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Solvability of convolution equations in D_{L^{p}}’
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Abstract. In this paper we give a necessary condition on the Fourier transform of a
convolution operator S of the space D_{L^{p}}’ ; 2\leq p<\infty , for the equation S*u=v to
have a solution u in D’,\lrcorner p for every v in D_{L^{p}}’ . In the case p=2, this condition with
the additional assumption \hat{S}(\xi)\neq 0 for all \xi\in\Re^{n} , are sufficient for solvability of the
convolution equation.
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1. Introduction

Convolution equations in spaces of distributions and ultradistributions
of L^{p}-growth were studied by several authors. In this work we study the
problem of characterizing the convolution operators S for which the conv0-
lution equation S*u=v have a solution u in D_{L^{p}}’ for every v in D_{L^{p}}’ . Pahk
[3] characterized hypoelliptic convolution operators in the space D_{L^{\infty}}’ , and
left the problem of solvability of convolution equations in D_{L^{p}}’ , 1\leq p\leq\infty

open. Pilipovi\check{c}[4] has established necessary condition and sufficient con-
dition on the convolution operator S to be invertible in D_{L^{2}}’(\Lambda I_{p}) Moreover,
Pilipovi\check{c} characterized hypoelliptic convolution operators in D_{L^{2}}’(M_{p}) Here
we give a necessary condition on \hat{S} , the Fourier transform of the convolution
operator S , for the convolution equation S*u=v to have a solution u in
D_{L^{p}}’ for a given v in D_{L^{p}}’ . Moreover, in the case p=2 we give sufficient
conditions for solvability of the equation S*u=v. Characterizing invert-
ible and hypoelliptic convolution operators in D_{L^{p}}’ is difficult in general.
This is due to lack of differentiability of \hat{S} . It is known (see [1] part (c) of
Theorem 2 and the remark which follows it on page 202) that the Fourier
transform of any convolution operator in D_{L^{p}}’ , 1\leq p\leq\infty , is a continuous
function which is slowly increasing at infinity. We remark that in this work
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we did not assume any differentiability condition on the Fourier transform
of the convolution operator. We will use the standard notations as in [2]
and [5]. For more information on the space O_{c}’(D_{L^{p}}’ ; D_{L^{p}}’) of convolution
operators on D_{L^{p}}’ and its topology, we refer the reader to [1].

We recall the definitions of the space D_{L^{q}} ; 1<q\leq 2 , of test functions
and the space D_{L^{p}}’ of distributions of L^{p}-growth, 2\leq p<\infty . The space
D_{L^{q}} ; 1<q\leq 2 , consists of all infinitely differentiable functions \varphi such that
D^{\alpha}\varphi is in L^{q} for all \alpha in \aleph^{n} , equipped with the topology generated by the
norms

|| \varphi||_{m,q}=\{\sum_{|\alpha|\leq m}||D^{\alpha}\varphi||_{q}^{q}\}^{\frac{1}{q}} m=0,1,2,3 , .

With this topology, the space D_{L^{q}} is a Frechet space.
The subspace of all functions in D_{L^{\infty}} which converge to 0 at infinity is

denoted by \dot{D}_{L}\infty . The strong dual of D_{L^{q}} is D_{L^{p}}’ the space of distributions
with restricted L^{p}-growth, where 2\leq p<\infty , and \frac{1}{p}+\frac{1}{q}=1 . For any
\varphi in D_{L^{q}} ; 1<q\leq 2 , its Fourier transform \hat{\varphi} and its multiple with any
polynomial are in L^{p} . The space \mathcal{F}(D_{L^{q}})=\{\hat{\varphi} : \varphi\in D_{L^{q}}\} is a subspace
of L^{p} , and will be provided with the induced L^{p} norm topology. It follows
that the Fourier transformation from D_{L^{q}} into L^{p} is continuous. Given T
in D_{L^{p}}’ , we define its Fourier transform \hat{T} in \mathcal{F}(D_{L^{q}}) by \langle\hat{T},\hat{\varphi}\rangle=\langle T, \varphi\rangle . It
follows that \hat{T} is well defined and continuous onto \mathcal{F}(D_{L^{q}}) .

2. The Results

Our first result gives neccessary condition for solvability of convolution
equations in D_{L^{p}}’ .

Theorem 1 Let S be a convolution operator on D_{L^{p}}’ , 2\leq p<\infty . If the
convolution equation

S*u=v (1)

has a solution u in D_{L^{p}}’ for every v in D_{L^{p}}’ , then there exist positive con-
stants c, d , and k such that

|\hat{S}(\xi)|\geq c(1+|\xi|)^{-d} (2)

for all \xi in \Re^{n} with |\xi|\geq k .
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Proof. The proof is by contradiction. Suppose that condition (2) is not
satisfied. Then there exists a sequence of points (\xi_{j}) such that |\xi_{j+1}|>

|\xi_{j}|+1 , |\xi_{1}|>2 , j^{2}\leq|\xi_{j}| , for j\geq 4 , and

|\hat{S}(\xi_{j})|<2^{-j^{3}}(1+|\xi_{j}|)^{-5j} , j\geq 1 . (3)

From the continuity of \hat{S} it follows that there exist open balls U_{j} centered
at \xi_{j} with positive small radius \epsilon_{j} such that

|\hat{S}(\xi)|\leq 2^{-j^{3}}(1+|\xi_{j}|)^{-5j} (4)

for all \xi\in U_{j} , j\in\aleph .
For each j\in\aleph we define

T_{j}(\xi)=\epsilon_{j}^{-n}(1+|\xi|)^{-j} , \xi\in U_{j}

0 if \xi is in U_{j}^{c} (5)

and T( \xi)=\sum_{j=1}^{\infty}T_{j}(\xi) , where n is the dimension of \Re^{n} . We claim that T
is in the set \mathcal{F}(D_{L^{p}}’) of all Fourier transforms of the distributions in D_{L^{p}}’ .
Indeed, for any \Psi\in D_{L^{q}} one has

| \langle T,\hat{\Psi}\rangle|=|\sum_{j=1}^{\infty}\int_{U_{j}}T_{j}(\xi)\hat{\Psi}(\xi)d\xi|

\leq\sum_{j=1}^{\infty}\int_{U_{j}}\epsilon_{j}^{-n}(1+|\xi|)^{-j}|\hat{\Psi}(\xi)|d\xi (6)

\leq\sum_{j=1}^{\infty}j^{-2j}||\hat{\Psi}||_{\infty} (7)

\leq\sum_{j=1}^{\infty}C_{1}j^{-2j}||\hat{\Psi}||_{p}=C||\hat{\Psi}||_{p} ; (8)

where C is a constant which is independent of \Psi . Thus T is a well defined
continuous linear functional on \mathcal{F}(D_{L^{q}}) considered as a subspace of L^{p} . We
remark that the above argument shows that T is in D_{L^{p}}’ .

Next we construct a function which is in \mathcal{F}(D_{L^{q}}) . Let U_{j} be as above.
For each j , let B_{j} be a ball with center \xi_{j} and radius \frac{1}{2}\epsilon_{j} . Let \varphi_{j} be a C^{\infty} -

function with compact support in U_{j} , such that |\xi_{j}|^{-3j}\leq\varphi_{j}(\xi)\leq|\xi_{j}|^{-2j} if
\xi is in B_{j} and 0\leq\varphi_{j}(\xi)\leq|\xi_{j}|^{-2j} if \xi is in U_{j}\backslash B_{j} . Let \varphi(\xi)=\sum_{j=1}^{\infty}\varphi_{j}(\xi) .
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Then

| \mathcal{F}^{-1}(\varphi_{j})(x)|=|\int_{U_{j}}e^{i<x,\xi>}\varphi_{j}(\xi)d\xi|\leq\int_{U_{j}}|\varphi_{j}(\xi)|d\xi\leq j^{-4j}\epsilon_{j} .

Hence the function \mathcal{F}^{-1}(\varphi)(x)=\sum_{j=1}^{\infty}\mathcal{F}^{-1}(\varphi_{j})(x) satisfies the estimates

| \mathcal{F}^{-1}(\varphi)(x)|\leq\sum_{j=1}^{\infty}|\mathcal{F}^{-1}(\varphi_{j})(x)|\leq\sum_{j=1}^{\infty}j^{-4j}\epsilon_{j}\leq\sum_{j=1}^{\infty}j^{-4j}<\infty .

Thus \mathcal{F}^{-1}(\varphi) is a well defined function. We claim that the function P(\xi)\varphi(\xi)

is in L^{p} for any polynomial P(\xi) . For, there exist a positive integer k and
a constant C such that |P(\xi)|\leq C(1+|\xi|)^{k} . Moreover, for any \xi\in U_{j} one
has |\xi|\leq|\xi_{j}|+\epsilon_{j} , and

(1+|\xi|)^{kp}\leq(1+\epsilon_{j}+|\xi_{j}|)^{kp}\leq(2+|\xi_{j}|)^{kp} .

Thus one has

||P(\xi)\varphi_{j}(\xi)||_{p}^{p}

= \int_{U_{j}}|P(\xi)\varphi_{j}(\xi)|^{p}d\xi\leq\int_{U_{j}}C^{p}(1+|\xi|)^{kp}|\varphi_{j}(\xi)|^{p}d\xi

\leq C^{p}(2+|\xi_{j}|)^{kp}\int_{U_{j}}|\varphi_{j}(\xi)|^{p}d\xi\leq C^{p}(2+|\xi_{j}|)^{kp}|\xi_{j}|^{-2jp}\epsilon_{j}^{n} . (9)

Hence

\sum_{j=1}^{\infty}||P(\xi)\varphi_{j}(\xi)||_{p}\leq\sum_{j=1}^{\infty}C(2+|\xi_{j}|)^{k}|\xi_{j}|^{-2j}\epsilon\frac{n}{jp}

\leq\sum_{j=1}^{\infty}C(2^{k}(2^{k}+|\xi_{j}|^{k}))|\xi_{j}|^{-2j} (10)

\leq C_{1,k}\sum_{j=1}^{\infty}|\xi_{j}|^{-2j}+C_{1,k}\sum_{j=1}^{\infty}|\xi_{j}|^{-(2j-k)} (11)

\leq C_{1,k}(1+\sum_{j=1}^{\infty}j^{-2(2j-k)})\leq C_{2,k}<\infty , (12)

where C_{1,k} and C_{2,k} are constants which depend on k (the polynomial P)
only.
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On the other hand, the inequality ||f+g||_{p}\leq||f||_{p}+||g||_{p} whenever
f, g\in L^{p};1\leq p<\infty , and induction imply that || \sum_{j=1}^{n}f_{j}||_{p}\leq\sum_{j=1}^{n}||f_{j}||_{p} ,
where f_{1},f_{2} , . , f_{n} are in L^{p} . Hence continuity of the norm function imply
that

|| \sum_{j=1}^{\infty}f_{j}||p =|| \lim_{narrow\infty}\sum_{j=1}^{n}f_{j}||\begin{array}{ll} =\lim p narrow\infty\end{array}|| \sum_{j=1}^{n}f_{j}||_{p}

\leq\lim_{narrow\infty}\sum_{j=1}^{n}||f_{j}||_{p}=\sum_{j=1}^{\infty}||f_{j}||_{p} . (13)

From (11) and (12) one has

||P( \xi)\varphi(\xi)||_{p}=||\sum_{j=1}^{\infty}P(\xi)\varphi_{j}(\xi)||_{p}

\leq\sum_{j=1}^{\infty}||P(\xi)\varphi_{j}(\xi)||_{p}\leq C_{2,k}<\infty . (14)

Thus \varphi is in \mathcal{F}(D_{L^{q}}) .
Finally using (4), the definition of T, and the definition of the functions

\varphi_{j} one has

\langle\frac{T}{|\hat{S}|} , \varphi\rangle=\sum_{j=1}^{\infty}\int_{U_{j}}\frac{T(\xi)}{|\hat{S}(\xi)|}\varphi_{j}(\xi)d\xi

\geq\sum_{j=1}^{\infty}\int_{B_{j}}\epsilon_{j}^{-n}(1+|\xi|)^{-j}2^{j^{3}}(1+|\xi_{j}|)^{5j}|\xi_{j}|^{-3j}d\xi

\geq\sum_{j=1}^{\infty}\epsilon_{j}^{-n}2^{j^{3}}|\xi_{j}|^{-3j}(1+|\xi_{j}|)^{3j}(\frac{\epsilon_{j}}{2})^{n}

\geq(\frac{1}{2})^{n}\sum_{j=1}^{\infty}2^{j^{3}}=\infty . (15)

Therefore – is not in \mathcal{F}(D_{L^{p}}’) . This implies that =TS is not in \mathcal{F}(D_{L^{p}}’) .

Indeed, if =TS is in \mathcal{F}(D_{L^{p}}’) where \hat{S}(\xi)=S_{1}(\xi)+iS_{2}(\xi) , then \frac{T(\xi)S_{1}(\xi)}{|S(\xi)|^{2}} -

i \frac{T(\xi)S_{2}(\xi)}{|S|(\xi)|^{2}}\in \mathcal{F}(D_{L^{p}}’) . Hence \frac{T(\xi)S_{1}(\xi)}{|S(\xi)|^{2}} and \frac{T(\xi)S_{2}(\xi)}{|S(\xi)|^{2}} are in \mathcal{F}(D_{L^{p}}’) . Inparticu-

lar’ \langle\frac{T(\xi)S_{1}(\xi)}{|S(\xi)|^{2}} , \varphi\rangle and \langle\frac{T(\xi)S_{2}(\xi)}{|S(\xi)|^{2}} , \varphi\rangle are bounded, where \varphi(\xi)=\sum_{j=1}^{\infty}\varphi_{j}(\xi)
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as above. On the other hand \langle\frac{T}{|S|} , \varphi\rangle is unbounded. Thus \frac{S_{1}(\xi)}{|S(\xi)|} and \frac{S_{2}(\xi)}{|S(\xi)|}

must be ver\underline{ysm}all in absolute value, which contradicts the fact that the

modulus of \frac{S(\xi)}{|S(\xi)|} is 1. The contradiction shows that =TS is not in \mathcal{F}(D_{L^{p}}’) .
Thus the convolution equation S*u=\mathcal{F}^{-1}(T) does not have a solution in
D_{L^{p}}’ .This contradicts the hypothesis and completes the proof of the the0-
rem. \square

The next result provides sufficient conditions for solvabilty of the con-
volution equation in D_{L^{2}}’ . This result covers a wider set of convolution
operators than the corresponding theorem of Pilipovi\acute{c} for the space D_{L^{2}}’(\Lambda I_{p})

(see Proposition 8 of [4]). In our result we did not assume that \hat{S} has an-
alytic continuation onto C^{n} . As well, our proof is different from that of
Pilipovic. We recall that the Fourier transformation is a topological is0-
morphism from L^{2} onto itself. Since D_{L^{2}} is a subspace of L^{2} it follows that
\mathcal{F}(D_{L^{2}}) is a subspace of L^{2} . We provide \mathcal{F}(D_{L^{2}}) with the L^{2} norm. If S is
a convolution operator on D_{L^{2}}’ we provide the space S*D_{L^{2}} with the topol-
ogy induced by D_{L^{2}} . The following lemma follows from the above cited fact
that the Fourier transformation is a topological isomorphism from L^{2} onto
itself. We provide its proof for the sake of completeness.

Lemma 2 The Fourier transform is a topological isomorphism of D_{L^{2}}

onto \mathcal{F}(D_{L^{2}}) .

Proof. Let \varphi be any element in D_{L^{2}} . Let k\geq 1 be any integer. From
continuity of the Fourier transform on L^{2} and contiuity of the differential
operator from D_{L^{2}} into itself, it folows that

||\hat{\varphi}||_{2}\leq||(1+|\xi|^{2})^{k}\hat{\varphi}||_{2}\leq C_{1}||P(D)\varphi||_{2}\leq C_{1}C_{2}||\varphi||_{2,m} ;

where P(D)=(1+D_{1}^{2}+\cdots+D_{n}^{2})^{2} , C_{1} , C_{2} are positive constants and m is
a positive integer. This takes care of contiuity of the Fourier transform. To
establish continuity of the inverse Fourier transform, let k be any positive
integer. From continuity of the differential operator from D_{L^{2}} into itself,
and contiuity of the inverse Fourier transform from L^{2} onto itself one has
for any positive integer k ,

|| \varphi||_{2,k}^{2}=\sum_{|\beta|\leq k}||D^{\beta}\varphi||_{2}^{2}\leq\sum_{|\beta|\leq k}C_{\beta}||\varphi||_{2}^{2}\leq C_{k}||\hat{\varphi}||_{2}^{2}
,
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where C_{k} is a constant which is independent of \varphi . This takes care of con-
tiuity of the inverse Fourier transform. \square

Theorem 3 Let S be a convolution operator on D_{L^{2}}’ . If \hat{S}(\xi)\neq 0 for
all \xi\in\Re^{n} and |\hat{S}(\xi)|\geq c(1+|\xi|)^{-d} whenever |\xi|\geq k for some positive
constants c , d , and k , then the convolution equation

S*u=v (16)

has a solution u in D_{L^{2}}’ for every v in D_{L^{2}}’ .

Proof. Using the Hahn-Banach theorem, it suffices to show that the map
S*\varphiarrow\varphi from S*D_{L^{2}} into D_{L^{2}} is continuous, where we assumed without
loss of generality that S=\check{S} the symmetry of S with respect to the origin.
From Lemma 2 it suffices to show that the map \hat{S}\hat{\varphi}arrow\hat{\varphi} from \mathcal{F}(D_{L^{2}}) into
itself is continuous in the L^{2} norm. We consider two cases:

Case I : If the support of \hat{\varphi} is contained in the closed ball \overline{B(0,k)} . Then

|| \hat{\varphi}||_{2}^{2}=||\frac{\hat{S}\hat{\varphi}}{\hat{S}}||_{2}^{2}=\int|\hat{S}(\xi)\hat{\varphi}(\xi)|^{2}\frac{1}{|\hat{S}(\xi)|^{2}}d\xi

\leq\xi\in\frac{\sup}{B(0,k)}\frac{1}{|\hat{S}(\xi)|}\int|\hat{S}(\xi)\hat{\varphi}(\xi)|^{2}d\xi\leq C||\hat{S}\hat{\varphi}||_{2}^{2} . (17)

Case II : If the support of \hat{\varphi} is not contained in the closed ball \overline{B(0,k)} .
Then from condition (2) and continuity of the differential operator on D_{L^{2}}

one has,

|| \hat{\varphi}||_{2}^{2}=||\frac{\hat{S}\hat{\varphi}}{\hat{S}}||_{2}^{2}=\int|\hat{S}(\xi)\hat{\varphi}(\xi)|^{2}\frac{1}{|\hat{S}(\xi)|^{2}}d\xi

\leq C_{1}\int|\hat{S}(\xi)\hat{\varphi}(\xi)|^{2}|P(\xi)|^{2}d\xi

\leq C_{1}\int|P(D)\overline{(S*}\varphi)(\xi)|^{2}d\xi

\leq C_{1}||P(D\overline{)(S}*\varphi)||_{2}^{2}\leq C||S\overline{*\varphi}||_{2}^{2} , (18)

for some polynomial P(\xi) and constants C_{1} , C independent of \varphi . Thus the
map S*\varphiarrow\varphi from S*D_{L^{2}} into D_{L^{2}} is continuous. \square

Remark 1 The additional assumption \hat{S}(\xi)\neq 0 for all \xi in \Re^{n} , was used
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in the proof of Theorem 3 in a very essential way. Thus it is not expected
that the neccessary condition for solvability to be sufficient. Moreover, the
proof of Theorem 3 does not work for the general case p, 2<p<\infty . This is
because, in the general case, the Fourier transform does not have continuous
inverse.

Remark 2 We leave the conjecture that Theorem 3 is true for general
p>2 un answered. To prove the conjecture one needs to study carefully
the relation between the topologies of the space \mathcal{F}(D_{L^{q}})
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