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On the modified Newton’s approximation method for the
solution of non-linear singular integral equations
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Abstract. This paper produces sufficient conditions for the convergence of the modified
Newton-Kantorovich method applied to a class of nonlinear singular integral equations
with Cauchy kernel in generalized Holder space.
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1. Introduction

There is a large literature on nonlinear singular integral equations with
Hilbert and Cauchy kernel and on related Riemann-Hilbert boundary value
problems for analytic functions, cf. the monograph by Pogorzelski [11], the
other by Guseinov A.I . and Mukhtarov Kh. Sh. [4]. The approximate s0-
lution of singular integral equations on closed curves has been intensively
investigated by many approximation methods, specially the method of mod-
ified Newton-Kantorovich, of reduction, of collocation and of mechanical
quadratures, (see, [2], [3], [5], [7], [9], [12], [13] and others). For the singu-
lar integral equations on an interval mention, Musaev, [10]; Junghanns, et
al. [5], [6] and Wolfersdorf [15]. Consider the following nonlinear singular
integral equation (NSIE):

(P(u))(s)=F(s, u(s))-B[G(\cdot, u(\cdot))](s)=0 , (1.1)

where

B[G( \sigma, u(\sigma))](s)=\frac{1}{\pi}\int_{a}^{b}\frac{G(\sigma,u(\sigma))}{\sigma-s}d\sigma

is a Cauchy principle value and u(s) is unknown function and the functions
F_{u^{i}}[s, u(s)] , G_{u^{i}}[s, u(s)] are defined and continuous in the region

D=\{a\leq s\leq b;u\in(-\infty, \infty)\} , i=0,1 , \ldots , m-1 .
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The integral equation (1.1) is equivalent to the following Riemann-
Hilbert problem: Find holomorphic function w(z)=u(z)+iv(z) , z=x+iy
in the upper half-plane y>0 of the complex z-plane which is continuous in
y\geq 0 and satisfies:

F(s, u(s))+v(s)=0, for s\in[a, b]

u(s)=0 for s\not\in[a, b] .

where

w(z)= \frac{1}{\pi i}\int_{a}^{b}\frac{G(\xi,u(\xi))}{\xi-z}d\xi

(cf. Gakhov, [1], Pogorzelski [11]. Wegert, [14] and wolfersdrof, [15]).

Definition 1.1
(i) We denote by \Phi(a, \frac{b-a}{2}] to be the class of all continuous monot0-

nic increasing functions \phi defined on the interval (a, \frac{b-a}{2}] such that
\lim_{\deltaarrow 0+}\phi(\delta)=0 , and \phi(\delta)\delta^{-1} is a nondecreasing function.

(ii) the class \Phi^{m} is the class of all functions \phi\in\Phi such that a<t_{1}<
t_{2}< \frac{b-a}{2} implies t_{1}^{m}\phi(t_{2})\leq c(m)t_{2}^{m}\phi(t_{1}) , where m is a natural number.

(iii) we denote by C=C[a, b] be the Banach space of all (real or
complex-valued) continuous functions on [a, b] with ||u||_{c}= \max_{s\in[a,b]}|u(s)| .

(iv) For natural number m we define the generalized Holder space
H_{\phi,m} to be the set of all functions u\in C such that \omega_{u}^{m}(\delta)=O(\phi(\delta));\omega_{u}^{m}(\delta)

is the modulus of continuity of order m of u , and \phi\in\Phi^{m} . (cf. [4], [8], [12]).
(v) For u\in H_{\phi,m} , we define

||u||_{\phi,m}=||u||_{c}+ \sup_{a<\delta\leq\frac{b-a}{2}}\frac{\omega_{u}^{m}(\delta)}{\phi(\delta)} .

In [4], [10] and others, the modified Newton-Kantorovich method is
used to find the approximate solution for some classes of NSIE in Holder
space H_{\alpha} , (0<\alpha<1) . In the present paper we shall study the application
of modified Newton-Kantorovich method to the solution of NSIE (1.1) with
different cases of the index \chi (\chi=0 , \chi>0 and \chi<0 ) in the space H_{\phi,m} .
For this aim, we introduce the following:

Lemma 1.1 [4], [12] Let the functions F(s, u(s)) and G(s, u(s)) are de-
fifined and continuous in the region D , have all partial derivatives up to order
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(m-1) and satisfy the following conditions respectively:

| \frac{\partial^{k}F(s_{2},u_{2})}{\partial s^{i}\partial u^{j}}-\frac{\partial^{k}F(s_{1},u_{1})}{\partial s^{i}\partial u^{j}}|\leq c_{0}(k)\phi(|s_{2}-s_{1}|)+|u_{2}-u_{1}| ,

(1.2)

| \frac{\partial^{k}G(s_{2},u_{2})}{\partial s^{i}\partial u^{j}}-\frac{\partial^{k}G(s_{1},u_{1})}{\partial s^{i}\partial u^{j}}|\leq\eta_{0}(k)\phi(|s_{2}-s_{1}|)+|u_{2}-u_{1}| ,

(1.3)

/or arbitrary (s_{l}, u_{l})\in D(l=1,2) , i+j=k, k=0,1 , . , m-1 , where
\phi\in\Phi^{m} , c_{0}(k) and \eta_{0}(k) are constants. If u(s)\in H_{\phi,m} then F(s, u) and
G(s, u) belong to H_{\phi,m} .

2. First Case: (\chi=0 )

Lemma 2.1 If the functions F(s, u(s)) and G(s, u(s)) satisfy the condi-
tions of Lemma 1.1 and

G_{u^{i}}(a, u(a))=G_{u^{i}}(b, u(b))=0 , i=0,1,2 .

Then the operator P(u) is Frechet differentiable in the space H_{\phi,m} and ils
derivative is given by:

P’(u)h(s)=F_{u}’(s, u(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u(\sigma))}{\sigma-s}h(\sigma)d\sigma (2.1)

and satisfifies Lipschitz condition:

||P’(u_{2})-P’(u_{1})||_{\phi,m}\leq\xi_{0}||u_{2}-u_{1}||_{\phi,m}

in the sphere

N_{\phi,m}(u_{0}, \rho)=(u\in H_{\phi,m}, ||u-u_{0}||_{\phi,m}<\rho)

where \xi_{0} is a constant.

Proof. Let u(s) be any a fixed point in the space H_{\phi,m}[a, b] and h(s) be
an arbitrary element in H_{\phi,m}[a, b] , then we obtain

P(u+h)-P(u)=P’(u)h(s)+\Omega_{1}(s)+\Omega_{2}(s) ,
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where

\Omega_{1}(s)=\int_{0}^{1}(1-t)F_{u}’(s, u(s)+th(s))h^{2}(s)dt

and

\Omega_{2}(s)=-\frac{1}{\pi}\int_{a}^{b}\int_{0}^{1}(1-t)G_{u}’(\sigma, u(\sigma)+th(\sigma))h^{2}(\sigma)dt\frac{d\sigma}{\sigma-s} .

If \psi(\sigma)\in H_{\phi,m}[a, b] and \psi(a)=\psi(b)=0 , then

|| \frac{1}{\pi}\int_{a}^{b}\frac{\psi(\sigma)}{\sigma-s}d\sigma||\leq R||\psi||_{\phi,m} , [4]. (2.2)

If \psi,\tilde{\psi}\in H_{\phi,m}[a, b] , then

||\psi\tilde{\psi}||_{\phi,m}\leq R||\psi||_{\phi,m}||\tilde{\psi}||_{\phi,m} , [4], (2.3)

where R is a constant. Hence from (2.2) and (2.3) we obtain

lim
\underline{||\Omega_{1}(s)||}=0

and lim
\underline{||\Omega_{2}(s)||}=0

,
||h||arrow 0 ||h|| ||h||arrow 0 ||h||

which proves the differentiability of P(u) in the sense of Frechet and its
derivative is given by (2.1). Moreover, the Frechet derivative P’(u) satisfies
Lipschitz condition:

P’(u_{2})-P’(u_{1})=(F_{u}’(s, u_{2}(s))-F_{u}’(s, u_{1}(s)))h(s)

- \frac{1}{\pi}\int_{a}^{b}(G_{u}’(\sigma, u_{2})-G_{u}’(\sigma, u_{1}))h(\sigma)\frac{d\sigma}{\sigma-s}

=E(s)(u_{2}-u_{1})h(s)

- \frac{1}{\pi}\int_{a}^{b}Y(\sigma)(u_{2}(\sigma)-u_{1}(\sigma))h(\sigma)\frac{d\sigma}{\sigma-s} .

where

E(s)= \int_{0}^{1}F_{u}’(s, u_{1}+t(u_{2}-u_{1}))dt and

Y(\sigma)=\int_{0}^{1}G_{u}’(\sigma, u_{1}+t(u_{2}-u_{1}))dt .

Obviously E(s) and Y(s) belong to H_{\phi,m} hence, using inequalities (2.2) and
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(2.3) we have

||P’(u_{2})-P’(u_{1})||_{\phi,m}

=||h||_{\phi,m}=1 \sup||E(s)(u_{2}-u_{1})

- \frac{1}{\pi}\int_{a}^{b}Y(\sigma)(u_{2}-u_{1})h(\sigma)\frac{d\sigma}{\sigma-s}||_{\phi,m}

\leq R(||E(s)||_{\phi,m}+R||Y(s)||_{\phi,m})||u_{2}-u_{1}||_{\phi,m} ,

where

||E(s)||_{\phi,m}\leq c_{0}(2)(||u_{1}||_{c}+||u_{2}-u_{1}||_{c})+||F_{u}’(s, 0)||_{c}+c(u_{1}, m)

and

||Y(s)||_{\phi,m}\leq\eta_{0}(2)(||u_{1}||_{c}+||u_{2}-u_{1}||_{c})+||G_{u}’(s, 0)||_{c}+\eta(u_{1}, m)

where c(u_{1}, m) and h(u_{1}, m) are constants. Hence;

||P’(u_{2})-P’(u_{1})||_{\phi,m}\leq\xi_{0}||u_{2}-u_{1}||_{\phi,m} ,

where

\xi_{0}=R(R\eta_{0}(2)+c_{0}(2))(||u_{1}||_{c}+||u_{2}-u_{1}||_{c})+R||F_{u}’(s, 0)||_{c}

+R^{2}||G_{u}’(s, 0)||_{c}+Rc(u_{1}, m)+R^{2}\eta(u_{1}, m)

then the lemma be valid. \square

Theorem 2.1 If the functions F(s, u(s)) and G(s, u(s)) satisfy the condi-
tions of Lemma 2.1, F_{u}^{\prime 2}(s, u(s))\neq 0 everywhere on [a, b] and F_{u}^{\prime 2}(s, u(s))+

G_{u}^{\prime 2}(s, u(s))\neq 0 . T/ien the linear operator

L_{0}h=F_{u}’(s, u_{0}(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{\sigma-s}h(\sigma)d\sigma (2.4)

has a bounded inverse L_{0}^{-1} , for any fifixed point u_{0}\in H_{\phi,m} .

Proof. To find the operator L_{0}^{-1} , we investigate the solvability of the
equation,

F_{u}’(s, u_{0}(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{\sigma-s}h(\sigma)d\sigma=g(s) (2.5)
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where u_{0}\in H_{\phi,m}[a, b] be a fixed point and g(s)\in H_{\phi,m}[a, b] be an arbitrary
element. We introduce the following piecewise holomorphic function

V(z)= \frac{1}{2\pi i}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{\sigma-z}h(\sigma)d\sigma , V^{\pm}(\infty)=0 .

Then according to Sokhotski-plemelj Formula [1] equation (2.5) leads to the
following Riemann boundary value problem

V^{+}(s)=B(s)V^{-}(s)+A(s) (2.6)

where

B(s)= \frac{F_{u}’(s,u_{0}(s))+iG_{u}’(s,u_{0}(s))}{F_{u}’(s,u_{0}(s))-iG_{u}’(s,u_{0}(s))} ,

B(s)\neq 0 everywhere on [a, b] and belongs to H_{\phi,m} ,
and

A(s)= \frac{ig(s)G_{u}’(s,u_{0}(s))}{F_{u}’(s,u_{0}(s))-iG_{u}’(s,u_{0}(s))} .

The index \chi=-(\lambda_{1}+\lambda_{2}) , where \lambda_{1} and \lambda_{2} are integers which defined from
the following relations:

-1<\lambda_{1}+\theta(a)<1 , -1<\lambda_{2}+\theta(b)<1 ,

where \theta(s)=\mp\frac{1}{2\pi i} ln B(s) . Putting

B(s)= \frac{X_{0}^{+}(s)}{X_{0}^{-}(s)} (2.7)

where

X_{0}(z)= \exp(\Gamma(z))=\exp(\frac{1}{2\pi i}\int_{a}^{b}\frac{\ln B(\sigma)}{\sigma-z}d\sigma)

From the equation (2.7) the boundary condition (2.6) has the form

\frac{V^{+}(s)}{X_{0}^{+}(s)}-\frac{V^{-}(s)}{X_{0}^{-}(s)}=\frac{A(s)}{X_{0}^{+}(s)}

here, we obtain

V(z)= \frac{X_{0}(z)}{2\pi i}\int_{a}^{b}\frac{A(\sigma)}{X_{0}^{+}(\sigma)(\sigma-z)}d\sigma .
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Hence the solution of the equation (2.5) has the following form

h(s)= \frac{1}{K_{0}(s)}(F_{u}’(s, u_{0})g(s)+W_{0}(s)\frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{W_{0}(\sigma)(\sigma-s)}g(\sigma)d\sigma)

=L_{0}^{-1}(g(s)) ,

where

K_{0}(s)=F_{u}^{\prime 2}(s, u_{0}(s))+G_{u}^{\prime 2}(s, u_{0}(s))

and

W_{0}(s)=X_{0}^{+}(s)(F_{u}’(s, u_{0}(s))-G_{u}’(s, u_{0}(s)))

From inequalities (2.2) and (2.3), we have

||L_{0}^{-1}||_{\phi,m}\leq D_{0} and ||P_{0}(u)||\leq N_{0} ,

where D_{0} and N_{0} are constants. Hence all the conditions of applicability and
convergence of modified Newton’s method are satisfied, thus the following
theorem is valid. \square

Theorem 2.2 Let the conditions of Theorem 2.1 are satisfified and u_{0}\in

H_{\phi,m} be the initial approximation of equation (1.1), then if ||L_{0}^{-1}P(u_{0})||\leq

M_{0} , \epsilon_{0}=M_{0}D_{0}\xi_{0}<\frac{1}{2} . Then the equation (1.1) has a unique solution u^{*} in
the sphere

||u-u_{0}||_{\phi,m}\leq\rho_{0} , \rho>\rho_{0}=M_{0}(1-\sqrt{1-2\epsilon_{0}})/\epsilon_{0}

to which the successive approximations:

u_{n+1}=u_{n}-L_{0}^{-1}P(u_{n})

of modifified Newton’s method converges and the rate of convergence is given
by the inequality

||u_{n}-u^{*}||_{\phi,m} \leq\frac{M_{0}(1-\sqrt{1-2\epsilon_{0}})^{n}}{\sqrt{1-2\epsilon_{0}}} .

3. Second Case: (\chi>0 )

Definition 3.1 We denote by H_{\phi,m}^{*} to the class of all functions u(s) , rep-
resented in the form u(s)=|s-c|^{-\alpha_{0}}u_{*}(s) in the neighborhood of the end
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points a and 6, where -1\leq\alpha_{0}<1 , c=a or b and u_{*}(s)\in H_{\phi,m}[a, b] .
The set of all possible solutions of equation (1.1) can be divided into the
following subclasses;

- H_{\phi,m}^{*}(0) is the subclass of the functions from H_{\phi,m}^{*}[a, b] not limiting
near the end points a and b .

- H_{\phi,m}^{*}(a)(H_{\phi,m}^{*}(b)) is the subclass of the functions from H_{\phi,m}^{*}[a, b]

bounded near the end point a(b) .
- H_{\phi,m}^{*}(a, b) is the subclass of the functions from H_{\phi,m}^{*}[a, b] bounded near

the end points a and 6, vanishing at these points.
Now we are looking for the solution of equation (1.1) in the class H_{\phi,m}^{*}(a, b) .

Lemma 3.1 If the functions F(s, u) and G(s, u) satisfy the conditions
of Lemma 1.1 and G(a, u(a))=G(b, u(b))=0 , Then the operator P(u) is
Frechet differentia te in the space H_{\phi,m}^{*}(a, b) and its derivative is given by:

P’(u)h(s)=F_{u}’(s, u(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u(\sigma))}{\sigma-s}h(\sigma)d\sigma , (3.1)

where h(s) be an arbitrary element in H_{\phi,m}^{*}(a, b) , and satisfifies Lipschitz
condition

||P^{J}(u_{2})-P’(u_{1})||_{H_{\phi,m}}*\leq\xi_{0}||u_{2}-u_{1}||_{H_{\phi,m}^{*}}

in the sphere

N_{H_{\phi,m}^{*}}(u_{0}, \rho)=(u\in H_{\phi,m}^{* }, ||u-u_{0}||_{H_{\phi,m}^{*}}<\rho) .

Proof Similarly as Lemma 2.1. \square

Theorem 3.1 If the functions F(s, u(s)) and G(s, u(s)) satisfy the con-
ditions of Lemma 3.1, ,\frac{G’(c,u(c))}{F_{u}(c,u(c))}>0 and F_{u}^{\prime 2}(s, u(s))+G_{u}^{\prime 2}(s, u(s))\neq 0 .
Then the linear operator

L_{0}h=F_{u}’(s, u_{0}(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{\sigma-s}h(\sigma)d\sigma (3.2)

has a bounded inverse L_{0}^{-1} for any fifixed point u_{0}\in H_{\phi,m}^{*}(a, b) .

Proof To find the operator L_{0}^{-1} , we investigate the solvability of the
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equation,

F_{u}’(s, u_{0}(s))h(s)- \frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{\sigma-s}h(\sigma)d\sigma=g(s) (3.3)

where u_{0}\in H_{\phi,m}^{*}(a, b) be a fixed point and g(s)\in H_{\phi,m}^{*}(a, b) be an arbitrary
element. As the above case, we obtain the boundary condition (2.6). The
canonical function X_{1}(z) which is the solution of the homogeneous Riemann
problem of equation (2.6), near and at c is bounded and having finite degree
at infinity has the form:

X_{1}(z)=(a-z)^{\lambda_{1}}(b-z)^{\lambda_{2}} exp ( \int_{a}^{b}\frac{\theta(\sigma)}{\sigma-z}d\sigma) ,

where

\theta(s)=\frac{1}{\pi}\arctan\frac{G_{u}’(s,u_{0}(s))}{F_{u}’(s,u_{0}(s))}

and \lambda_{1} , \lambda_{2} are selecting integers satisfying the conditions

0<\lambda_{1}-\theta(a)<1 , 0<\lambda_{2}+\theta(b)<1

The number \chi=-(\lambda_{1}+\lambda_{2}) is called the index of the equation (3.3). Hence

X_{1}(s)=(a-s)^{\alpha}(b-s)^{\beta}\exp\{(\theta(a)-\theta(s)\ln(a-s)

+( \theta(s)-\theta(b))\ln(b-s)+\int_{a}^{b}\frac{\theta(\sigma)-\theta(s)}{\sigma-s}d\sigma)\}

where \alpha=\lambda_{1}-\theta(a) and \beta=\lambda_{2}+\theta(b) .
The unique solution of equation (3.3) is obtained in the subclass

\sim*

H_{\phi,m}(a, b) of H_{\phi,m}^{*}(a, b) where

H_{\phi,m}\sim*(a, b)=\{h\in H_{\phi,m}^{*}(a, b) : \int_{a}^{b}\sigma^{k-1}G_{u}’(\sigma, u_{0}(\sigma))h(\sigma)d\sigma=0 ,

k=1 , \ldots , \chi-1\} ,

and this solution has the form

h(s)= \frac{1}{K_{1}(s)}(F_{u}’(s, u_{0})g(s)+W_{1}(s)\frac{1}{\pi}\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))}{W_{1}(\sigma)(\sigma-s)}g(\sigma)d\sigma)

=[L_{0}^{-1}(u_{0})]g(s) ,



68 S. M. Amer and A. S. Nagdy

where

K_{1}(s)=F_{u}^{\prime 2}(s, u_{0}(s))+G_{u}^{\prime 2}(s, u_{0}(s))

and

W_{1}(s)=X_{1}^{+}(s)(F_{u}^{\prime 2}(s, u_{0}(s))-G_{u}^{\prime 2}(s, u_{0}(s)))

As the preceding case we have ||L_{0}^{-1}||_{\phi,m}\leq D_{1} and ||P_{0}(u)||\leq N_{1} . Thus
the following theorem is valid. \square

Theorem 3.2 Let the conditions of Theorem 3.1 are satisfified and u_{0}\in

\sim*

H_{\phi,m}(a, b) be the initial approximation of equation (1.1), then, if

||L_{0}^{-1}P(u_{0})||\leq M_{1} , \epsilon_{1}=M_{1}D_{1}\xi_{0}<\frac{1}{2} .

Then the equation (1.1) has a unique solution u^{**} in the sphere

||u-u_{0}||_{\phi,m}\leq\rho_{1} , \rho>\rho_{1}=M_{1}(1-\sqrt{1-2\epsilon_{1}})/\epsilon_{1}

to which the successive approximations: u_{n+1}=u_{n}-L_{0}^{-1}P(u_{n}) of modi-
fified Newton’s method converges and the rate of convergence is given by the
inequality

||u_{n}-u^{**}||_{\phi,m} \leq\frac{M_{1}(1-\sqrt{1-2\epsilon_{1}})^{n}}{\sqrt{1-2\epsilon_{1}}} .

4. Third Case:(\chi<0 )

Theorem 4.1 If the functions F(s, u(s)) and G(s, u(s)) satisfy the con-

ditions of Lemma 3.1, ,\frac{G’(c,u(c))}{F_{u}(c,u(c))}<0 and F_{u}^{\prime 2}(s, u(s))+G_{u}^{\prime 2}(s, u(s))\neq 0 .

Then the linear operator (3.2) has abounded inverse from the space Q into
H_{\phi,m}^{*}(a, b) , where Q=\{q : q=(u, c_{0}, c_{1}. . ’ c_{-\chi-1});u\in H_{\phi,m}^{*}(a, b) and
c_{0} , c_{1} , \ldots , c_{-\chi-1} are complex numbers}.

Proof In this case the function X_{1}(z) has at infinity a pole of order
(-\chi) , to obtain a solution of equation (3.3) we must using the following
conditions:

\int_{a}^{b}\frac{\sigma^{m-1}A(\sigma)}{X_{1}^{\pm}(\sigma)}d\sigma=0 , m=1 , \ldots, -\chi .
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Then L_{0}(u_{0}) : H_{\phi,m}^{*}(a, b) -arrow H_{\phi,m}^{*}(a, b) in general has no inverse for arbitrary
element g(s)\in H_{\phi,m}^{*}(a, b) . From [10] consider the equation

T(q)=P(u)- \sum_{k=0}^{-\chi-1}c_{k}s^{k} , (4.1)

where s^{k} , k=0,1 , \ldots, -\chi-1 , are linear independence solutions of the
equation L_{0}^{-1}g=0 . We define

||q||_{Q}=||u||_{H_{\phi,m}^{*}}+ \sum_{k=0}^{-\chi-1}|c_{k}|

The Frechet derivative of the operator T(q) at arbitrary point q is given by

T’(q)f=P’(u)h+ \sum_{k=0}^{-\chi-1}d_{k}s^{k} , f=(h, d_{0}, d_{1}, \ldots, d_{-\chi-1}) .

Moreover, T’(q) satisfies Lipschitz condition in the sphere N(q_{0}, \delta^{*}) of the
form

||T’(q_{1})-T’(q_{2})||_{Qarrow H_{\phi,m}^{*}}\leq\xi_{0}||q_{1}-q_{2}|| ; q_{1} , q_{2}\in N(q_{0}, \delta^{*}) .

The linear singular integral equation

T’(q_{0})f=L_{0}(h)+ \sum_{k=0}^{-\chi-1}d_{k}s^{k}=g(s)

has a unique solution f= (h, d_{0}, d_{1}, \ldots, d_{-\chi-1})\in Q for arbitrary right part
g(s)\in H_{\phi,m}^{*}(a, b) . Hence there exists inverse operator.

[T’(q_{0})]^{-1} : H_{\phi,m}^{*}(a, b)arrow Q .

The unknowns d_{0} , d_{1} , \ldots , d_{-\chi-1} are defined from the following relation

d_{K}= \sum_{m=0}^{-\chi-1}\frac{\triangle_{k,m}(-\chi)}{\triangle(-\chi)}D_{m} , k=0,1 , . . , -\chi-1

where

D_{m}= \int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))g(\sigma)}{W_{1}(\sigma)}\sigma^{m}d\sigma , \triangle(-\chi)

=\det[_{\mathcal{T}_{m,0}}, . , _{\tau_{m,-\chi-1}}]_{m=0}^{-\chi-1}\neq 0
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where

\tau_{m,k}=\int_{a}^{b}\frac{G_{u}’(\sigma,u_{0}(\sigma))\sigma^{k}}{W_{1}(\sigma)}\sigma^{m}d\sigma

and \triangle_{k,m}(-\chi) be the cofactor of the element in the kth row and mth column
in the determinant \triangle(-\chi) . Therefore the following theorem is valid. \square

Theorem 4.2 Let the conditions of Theorem 4.1 are satisfified and u_{0}\in

H_{\phi,m}^{*}(a, b) , q_{0}=(u_{0}, c_{0,0}, \ldots, c_{-\chi-1,0)} ,

||T’(q_{0})^{-1}||_{H_{\phi,m}^{*}(a,b)arrow Q}<D_{2} and

||[T’(qo)]^{-1}T(qo)||_{Qarrow Q}\leq M_{2} .

If \epsilon_{2}=M_{2}D_{2}\xi_{0}<\frac{1}{2} . Then the equation (4.1) has a unique solution q^{*}=

(u^{**}, c_{0}^{*}, \ldots, c_{-\chi-1}^{*})\in N(q_{0}, \delta_{0}) to which the iteration process converges

q_{n+1}=q_{n}-[T’(q_{0})]^{-1}T(q_{n}) , n=0,1 , .

where

\delta^{*}\geq\delta_{0}=M_{2}(1-\sqrt{1-2\epsilon_{2}})/\epsilon_{2}

Moreover, the rate of convergence of q_{n}\in Q to q^{*}\in Q given by the inequal-
ity

||q_{n}-q^{*}||_{Q} \leq\frac{M_{2}(1-\sqrt{1-2\epsilon_{2}})^{n}}{\sqrt{1-2\epsilon_{2}}} . (4.2)

Lemma 4.1 Let the conditions of Theorem 4.2 are satisfified then the values
c_{0,n} , . , c_{-\chi-1,n} tends to zero as n tends to infifinity iff when u^{**}\in H_{\phi,m}^{*}(a, b)

is the solution of equation (1.1).

Proof Let q^{*}= (u^{**}, c_{0}^{*}, \ldots, c_{-\chi-1}^{*})\in Q is the solution of equation (4.1),

if u^{**} is the solution of equation (1.1), then \sum_{k=0}^{-\chi-1}c_{k}^{*}s^{k}=0 from here c_{0}^{*}=

c_{1}^{*}= \cdot . =c_{-\chi-1}^{*}=0 by the linearly independence of the functions s^{k} ,
k=0,1 , \ldots, -\chi-1 . Then it follows from the inequality (4.2) that the
values c_{0,n} , . , c_{-\chi-1,n} tend to zero as n tends to infinity. If the values
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c_{0,n} , \ldots , c_{-\chi-1,n} tend to zero as n tends to infinity, then by the inequality

\sum_{k=0}^{-\chi-1}|c_{k,n}-c_{k}^{*}|\leq\frac{M_{2}(1-\sqrt{1-2\epsilon_{2}})^{n}}{\sqrt{1-2\epsilon_{2}}} .

it follows that c_{0}^{*}=c_{1}^{*}= , . =c_{-\chi-1}^{*}=0 . Then u^{**} is the solution
of equation (1.1). From Theorem 4.2 and Lemma 4.1 we have q^{*} is the
solution of equation (4.1), q_{n}=(u_{n}, c_{0,n}, . , c_{-\chi-1,n}) is its approximate
solution and u^{**} is the solution of equation (1.1), then the sequence \{u^{n}\}

is naturally taken as the approximate solution of equation (1.1). Moreover,
the following inequality is valid

||u_{n}-u^{**}|| \leq\frac{M_{2}(1-\sqrt{1-2\epsilon_{2}})^{n}}{\sqrt{1-2\epsilon_{2}}} .

\square
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