i_{m+k}\leq n1\leq j_{1}\leq\cdots\leq j_{k}\leq m\oplus R

,

which has rank (\begin{array}{l}nm+k\end{array})(\begin{array}{l}m+k-lm-l\end{array}) . We denote the corresponding canonical basis
of F_{k} by

\{e_{i_{1},\ldots,i_{m+k},j_{1},\ldots,j_{k}}\}

1\leq i_{1}<\cdots<i_{m+k}\leq n1\leq j_{1}\leq\cdot\cdot\leq j_{k}\leq m

,

Moreover, we define the R-homomorphism \partial : F_{k+1}arrow F_{k} by

\partial(e_{i_{1},\ldots,i_{m+k+1},j_{1},\ldots,j_{k+1}})

= \sum_{\alpha=1}^{m+k+1}\sum_{\beta=1}^{k+1}(-1)^{\alpha+1}u_{i_{\alpha}j_{\beta}}ei_{1},\ldots,\hat{i}_{\alpha},\ldots,i_{m+k+1},j_{1},\ldots,\hat{j}_{\beta}

,... , j_{k+1} .
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and the R homomorphism \nu : F_{0}arrow R by

\nu(e_{i_{1},\ldots,i_{m}})=|\begin{array}{ll}u_{i_{1}l} u_{i_{1}m}.\cdot l \cdots u_{i_{m}1} m\end{array}|

Lemma 5.2 [6, 4] Let R be a Noetherian ring and let U=(u_{ij}) be an
n\cross m matrix with entries in R, with n\geq m . If I_{m}(U) has grade n-m+1 ,
then the following sequence is exact:

0arrow F_{r}arrow\partial F_{r-1}arrow\partial arrow\partial F_{0}arrow\nu Rarrow R_{m}(U)arrow 0 .

Suppose now that R is a Noetherian graded ring, and that each u_{ij} is
homogeneous of degree d_{ij} and condition (2) is satisfied. Then, all the R-
modules in the Eagon-Northcott complex are graded. However, the hom0-
morphisms \partial , \nu are not graded homomorphisms, since they do not preserve
homogeneous elements. We have to modify the grading of these R-modules
in order to get an exact sequence of graded R-modules.

For instance, we consider in R the original grading and then we redefine

\overline{F}_{0}=\oplus R[d_{i_{1}1}+\cdots+d_{i_{m}m}]1\leq i_{1}<\cdots<i_{m}\leq n ’

so that now \nu : \overline{F}_{0}arrow R is a graded homomorphism of degree 0. For k=1 ,
we have to modify the grading in the following way:

\overline{F}_{1}=1\leq i_{1}<\cdots<i_{m+1}\leq n1\leq j_{1}\leq m\oplus R[d_{i_{1}1}+\cdot\cdot+d_{i_{m}m}+d_{i_{m+1}j_{1}}]

.

Then, \partial : \overline{F}_{1}

-
\overline{F}_{0} is a graded homomorphism of degree 0. In general, we

define

\overline{F}_{k}=1\leq i_{1}<\cdots<i_{m+k}\leq n1\leq j_{1}\leq\cdots\leq j_{k}\leq m\oplus R[d_{i_{1}1}+\cdots+d_{i_{m}m}+d_{i_{m+1}j_{1}}+ +d_{i_{m+k}j_{k}}]

,

and we get the following graded version of the Eagon-Northcott complex.

Lemma 5.3 Let R be a Noetherian graded ring and let U=(u_{ij}) be
an n\cross m matrix with entries in R, with n \geq m and so that each u_{ij} is
homogeneous of degree d_{ij} and condition (2) is satisfified. If I_{m}(U) has grade
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n -m+1 , then the following sequence of graded R-modules is exact (with
all the homomorphisms of degree 0) :

0– \overline{F}_{r}arrow\partial\overline{F}_{r-1}arrow\partial . . arrow\partial\overline{F}_{0}arrow\nu Rarrow R_{m}(U)arrow 0 .

This graded free resolution of R_{m}(U) allows us to compute immediately
its Hilbert series (see Lemma 4.1.13 of [3]).

Theorem 5.4 Let R=\oplus_{n\geq 0}R_{n} be a Noetherian graded ring with R_{0}

Artinian and let U=(u_{ij}) be an n\cross m matrix with entries in R, with
n\geq m and so that each u_{ij} is homogeneous of degree d_{ij} and condition (2)
is satisfified. If I_{m}(U) has grade n-m+1 , then the Hilbert series of R_{m}(U) ,
P(R_{m}(U), t) , is given by

P(R, t)(1+ \sum_{k=0}^{r}(-1)^{k+1}
1 \leq i_{1}<\cdots<i_{m+k}\leq’ n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}t^{d_{i_{1}1}+\cdots+d_{i_{m}m}+d_{i_{m+1^{j_{1}}}}+\cdots+d_{i_{m+k^{j}k)}}}

,

where r=n-m.

A special case is when R is a polynomial ring, R=R_{0}[X_{1}, \ldots, X_{s}] , over
an Artinian ring R_{0} . Thus, Theorem 5.4 generalizes the results of [7].

5.2. The length and the multiplicity
In this section we use the Hilbert series of R_{m}(U) in order to obtain

some consequences on the length and the multiplicity of R_{m}(U) in the case
that these concepts have sense. We shall use a combinatorial result that
will be proved in next subsection.

Let R=\oplus_{n\geq 0}R_{n} graded ring with R_{0} Artinian. We set R_{+}=\oplus_{n>0}R_{n} .
This is a homogeneous ideal of R which verifies R/R_{+}\cong R_{0} . Moreover, if
R is Noetherian and R_{+} is generated by homogeneous elements \zeta_{1} , . . , \zeta_{s} ,
we have that R=R_{0}[\zeta_{1}, \ldots, \zeta_{s}] . Suppose that each \zeta_{i} belong to R_{1} , for
i=1 , \ldots , s . In this situation, we have that the Hilbert series of a finitely
generated graded R-module M can be written uniquely in the form:

P(M, t)= \frac{f(t)}{(1-t)^{d}} ,

where f(t)\in \mathbb{Z}[t, t^{-1}] , f(1)\neq 0 and d=\dim(M) (see Corollary 4.1.8 of [3]).
Once we have expressed the Hilbert series of M in this form, the multiplicity
of M as a graded R-module can be computed as f(1) .
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Lemma 5.5 Let R=\oplus_{n\geq 0}R_{n} be a Noetherian graded ring with R_{0} Ar-
tinian and such that R can be generated over R_{0} by elements of degree 1.
Let U=(u_{ij}) be an n\cross m matrix with entries in R, so that each u_{ij} is
homogeneous of degree d_{ij} and condition (2) is satisfified. If I_{m}(U) has grade
n-m+1 , we have that the multiplicity of R_{m}(U) is given by

e(R_{m}(U))=e(R) \sum_{1\leq i_{1}<\cdots<i_{r+1}\leq n}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}
. . d_{i_{r+1}i_{r+1}-r} ,

where r=n-m.

Proof Suppose that the Hilbert series of R is written as P(R, t)=
f(t)/(1-t)^{d} , where f\in \mathbb{Z}[t, t^{-1}] and d is the dimension of R. Then,
by Theorem 5.4, the Hilbert series of R_{m}(U) is given by

P(R_{m}(U), t)= \frac{f(t)\triangle(t)}{(1-t)^{d}} ,

where

\triangle(t)=1+\sum_{k=0}^{r}(-1)^{k+1}

1 \leq i_{1}<\cdots<i_{m+k}\leq’ n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}t^{d_{i_{1}1}+\cdots+d_{i_{m}m}+d_{i_{m+1^{j_{1}}}}+\cdots+d_{i_{m+k^{j}k}}}

.

Since height Im(U)\geq grade I_{m}(U) we have that \dim R_{m}(U)\leq d-(n-

m+1) . Moreover, the other inequality is always true by 4.4. Then, the
dimension of R_{m}(U) must be equal to d-(n-m+1) and its multiplicity
can be expressed as:

e(R_{m}(U))= \lim_{tarrow 1}\frac{f(t)\triangle(t)}{(1-t)^{r+1}} ,

where r=n-m.
Now we compute the derivatives of \triangle(t) at t=1 . It is not very difficult

to see that \triangle(1)=0 . By using Lemma 5.9 and induction on \ell , we have
that for \ell=1 , . , r ,

\triangle(\ell)(1)=\sum_{k=0}^{r}(-1)^{k+1}1\leq i_{1}<\cdots<i_{m+k}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}

(d_{i_{1}1}+\cdot\cdot+d_{i_{m}m}+d_{i_{m+1}j_{1}}+\cdot . +d_{i_{m+k}j_{k}})^{\ell}=0 .



Multiplicity of iterated Jacobian extensions 361

However, for \ell=r+1 , we have:

\triangle(r+1)(1)=\sum_{k=0}^{r}(-1)^{k+1}1\leq i_{1}<\cdots<i_{m+k}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}

(d_{i_{1}1}+\cdots+d_{i_{m}m}+d_{i_{m+1}j_{1}}+ +d_{i_{m+k}j_{k}})^{r+1} .

And by Proposition 5.7 it is possible to simplify this last expression to

\triangle(r+1)(1)=(-1)^{r+1}(r+1)!\sum_{1\leq i_{1}<\cdots<i_{r+1}\leq n}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}
. d_{i_{r+1}i_{r+1}-r} .

Now, we use the Leibniz formula to compute the derivatives of f(t)\triangle(t)

at t=1 and we get that

e(R_{m}(U))= \frac{(f\triangle)^{(r+1)}(1)}{(-1)^{r+1}(r+1)!}=\frac{f(1)\triangle(r+1)(1)}{(-1)^{r+1}(r+1)!}

=e(R) \sum_{1\leq i_{1}<\cdots<i_{r+1}\leq n}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}

. . d_{i_{r+1}i_{r+1}-r} .

\square

Finally, note that the same kind of computations can be done when R is
not generated over R_{0} by elements of degree 1, but the quotient ring R_{m}(U)

has finite length. The next result is a formula which has been obtained by
Damon [5] in the case R=\mathbb{C}[X_{1}, \ldots, X_{s}] by using different methods.

Lemma 5.6 Let R=k[X_{1}, \ldots, X_{s}] be a polynomial ring over a fifield k
and let U=(u_{ij}) be an (s+m-1)\cross m matrix with entries in R, so that
each u_{ij} is weighted homogeneous of degree d_{ij} and condition (2) is satisfified.
If the length of R_{m}(U) is fifinite, it is given by

\ell(R_{m}(U))=\frac{1}{w_{1}\cdots w_{s}}\sum_{1\leq i_{1}<\cdots<i_{s}\leq s+m-1}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}
. . d_{i_{s}i_{s}-s+1} ,

where w_{i} is the degree of X_{i} in R .

Proof. Just observe that if the length of R_{m}(U) is finite, then R_{m}(U) has
dimension zero and thus I_{m}(U) has grade s=(s+m-1)-m+1 . Moreover,
the fact that the length of R_{m}(U) is finite also implies that P(R_{m}(U), t) is
a polynomial, so that the length is equal to P(R_{m}(U), 1) . Hence, since the
Hilbert series of R can be written as P(R, t)=1/ \prod_{i=1}^{s}(1-t^{w_{i}}) , we have
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that

\ell(R_{m}(U))=P(R_{m}(U), 1)=\lim_{tarrow 1}\frac{\triangle(t)}{\prod_{i=1}^{s}(1-t^{w_{i}})}

= \frac{1}{w_{1}1\cdot\cdot w_{s}}\sum_{1\leq i_{1}<\cdots<i_{s}\leq n}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}
. . d_{i_{s}i_{s}-s+1} ,

where the last equality is obtained by applying l’H\^opital rule s times and
Proposition 5.7. \square

5.3. The combinatorial part
Here we prove a combinatorial formula necessary to simplify the ex-

pressions obtained in subsection 5.2.

Proposition 5.7 Let (d_{ij}) be an n\cross m matrix of rational numbers satis-
fying condition (2). Then,

\sum_{k=0}^{r}(-1)^{k+1}

1 \leq i_{1}<\cdots<i_{m+k}\leq’ n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}(d_{i_{1}1}+\cdot

.
+d_{i_{m}m}+d_{i_{m+1}j_{1}}+\cdot +d_{i_{m+k}j_{k}})^{r+1}

=(-1)^{r+1}(r+1)! \sum_{1\leq i_{1}<\cdots<i_{r+1}\leq n}d_{i_{1}i_{1}}d_{i_{2}i_{2}-1}
. . d_{i_{r+1}i_{r+1}-r} ,

where r=n-m.

In order to simplify the computations, we introduce the following n0-

tation, which reduces the nm variables d_{ij} to n+m variables, a_{i} , b_{j} .

Lemma 5.8 Let (d_{ij}) be an n\cross m matrix of rational numbers. Then, it
satisfifies condition (2) if and only if there exist a_{1} , \ldots , a_{n} , b_{1} , . , b_{m}\in \mathbb{Q}

such that d_{ij}=a_{i}+b_{j} , for any i , j .

Now we can rewrite Proposition 5.7 in terms of the new variables a_{i} and
b_{j} . Let a_{1} , . . ’ a_{n} and b_{1} , \ldots , b_{m} be rational numbers and let r=n-m\geq 0 .
Then, we have to prove the following identity:

\sum_{k=0}^{r}(-1)^{k+1}\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}(a_{i_{1}}+1\leq i_{1}<\cdots<i_{m+k}\underline{\backslash ’}n. . +a_{i_{n+k}},+b_{j_{1}}+\cdot\cdot+b_{j_{k}}+b_{1}+\cdots+b_{m})^{r+1}

=(-1)^{r+1}(r+1)! \sum_{1\leq i_{1}<\cdots<i_{r+1}\leq n}(a_{i_{1}}+b_{i_{1}})(a_{i_{2}}+b_{i_{2}-1})\cdots(a_{i_{r+1}}+b_{i_{r+1}-r})
.
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We will denote the left hand side of the above identity by A_{nm} and the
other one by B_{nm} .

Lemma 5.9 For all p\in\{1, \ldots, r\} , we have:

\sum_{k=0}^{r}(-1)^{k+1}1\leq i_{1}<\cdots<i_{m+k}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}

(a_{i_{1}}+\cdot . +a_{i_{m+k}}+b_{j_{1}}+\cdot . +b_{j_{k}}+b_{1}+\cdots+b_{m})^{p}=0 .

The proof of the previous lemma can be done by induction on p. More-
over, for each fixed p the proof of the corresponding identity requires the
same kind of induction argument as the one of Proposition 5.7.

Lemma 5.10 Let M be a number and suppose that b_{1}+ , . . +b_{m}=0 .
Then, for any p\in\{1, \ldots, r+1\} ,

\sum_{k=0}^{r}(-1)^{k+1}1\leq i_{1}<\cdots<i_{m+k}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}(a_{i_{1}}+\cdot

.
+a_{i_{m+k}}+b_{j_{1}}+ \cdot+b_{j_{k}}+M)^{p}

=\{
(-1)^{r+1}(r+1)!A_{nm}-M^{r+1} , if p=r+1 ,
-M^{p} . if p\in \{ 1, . , r\} .

Proof of Proposition 5.7. We have to prove that for each m\geq 1 the rela-
tion A_{nm}=B_{nm} is satisfied for all n\geq m . For this purpose, we proceed by
induction on m. The case m=1 is equivalent to prove that for all n\geq 1 :

\sum_{k=1}^{n}(-1)^{k}\sum_{1\leq i_{1}<\cdots<i_{k}\leq n}(a_{i_{1}}+\cdot . +a_{i_{k}})^{n}=(-1)^{n}n!a_{1} . . a_{n}

which follows by applying induction on n and Lemma 5.9.
Suppose that m>1 and that the result is true for m-1 . As in the

preceding case we apply induction on n . It is obvious that the proposition is
true when n=m. We will prove that A_{n+1,m}=B_{n+1,m} from the relations
A_{nm}=B_{nm} and A_{n,m-1}=B_{n,m-1} .

Let a_{1} , . , a_{n+1} , b_{1} , . . ’
b_{m} be numbers and let r=n-m. Since both

A_{n+1,m} and B_{n+1,m} are invariants if we add a constant to all the a_{i} and
subtract the same constant to all the b_{j} , we can suppose without loss of
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generality that b_{1}+\cdot . +b_{m}=0 . Then, we have that

A_{n+1,m}= \sum_{k=0}^{r+1}(-1)^{k+1}

1 \leq i_{1}<\cdots<i_{m+k}\leq n+1\sum_{1\leq j_{1}\leq\cdot\cdot\leq j_{k}\leq m}

(a_{i_{1}}+\cdot 1+a_{i_{m+k}}+b_{j_{1}}+\cdot . +b_{j_{k}})^{r+2} .

Now we split A_{n+1,m} into two terms, A_{n+1,m}=S_{1}+S_{2} , where

S_{1}= \sum_{k=0}^{r+1}(-1)^{k+1}

1 \leq i_{1}<\cdots<i_{m+k-1}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}

( a_{i_{1}}+ +a_{i_{m+k-1}}+a_{n+1}+b_{j_{1}}+ \cdot ( +b_{j_{k}})^{r+2} ,

S_{2}= \sum_{k=0}^{r}(-1)^{k+1}
1 \leq i_{1}<\cdots<i_{7n+k}\leq’ n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m}(a_{i_{1}}+ \cdot+a_{i_{m+k}}+b_{j_{1}}+ +b_{j_{k}})^{r+2}

.

After applying the Newton’s formula to S_{1} , we can separate the vari-
ables j_{1} , \ldots , j_{k} in order to use the Newton’s formula again and write the
resulting expressions in such a way that we can apply Lemma 5.10. By a
hard calculation we get:

A_{n+1,m}=A_{n,m-1}-(r+2)(a_{n+1}+b_{m})A_{nm}

+(a_{n+1}+b_{m})^{r+2}-a_{n+1}^{r+2}-S_{11}+S_{12} ,

where

S_{11}= \sum_{\ell=1}^{r+2} (\begin{array}{ll}r +2 \ell\end{array}) (-b_{m})^{\ell}p\ell , S_{12}= \sum_{\ell=1}^{r+1} (\begin{array}{ll}r +2 \ell\end{array}) a_{n+1}^{\ell}p\ell

and p\ell is the expression given by

\sum_{k=0}^{r+1}(-1)^{k+1}

1 \leq i_{1}<\cdots<i_{m-1+}\leq n\sum_{1\leq j_{1}\leq\cdots\leq j_{k}\leq m_{k}-1}(a_{i_{1}}+\cdot

. +a_{i_{m+k-1}}+b_{j_{1}}+\cdot . +b_{j_{k}})^{r+2-\ell} ,

for all \ell\in\{1, \ldots, r+2\} . The last expression given for A_{n+1,m} simplifies to:

A_{n+1,m}=A_{n,m-1}-(r+2)(a_{n+1}+b_{m})A_{nm} .
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Moreover, it is easy to see that:

B_{n+1,m}=B_{n,m-1}-(r+2)(a_{n+1}+b_{m})B_{nm} ,

therefore, we only have to apply the induction hypotheses to obtain that
A_{n+1,m}=B_{n+1,m} . \square

5.4. Submaximal minors of a squared matrix
Here we give the algebraic results that allows us to write Propositions

4.6 and 4.8. We consider the same setup as in the beginning of this section.
Now, suppose that the matrix U has size m\cross m , where m is any positive
integer. Let I_{m-1}(U) be the ideal generated by the submaximal minors
of U . When this ideal has grade 4, then Gulliksen-Negard complex (see
[4] ) provides a free resolution of the quotient ring R_{m-1}(U)=R/I_{m-1}(U) .
Moreover, it is possible to regraduate such complex so that all the hom0-
morphisms have degree 0 in the following way:

0– \overline{G}_{4}arrow\overline{G}_{3}arrow\overline{G}_{2}arrow\overline{G}_{1}arrow Rarrow R_{m-1}(U) -arrow 0 ,

where

\overline{G}_{1}=\oplus_{i,j}R[L-d_{ij}] ,
\overline{G}_{2}=(\oplus_{(i,j)\neq(1,1)}R[L-d_{ij}+d_{ii}])\oplus(\oplus_{(i,j)\neq(1,1)}R[L-d_{ij}+d_{jj}])’.

\overline{G}_{3}=\oplus_{i,j}R[L+d_{ji}] , \overline{G}_{4}=R[2L] ,

(d_{ij}) is the degree matrix of U and L=d_{11}+\cdot\cdot+d_{mm} . For the sake of sim-
plicity, we do not give here the explicit expression of the homomorphisms.
Following the same argument as in 4.1 we can express the Hilbert series of
R_{m-1}(U) as P(R_{m-1}(U), t)=P(R, t)\triangle(t) , where \triangle(t) is the polynomial

\triangle(t)=1-\sum_{i,j}t^{L-d_{ij}}+\sum_{(i,j)\neq(1,1)}t^{L-d_{ij}+d_{jj}}

+ \sum_{(i,j)\neq(1,1)}t^{L-d_{ij}+d_{ii}}-\sum_{i,j}t^{L+d_{ji}}+t^{2L}
.

Lemma 5.11 Let R=\oplus_{n\geq 0}R_{n} be a Noetherian graded ring with R_{0} Ar-
tinian and such that R can be generated over R_{0} by elements of degree 1.
Let U=(u_{ij}) be an m\cross m matrix with entries in R, so that each u_{ij} is
homogeneous of degree d_{ij} and condition (2) is satisfified. If I_{m-1}(U) has
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grade 4, we have that the multiplicity of R_{m-1}(U) is given by

e(R_{m-1}(U))=e(R)( \sum d_{ii}d_{jj}d_{ij}d_{ji}+\sum d_{ii}d_{jj}d_{kk}(d_{ii}+d_{jj}+d_{kk})

i<j i<j<k

+ \sum_{i<j<k<l}d_{ii}d_{jj}d_{kk}d_{ll}) .

As we did in Lemma 5.6, we can obtain an analogous result when R=
k[X_{1}, \ldots, X_{n}] , the ideal I_{m-1}(U) has finite colength and we consider some
weights w_{1} , \ldots , w_{n} on the variables X_{1} , . , X_{n} . We just have to fix n=4
and change e(R) by 1/w_{1}w_{2}w_{3}w_{4} in the above formula.

If we suppose that I_{m-1}(U) has grade 3 and that U is a symmetric
matrix, then we can use the complex of J\’ozefiak (see [17]) to obtain the
Hilbert series of R_{m-1}(U) . In this case, the graded version of such complex
is given by

0arrow\overline{J_{3}}arrow\overline{J_{2}}arrow\overline{J_{1}}arrow Rarrow R_{m-1}(U)arrow 0 ,

where

\overline{J_{1}}=\oplus_{i\leq j}R[L-d_{ij}] ,
\overline{J_{2}}=(\oplus_{i\leq j}, (i,j)\neq(1,1)R[L-d_{ij}+d_{ii}])\oplus(\oplus_{i<j}R[L-d_{ij}+d_{jj}]) ,
\overline{J_{3}}=\oplus_{i<j}R[L+d_{ij}] .

Then we have that P(R_{m-1}(U), t)=P(R, t)\triangle(t) , where now \triangle(t) is the
polynomial

\triangle(t)=1-\sum_{i\leq j}t^{L-d_{ij}}+i\leq j,\sum_{(i,j)\neq(1,1)}t^{L-d_{ij}+d_{ii}}

+ \sum_{i<j}t^{L-d_{ij}+d_{jj}}-\sum_{i<j}t^{L+d_{ij}}
.

Lemma 5.12 Under the same hypotheses as in the previous lemma, if we
now suppose that U is a symmetric matrix and that I_{m-1}(U) has grade 3,
the multiplicity of R_{m-1}(U) is given by

e(R_{m-1}(U))=e(R)( \sum_{<_{\vee}i’j}d_{ii}d_{jj}d_{ij}+\sum_{i<j<k}d_{ii}d_{jj}d_{kk}) .

It is worth noting that in the above situation we can also state a result
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when R is a graded ring of polynomials and I_{m-1}(U) has finite colength in
R.
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