Solvability of convolution equations in \mathcal{D}'_{L^p}

Saleh ABDULLAH*

(Received December 25, 1998; Revised July 12, 1999)

Abstract. In this paper we give a necessary condition on the Fourier transform of a convolution operator S of the space \mathcal{D}'_{L^p} ; $2 \leq p < \infty$, for the equation S * u = v to have a solution u in \mathcal{D}'_{L^p} for every v in \mathcal{D}'_{L^p} . In the case p = 2, this condition with the additional assumption $\widehat{S}(\xi) \neq 0$ for all $\xi \in \Re^n$, are sufficient for solvability of the convolution equation.

Key words: distributions of L^p -growth, convolution equations.

1. Introduction

Convolution equations in spaces of distributions and ultradistributions of L^p -growth were studied by several authors. In this work we study the problem of characterizing the convolution operators S for which the convolution equation S * u = v have a solution u in \mathcal{D}'_{L^p} for every v in \mathcal{D}'_{L^p} . Pahk [3] characterized hypoelliptic convolution operators in the space $\mathcal{D}'_{L^{\infty}}$, and left the problem of solvability of convolution equations in $\mathcal{D}'_{L^p}, 1 \leq p \leq \infty$ open. Pilipovič [4] has established necessary condition and sufficient condition on the convolution operator S to be invertible in $\mathcal{D}_{L^2}^{(M_p)}$. Moreover, Pilipovič characterized hypoelliptic convolution operators in $\mathcal{D}_{L^2}^{\prime(M_p)}$. Here we give a necessary condition on \widehat{S} , the Fourier transform of the convolution operator S, for the convolution equation S * u = v to have a solution u in \mathcal{D}'_{L^p} for a given v in \mathcal{D}'_{L^p} . Moreover, in the case p = 2 we give sufficient conditions for solvability of the equation S * u = v. Characterizing invertible and hypoelliptic convolution operators in \mathcal{D}'_{L^p} is difficult in general. This is due to lack of differentiability of \widehat{S} . It is known (see [1] part (c) of Theorem 2 and the remark which follows it on page 202) that the Fourier transform of any convolution operator in $\mathcal{D}'_{L^p}, 1 \leq p \leq \infty$, is a continuous function which is slowly increasing at infinity. We remark that in this work

¹⁹⁹¹ Mathematics Subject Classification : Primary 46F10.

^{*}This work was done while the author was on leave from Jordan University of Science & Technology.

S. Abdullah

we did not assume any differentiability condition on the Fourier transform of the convolution operator. We will use the standard notations as in [2] and [5]. For more information on the space $O'_c(\mathcal{D}'_{L^p}; \mathcal{D}'_{L^p})$ of convolution operators on \mathcal{D}'_{L^p} and its topology, we refer the reader to [1].

We recall the definitions of the space \mathcal{D}_{L^q} ; $1 < q \leq 2$, of test functions and the space \mathcal{D}'_{L^p} of distributions of L^p -growth, $2 \leq p < \infty$. The space \mathcal{D}_{L^q} ; $1 < q \leq 2$, consists of all infinitely differentiable functions φ such that $D^{\alpha}\varphi$ is in L^q for all α in \aleph^n , equipped with the topology generated by the norms

$$\|\varphi\|_{m,q} = \left\{\sum_{|\alpha| \le m} \|D^{\alpha}\varphi\|_{q}^{q}\right\}^{\frac{1}{q}}, \quad m = 0, 1, 2, 3, \dots$$

With this topology, the space \mathcal{D}_{L^q} is a Frechet space.

The subspace of all functions in $\mathcal{D}_{L^{\infty}}$ which converge to 0 at infinity is denoted by $\dot{\mathcal{D}}_{L^{\infty}}$. The strong dual of $\mathcal{D}_{L^{q}}$ is $\mathcal{D}'_{L^{p}}$ the space of distributions with restricted L^{p} -growth, where $2 \leq p < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$. For any φ in $\mathcal{D}_{L^{q}}$; $1 < q \leq 2$, its Fourier transform $\widehat{\varphi}$ and its multiple with any polynomial are in L^{p} . The space $\mathcal{F}(\mathcal{D}_{L^{q}}) = \{\widehat{\varphi} : \varphi \in \mathcal{D}_{L^{q}}\}$ is a subspace of L^{p} , and will be provided with the induced L^{p} norm topology. It follows that the Fourier transformation from $\mathcal{D}_{L^{q}}$ into L^{p} is continuous. Given Tin $\mathcal{D}'_{L^{p}}$, we define its Fourier transform \widehat{T} in $\mathcal{F}(\mathcal{D}_{L^{q}})$ by $\langle \widehat{T}, \widehat{\varphi} \rangle = \langle T, \varphi \rangle$. It follows that \widehat{T} is well defined and continuous onto $\mathcal{F}(\mathcal{D}_{L^{q}})$.

2. The Results

Our first result gives neccessary condition for solvability of convolution equations in \mathcal{D}'_{L^p} .

Theorem 1 Let S be a convolution operator on \mathcal{D}'_{L^p} , $2 \leq p < \infty$. If the convolution equation

$$S * u = v \tag{1}$$

has a solution u in \mathcal{D}'_{L^p} for every v in \mathcal{D}'_{L^p} , then there exist positive constants c, d, and k such that

$$|\hat{S}(\xi)| \ge c(1+|\xi|)^{-d}$$
(2)

for all ξ in \Re^n with $|\xi| \ge k$.

Proof. The proof is by contradiction. Suppose that condition (2) is not satisfied. Then there exists a sequence of points (ξ_j) such that $|\xi_{j+1}| > |\xi_j| + 1$, $|\xi_1| > 2$, $j^2 \leq |\xi_j|$, for $j \geq 4$, and

$$|\widehat{S}(\xi_j)| < 2^{-j^3} (1 + |\xi_j|)^{-5j}, \quad j \ge 1.$$
(3)

From the continuity of \widehat{S} it follows that there exist open balls U_j centered at ξ_j with positive small radius ε_j such that

$$|\widehat{S}(\xi)| \le 2^{-j^3} (1 + |\xi_j|)^{-5j} \tag{4}$$

for all $\xi \in U_j, j \in \aleph$.

For each $j \in \aleph$ we define

$$T_{j}(\xi) = \varepsilon_{j}^{-n} (1 + |\xi|)^{-j}, \quad \xi \in U_{j}$$

0 if ξ is in U_{j}^{c} (5)

and $T(\xi) = \sum_{j=1}^{\infty} T_j(\xi)$, where *n* is the dimension of \Re^n . We claim that *T* is in the set $\mathcal{F}(\mathcal{D}'_{L^p})$ of all Fourier transforms of the distributions in \mathcal{D}'_{L^p} . Indeed, for any $\Psi \in \mathcal{D}_{L^q}$ one has

$$|\langle T, \widehat{\Psi} \rangle| = \left| \sum_{j=1}^{\infty} \int_{U_j} T_j(\xi) \widehat{\Psi}(\xi) d\xi \right|$$

$$\leq \sum_{j=1}^{\infty} \int_{U_j} \varepsilon_j^{-n} (1+|\xi|)^{-j} |\widehat{\Psi}(\xi)| d\xi$$
(6)

$$\leq \sum_{j=1}^{\infty} j^{-2j} \|\widehat{\Psi}\|_{\infty} \tag{7}$$

$$\leq \sum_{j=1}^{\infty} C_1 j^{-2j} \|\widehat{\Psi}\|_p = C \|\widehat{\Psi}\|_p;$$
(8)

where C is a constant which is independent of Ψ . Thus T is a well defined continuous linear functional on $\mathcal{F}(\mathcal{D}_{L^q})$ considered as a subspace of L^p . We remark that the above argument shows that T is in \mathcal{D}'_{L^p} .

Next we construct a function which is in $\mathcal{F}(\mathcal{D}_{L^q})$. Let U_j be as above. For each j, let B_j be a ball with center ξ_j and radius $\frac{1}{2}\varepsilon_j$. Let φ_j be a C^{∞} -function with compact support in U_j , such that $|\xi_j|^{-3j} \leq \varphi_j(\xi) \leq |\xi_j|^{-2j}$ if ξ is in B_j and $0 \leq \varphi_j(\xi) \leq |\xi_j|^{-2j}$ if ξ is in $U_j \setminus B_j$. Let $\varphi(\xi) = \sum_{j=1}^{\infty} \varphi_j(\xi)$. Then

$$|\mathcal{F}^{-1}(\varphi_j)(x)| = \left| \int_{U_j} e^{i \langle x, \xi \rangle} \varphi_j(\xi) d\xi \right| \le \int_{U_j} |\varphi_j(\xi)| d\xi \le j^{-4j} \varepsilon_j.$$

Hence the function $\mathcal{F}^{-1}(\varphi)(x) = \sum_{j=1}^{\infty} \mathcal{F}^{-1}(\varphi_j)(x)$ satisfies the estimates

$$|\mathcal{F}^{-1}(\varphi)(x)| \leq \sum_{j=1}^{\infty} |\mathcal{F}^{-1}(\varphi_j)(x)| \leq \sum_{j=1}^{\infty} j^{-4j} \varepsilon_j \leq \sum_{j=1}^{\infty} j^{-4j} < \infty.$$

Thus $\mathcal{F}^{-1}(\varphi)$ is a well defined function. We claim that the function $P(\xi)\varphi(\xi)$ is in L^p for any polynomial $P(\xi)$. For, there exist a positive integer k and a constant C such that $|P(\xi)| \leq C(1+|\xi|)^k$. Moreover, for any $\xi \in U_j$ one has $|\xi| \leq |\xi_j| + \varepsilon_j$, and

$$(1+|\xi|)^{kp} \le (1+\varepsilon_j+|\xi_j|)^{kp} \le (2+|\xi_j|)^{kp}.$$

Thus one has

$$\begin{aligned} |P(\xi)\varphi_{j}(\xi)||_{p}^{p} \\ &= \int_{U_{j}} |P(\xi)\varphi_{j}(\xi)|^{p}d\xi \leq \int_{U_{j}} C^{p}(1+|\xi|)^{kp}|\varphi_{j}(\xi)|^{p}d\xi \\ &\leq C^{p}(2+|\xi_{j}|)^{kp} \int_{U_{j}} |\varphi_{j}(\xi)|^{p}d\xi \leq C^{p}(2+|\xi_{j}|)^{kp}|\xi_{j}|^{-2jp}\varepsilon_{j}^{n}. \end{aligned}$$
(9)

Hence

$$\sum_{j=1}^{\infty} \|P(\xi)\varphi_{j}(\xi)\|_{p} \leq \sum_{j=1}^{\infty} C(2+|\xi_{j}|)^{k}|\xi_{j}|^{-2j} \varepsilon_{j}^{\frac{n}{p}}$$
$$\leq \sum_{j=1}^{\infty} C(2^{k}(2^{k}+|\xi_{j}|^{k}))|\xi_{j}|^{-2j}$$
(10)

$$\leq C_{1,k} \sum_{j=1}^{\infty} |\xi_j|^{-2j} + C_{1,k} \sum_{j=1}^{\infty} |\xi_j|^{-(2j-k)}$$
(11)

$$\leq C_{1,k} \left(1 + \sum_{j=1}^{\infty} j^{-2(2j-k)} \right) \leq C_{2,k} < \infty, \quad (12)$$

where $C_{1,k}$ and $C_{2,k}$ are constants which depend on k (the polynomial P) only.

250

On the other hand, the inequality $||f + g||_p \leq ||f||_p + ||g||_p$ whenever $f, g \in L^p; 1 \leq p < \infty$, and induction imply that $||\sum_{j=1}^n f_j||_p \leq \sum_{j=1}^n ||f_j||_p$, where f_{1,f_2,\ldots,f_n} are in L^p . Hence continuity of the norm function imply that

$$\left\|\sum_{j=1}^{\infty} f_j\right\|_p = \left\|\lim_{n \to \infty} \sum_{j=1}^n f_j\right\|_p = \lim_{n \to \infty} \left\|\sum_{j=1}^n f_j\right\|_p$$
$$\leq \lim_{n \to \infty} \sum_{j=1}^n \|f_j\|_p = \sum_{j=1}^\infty \|f_j\|_p.$$
(13)

From (11) and (12) one has

$$\|P(\xi)\varphi(\xi)\|_{p} = \left\|\sum_{j=1}^{\infty} P(\xi)\varphi_{j}(\xi)\right\|_{p}$$

$$\leq \sum_{j=1}^{\infty} \|P(\xi)\varphi_{j}(\xi)\|_{p} \leq C_{2,k} < \infty.$$
(14)

Thus φ is in $\mathcal{F}(\mathcal{D}_{L^q})$.

Finally using (4), the definition of T, and the definition of the functions φ_j one has

$$\left\langle \frac{T}{|\widehat{S}|}, \varphi \right\rangle = \sum_{j=1}^{\infty} \int_{U_j} \frac{T(\xi)}{|\widehat{S}(\xi)|} \varphi_j(\xi) d\xi$$

$$\geq \sum_{j=1}^{\infty} \int_{B_j} \varepsilon_j^{-n} (1+|\xi|)^{-j} 2^{j^3} (1+|\xi_j|)^{5j} |\xi_j|^{-3j} d\xi$$

$$\geq \sum_{j=1}^{\infty} \varepsilon_j^{-n} 2^{j^3} |\xi_j|^{-3j} (1+|\xi_j|)^{3j} \left(\frac{\varepsilon_j}{2}\right)^n$$

$$\geq \left(\frac{1}{2}\right)^n \sum_{j=1}^{\infty} 2^{j^3} = \infty.$$
(15)

Therefore $\frac{T}{|\widehat{S}|}$ is not in $\mathcal{F}(\mathcal{D}'_{L^p})$. This implies that $\frac{T}{\widehat{S}}$ is not in $\mathcal{F}(\mathcal{D}'_{L^p})$. Indeed, if $\frac{T}{\widehat{S}}$ is in $\mathcal{F}(\mathcal{D}'_{L^p})$ where $\widehat{S}(\xi) = S_1(\xi) + iS_2(\xi)$, then $\frac{T(\xi)S_1(\xi)}{|\widehat{S}(\xi)|^2} - i\frac{T(\xi)S_2(\xi)}{|\widehat{S}(\xi)|^2} \in \mathcal{F}(\mathcal{D}'_{L^p})$. Hence $\frac{T(\xi)S_1(\xi)}{|\widehat{S}(\xi)|^2}$ and $\frac{T(\xi)S_2(\xi)}{|\widehat{S}(\xi)|^2}$ are in $\mathcal{F}(\mathcal{D}'_{L^p})$. Inparticular, $\left\langle \frac{T(\xi)S_1(\xi)}{|\widehat{S}(\xi)|^2}, \varphi \right\rangle$ and $\left\langle \frac{T(\xi)S_2(\xi)}{|\widehat{S}(\xi)|^2}, \varphi \right\rangle$ are bounded, where $\varphi(\xi) = \sum_{j=1}^{\infty} \varphi_j(\xi)$ as above. On the other hand $\left\langle \frac{T}{|\widehat{S}|}, \varphi \right\rangle$ is unbounded. Thus $\frac{S_1(\xi)}{|\widehat{S}(\xi)|}$ and $\frac{S_2(\xi)}{|\widehat{S}(\xi)|}$ must be very small in absolute value, which contradicts the fact that the modulus of $\widehat{\frac{S(\xi)}{|\widehat{S}(\xi)|}}$ is 1. The contradiction shows that $\frac{T}{\widehat{S}}$ is not in $\mathcal{F}(\mathcal{D}'_{L^p})$. Thus the convolution equation $S * u = \mathcal{F}^{-1}(T)$ does not have a solution in \mathcal{D}'_{L^p} . This contradicts the hypothesis and completes the proof of the theorem.

The next result provides sufficient conditions for solvability of the convolution equation in \mathcal{D}'_{L^2} . This result covers a wider set of convolution operators than the corresponding theorem of Pilipović for the space $\mathcal{D}'_{L^2}^{(M_p)}$ (see Proposition 8 of [4]). In our result we did not assume that \hat{S} has analytic continuation onto C^n . As well, our proof is different from that of Pilipović. We recall that the Fourier transformation is a topological isomorphism from L^2 onto itself. Since \mathcal{D}_{L^2} is a subspace of L^2 it follows that $\mathcal{F}(\mathcal{D}_{L^2})$ is a subspace of L^2 . We provide $\mathcal{F}(\mathcal{D}_{L^2})$ with the L^2 norm. If S is a convolution operator on \mathcal{D}'_{L^2} we provide the space $S * \mathcal{D}_{L^2}$ with the topology induced by \mathcal{D}_{L^2} . The following lemma follows from the above cited fact that the Fourier transformation is a topological isomorphism from L^2 onto itself. We provide its proof for the sake of completeness.

Lemma 2 The Fourier transform is a topological isomorphism of \mathcal{D}_{L^2} onto $\mathcal{F}(\mathcal{D}_{L^2})$.

Proof. Let φ be any element in \mathcal{D}_{L^2} . Let $k \geq 1$ be any integer. From continuity of the Fourier transform on L^2 and continuity of the differential operator from \mathcal{D}_{L^2} into itself, it follows that

$$\|\widehat{\varphi}\|_{2} \leq \|(1+|\xi|^{2})^{k}\widehat{\varphi}\|_{2} \leq C_{1} \|P(D)\varphi\|_{2} \leq C_{1}C_{2} \|\varphi\|_{2,m};$$

where $P(D) = (1 + D_1^2 + \cdots + D_n^2)^2$, C_1 , C_2 are positive constants and m is a positive integer. This takes care of continuity of the Fourier transform. To establish continuity of the inverse Fourier transform, let k be any positive integer. From continuity of the differential operator from \mathcal{D}_{L^2} into itself, and continuity of the inverse Fourier transform from L^2 onto itself one has for any positive integer k,

$$\|\varphi\|_{2,k}^2 = \sum_{|\beta| \le k} \|D^\beta \varphi\|_2^2 \le \sum_{|\beta| \le k} C_\beta \|\varphi\|_2^2 \le C_k \|\widehat{\varphi}\|_2^2,$$

where C_k is a constant which is independent of φ . This takes care of contiuity of the inverse Fourier transform.

Theorem 3 Let S be a convolution operator on \mathcal{D}'_{L^2} . If $\widehat{S}(\xi) \neq 0$ for all $\xi \in \Re^n$ and $|\widehat{S}(\xi)| \geq c(1+|\xi|)^{-d}$ whenever $|\xi| \geq k$ for some positive constants c, d, and k, then the convolution equation

$$S * u = v \tag{16}$$

has a solution u in \mathcal{D}'_{L^2} for every v in \mathcal{D}'_{L^2} .

Proof. Using the Hahn-Banach theorem, it suffices to show that the map $S * \varphi \to \varphi$ from $S * \mathcal{D}_{L^2}$ into \mathcal{D}_{L^2} is continuous, where we assumed without loss of generality that $S = \check{S}$ the symmetry of S with respect to the origin. From Lemma 2 it suffices to show that the map $\hat{S}\hat{\varphi} \to \hat{\varphi}$ from $\mathcal{F}(\mathcal{D}_{L^2})$ into itself is continuous in the L^2 norm. We consider two cases:

Case I: If the support of $\widehat{\varphi}$ is contained in the closed ball $\overline{B(0,k)}$. Then

$$\begin{aligned} \|\widehat{\varphi}\|_{2}^{2} &= \left\|\frac{\widehat{S}\widehat{\varphi}}{\widehat{S}}\right\|_{2}^{2} = \int |\widehat{S}(\xi)\widehat{\varphi}(\xi)|^{2}\frac{1}{|\widehat{S}(\xi)|^{2}}d\xi \\ &\leq \sup_{\xi\in\overline{B(0,k)}}\frac{1}{|\widehat{S}(\xi)|}\int |\widehat{S}(\xi)\widehat{\varphi}(\xi)|^{2}d\xi \leq C\|\widehat{S}\widehat{\varphi}\|_{2}^{2}. \end{aligned}$$
(17)

Case II: If the support of $\widehat{\varphi}$ is not contained in the closed ball $\overline{B(0,k)}$. Then from condition (2) and continuity of the differential operator on \mathcal{D}_{L^2} one has,

$$\begin{aligned} \|\widehat{\varphi}\|_{2}^{2} &= \left\|\frac{\widehat{S}\widehat{\varphi}}{\widehat{S}}\right\|_{2}^{2} = \int |\widehat{S}(\xi)\widehat{\varphi}(\xi)|^{2}\frac{1}{|\widehat{S}(\xi)|^{2}}d\xi \\ &\leq C_{1}\int |\widehat{S}(\xi)\widehat{\varphi}(\xi)|^{2}|P(\xi)|^{2}d\xi \\ &\leq C_{1}\int |P(D)\widehat{(S*\varphi)}(\xi)|^{2}d\xi \\ &\leq C_{1}\|P(D)\widehat{(S*\varphi)}\|_{2}^{2} \leq C\|\widehat{S*\varphi}\|_{2}^{2}, \end{aligned}$$
(18)

for some polynomial $P(\xi)$ and constants C_1 , C independent of φ . Thus the map $S * \varphi \to \varphi$ from $S * \mathcal{D}_{L^2}$ into \mathcal{D}_{L^2} is continuous.

Remark 1 The additional assumption $\widehat{S}(\xi) \neq 0$ for all ξ in \Re^n , was used

in the proof of Theorem 3 in a very essential way. Thus it is not expected that the neccessary condition for solvability to be sufficient. Moreover, the proof of Theorem 3 does not work for the general case p, 2 . This is because, in the general case, the Fourier transform does not have continuous inverse.

Remark 2 We leave the conjecture that Theorem 3 is true for general p > 2 un answered. To prove the conjecture one needs to study carefully the relation between the topologies of the space $\mathcal{F}(\mathcal{D}_{L^q})$

Acknowledgment The author would like to thank the referee for his careful reading of the manuscript, and for pointing out a mistake which appeared in an earlier form of the paper.

References

- Abdullah S., On Convolution Operators and Multipliers of Distributions of L^p-Growth. Jou. Math. Anal. & Appl. 183, No.1, (1994), 196-207.
- [2] Barros-Neto J., An Introduction to the Theory of Distributions. Marcel Dekker, New York, 1973.
- [3] Pahk D., On the Convolution Equations in the Space of Distributions of L^p-Growth. Proc. Amer. Math. Soc. 94, No.1, (1985), 81-86.
- [4] Pilipović S., On the Convolution in the Space $\mathcal{D}_{L^2}^{(M_p)}$. Rend. Sem. Mat. Univ. Padova **79** (1988), 25–36.
- [5] Schwartz L., Theorie des Distributions. Hermann, Paris, 1973.

Department of Mathematics Faculty of Science United Arab Emirates University P. O. Box 17551 Al Ain United Arab Emirates E-mail: SAbdullah@uaeu.ac.ae