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An abstract degenerate hyperbolic equation with
application to mixed problems
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Abstract. We prove an existence result for the Cauchy problem associated to an ab-
stract degenerate hyperbolic equation. Moreover we show several applications to mixed
initial boundary value problems for weakly hyperbolic equations.
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1. Introduction

Let H be a Hilbert space with norm | | , and B= (B_{1}, . . ’ B_{n}) an
n-tuple of selfadjoint operators on H, with (dense) domains D(B_{j}) . For
any multiindex \alpha= (\alpha_{1}, \ldots, \alpha_{n}) and integer s we shall use the notation

B^{\alpha}=B_{1}^{\alpha_{1}}o . . oB_{n^{n}}^{\alpha} .

The subspaces H^{s} are defined as follows:

H^{s}=\cap D(B_{j_{1}}o\cdots oB_{j_{s}}.)1\leq j_{i}\leq n
.

We can obviously endow H^{s} with a Hilbert space structure with norm

|u|_{s}^{2}=1 \leq j_{i}\leq n\sum_{0\leq k\leq s}|B_{j_{1}}o\cdots oB_{j_{k}}u|^{2}

.

We shall solve the following Cauchy problem on H:

u^{\prime/}+ \sum_{|\alpha|=2m}a_{\alpha}(t)B^{\alpha}u=f(t)
(1.1)

u(0)=u_{0} , u’(0)=u_{1} . (1.2)

We shall assume that

the functions a_{\alpha}(t) are real analytic on [0, T] (1.1)
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and that the following form is nonnegative:

\sum a_{\alpha}(t)\xi^{\alpha}\geq 0 \forall\xi\in R^{n} . (1.4)
|\alpha|=2m

Thus, equation (1.1) can be regarded as an abstract degenerate hyperbolic
equation on H . Concerning the selfadjoint operators B_{j} , we shall assume
that the resolvent operators R(i, B_{j}) commute, i.e.,

R(i, B_{j})R(i, B_{k})u=R(i, B_{k})R(i, B_{j})u

\forall j , k=1 . . ’ n , \forall u\in H . (1.5)

Remark 1.1 Condition (1.5) is necessary in order to have a simultane-
ous diagonalization of the operators B_{j} . In the case of bounded operators
it would have been sufficient to assume that [B_{j}, B_{k}]=0 ; but in the un-
bounded case the concept of commuting operators is much more delicate.
A handy substitute for (1.5) is the following assumption: there exists a
subspace V dense in H such that, for all j\neq k , V\subseteq D(B_{k}B_{j}) and

V_{jk}=(B_{j}-i)(B_{k}-i)(V) is dense in H and [B_{j}, B_{k}]=0 on V

(1.6)

It is easy to prove that (1.6) implies (1.5); indeed, we have

B_{j}B_{k}v=B_{k}B_{j}v \forall v\in V

whence

(B_{j}-i)(B_{k}-i)v=(B_{k}-i)(B_{j}-i)v \forall v\in V.

Call w the vector (B_{j}-i)(B_{k}-i)v ; we have then

R(i, B_{j})R(i, B_{k})w=R(i, B_{k})R(i, B_{j})w \forall w\in V_{jk} ,

but V_{jk} is dense and we obtain (1.5).

We can now state our main result:

Theorem 1 Consider Problem (1.1), (1.2) under assumptions (1.3)-(1.5).
Then, fixed T>0 , there exists an integer s_{0} such that, for all s\geq 2m , for
all data u_{0} , u_{1}\in H^{s+s_{0}} and f(t)\in C([0, T];H^{s+s_{0}}) the problem has a unique
solution u(t)\in C^{2}([0, T];H^{s}) .
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In Section 2 we shall give a complete proof of our theorem, while Sec-
tion 3 is devoted to the applications. We consider several examples: the
mixed Cauchy-Dirichlet (or Neumann) problem in a rectangular set \Omega for
the equation

u_{tt}- \sum a_{j}(t)\partial_{j}^{2}u=f(t, x)

where a_{j}\geq 0 are analytic; the mixed Cauchy-Dirichlet (or Neumann) prob-
lem in any open set \Omega\subseteq R^{n} with smooth boundary for

u_{tt}+ \sum a_{j}(t)P_{j}(D)u=f(t, x)

(P_{j}(D) elliptic formally selfadjoint second order differential operator) which
includes the equations of the form

u_{tt}-c(t) \sum b_{j}(t)\partial_{j}^{2}u=f(t, x)

with c(t)\geq 0 , b_{j}(t)>0 analytic; the mixed Cauchy-Dirichlet (or Neumann)
problem on a smooth Riemannian manifold with boundary for

u_{tt}-a(t)\triangle u=f(t, x) ,

\triangle being the Laplace-Beltrami operator on the manifold and a(t)\geq 0 ; and
finally, some problems on the whole R^{n} , including

u_{tt}+ \sum_{ij}a_{ij}(t)Y_{i}Y_{j}u=f(t, x)

with Y_{j} commuting selfadjoint vector fields.

Remark 1.2 In the concrete case, problems of the form

u_{tt}- \sum_{ij}a_{ij}(t)\partial_{i}\partial_{j}u=f(t, x)

have been considered in [CJS], [O]; the semilinear case has been studied
in [D]. Very few results exist for the degenerate hyperbolic mixed problem
(with the exception of the constant coefficient case, see [S]); we mention [K],
[Ku], and, in the semilinear case, [DR].

2. Proof of Theorem 1

We shall need an extension to the unbounded case of the well known
spectral theorem for a finite number of bounded, commuting selfadjoint
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operators:

Theorem 2.1 Let A_{1} , . , A_{n} be bounded, selfadjoint, pairwise commut-
ing operators on a Hilbert space H. Then there exist a measure space X with
measure \mu , a unitary map W : Harrow L^{2}(X, d\mu) , and real-valued functions
a_{j}\in L^{\infty}(X, d\mu) such that

WA_{j}W^{-I}f(\xi)=a_{j}(\xi)f(\xi) , f\in L^{2}(X, d\mu) , 1\leq j\leq n .

(see e.g. [KG] or [T]). In the unbounded case the commutativity as-
sumption must be replaced by something stronger, owing to the difficulties
with the domains; one possibility is to assume that the resolvent operators
commute:

Theorem 2.2 Let B_{1} , \ldots , B_{n} be selfadjoint operators on a Hilbert space
H, satisfying (1.5), i.e. , such that the resolvent operators R(i, B_{j}) are pair-
wise commuting. Then there exist a measure space X with measure \mu , a
unitary map W : Harrow L^{2}(X, d\mu) , and measurable functions b_{j} : X - R
such that the following holds. Denoting with M(b_{j}) the multiplication oper-
ator by b_{j} in L^{2}(X, d\mu) , with domain

D(M(b_{j}))=\{f\in L^{2}|b_{j}f\in L^{2}\} ,

the diagrams

D(B_{j}) arrow w D(M(b_{j}))

B_{j}\downarrow \downarrow M(b_{j})

H \vec{W}
L^{2}(X, d\mu)

are commutative, i.e. ,

WB_{j}W^{-1}f(\xi)=b_{j}(\xi)f(\xi) \forall f\in D(M(b_{j})) , 1\leq j\leq n .

Proof. Consider the unitary operators

U_{j}=I+2iR(i, B_{j})=(B_{j}+i)(B_{j}-i)^{-1}

and define, for j=1 , . , n

A_{j}= \frac{1}{2}(U_{j}+U_{j}^{*}) and A_{n+j}= \frac{1}{2i}(U_{j}-U_{j}^{*}) ;
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A_{1} , \ldots , A_{n} , A_{n+1} , . , A_{2n} are 2n selfadjoint, bounded commuting opera-
tors, hence we can apply Theorem 2.1. Thus we have a unitary operator W
and a measure space L^{2}(X, d\mu) such that

WA_{j}W^{-1}f(\xi)=a_{j}(\xi)f(\xi) \forall j=1 , \ldots , 2n , f\in L^{2}(X, d\mu)

with a_{j} real-valued functions in L^{\infty}(X, d\mu) . This gives

WU_{j}W^{-1}f(\xi)=u_{j}(\xi)f(\xi) \forall j=1 , \ldots , n , f\in L^{2}(X, d\mu)

with u_{j}(\xi)=a_{j}(\xi)+ia_{n+j}(\xi) . Notice that the complex-valued function u_{j}

is a.e . different from 1 (otherwise one could construct an eigenvector v for
U_{j} with eigenvalue 1, U_{j}v=v ; by the definition of U_{j} this would imply that
(B_{j}-i)v=(B_{j}+i)v and hence v=0). Moreover, |u_{j}|=1a.e . since U_{j} is
a unitary operator. Thus the functions

b_{j}=i \frac{u_{j}+1}{u_{j}-1}

are finite and real valued a.e . By the definition of U_{j} we have

R(i, B_{j})= \frac{i}{2}(I-U_{j}) ,

hence the domain of B_{j} coincides with the range of U_{j}-I ,

D(B_{j})=R(U_{j}-I) ,

and we can write

B_{j}=i(U_{j}+I)(U_{j}-I)^{-1}-

Now, W transforms R(U_{j}-I) into the set

\{f\in L^{2}|\exists g\in L^{2}s.t. f=(u_{j}-1)g\}

which coincides with D(M(b_{j})) as it is readily seen. Finally, it is clear that

WB_{j}W^{-1}=Wi(U_{j}+I)W^{-1}W(U_{j}-I)^{-1}W^{-1}=M(b_{j})

on D(M(b_{j})) . \square

We can now apply the transform W to Problem (1.1), (1.2) and we
obtain the following ordinary differential equation with a parameter \xi\in X :

v’+ \sum_{|\alpha|=2m}a_{\alpha}(t)b(\xi)^{\alpha}v=g(t, \xi)
(2.1)



320 P. D ’Ancona and M. Di Flaviano

v(0)=v_{0} , v’(0)=v_{1} (2.2)

where v(t, \xi)=Wu(t) , v_{0}=Wu_{0} , v_{1}=Wu_{1} , g(t, \xi)=Wf(t) while b(\xi) is
the vector valued function (b_{1}(\xi), \ldots, b_{n}(\xi)) .

Introducing the norms

||v(t, \cdot)||_{s}^{2}=\sum_{|\alpha|\leq s}\int_{X}(1+|b(\xi)^{\alpha}|^{2})^{s}|v|^{2}d\mu(\xi) ,

we can consider the subspaces \hat{H}^{s} of L^{2}(X, d\mu) defined as

\hat{H}^{s}=\{v\in L^{2}(X, d\mu)|||v||_{s}<\infty\} .

These spaces carry an obvious Hilbert structure. Moreover, it is evident
that W is an isomorphism between H^{s} and \hat{H}^{s} .

Thus, the assumptions on the data are equivalent to the following:

v_{0} , v_{1}\in\hat{H}^{s+s_{0}} , g(t, \xi)\in C([0, T];\hat{H}^{s+s_{0}}) . (2.3)

It is obvious that, for each \xi\in X , (2.1), (2.2) has a unique solution on
[0, T] ; we only need to give a suitable estimate of the solution v(t_{1}.\xi) thus
obtained in terms of the norms ||\cdot||_{s} . This will allow us to define u=W^{-1}v

and will imply the thesis of Theorem 1.
Write for brevity

a(t, b)= \sum_{|\alpha|=2m}a_{\alpha}(t)b^{\alpha}

for b\in R^{n} , and define the energy of order s of the solution v(t, \xi) as

E_{s}(t)= \int_{X}k_{s}(t, b(\xi))[|v’|^{2}+(1+a(t, b(\xi)))|v|^{2}]d\mu(\xi) . (2.4)

The function k_{s}(t, b) appearing in this definition is a suitable weight function
defined as follows: using the notation \langle b\rangle=(1+|b|^{2})^{1/2} , b\in R^{n} , we set

k_{s}(t, b)=\langle b\rangle^{2s} exp (- \int_{0}^{t}\frac{[\partial_{t}a(\tau,b)]^{+}}{a(\tau,b)+1}d\tau) (2.5)

(here [\lambda]^{+}\equiv\lambda\vee 0).
We shall need the following important property of k(t, b) :

Lemma There exist an integer N_{0} and a constant c_{0} , depending on T, s



An abstract degenerate hyperbolic equation 321

and the functions a_{\alpha} only, such that

k_{s}(t,p+q)\leq c_{0}k_{s}(t,p) \langle _{q}\rangle^{2(N_{0}+s)} (2.6)

for all p , q\in R^{n} .

Proof. Since

\langle p+q\rangle\leq\sqrt{2}\langle p\rangle \langle q\rangle , (2.7)

it is sufficient to prove (2.6) for s=0:

k_{0}(t,p+q)\leq c_{0}k_{0}(t,p) \langle _{q}\rangle^{2N_{0}} . (2.8)

We shall omit the index 0 in the following.
For each p\in R^{n} , |p|=1 , let N(p) be the number of oscillations of the

analytic function a(t,p) on [0, T] ; more precisely, if we consider the set

I^{+}(p)=\{t\in[0, T]|\partial_{t}a(t,p)\geq 0\} ,

we have for suitable points s_{j}(p)\leq t_{j}(p)\leq s_{j+1}(p) in [0, T]

I^{+}(p)=[s_{1}(p), t_{1}(p)]\cup \cup[s_{N(p)}(p), t_{N(p)}(p)] . (2.9)

Since a(t,p) is analytic, the integer valued function N(p) is locally bounded;
since a(t,p) is also homogeneous in p, we conclude

N= \max N(p)=\max N(p)|p|=1p<\infty .

Observing that on [s_{j}(p), t_{j}(p)]

\frac{[\partial_{t}a(t,p)]^{+}}{a(t,p)+1}=\partial_{t}[\log(a(t,p)+1)] ,

an integration on [0, T] gives the explicit result

k(t,p)= \exp(-\int_{0}^{t}\frac{[\partial_{t}a(\tau,p)]^{+}}{a(\tau,p)+1}d\tau)=\prod_{j=1}^{N(p)}\frac{a(s_{j}(p),p)+1}{a(t_{j}(p),p)+1} . (2.10)

Now we remark that

1+a(t, p+q)\leq C_{0}(1+a(t, p)) \langle q\rangle^{2}
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(with C_{0}=2+2 sup [0,T]\cross\{|p|=1\}a(t,p) ), whence also

\frac{1}{1+a(t,p+q)}\leq C_{0}\frac{\langle q\rangle^{2}}{1+a(t,p)} .

This implies

k(t,p+q)\leq C_{0}^{2N(p+q)} \langle _{q\rangle^{4N(p+q)}k(t,p)}

and recalling that N(p+q)\leq N we obtain the thesis with c_{0}(s)=C_{0}^{2N}2^{s} ,
N_{0}=2N . \square

A consequence of the Lemma is

c_{1} \langle b\rangle^{-2N_{0}}\leq k_{0}(t, b)\leq c_{2}\langle b\rangle^{2N_{0}}

hence in general

c_{1} \langle b\rangle^{2(s-N_{0})}\leq k_{s}(t, b)\leq c_{2}\langle b\rangle^{2(s+N_{0})} . (2.11)

We can now differentiate the energy E_{s}(t) defined in (2.4) and we obtain

E_{s}’(t)= \int_{X}\{\partial_{t}[k_{s}(t, b(\xi))|v’|^{2}]+\partial_{t}[k_{s}(t, b(\xi))(1+a(t, b(\xi)))|v|^{2}]\}d\mu(\xi) .

We can write

\partial_{t}(k_{s}(t, b)|v’|^{2})=-\frac{[\partial_{t}a(t,b)]^{+}}{1+a(t,b)}k_{s}(t, b)|v’|^{2}

+k_{s}(t, b)2Re\overline{v}’(-a(t, b)v+g(t, \xi)) ,

\{\partial_{t}[k_{s}(t, b)(1+a(t, b))]\}|v|^{2}

=\{-[\partial_{t}a(t, b)]^{+}k_{s}(t, b)+\partial_{t}a(t, b)k_{s}(t, b)\}|v|^{2}\leq 0 ,

k_{s}(t, b)(1+a(t, b))\partial_{t}|v|^{2}=k_{s}(t, b)(a(t, b)+1)2Re\overline{v}’v ,

so that

E_{s}’(t) \leq\int_{X}k_{s}(t, b)2Re\overline{v}’vd\mu(\xi)+\int_{X}k_{s}(t, b) , 2Re\overline{v}’g(t, \xi)d\mu(\xi)

\leq 2E_{s}(t)+\int_{X}k_{s}(t, b(\xi))|g(t, \xi)|^{2}d\mu(\xi)
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by Schwartz’ inequality. Using (2.11) we have

E_{s}’(t) \leq 2E_{s}(t)+c_{2}\int_{X} \langle ^{b}(\xi)\rangle^{2(s+N_{0})}|g(t, \xi)|^{2}d\mu(\xi) ,

which gives, by Gronwall’s lemma,

E_{s}(t) \leq C_{s}(T)\{E_{s}(0)+\int_{0}^{t}||g(\tau, \cdot)||_{s+N_{0}}^{2}d\tau\} (2.12)

(we are using here the norms || ||_{s} of the spaces \hat{H}^{s} ). By the definition of
E_{s}(t) and by (2.11) we obtain immediately

c_{1}[||v’||_{s-N_{0}}^{2}+||v||_{s-N_{0}}^{2}]\leq E_{s}(t)\leq c_{2}[||v’||_{s+N_{0}}^{2}+||v||_{s+N_{0}}^{2}] ,

hence (2. 12) implies the estimate

||v’||_{s}+||v||_{s} \leq C(T)[||v_{0}||_{s+s_{0}}+||v_{1}||_{s+s_{0}}+\int_{0}^{t}||g(\tau, \cdot)||_{s+s_{0}}d\tau]

(2.13)

for a suitable s_{0} not depending on s(s_{0}=2N_{0}) .
Applying now the inverse transformation W^{-1} and recalling the corres-

pondence between H^{s} and \hat{H}^{s} , we conclude easily the proof. \square

3. Applications

1) Mixed problem on a rectangular set Let \Omega be a rectangle in R^{n} ,
i.e., a set of the form

\Omega=\prod_{j=1}^{n}I_{j}

where I_{j} is an open interval of R. Consider the following mixed problem
on [0, T] \cross\Omega ,

u_{tt}- \sum a_{j}(t)\partial_{j}^{2}u=f(t, x) (3.2)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (3.2)

u(t, x)=0 for x\in\partial\Omega (3.3)

where

a_{j}(t)\geq 0 are real analytic functions on [0, T] . (3.4)
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We choose H=L^{2}(\Omega) , and for j=1 , \ldots , n we consider the operators

A_{j}=-\partial_{j}^{2}

with domain C_{0}^{\infty}(\Omega) . These are positive symmetric operators and can be
extended to selfadjoint operators by the Friedrichs method; we shall denote
the extensions again by A_{j} . These extensions coincide with the derivative
in the distribution sense, since this is true for the adjoint operators A_{j}^{*} .
The domain D(A_{j}) can be easily proved to be the set of all f\in L^{2}(\Omega)

with \partial_{j}^{2}f\in L^{2}(\Omega) and belonging to the closure of C_{0}^{\infty}(\Omega) in the norm
||\phi||_{L^{2}}+||\partial_{j}\phi||_{L^{2}} . We also recall that the ordinary differential operator
-d^{2}/dx^{2}+i is a bijection from H^{2}(a, b)\cap H_{0}^{1}(a, b) onto L^{2}(a, b) , (a, b) any
interval. Now consider the set V_{0} of functions

u(x)=u_{1}(x_{1}) u_{n}(x_{n}) (3.5)

with u_{j}(s)\in H^{2}(I_{j})\cap H_{0}^{1}(I_{j}) ; clearly V_{0}\subseteq D(A_{j}) for all j , and the image
of V_{0} through T_{jk}=(A_{j}-i)(A_{k}-i) , by what observed above, is the set
of all functions of the form (3.5), with u_{j} and u_{k} any function of L^{2}(I_{j}) ,
while the other u_{h} are unchanged, hence they are all possible functions in
H^{2}(I_{h})\cap H_{0}^{1}(I_{h}) . Thus it is clear that T_{jk}(V_{0}) contains e.g. all functions of
the form (3.5) with all u_{j} smooth and compactly supported in I_{j} . We can
now apply Remark 1.1 by choosing as V the vector space generated by V_{0} ,
and this proves that condition (1.5) is satisfied.

Theorem 2.2 thus can be applied to the A_{j} , and we obtain the uni-
tary map W which transforms each A_{j} in a multiplication operator by a
nonnegative function a_{j}(\xi) . We set now

B_{j}=A_{j}^{1/2}=\sqrt{-\partial_{j}^{2}}

and the same map W transforms B_{j} in the multiplication operator by the
function a_{j}^{1/2} We also remark that, since

- \Delta=\sum A_{j}=\sum B_{j}^{2}

by elliptic regularization we have that the space H^{2j}=D(B^{2j}) contains (at
least) H_{0}^{2j}(\Omega) , and is contained in H^{2j}(\Omega)\cap H_{0}^{1}(\Omega) .

Finally, we can write Equation (3.1) as

u’+ \sum a_{j}(t)B_{j}^{2}u=f(t)
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and apply Theorem 1, which gives directly

Theorem 3.1 Consider Problem (3.1)-(3.3) under assumption (3.4).
There exists an integer s_{0} such that, for all s\geq 2 and data u_{0} , u_{1}\in

H_{0}^{s+s_{0}}(\Omega) , f\in C([0, T];H_{0}^{s+s_{0}}(\Omega)) , there exists a unique solution u\in
C^{2}([0, T];H^{s+s_{0}}(\Omega)\cap H_{0}^{1}(\Omega)) .

We mention that in a similar way we can consider Neumann boundary
conditions.

2) Mixed problem on a smooth domain. Let \Omega be now any bounded
open subset of R^{n} with smooth boundary, assume that

a_{j}(t)\geq 0 are real analytic functions on [0, T] (3.6)

and let P_{j}(D) be formally selfadjiont, strictly elliptic, second order differ-
ential operators such that P_{j}(D)\geq 0 . Consider the mixed Cauchy problem
on [0, T] \cross\Omega

u_{tt}+ \sum a_{j}(t)P_{j}(D)u=f(t, x) (3.6)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (3.8)

u(t, x)=0 for x\in\partial\Omega . (3.8)

We extend the P_{j} by Friedrich’s method to selfadjoint operators, which we
denote by the same symbols; as in [T , p.82 ffff.], it is easy to see that their
domain is H^{2}(\Omega)\cap H_{0}^{1}(\Omega) . Moreover, the space

V=C_{c}^{\infty}(\Omega)

satisfies (1.6); indeed P_{j}-i is onto L^{2} , hence, fixed u\in L^{2} , we can find
v\in H^{4} such that (P_{j}-i)(P_{k}-i)v=u , and approximating v by a sequence
\phi_{\ell}\in V in the H^{4} norm we get (P_{j}-i)(P_{k}-i)\phi_{\ell}arrow u as required. Thus we
can apply Theorem 2.2 and transform the P_{j} into multiplication operators
by nonnegative functions a_{j}(\xi) on a suitable L^{2}(X)=L^{2}(X, d\mu) , through
a unitary map W : L^{2}(\Omega)arrow L^{2}(X) . The operators

B_{j}=P_{j}(D)^{1/2}

will be represented as multiplication operators by a_{j}(\xi)^{1/2} , and their re-
solvents R(i, B_{j}) as multiplication by (i-a_{j}(\xi)^{1/2})^{-1} ; it is clear that they
commute and (1.5) is satisfied.
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Thus Equation (3.7) can be written as

u’+ \sum a_{j}(t)B_{j}^{2}u=f(t)

and we can apply Theorem 1, obtaining a result identical to Theorem 3.1;
notice that we have the equivalence of norms

||B_{j}u||_{L^{2}}^{2}+||u||_{L^{2}}^{2}=(P_{j}u, u)_{L^{2}}+||u||_{L^{2}}^{2}\sim||u||_{H^{1}}^{2} ,

for u\in C_{c}^{\infty} and hence for u\in H_{0}^{1} .
Notice also that any equation like

u_{tt}-c(t) \sum b_{j}(t)\partial_{j}^{2}u=f(t, x)

with c analytic nonnegative, b_{j}(t) analytic and strictly positive, can be put
in the form (3.7).

3) Mixed problem on a Riemannian manifold. Let \overline{\Omega} be a compact
Riemannian manifold with smooth boundary, and consider the Cauchy
problem

u_{tt}-a(t)\triangle u=f(t, x) (3.10)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (3.11)

u(t, x)=0 for x\in\partial\Omega . (3.12)

where \triangle is the Laplace operator on \overline{\Omega} and a(t) is analytic nonnegative; we
obtain a result similar to 3.1. Alternatively, Neumann conditions can be
treated.

In case the manifold has no boundary, we may drop (3.12) and we
obtain

Theorem 3.2 Consider Problem (3.10), (3.11) under the assumption that
a(t) is analytic and nonnegative. There exists an integer s_{0} such that, for
all s\geq 2 and data u_{0} , u_{1}\in H^{s+s_{0}}(\overline{\Omega}) , f\in C([0, T];H^{s+s_{0}}(\overline{\Omega})) , there exists
a unique solution u\in C^{2}([0, T];H^{s+s_{0}}(\overline{\Omega})) .

4) Cauchy Problems on R^{n} . We may consider Cauchy Problems of
the form

u_{tt}+ \sum_{|\alpha|=2m}a_{\alpha}(t)P(x, D)^{\alpha}u=f(t, x)
(3.13)
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u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (3.14)

where P(x, D)=(P_{1}(x, D) , \ldots , P_{n}(x, D)) is a n-tuple of selfadjoint com-
muting operators on L^{2}(R^{n}) . To see the simplest case, we can consider the
equation

u_{tt}+ \sum_{ij}a_{ij}(t)Y_{i}Y_{j}u=f(t, x) (3.15)

where Y_{j} are commuting vector fields with smooth bounded coefficients on
R^{n} ; e.g.,

Y_{1}=i\partial_{1} , Y_{j}=i\partial_{j}+i\partial_{j}\phi(x’)\partial_{1} (3.16)

where \phi(x’)=\phi(x_{2}, \ldots, x_{n}) is a smooth function not depending on x_{1} . We
write

H^{s}=\{f\in L^{2} : Y_{1}^{j_{1}} - Y_{n^{n}}^{j}f\in L^{2}\forall j_{1}+ +j_{n}\leq s\} .

We obtain in a straightforward way

Theorem 3.3 Consider Problem (3.15), (3.14) under the assumption that
\sum a_{ij}(t)\xi_{i}\xi_{j} is analytic and nonnegative. Exists an integer s_{0} such that, for
all s\geq 2 and data u_{0} , u_{1}\in H^{s+s_{0}}(\overline{\Omega}) , f\in C([0, T];H^{s+s_{0}}(\overline{\Omega})) , there exists
a unique solution u\in C^{2}([0, T];H^{s+s_{0}}(\overline{\Omega})) .

The only difficulty in interpreting this result is to make the spaces H^{s}

explicit; for instance, in the example (3.16), it is not difficult to see that H^{s}

is the usual Sobolev space H^{s}(R^{n}) .
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