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Hypersurfaces with constant mean curvature
in hyperbolic space
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Abstract. Our aim is the study of constant mean curvature hypersurfaces (H-hyper-
surfaces) in hyperbolic space with non connected boundary with possible asymptotic
boundary. We ask when the hypersurface inherits the symmetries of its boundary. Also,
results of non-existence of H-hypersurfaces are obtained in relation with the value of H
and the distance between the boundary components. The methods by which we arrive
at our conclusions are the tangency principle, the Alexandrov reflection method and the
existence of a special family of H-hypersurfaces of revolution.
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1. Introduction and preliminaries

In 1958 Alexandrov [1] showed that the round spheres are the only
embedded closed hypersurfaces of constant mean curvature in (n+1)-

dimensional hyperbolic space H^{n+1} . The purpose of this paper is the study
of smooth constant mean curvature hypersurfaces in H^{n+1} with non empty
boundary. Recent progress have been obtained for several authors when
the hypersurface is compact and the boundary is a codimension two sphere
[3, 13, 14, 15]. Denote by H the mean curvature. When |H|\leq 1 the only
compact immersed hypersurfaces of constant mean curvature H bounded
by a codimension two round sphere are the umbilical ones: domains of
totally geodesic hyperplanes (H=0) , hyperspheres (0<|H|<1) and
horospheres (|H|=1) (see [3, 13]). However, for |H|>1 it is still unknown
if spherical caps are the only compact embedded hypersurfaces with spher-
ical boundary. There is a qualitative difference with respect to the study of
constant mean curvature hypersurfaces in hyperbolic and Euclidean spaces.
The reason is that in H^{n+1} there are spheres which have mean curvature
bounded away from zero with their radii tend to infinity. When |H|=1 ,
the behaviour of surfaces in H^{3} is looks as minimal surfaces in Euclidean
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space, and the existence of horospheres makes rich the treatment of the
problems in H^{n+1} . The similarity between 1-surfaces in H^{3} and minimal
surfaces in R^{3} is made evident in [4], and it is the origin of a wide research
on hypersurfaces of mean curvature 1 [16]. If |H|>1 , the properties are
very different from the case |H|<1 and some investigations have been done
on the behaviour near the infinity [10].

Following in this direction, we deal what influence does the boundary
have over the shape of a H hypersurface in H^{n+1} and when, in the case that
is embedded, the hypersurface inherits the symmetries of its boundary. In
this sense and in order to set up definitions to be used later, we say that M
is a hypersurface of revolution if there exists a geodesic in H^{n+1} such that
M is invariant by the group of rotations of H^{n+1} that leaves this geodesic
pointwise fixed.

We will work in the upper halfspace model of H^{n+1} , that is,

H^{n+1}= \{(x_{1}, \ldots, x_{n+1})\in R^{n+1} ; x_{n+1}>0\}

equipped with the metric

ds^{2}= \frac{dx_{1}^{2}++dx_{n+1}^{2}}{x_{n+1}^{2}} .

The hyperbolic space H^{n+1} has a natural compactification \overline{H^{n+1}}=H^{n+1}\cup

S^{n}(\infty) , where S^{n}(\infty) is identified with asymptotic classes of geodesies rays
in H^{n+1} . In the upper halfspace model of H^{n+1} , the asymptotic boundary
S^{n}(\infty) of H^{n+1} is the one-point compactification of the hyperplane \{x_{n+1}=

0\} . Let M be a subset of H^{n+1} . We call the asymptotic boundary of M the
set \partial_{\infty}M given by

\partial_{\infty}M=\overline{M}\cap S^{n}(\infty) ,

where \overline{M} denotes the closure of M in \overline{H^{n+1}} . The concept of asymptotic
boundary was introduced by Anderson [2] to prove that any closed sub-
manifold in S^{n}(\infty) is the asymptotic boundary of a minimal variety of
H^{n+1} . The notion of asymptotic boundary is important to understand
the behaviour of noncompact constant mean curvature hypersurfaces (cf.
[5, 6, 7, 9, 11] ) .

For future references, we shall refer any codimension two spheres in
H^{n+1} or in S^{n}(\infty) as spheres. Let \phi : Marrow H^{n+1} be an isometric im-
mersion of a smooth hypersurface M with boundary \partial M\neq\emptyset , and let C
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be a codimension two submanifold of H^{n+1} . We say C is the boundary of
\phi if \phi maps diffeomorphically \partial M onto C and briefer, M with boundary
C without particular references to the parametrization. Also, we call the
generalized boundary of M the set \partial_{g}M given by \phi(\partial M)\cup\partial_{\infty}\phi(M) . Finally,
we say that M is an H-hypersurface if \phi has constant mean curvature H,
where H\in R .

We extend the concept of distance between two compact sets of S^{n}(\infty)

to subsets in H^{n+1} according to [5]. Let P_{1} and P_{2} be disjoint geodesic
hyperplanes in H^{n+1} . Then P_{1}\cup P_{2} divides H^{n+1} in three components.
Let D_{1} and D_{2} be the two of them with boundary P_{1} and P_{2} respectively.
Given two subsets A_{1} and A_{2} of H^{n+1} , we say that P_{1} and P_{2} separate A_{1}

and A_{2} if A_{i}\subset D_{i} , i=1,2 . In this case, we call the distance between A_{1}

and A_{2} the number

d(A_{1}, A_{2})= \sup { d(P_{1}, P_{2});P_{1} and P_{2} separate A_{1} and A_{2} },

where d(P_{1}, P_{2}) denotes the distance between P_{1} and P_{2} . In other case,
we put d(A_{1}, A_{2})=0 . Roughly speaking d(A_{1}, A_{2}) is the largest distance
between the ‘parallel’ geodesic hyperplanes that separate A_{1} and A_{2} . When
A_{1}\subset H^{n+1} and A_{2}\subset S^{n}(\infty) , we say that P_{1} and P_{2} separate A_{1} and A_{2}

if A_{1}\subset D_{1} and A_{2}\subset\partial_{\infty}D_{2} . Finally, if A_{1} , A_{2}\subset S^{n}(\infty) , P_{1} and P_{2}

separate A_{1} and A_{2} if A_{i}\subset\partial_{\infty}D_{i} , i=1,2 . Let us observe that if the
asymptotic boundary has an isolated point p, then d(p, C)=\infty for each
other component C of \partial_{g}M .

Also, we need the concept of regularity at the asymptotic boundary.
We say that M is regular at infinity if \overline{M}\subset\overline{H^{n+1}} is a C^{2}-hypersurface
(with boundary) of \overline{H^{n+1}} , and \partial_{\infty}M is a C^{2} submanifold of S^{n}(\infty) .

Finally, we need the next definition. Two (n-1)-spheres C_{1} and C_{2} in
H^{n+1} are called coaxial if there is a geodesic \gamma such that C_{1}\cup C_{2} is invariant
by the group of rotations that leaves pointwise fixed \gamma . The geodesic \gamma will
be called the rotation axis of C_{1}\cup C_{2} . Since isometries in H^{n+1} induce
conformal diffeomorphisms on S^{n}(\infty) , we can extend this definition when
C_{1}\subset H^{n+1} and C_{2}\subset\{x_{n+1}=0\} .

We are in position to give a brief summary of the main results. In
Section 2 we use the Alexandrov reflection method to study the behaviour
of a compact embedded H-hypersurface with non connected boundary in
relation to the symmetries of its boundary. We establish (Corollaries 2.3
and 2.4):
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Let C_{1} and C_{2} be coaxial spheres of codimension two such that
C_{1} is included in a horosphere (or in a geodesic hyperplane) Q_{1}

and C_{2} in \{x_{n+1}=0\}\subset S^{n}(\infty) . Let M\subset H^{n+1} be an embedded
H-hypersurface with \partial_{g}M=C_{1}\cup C_{2} . If M is included in the
domain of H^{n+1}\backslash Q_{1} that contains C_{2} , then M is a hypersurfaceof
revolution.

In Section 3 we consider the existence of compact H-hypersurfaces with
non connected boundary in relation to the distance between their boundary
components:

Given H\in(-1,1) , there exists a constant d_{H} depending only
on H such that if C_{1} and C_{2} are codimension two submanifolds
with d(C_{1}, C_{2})>d_{H} , then there exists no immersed connected
compact H-hypersurfaces in H^{n+1} spanning C_{1}\cup C_{2} .

This result is a consequence of other one more general for hypersurfaces with
non necessarily constant mean curvature function H and |H|<1 (TheO-
rem 3.1). In this sense, if we recall that the only compact H-hypersurfaces
in H^{n+1} , |H|\leq 1 , spanning a round (n-1)-sphere are the umbilical exam-
ples, we can observe that the behaviour of the H-hypersurfaces with |H|\leq 1

constitutes a new phenomena inside the general theory of constant mean
curvature hypersurfaces in H^{n+1} .

In Section 4 we study possible configurations of a H-hypersurface in
H^{n+1} when the boundary components are included in geodesic hyperplanes
of horospheres. In this direction, we show in Theorem 4.1:

Let C_{1} and C_{2} be compacl (n-1) -submanifolds included respec-
tively in disjoint geodesic hyperplanes P_{1} and P_{2} . There is a
positive number d_{0} such that if d(C_{1}, C_{2})\geq d_{0} and H\neq 0 , any
compact embedded connected H-hypersurface in H^{n+1} bounded by
C_{1}\cup C_{2} and that intersects no the exterior of C_{i} in P_{i} must be
included in the domain determined by P_{1} and P_{2} .

One may obtain analogous results when the boundary is included in dis-
joint horospheres (Theorem 4.3) and the case that one of the two boundary
components lies in S^{n}(\infty) (Corollary 4.5).
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2. Symmetries of embedded H-hypersurfaces

Let us consider an embedded H-hypersurface M\subset H^{n+1} with bound-
ary. If one studies whether M inherits the symmetries of its boundary, an
important tool is the s0-called Alexandrov reflection method [1], which is
based in the classical maximum principle for elliptic equations. The follow-
ing version of the maximum principle for hypersurfaces can be stated (see
[6] for details and definitions):

Proposition 2.1 (Tangency principle) Let M_{1} and M_{2} be two oriented
constant mean curvature hypersurfaces in H^{n+1} of mean curvature H_{1}\leq H_{2}

respectively. If M_{1} and M_{2} have a point p of common tangency_{y} either in
the interior or in the (analytic) boundary, and M_{1} lies above M_{2} near p,
then M_{1}=M_{2} in a neighbourhood of p

With the aid of the Alexandrov method, it is proved that a compact
embedded H-hypersurface in H^{n+1} spanning a sphere and contained in one
of the two halfspaces determined by the geodesic hyperplane that contains
the boundary must be a hypersurface of revolution. Others applications can
be viewed in [5, 7, 11, 15]. This section is devoted to derive some conse-
quences of this technique in the case that the boundary of the hypersurface
is not connected. We start by considering the following result that is similar
as for H Hypersurfaces in R^{n+1} (for example, see [12, Theorem 2.1]).

Proposition 2.2 Let Q_{1} and Q_{2} be two horospheres with the same asymp-
totic boundary. Let C_{1} and C_{2} be coaxial spheres of codimension two in-
cluded in Q_{1} and Q_{2} respectively. Let M be a compact embedded H-hyper-
surface in H^{n+1} with boundary C_{1}\cup C_{2} . If M is included in the domain
determined by Q_{1} and Q_{2} , then M is a hypersurface of revolution.

Proof. The proof is a standard application of the Alexandrov reflection
technique. We make hyperbolic reflections with respect to a family of totally
geodesic hyperplanes orthogonal to Q_{1}\cup Q_{2} . The fact that M is included
in the domain defined by Q_{1} and Q_{2} leads that the possible contact points
between M and its successive reflections occurs at interior or boundary
points where the tangency principle can be applied. As consequence, M
inherits the symmetries of its boundary. In our case, M is a hypersurface
of revolution. \square

The same reasoning holds when one of the two boundary components
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lies in S^{n}(\infty) :

Corollary 2.3 Let C_{1} and C_{2} be coaxial spheres of codimension two such
that C_{1} is included in a horosphere Q_{1} and C_{2}\subset S^{n}(\infty) . Let M be an
embedded H-hypersurface in H^{n+1} with \partial_{g}M=C_{1}\cup C_{2} . If M is included
in the domain of H^{n+1}\backslash Q_{1} that contains C_{2} , then M is a hypersurface of
revolution.

Remark 1 We observe that the same argument applies even if C_{2} is a
single point p\in S^{n}(\infty) provided the geodesic joining the centre of C_{1} and
p defines a group of rotations in \overline{H^{n+1}} that leaves invariant C_{1}\cup\{p\} .

It is remarkable that the same process in Proposition 2.2 does not work
when the hypersurface is included in the domain determined by two disjoint
geodesic hyperplanes. This anomaly is partly explained by the fact that
there exists no a one-parameter family of geodesic hyperplanes orthogonal
to both hyperplanes. However, we have the analogous result to Corollary 2.3
when one of the boundary components lies at infinity.

Corollary 2.4 Let C_{1} and C_{2} be coaxial spheres of codimension two where
C_{1} is included in a geodesic hyperplane P_{1} , C_{2}\subset S^{n}(\infty) and C_{2}\cap\partial_{\infty}P_{1}=\emptyset .
Let M be an embedded H-hypersurface in H^{n+1} with \partial_{g}M=C_{1}\cup C_{2} . If
M is included in the component of H^{n+1}\backslash P_{1} that contains C_{2} , then M is
a hypersurface of revolution.

Proof. Without loss of generality, we assume that the rotation axis \gamma of
C_{1}\cup C_{2} is the x_{n+1} -axis. Consider \Omega_{1}\subset P_{1} and \Omega_{2}\subset\{x_{n+1}=0\} the
bounded domains determined by C_{1} and C_{2} respectively. We construct the
embedded hypersurface M\cup\Omega_{1}\cup\Omega_{2} and let W denote the bounded domain
that determines in \{x_{n+1}>0\} (Figure 1).

Let P be a geodesic hyperplane containing \gamma and we shall prove that P
is a hyperplane of symmetry of M. Let \alpha be an infinite geodesic in P_{1} that
intersects P orthogonally at \gamma\cap P_{1} . Let \{P(t);t\in R\} be the one-parameter
family of geodesic hyperplanes of H^{n+1} such that for each t , P(t) intersects
\alpha orthogonally at the point \alpha(t) . We use the Alexandrov method with the
family P(t) . The key fact is that the domain determined by P_{1} and S^{n}(\infty)

that contains M is invariant by the hyperbolic reflections with respect to
P(t) (see Figure 1). Now, the Alexandrov reflection method finishes with
the proof. \square
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Fig. 1.

Remark 2 Prom the proof, we observe that the assumption ‘ C_{2}\cap\partial_{\infty}P_{1}=

\emptyset
’ in Corollary 2.4 can be replaced by either of the two following situations:
1. C_{2}=\partial_{\infty}P_{1} and M\subset H^{n+1}\backslash P_{1} , or
2. C_{2} is a component of \partial_{\infty}\gamma .

To end this section, we consider other kind of symmetry for H-hyper-
surfaces with boundary. Let P be a geodesic hyperplane and \gamma a geodesic
orthogonal to P. If \Omega is a domain in P, we call the solid cylinder K(\Omega, \gamma)

determined by \Omega with respect to \gamma , the set of all hyperbolic translations of
\Omega along \gamma , i.e., if q\in\Omega and l_{q} is the integral curve of the Killing vector
field associated to the hyperbolic translation along \gamma , K( \Omega, \gamma)=\bigcup_{q\in\Omega}l_{q} .

Proposition 2.5 Let P_{1} and P_{2} be two geodesic hyperplanes such that P_{2}

is a hyperbolic translation with respect to a geodesic \gamma orthogonal to P_{1} . Let
C_{1} be a closed codimension two submanifold in P_{1} and C_{2} the corresponding
translation in P_{2} . Let \Omega_{1}\subset P_{1} be the bounded domain determined by C_{1} .
Assume that M\subset H^{n+1} is a compact embedded connected H-hypersurface
spanning C_{1}\cup C_{2} such that M\cap\partial K(\Omega_{1}, \gamma)=C_{1}\cup C_{2} and either

M\subset K(\Omega_{1}, \gamma) or M\subset H^{n+1}\backslash \overline{K(\Omega_{1},\gamma)} .

Then M is symmetric with respect to the hyperplane P_{3} that is equidistant
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from P_{1} and P_{2} . Moreover, P_{3} divides M in two graphs on P_{3} .

Proof. After an isometry in H^{n+1} , we can suppose that \gamma is the x_{n+1} axis
and thus, P_{1} and P_{2} are two Euclidean concentric hemispheres in x_{n+1}\geq 0

centred at the origin. Consider the family of geodesic hyperplanes {P(t) ;
t\geq 0\} , where P(0)=P_{1} and P(t) is the hyperbolic translation along \gamma :
the parameter t denotes the distance between P(t) and P(0) . Assume that
P_{2}=P(d) , that is, d is the distance between P_{1} and P_{2} . Let W denote the
bounded domain determined by

B=M \cup(\partial K(\Omega_{1}, \gamma))\cap(\bigcup_{0\leq t\leq d}P(t)) .

The hypothesis M\cap\partial K(\Omega_{1}, \gamma)=C_{1}\cup C_{2} assures that B is an embedded
closed hypersurface (non smooth along C_{1}\cup C_{2} ). By the argument of Corol-
lary 2.3, we reflect M with respect to hyperplanes P(t) coming t=\infty until
the first time so that the reflected of M touches M again. By the tangency
principle, it cannot exist a tangent point. Thus the reflection process con-
tinues until the intermediate position between P_{1} and P_{2} . Changing the
roles of P_{1} and P_{2} , it concludes that P_{3} is a hyperplane of symmetry of M.
Furthermore the Alexandrov technique implies that

M_{1}=M \cap(\bigcup_{t\leq d/2}P(t)) and M_{2}=M \cap(\bigcup_{t\geq d/2}P(t))

are graphs on P_{3} (by graph we mean that for each point q of P_{3} , l_{q} meets
M_{i} just at a single point at most). \square

3. Non-existence of H-hypersurfaces with boundary

This section is devoted to analyse how the distance between two bound-
ary components of a H hypersurface M determines some aspects related
with the shape of M. A classic result in the minimal surfaces theory states
that a minimal surface M in R^{3} bounded by a pair of sufficiently distant
curves cannot be connected. For this, we include the boundary curves in a
solid cylinder. One proves the result by ‘pinching’ the surface with a fam-
ily of catenoids having the same rotation axis as the cylinder, but smaller
and smaller ‘neck-size’: and applying the maximum principle at the m0-

ment of the first contact. As in [5], we use the same argument with an
analogous family of constant mean curvature surfaces of revolution studied
by J. Gomes in [8, 9] . With the aid of these surfaces, we will prove that
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hypersurfaces of small mean curvature in hyperbolic space are disconnected
if their boundary components are sufficiently distant.

Next we describe this kind of hypersurfaces (see [9] and [5]). Let h\in

[0,1) and a geodesic \gamma in H^{n+1} . Then there exists a uniparametric family
\{M_{\lambda}^{h};\lambda\geq 0\} of (non-umbilical) embedded h-hypersurfaces of revolution
with the same axis of rotation. This axis is orthogonal to \gamma . Moreover

1. Each M_{\lambda}^{h} is symmetric with respect to \gamma .
2. The asymptotic boundary is formed by two disjoint spheres: \partial_{\infty}M_{\lambda}^{h}=

S_{1,\lambda}^{h}\cup S_{2,\lambda}^{h} .
3. If P_{1}^{h},’ {}_{\lambda}P_{2,\lambda}^{h} are the geodesic hyperplanes of H^{n+1} such that \partial_{\infty}P_{i,\lambda}^{h}=

S_{i,\lambda}^{h} , i=1,2 , then M_{\lambda}^{h} is included in the component of \overline{H^{n+1}}\backslash (P_{1,\lambda}^{h}\cup

P_{2,\lambda}^{h}) whose boundary is S_{1,\lambda}^{h}\cup S_{2,\lambda}^{h} .
4. Each hypersurface M_{\lambda}^{h} divides H^{n+1} in two components, one of them

contains the rotation axis. The mean curvature vector points towards
this component.

5. The distance function d^{h}(\lambda)=d(S_{1,\lambda}^{h}, S_{2,\lambda}^{h})=d(P_{1}^{h},’ {}_{\lambda}P_{2,\lambda}^{h}) satisfies
d^{h}(0)=0 , is increasing near \lambda=0 , reaches a maximum d_{h}>0 and
decreases monotonically to zero as \lambdaarrow\infty . The value of d^{h}(\lambda) is

d^{h}(\lambda)

= \int_{\lambda}^{\infty}\frac{\sinh\lambda\cosh\lambda-h\sinh^{2}\lambda+h\sinh^{2}x}{\cosh_{X}\sqrt{\sinh^{4}x\cosh^{4}x-(\sinh\lambda\cosh\lambda-h\sinh^{2}\lambda+h\sinh^{2}x)^{2}}}dx

and the number d_{h} depends only on h .

The first result is an extension of Theorem 1 in [5] in the case that the
hypersurface has non empty boundary. In fact, it is possible to consider
immersed hypersurfaces with non necessarily constant mean curvature.

Theorem 3.1 Let h\in(0,1) . Then there exists a positive constant d_{h}

depending only on h with the following property: let M be a connected hy-
persurface immersed in H^{n+1} with mean curvature function H and H\leq h .
Then it holds that d(C, \partial_{g}M\backslash C)\leq d_{h} for any component C of \partial_{g}M\iota The
equality holds if and only if M is a hypersurface of revolution.

Proof. The value of d_{h} is given by the maximum of the function d^{h} defined
previously. The proof is by contradiction. Let C_{2} be a component of \partial_{g}M\backslash

C_{1} . Since d(C_{1}, C_{2})>d_{h} , there exist two disjoint geodesic hyperplanes P_{1}
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Fig. 2.

and P_{2} separating C_{1} and C_{2} and d(P_{1}, P_{2})>d_{h} . Let D_{1} and D_{2} be the
two components of H^{n+1}\backslash (P_{1}\cup P_{2}) such that \partial D_{i}=P_{i} and C_{i}\subset D_{i} . Call
D_{3} the other component with \partial D_{3}=P_{1}\cup P_{2} . There exists a geodesic \gamma in
D_{3} such that the corresponding family \{M_{\lambda}^{h}; \lambda>0\} is included in D_{3} .

For small number \lambda>0 , M\cap M_{\lambda}^{h}=\emptyset because in the domain D_{3} there
are no components of \partial_{g}M . Let \lambdaarrow\infty . Since M is connected, there
exists a first time \lambda_{0} such that M_{\lambda_{0}}^{h} has an intersection point p with M.
Because M_{\lambda_{0}}^{h}\subset D_{3} , this point p must be interior in M. Thus the tangent
spaces of M and M_{\lambda_{0}}^{h} agree at p . Choose an orientation of M_{\lambda_{0}}^{h} to have
positive mean curvature. Then the hypersurface M is over M_{\lambda_{0}}^{h} (Figure 2).
Since H\leq h , the tangency principle assures that M_{\lambda_{0}}^{h} agrees with M in
an open set. This is a contradicition with the fact that D_{3}\cap\partial_{\infty}M=\emptyset .
Consequently, d(C_{1}, C_{2})\leq d_{h} .

Finally, if d(C_{1}, C_{2})=d_{h} , the tangency principle yields that \partial_{\infty}M_{\lambda_{0}}^{h}=

\partial_{\infty}(P_{1}\cup P_{2}) . In this case, M_{\lambda_{0}}^{h} has a common tangent point with M and
the tangency principle gets again that M_{\lambda_{0}}^{h}=M , H=h and M is a
hypersurface of revolution. \square

As a particular case of Theorem 3.1 we have:



Hypersurfaces with constant mean curvature in hyperbolic space 239

Corollary 3.2 Given H\in(-1,1) , there exists a constant d_{H} depend-
ing only on H such that if C_{1} and C_{2} are codimension two submanifolds
with d(C_{1}, C_{2})>d_{H} , then there exists no immersed connected compact H-
Hypersurfaces in H^{n+1} spanning C_{1}\cup C_{2} .

This result says us that for |H|<1 there are no connected H-hyper-
surfaces in H^{n+1} with boundary components sufficiently distant. In this
sense, the behaviour of the H Hypersurfaces in H^{n+1} where H\in(-1,1)

is similar as minimal surfaces in R^{3} . In the Euclidean ambient this result
is not true for nonzero constant mean curvature surfaces: given H\in R , a
piece of a right cylinder of radius \frac{1}{2|H|} can be bounded by two circles with
arbitrary distance.

We have as consequence of Theorem 3.1:

Corollary 3.3 Let M be a connected H-hypersurface with boundary in
H^{n+1} with |H|<1 . Then the asymptotic boundary of M has not isolated
points.

The following result is the analogous one to Theorem 2 in [5].

Theorem 3.4 Let M\subset H^{n+1} be an embedded H-hypersurface with bounded
ary and regular at infinity such that \partial_{\infty}M\neq\emptyset . Then |H|\leq 1 and

1. If |H|<1 , then \partial_{\infty}\overline{M}=\partial_{\infty}M and M is nowhere tangent to S^{n}(\infty) .
2. If |H|=1 , then \overline{M} is everywhere tangent to S^{n}(\infty) along \partial\overline{M}\cap

S^{n}(\infty) .

Proof After a rigid motion in H^{n+1} , consider a horosphere Q=\{x_{n+1}=

a\} , a>0 , such that the boundary \partial M of M lies in \{x_{n+1}>a\} , M is
transverse to Q and \partial_{\infty}M\subset\{x_{n+1}=0\} . Set M^{*}=M\cap\{x_{n+1}\leq a\} .
Then M^{*} spans a set of closed submanifods C_{1} , \ldots , C_{k} included on Q . We
decompose M^{*} in the following way. Let \epsilon be a small positive number. For
each i=1 , \ldots , k , let C_{i}^{-}(\epsilon) be the bounded (n-1)-submanifold on M^{*}

near C_{i} obtained by intersecting M^{*} with the horosphere \{x_{n+1}=a-\epsilon\} .
Remove from M^{*} the annuli bounded by C_{i}\cup C_{i}^{-}(\epsilon) and let us attach the
domains D_{i}^{-}(\epsilon) bounded by C_{i}^{-}(\epsilon) in \{x_{n+1}=a-\epsilon\} obtaining an embedded
hypersurface B . We use different values of \epsilon when several C_{i} are concentric.
Let M^{*} be any component of B such that \partial_{\infty}M^{*}\neq\emptyset . Then we have an
embedded hypersurface (not smooth along C_{i}^{-}(\epsilon) for some values i ) that
divides H^{n+1} in two components, denoted by I and O . Without loss of
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generality, assume that for H\geq 0 , the unit normal vector field N of M^{*}

points towards I .
Firstly we prove that H\leq 1 . We assume on the contrary, H>1 . Since

\partial_{\infty}M^{*}\neq\emptyset , let \Sigma be a sphere of constant mean curvature H, with small
Euclidean radius and sufficiently close to S^{n}(\infty) so that \Sigma is inside I . This
is possible because a sphere with centre in p= (p_{1}, . , p_{n+1}) and Euclidean
radius s>0 , s<p_{n+1} has H= \frac{p_{n+1}}{s} as mean curvature. Move \Sigma by
horizontal translations towards M^{*} , i.e., according to a parallel direction to
the x_{n+1} -hyperplane. Then the first intersection point q between M^{*} and
\Sigma is interior. In this case, the normal vector field of M^{*} and \Sigma agree at
q because both vectors point towards I . This is a contradiction with the
tangency principle because \partial_{\infty}\Sigma=\emptyset . Thus H\leq 1 .

If H<1 , Corollary 3.3 assures that \partial_{\infty}M^{*} does not contain isolated
points. Thus \overline{M^{*}}is not tangent to S^{n}(\infty) and so, \partial_{\infty}\overline{M^{*}}agrees with \partial_{\infty}M^{*} .

If H=1 and \partial_{\infty}\overline{M^{*}}\neq\emptyset , the domain \partial_{\infty}I is not empty. Let p\in O and
\Sigma_{p} be a horosphere with \partial_{\infty}\Sigma_{p}=\{p\} and with Euclidean radius sufficiently
small so that \Sigma_{p}-\{p\} is included in I . This is possible by the regularity at
infinity. Let us move \Sigma_{p} towards M^{*} by horizontal translations. In view of
the tangency principle and since \partial\Sigma_{p}=\emptyset , the first intersection point lies at
the boundary of \partial_{\infty}I . Moreover \overline{M^{*}}is tangent to S^{n}(\infty) at this point. By
moving \Sigma_{p} in each horizontal direction, we concluded that M^{*} is tangent
to S^{n}(\infty) at any point. \square

4. Certain configurations of H-hypersurfaces with boundary

We consider embedded hypersurfaces with nonzero mean curvature such
that the boundary components are included in geodesic hyperplanes or hor0-
spheres. The method of proof introduced in Theorem 3.1 allows us to obtain
information about the geometry of the hypersurface in relation with these
hyperplanes or horospheres.

Theorem 4.1 Let C_{1} and C_{2} be compact (n-1) -submanifolds in disjoint
geodesic hyperplanes P_{1} and P_{2} of H^{n+1} and let \Omega_{i}\subset P_{i} be the domains
bounded by C_{i} , i=1,2 . There exists a positive number d_{0} with the following
property: if d(C_{1}, C_{2})\geq d_{0} any connected compact embedded hypersurface
M of mean curvature function H\neq 0 spanning C_{1}\cup C_{2} and such that
M\cap(P_{i}\backslash \overline{\Omega_{i}})=\emptyset , i=1,2 must be included in the domain S determined by
P_{1} and P_{2} .
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Fig. 3.

Proof. Let us take d_{0} the maximum of the function d^{0}(\lambda) given in Sec-
tion 3. By standard hyperbolic geometry and after an isometry in H^{n+1} .
the asymptotic boundaries of P_{1} and P_{2} are coaxial spheres in \{x_{n+1}=0\}

(see Figure 3). Without loss of generality, we suppose that P_{1} lies above
P_{2} respect to the positive direction of the x_{n+1} -axis. Since H\neq 0 , we can
choose an orientation of M by the unit normal vector field N such that the
mean curvature function H is positive.

Let us attach to M two great geodesic balls O_{i}\subset P_{i} , with \overline{\Omega_{i}}\subset O_{i} . We
denote by P_{1}^{+} the upper halfspace determined by P_{1} , that is, the component
of H^{n+1}\backslash P_{1} that does not contain P_{2} . Also, let P_{2}^{-} be the halspace below
P_{2} . We consider appropriate compact hypersurfaces S_{1} and S_{2} such that
\partial S_{i}=\partial O_{i} , S_{1}\subset P_{1}^{+} , S_{2}\subset P_{2}^{-} and M does not intersect S_{1}\cup S_{2} (for
example, spherical geodesic domains. See Figure 3). This is possible by the
compactness of M. Hence, we obtain a closed embedded hypersurface

M\cup(S_{1}\cup(O_{1}\backslash \overline{\Omega_{i}}))\cup(S_{2}\cup(O_{2}\backslash \overline{\Omega_{2}}))

enclosing a domain W non smooth on C_{i}\cup\partial O_{i} , i=1,2 .
By contradiction, suppose that M contains points outside S . If some

part of M lies above P_{1} , let p\in M be the highest point with respect to
P_{1} . Then p\not\in\partial M\tau Consider an Euclidean hemisphere P_{3} in x_{n+1}\geq 0

such that \partial P_{3}\subset\{x_{n+1}=0\} is a concentric sphere with \partial P_{1} and such that
p\in P_{3} . In hyperbolic geometry, P_{3} is a geodesic hyperplanes and satisfies
that M lies below P_{3} . Since P_{3} is a minimal hypersurface, by comparying
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P_{3} and M at p, the tangency principle leads that N(p) points towards
H^{n+1}\backslash \overline{W} (Figure 3). In the case that M contains points below P_{2} , we
consider geodesic hyperplanes that come from S^{n}(\infty) below M touching M
at the lowest (interior) point with respect to P_{2} . Again, N points towards
H^{n+1}\backslash \overline{W} .

Consider the corresponding family of minimal hypersurfaces \{M_{\lambda}^{0};\lambda>

0\} . Since d(C_{1}, C_{2})\geq d_{0} , each hypersurface M_{\lambda}^{0} lies in the domain S. For
small number \lambda>0 and since M is compact, M_{\lambda}^{0} is included in H^{n+1}\backslash \overline{W}

Now we increase \lambdaarrow\infty until the first intersection point q with M for the
value \lambda=\lambda_{0} . This point is not at the boundary of M, because M_{\lambda}^{0}\subset

S for each \lambda>0 . Since N(q) points outside W, M_{\lambda_{0}}^{0} lies above M in
a neighbourhood of q : this is a contradiction by the tangency principle,
because the mean curvature H on M is positive. Hence, we conclude that
M\subset S and this completes the proof of the theorem. \square

When the boundary is formed by two round spheres, we obtain as a
consequence:

Corollary 4.2 Let C_{1} and C_{2} be coaxial spheres of the same radii r_{0}

included in hyperplanes P_{1} and P_{2} respectively such that d(C_{1}, C_{2})\geq d_{0} .
Let M\subset H^{n+1} be a compact embedded hypersurface of mean curvature
function H, 0<|H|\leq 1 , and with boundary C_{1}\cup C_{2} . Then M is included
in the domain determined by P_{1} and P_{2} .

Proof. After an isometry of H^{n+1} , we suppose that the x_{n+1} axis is the
rotation axis of C_{1}\cup C_{2} . Let us denote C(r) the cylinder of radius r>0
around \gamma , that is, the set of points at distance r from \gamma :

C(r)=\{(x_{1 }, \ldots\in H^{n+1} ; \sum_{i=1}^{n}x_{i}^{2}=(\sinh^{2}r)x_{n+1}^{2}\} .

Let us call B(r) the domain in H^{n+1}\backslash C(r) that contains \gamma . Let us choose
the orientation of C(r) such that its mean curvature H(r) is positive. Then
the unit normal vector field points towards B(r) and its value is

H(r)= \frac{1}{2} (tanh r+\coth r ) >1 .

Since M is compact, consider a sufficiently large number r such that M is
included in the domain B(r) . Let us decrease r until the first cylinder C(r)
that touches M . Because H(r)>1\geq|H| , the tangency principle implies
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r=r_{0} , M\subset\overline{B(r_{0})} and M\cap\partial C(r_{0})=C_{1}\cup C_{2} . In particular, M does not
intersect the exterior of C_{i} in P_{i} . Now, we apply Theorem 4.1. \square

Remark 3 The map H \mapsto d_{H}=\max d^{H} is amonotone increasing func-
tion on H . This allows us compare Theorem 3.1 with Theorem 4.1 in the
case that the boundary of an embedded H-hypersurface is formed by two
compact submanifolds C_{1} , C_{2} in geodesic hyperplanes P_{1} and P_{2} respec-
tively: if 0<H<1 , the distance between P_{1} and P_{2} is d_{H} at most;
moreover, if d_{0}<d(P_{1}, P_{2})\leq d_{H} and M does not intersect the exterior
of the bounded geodesic domains determined by the boundary, then the
hypersurface is included in the domain determined by P_{1} and P_{2} .

When the boundary is included in horospheres, we have the following
result for |H|\geq 1 :

Theorem 4.3 Let Q_{1} and Q_{2} be two horospheres with the same asymp-
totic boundary. Let C_{1} and C_{2} be compact (n-1) -submanifolds included
in Q_{1} and Q_{2} respectively and let \Omega_{1} and \Omega_{2} be the two domains that
bound in Q_{1} and Q_{2} . Then there is a positive number d_{0} with the following
property: if d(C_{1}, C_{2})\geq d_{0} , any connected compact embedded hypersurface
M\subset H^{n+1} of mean curvature function H, |H|\geq 1 , bounded by C_{1}\cup C_{2}

and M\cap(Q_{i}\backslash \overline{\Omega_{i}})=\emptyset , i=1,2 is included in the domain S defined by Q_{1}

and Q_{2} . In particular, if C_{1} and C_{2} are coaxial spheres and H is constant,
M is a hypersurface of revolution.

Proof. The reasoning is similar to Theorem 4.1 and we indicate it briefly.
Choose an orientation on M such the mean curvature is positive. Suppose,
contrary to the assertion that M contains points outside S . Construct a
domain W by attaching two ‘caps’ S_{1} and S_{2} in a similar way as the proof
of Theorem 4.1. After an isometry of H^{n+1} , we consider Q_{1}=\{x_{n+1}=a_{1}\}

and Q_{2}=\{x_{n+1}=a_{2}\} with 0<a_{2}<a_{1} . We have two possibilities: if M
contains points below Q_{2} , we come from S^{n}(\infty) by geodesic hyperplanes
until to touch the lowest point of M (with respect to Q_{2} ). The tangency
principle assures that the unit normal vector field N of M points outside W
In the case that M contains points above Q_{1} , we place a horosphere with
asymptotic boundary \infty\in S^{n}(\infty) in the highest point of M with respect to
Q_{1} . The tangency principle assures again that N points outside W Now a
similar reasoning as Theorem 4.1 works in the same way. In the case that
the boundary is spherical, we apply Proposition 2.2. \square
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As consequence of Corollary 4.2 and Theorem 4.3, we have the following
result proved in [7]:

Corollary 4.4 Let C_{1} and C_{2} be codimension two spheres with the same
radii. Then there exists d_{0}>0 such that if d(C_{1}, C_{2})\geq d_{0} any connected
compact embedded H-hypersurface M in H^{n+1} with |H|=1 and bounded
by C_{1}\cup C_{2} is a hypersurface of revolution.

With appropriate modifications in the statements, Theorems 4.1 and 4.3
generalize to the case that one of the two boundary components is included
in S^{n}(\infty) .

Corollary 4.5 Let C_{1} and C_{2} be codimension two compact submanifolds
of H^{n+1} , where C_{2}\subset S^{n}(\infty) and assume that d(C_{1}, C_{2})\geq d_{0}(d_{0} is the
number given in Theorem 4.1).

1. Suppose that C_{1} and C_{2} are included in disjoint geodesic hyperplanes
P_{1} and P_{2} respectively, where C_{2}=\partial_{\infty}P_{2} . Then any connected embed-
ded hypersurface M of mean curvature function H\neq 0 with \partial_{g}M=

C_{1}\cup C_{2} and M\cap(P_{1}\backslash \overline{\Omega_{1}})=\emptyset is included in the domain determined
by P_{1} and P_{2} .

2. Suppose that C_{1} is included in a geodesic hyperplane P_{1} . Let \Omega_{2} be
one of the two domains in S^{n}(\infty) determined by \partial_{\infty}P_{1} . Assume that
C_{2} is a subset of \Omega_{2} . Then any connected embedded hypersurface of
mean curvature function H\neq 0 with generalized boundary C_{1}\cup C_{2} that
does not intersects P_{1}\backslash \overline{\Omega_{1}} is included in the domain determined by P_{1}

and \Omega_{2} .
3. Suppose that C_{1} is included in a horosphere Q_{1} and \partial_{\infty}Q_{1}\not\in C_{2} .

Then any connected embedded hypersurface of mean curvature func-
tion |H|\geq 1 with \partial_{g}M=C_{1}\cup C_{2} that does not intersect Q_{1}\backslash \overline{\Omega_{1}} is
included in the domain of H^{n+1}\backslash Q_{1} that contains C_{2} .
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