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On the excess of a sequence of exponentials with
perturbations at some subsequences of integers
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Abstract. It is known that the sequences of exponentials \{1\}\cup\{e^{\pm i(n-\frac{1}{4})t}\}_{n=1}^{\infty} and
\{1\}\cup\{e^{\pm i(n+\frac{1}{4})t}\}_{n=1}^{\infty} have the excess 1 and 0 in L^{2} [-\pi, \pi] , respectively. In this article, we
calculate the excess of a sequence of exponentials with perturbations at some subsequences
of integers.
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1. Introduction

Let \lambda=\{\lambda_{n}\} , -\infty<n<\infty , be a sequence of distinct complex num-
bers. A system \{e^{i\lambda_{n}t}\} of complex exponentials is said to be complete in
L^{2} [-\pi, \pi] if the linear subspace spanned by \{e^{i\lambda_{n}t}\} is dense in L^{2}[-\pi, \pi] .
The system is said to be minimal in L^{2} [-\pi, \pi] if each element of \{e^{i\lambda_{n}t}\} lies
outside the closed linear span of the others. We say the system \{e^{i\lambda_{n}t}\}hae^{\tau}

excess N if it remains complete and becomes minimal when N terms e^{i\lambda_{n}t}

are removed and we define

E(\lambda)=N .

Conversely we define the excess

E(\lambda)=-N

if it becomes complete and minimal when N terms

e^{i\mu_{1}t} , . , e^{i\mu_{N}t}

are adjoined. By convention we define E(\lambda)=\infty if arbitrarily many terms
can be removed without losing completeness and E(\lambda)=-\infty if arbitrarily
many terms can be adjoined without getting completeness. It is obvious
that \{e^{i\lambda_{n}t}\} is to be complete and minimal if and only if E(\lambda)=0 . Also
we denote by PW the Paley-Wiener space which is the set of all entire
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functions of exponential type at most \pi that are square integrable on the
real axis. Now we define

\lambda_{n}=\{\begin{array}{l}1n-\overline{4}, n>0,0, n=0,n+\frac{1}{4}, n<0,\end{array}

then it is known that E(\lambda)=1 (see [L , Ch.4, Theorem XIX] or [Y , Ch.3,
\S 3, Theorem 5 and p.126, Problem 1]).

Next we define

\lambda_{n}=\{\begin{array}{l}1n+\overline{4},0,1n-\overline{4},\end{array} n=0n<0n>0,,

,

then it is also known that E(\lambda)=0 (see [RY, 104, Lemma 1 and Remark]).
These results are unified as follows:

Theorem 1.1 Let \lambda=\{\lambda_{n}\} ,

\lambda_{n}=\{\begin{array}{l}n+\alpha, n>0,0, n=0,n-\alpha, n<0.\end{array}

then

E(\lambda)=\{\begin{array}{l}2, -1\leq\alpha\leq-\frac{3}{4},1, -\frac{3}{4}<\alpha\leq-\frac{1}{4},0, -\frac{1}{4}<\alpha\leq\frac{1}{4},-1, \frac{1}{4}<\alpha\leq\frac{3}{4},-2, \frac{3}{4}<\alpha\leq 1.\end{array}

Recently the result of E(\lambda)\leq 0 was obtained for some \lambda=\{\lambda_{n}\} by
[FNR].
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Theorem 1.1 follows easily from the known results.

Remark 1.1 Of course we can also consider a non-symmetric case,

\lambda_{n}=\{\begin{array}{l}n+\alpha, n>0,0, n=0,n+\beta, n<0.\end{array}

But this case can be reduced to the symmetric case in Theorem 1.1 by an
isomorphism on L^{2} [-\pi, \pi]

\phi(t)\mapsto e^{i\gamma t}\phi(t) ,

where \gamma is any real constant.

Now we consider the next problems:

Let \lambda=\{\lambda_{n}\} be a symmetric sequence such that

\{\begin{array}{l}\lambda_{0}=0,\lambda_{2n}=2n,\lambda_{2n-1}=(2n-1)+\alpha,\lambda_{-n}=-\lambda_{n},\end{array}

n>0n>0n>0,
”

where 1/4\leq|\alpha|<1 , then what is each value of E(\lambda) ? Similarly we can also
consider to replace the odd numbers by the even numbers and replace the
even numbers by the odd numbers for the above sequences. In this article
we shall calculate E(\lambda) in each case of that we replace kn by kn+\alpha and
replace m by m+\beta , m\neq kn , where k is an iteger, k\geq 2 and -2<\alpha ,
-1<\beta . We remark that the every cases of |\alpha| and |\beta|<1/4 are trivial by
Kadec’s 1/4 Theorem. In the proof of the main results, we shall use Lemma
3.1 ( [RY, 104-105, Lemma 2]) which gives the equality to represent the
infinite products by \Gamma functions and caluculate E(\lambda) by using Lemma 3.2.
In essence Lemma 3.2 has been given by [R, p.17, Theorem 22].

2. Main Results

In this section we state our main result. We shall suppose in what
follows that \lambda_{n}\neq\lambda_{m} for n\neq m .
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Theorem 2.1 Let \lambda=\{\lambda_{n}\} be a sequence such that

\{\lambda_{0}\lambda_{kn-j}\lambda_{-n}\lambda_{kn}=kn+,\alpha=-\lambda_{n}=(kn-, j)+\beta=0,(j=1,2

, . . ’

_{k-1)}
, n>0n>0n>0,

”

for -2<\alpha , -1<\beta , where k\geq 2 is a fifixed integer. If an integer r satisfifies

\frac{\alpha}{1-k}-\frac{(1+2r)k}{4(k-1)}<\beta\leq\frac{\alpha}{1-k}+\frac{(1-2r)k}{4(k-1)} ,

then E(\lambda)=r .

Remark 2.1 Theorem 2.1 shows for k\geq 2 that E(\lambda)=0 when \alpha=-1/4 ,
\beta=0 or \alpha=0 , \beta=-1/4 . These results are different from the conclusion
of \alpha=-1/4 in Theorem 1.1.

Remark 2.2 We can state the above results as the results including the
complex numbers. Eisner or Peterson (see [R, p.12, Theorem 17]) obtained
the following result:

“Let M be a positive constant and if

Re \lambda_{n}={\rm Re}\mu_{n} , | Im \lambda_{n}- Im \mu_{n}|\leq M ,

then E(\lambda)=E(\mu) . ”

Consequently each excess is unchanged even if \{\lambda_{n}\} in Theorem 1.1 and
2.1 is replaced by \{\lambda_{n}+i\mu_{n}\} , where \{\mu_{n}\} is any real bounded sequence.

3. Proof of Theorems

We shall give the proofs of our theorems. Theorem 1.1 follows easily
from the known results. In the proof of Theorem 2.1, we shall represent
the infinite products by \Gamma functions using Lemma 3.1 ([RY, pp.104-105,
Lemma 2]) and investigate the convergence and the divergence of the inte-
gral in Lemma 3.2 to calculate E(\lambda) .

Proof of Theorem 1.1. The case of -1/4<\alpha<1/4 is trivial by Kadec’s
1/4 Theorem, and [RY, Lemma 1] shows E(\lambda)=0 for \alpha=1/4 . Let
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\alpha=-1+\epsilon , 0\leq\epsilon\leq 1 , then we can write

\lambda_{n}=\{\begin{array}{l}n-1+\epsilon, n>0,0, n=0,n+1-\epsilon, n<0.\end{array}

By Kadec’s 1/4 Theorem and [RY_{:} Lemma 1], it is trivial that E(\lambda)=2

for 0\leq\epsilon\leq 1/4 . Next we consider the case 1/4<\epsilon\leq 3/4 . Let \epsilon=1/4+\delta

(0<\delta\leq 1/2) and

\lambda’=\{\lambda_{n}\}_{n\neq\pm 1} .

Then Theorem IV in [L] shows E(\lambda’)\leq-1 and Theorem V in [L] shows
E(\lambda’)\geq-1 . Hence we get E(\lambda’)=-1 , i.e., E(\lambda)=1 .

For 1/4<\alpha\leq 3/4 , we get E(\lambda)=-1 by the similar arguement to the
case of -3/4<\alpha\leq-1/4 . Finally for 3/4<\alpha\leq 1 , let

\alpha=\frac{3}{4}+\epsilon , 0< \epsilon\leq\frac{1}{4} ,

then we can write

n+ \alpha=(n+1)+\epsilon-\frac{1}{4} , 0< \epsilon\leq\frac{1}{4}

for n>0 . Hence we see that E(\lambda)=-2 by Kadec’s 1/4 Theorem. \square

We need the following lemmas to prove Theorem 2.1. Lemma 3.1 was
given in the proof of [RY, pp.104-105, Lemma 2]. In essence Lemma 3.2 was
given by [R, p.17, Theorem 22], but we shall give the proof of Lemma 3.2.

Lemma 3.1 If \lambda_{n}=n+\epsilon (n=1,2, \ldots) and \epsilon>-1 , then

\prod_{n=1}^{\infty}(1-\frac{z^{2}}{\lambda_{n}^{2}})=\frac{\Gamma^{2}(\mu)}{\Gamma(\mu+z)\Gamma(\mu-z)} ,

where \mu=1+\epsilon .

Lemma 3.2 Let \{\lambda_{n}\} , -\infty<n<\infty , be a symmetric sequence of real
numbers satisfying

|\lambda_{n}-n|\leq L ,

where L is a positive constant and let r be an integer. We defifine the infifinite
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product

P(z)=z \prod_{n=1}^{\infty}(1-\frac{z^{2}}{\lambda_{n}^{2}})

Then we have E(\lambda)=r if and only if P(z) satisfifies the next conditions,

\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})^{r}}dx=\infty (1)

and

\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})^{r+1}}dx<\infty . (2)

Proof of Lemma 3.2. We first remark that E(\lambda) is finite under the above
hypothesis |\lambda_{n}-n|\leq L for -\infty<n<\infty ( [R , p.34, Theorem 47]).

We suppose that the case of r=0 holds. Let be r=1 . We can write

P(z)=(z-\lambda_{k})g(z) ,

where g(z) is an entire function of exponential type \pi , g(\lambda_{n})=0 for n\neq

k . Then the conditions (1) and (2) for P(z) are equivalent to the next
conditions for g(z) ,

\int_{0}^{\infty}|g(x)|^{2}dx=\int_{0}^{\infty}\frac{|P(x)|^{2}}{(x-\lambda_{k})^{2}}\omega X=\infty 1

and

\int_{0}^{\infty}\frac{|g(x)|^{2}}{1+x^{2}}dx=\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})(x-\lambda_{k})^{2}}dx<\infty .

Hence, by our hypothesis of the case of r=0, if we set

\lambda’=\{\lambda_{n}\}_{n\neq k} ,

then we have E(\lambda’)=0 and the converse. Consequently we see that the
lemma holds for r=1 . By the similar arguements we can also obtain the
conclusion for the other integer r supposing that the case of r=0 holds.

So we have only to prove the case of r=0 in Lemma 3.2. First we
suppose P(z) satisfies (1) and (2) for r=0. Let

f(z) \equiv\frac{P(z)}{z} ,
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then f(z)\in PW by (2) and f(\lambda_{n})=0 for n\neq 0 . Hence as

\{e^{i\lambda_{n}t}\}_{n\neq 0}

is not complete, we have

E(\lambda)\leq 0 . (3)

If E(\lambda)=-1 , there exists a number \mu such that \mu\neq\lambda_{n} for all n and

\{e^{i\lambda_{n}t}\}\cup\{e^{i\mu t}\}

becomes complete and minimal. Consequently there exists an entire func-
tion h(z)\in PW such that h(\lambda_{n})=0 for all n and h(\mu)\neq 0 . Now, as shown
by [Y, 149] , we can write

h(z)=e^{Az}P(z) ,

where A is a constant. Let A=A_{1}+iA_{2} , where A_{1} , A_{2} are real. If A_{1}\geq 0 ,
we have

\int_{0}^{\infty}|P(x)|^{2}dx\leq\int_{0}^{\infty}e^{2A_{1}x}|P(x)|^{2}dx

\leq\int_{-\infty}^{\infty}e^{2A_{1}x}|P(x)|^{2}dx

= \int_{-\infty}^{\infty}|h(x)|^{2}dx

<\infty .

This contradicts (1) for r=0. Similarly we also obtain the contradiction in
the case of A_{1}<0 . Hence the case E(\lambda)=-1 is impossible. By the same
arguement we see that the case E(\lambda)\leq-2 is impossible too. Consequently
we have E(\lambda)=0 .

Conversely we suppose E(\lambda)=0 . By Theorem 1 in [Y , pp.148-149],
we have

\frac{P(z)}{z}\in PW .

Hence we obtain (2) for r=0. Moreover if

\int_{0}^{\infty}|P(x)|^{2}dx<\infty ,
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then P(z)\in PW and this contradicts the completeness of \{e^{i\lambda_{n}t}\} . Con-
sequently we obtain (1). \square

Proof of Theorem 2.1. We define the infinite product P(z) as follows

P(z) \equiv z\prod_{n=1}^{\infty}\{\prod_{j=1}^{k-1}\{1-(\frac{z}{kn-j+\beta})^{2}\}\}\{1-(\frac{z}{kn+\alpha})^{2}\}

Then we can write P(z) as follows

P(z)=zS(z) \prod_{j=1}^{k-1}Q_{j}(z) ,

where

S(z)= \prod_{n=1}^{\infty}\{1-(\frac{z}{kn+\alpha})^{2}\}

and

Q_{j}(z)= \prod_{n=1}^{\infty}\{1-(\frac{z}{kn-j+\beta})^{2}\}

Now we shall obtain E(\lambda)=r by Lemma 3.2 whenever

\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})^{r}}dx=\infty (4)

and

\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})^{r+1}}dx<\infty . (5)

After the substitution x=kt , we have

\int_{0}^{\infty}\frac{|P(x)|^{2}}{(1+x^{2})^{r}}dx=k^{3}\int_{0}^{\infty}\frac{t^{2}V^{2}(t)\prod_{j=1}^{k-1}W_{j}^{2}(t)}{(1+k^{2}t^{2})^{r}}dt ,

where

V(t)= \prod_{n=1}^{\infty}\{1-(\frac{t}{n+\frac{\alpha}{k}})^{2}\}
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and

W_{j}(t)= \prod_{n=1}^{\infty}\{1-(\frac{t}{n-\frac{j-\beta}{k}})^{2}\}

Since -(j-\beta)/k>-1 for k\geq 2 and \beta>-1 , we can represent W_{j}(t)

by \Gamma functions using Lemma 3.1 as \epsilon_{1}=-(j-\beta)/k , \mu_{1}=1+\epsilon_{1} . Moreover,
using the well known equality of \Gamma function, we have

W_{j}(t)= \frac{\Gamma^{2}(\mu_{1})}{\Gamma(\mu_{1}+t)\Gamma(\mu_{1}-t)}

= \Gamma^{2}(\mu_{1})\frac{\Gamma(t+(1-\mu_{1}))}{\Gamma(t+\mu_{1})\Gamma(t+(1-\mu_{1}))\Gamma(1-(t+(1-\mu_{1})))}

= \Gamma^{2}(\mu_{1})\frac{\Gamma(t+(1-\mu_{1}))}{\Gamma(t+\mu_{1})}\frac{\sin\pi(t+(1-\mu_{1}))}{\pi} .

Similarly, since \alpha/k>-1 for k\geq 2 and \alpha>-2 , if we take \epsilon_{2}=\alpha/k ,
\mu_{2}=1+\epsilon_{2} we have

V(t)= \Gamma^{2}(\mu_{2})\frac{\Gamma(t+(1-\mu_{2}))}{\Gamma(t+\mu_{2})}\frac{\sin\pi(t+(1-\mu_{2}))}{\pi} .

Now if we notice the order of \Gamma function, i.e.

\frac{\Gamma(t+(1-\mu))}{\Gamma(t+\mu)}\sim t^{1-2\mu} ,

we see that (4) and (5) hold for k , \alpha and \beta such that satisfy the next
conditions for the sufficiently large R>0 :

\int_{R}^{\infty}t^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r}\sin^{2}\pi(t-\frac{\alpha}{k})\prod_{j=1}^{k-1}\sin^{2}\pi(t+\frac{j-\beta}{k})dt=\infty

(6)

and

\int_{R}^{\infty}t^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r-2}dt<\infty . (7)

We define

I_{R,k,\alpha,\beta} \equiv\int_{R}^{\infty}t^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r}\sin^{2}\pi(t-\frac{\alpha}{k})\prod_{j=1}^{k-1}\sin^{2}\pi(t+\frac{j-\beta}{k})dt
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and

J_{n,k,\alpha,\beta} \equiv\int_{n}^{n+1}t^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r}\sin^{2}\pi(t-\frac{\alpha}{k})\prod_{j=1}^{k-1}\sin^{2}\pi(t+\frac{j-\beta}{k})dt .

After the substitution t=n+u for R\leq n_{0}\leq n , we have

J_{n,k,\alpha,\beta}= \int_{0}^{1}(n+u)^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r}\sin^{2}\pi(n+u-\frac{\alpha}{k})

\prod_{j=1}^{k-1}\sin^{2}\pi(n+u+\frac{j-\beta}{k}) du

= \int_{0}^{1}(n+u)^{-\frac{4\{\beta(k-1)+\alpha\}}{k}-2r}\sin^{2}\pi(u-\frac{\alpha}{k})

\prod_{j=1}^{k-1} sin2 \pi(u+\frac{j-\beta}{k}) du.

Hence if k , \alpha , \beta satisfy the next condition

- \frac{4\{\beta(k-1)+\alpha\}}{k}-2r\geq-1 , (8)

then we have

J_{n,k,\alpha,\beta} \geq\int_{0}^{1}\frac{1}{n+u}\sin^{2}\pi(u-\frac{\alpha}{k})\prod_{j=1}^{k-1}\sin^{2}\pi(u+\frac{j-\beta}{k}) du

\geq\frac{1}{n+1}\int_{0}^{1}\sin^{2}\pi(u-\frac{\alpha}{k})\prod_{j=1}^{k-1}\sin^{2}\pi(u+\frac{j-\beta}{k}) du

= \frac{C_{k,\alpha,\beta}}{n+1} ,

where C_{k,\alpha,\beta} is a positive constant depending only on k , \alpha , \beta .
Consequently we have

I_{R,k,\alpha,\beta} \geq\sum_{n\geq n_{0}}J_{n,k,\alpha,\beta}

\geq\sum_{n\geq n_{0}}\frac{C_{k,\alpha,\beta}}{n+1}=\infty .
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Hence (6) holds. Next (7) holds for k , \alpha , \beta , r such that

- \frac{4\{\beta(k-1)+\alpha\}}{k}-2r-2<-1 . (9)

If we search for the conditions for k , \alpha , \beta , r such that (8) and (9) simulta-
neously hold, we obtain

\frac{\alpha}{1-k}-\frac{(1+2r)k}{4(k-1)}<\beta\leq\frac{\alpha}{1-k}+\frac{(1-2r)k}{4(k-1)} .

Then we have E(\lambda)=r . \square
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