Nonsingular vector fields in $\mathcal{G}^{1}\left(M^{3}\right)$ satisfy Axiom A and no cycle: a new proof of Liao's theorem

Hiroyoshi Toyoshiba

(Received November 2, 1998; Revised April 26, 1999)

Abstract

In 1992, Hayashi [4] proved that diffeomorphisms in $\mathcal{F}^{1}(M)$ satisfy Axiom A. However, there exists a vector field which does not satisfy Axiom A in $\mathcal{G}^{1}\left(M^{3}\right)$ [3]. So, we consider the following problem: Does $X \in \mathcal{G}^{1}(M)$ without singularity satisfy Axiom A? In 1981, Liao [7] solved this problem for the case of $\operatorname{dim} M=3$, making use of, the so called, 'obstruction set' technique. But we are not familiar with the 'obstruction set' very much. So we try to prove the same theorem by a different method based on Mané's Ergodic Closing Lemma.

Key words: $\mathcal{G}^{1}(M)$, Axiom A, basic set.

1. Introduction

Let M^{n} be a n-dimensional compact smooth manifold without boundary and let $\mathcal{X}^{1}\left(M^{n}\right)$ be the set of C^{1} vector fields on M^{n} with the C^{1} topology. We denote by $X_{t}(t \in \mathbb{R})$ the C^{1} flow on M^{n} generated by $X \in \mathcal{X}^{1}\left(M^{n}\right)$. $\Omega(X)$ is the nonwandering set of X. A set $\Lambda \subset M^{n}$ is said to be hyperbolic set of $X \in \mathcal{X}^{1}\left(M^{n}\right)$ if it is compact, X_{t}-invariant for all $t \in \mathbb{R}$ and there is a continuous splitting $T M^{n} \mid \Lambda=E^{0} \oplus E^{s} \oplus E^{u}\left(E^{0}(x)=\mathbb{R} \cdot X(x), x \in \Lambda\right)$, invariant under $D_{x} X_{t}$ such that there exist $K>0,0<\lambda<1$, satisfying

$$
\left\|\left(D_{x} X_{t}\right) \mid E_{x}^{s}\right\| \leq K \lambda^{t}
$$

and

$$
\left\|\left(D_{x} X_{-t}\right) \mid E_{x}^{u}\right\| \leq K \lambda^{t}
$$

for all $t \geq 0, x \in \Lambda$.
When $\Omega(X)$ is hyperbolic and the periodic points are dense in $\Omega(X)$, we say that X satisfies Axiom A. Let $\mathcal{G}^{1}\left(M^{n}\right)$ denote the set of $X \in \mathcal{X}^{1}\left(M^{n}\right)$ which has a neighborhood \mathcal{U} such that if $Y \in \mathcal{U}$, then all periodic orbits and singularities of Y are hyperbolic. Hayashi proved that $f \in \mathcal{F}^{1}\left(M^{n}\right)$ satisfies Axiom A in [4] where $\mathcal{F}^{1}\left(M^{n}\right)$ is the diffeomorphism version of

[^0]$\mathcal{G}^{1}\left(M^{n}\right)$. However, for $\mathcal{G}^{1}\left(M^{n}\right)$, there exists a vector field in $\mathcal{G}^{1}\left(S^{3}\right)$ which does not satisfy Axiom A $([3]])$. Thus, it is quite natural for us to consider the following problem: Does $X \in \mathcal{G}^{1}\left(M^{n}\right)$ without singularity satisfy Axiom A? In 1981, Liao [7] solved this problem affirmatively for $\operatorname{dim} M=3$, making use of, the so called, 'obstruction set' technique. Here we will prove the same proposition by a different method based on Mañé's Ergodic Closing Lemma.

Main Theorem If a vector field X is in $\mathcal{G}^{1}\left(M^{3}\right)$ and has no singularities, then X satisfies Axiom A and no cycle condition.

Now, we attempt to give an outline of the proof without giving precise definitions. It is known that for $X \in \mathcal{G}^{1}\left(M^{n}\right)$, the number of attracting and repelling periodic orbits is finite (Pliss [15]). $L^{-}(X)$ denotes the set of α-limit points of $X . L^{-}(X)^{\prime}=L^{-}(X)-\{$ attracting and repelling periodic orbits $\}$ and $\overline{L^{-}(X)^{\prime}}$ is the closure of $L^{-}(X)^{\prime}$. So attracting and repelling periodic orbits are isolated, $\overline{L^{-}(X)^{\prime}} \cap$ (attracting and repelling periodic orbits $)=\emptyset$. For any $p \in L^{-}(X)^{\prime}$, there exist a sequence $\left\{t_{n}\right\}, t_{n} \geq 0\left(t_{n} \rightarrow \infty\right.$ as $n \rightarrow \infty)$ and $x \in M^{3}$ such that

$$
p=\lim _{n \rightarrow \infty} X_{-t_{n}}(x)
$$

Among the points $\left\{X_{-t_{n}}(x)\right\}$, we can find a pair $\left(X_{-t_{n_{1}}}(x), X_{-t_{n_{2}}}(x)\right)$ which are arbitrarily close to each other and can be closed by Pugh's Closing Lemma. Therefore we have a sequence $\left\{Y^{n}\right\}$ of C^{1} vector fields such that $\left\{Y^{n}\right\}$ converges to X and each Y^{n} has a periodic orbit P_{n} which is obtained by closing two points in $\left\{X_{-t_{n}}(x)\right\}$.

In $\S 2$, we prove that for sufficiently large n, P_{n} is a saddle type hyperbolic periodic orbit. Let $\left\{a_{n}\right\}$ be a sequence such that $a_{n} \in P_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=p$. Making use of this fact, we can show that $\overline{L^{-}(X)^{\prime}}$ has a dominated splitting. In $\S 3$, using Ergodic Closing Lemma we prove that this dominated splitting over $\overline{L^{-}(X)^{\prime}}$ is hyperbolic. Thus, we have $\overline{L^{-}(X)}=\overline{\operatorname{per}(X)}$ by theorem 3.1 in [12]. Hence, $\overline{L^{-}(x)}$ may be decomposed into a finite union of basic sets as

$$
\overline{L^{-}(X)}=\Lambda_{1} \cup \cdots \cup \Lambda_{k}
$$

In $\S 4$, we prove that $\overline{L^{-}(X)}$ has no cycles, then by theorem 4.1 in [12], we
obtain

$$
\overline{L^{-}(X)}=\overline{\operatorname{per}(X)}=\Omega(X)
$$

Therefore X satisfies Axiom A and no cycle condition.

2. Dominated-Splitting

Let N^{*} be the normal bundle to X over M^{3}. Each $x \in M^{3}$, the fiber N_{x} is a subspace of $T_{x} M^{3}$ with codimension one that is perpendicular to $X(x)$. For any $u \in N_{x}$, let $P_{t}^{X}(u)$ be the orthogonal projection of $D_{x} X_{t}(u)$ onto $N_{X_{t}(x)}$. Then

$$
P_{t}^{X}: N^{*} \rightarrow N^{*}
$$

is a C^{0} flow, which is linear on fibers. Let \mathcal{U}_{0} be a neighborhood of X in $\mathcal{G}^{1}\left(M^{3}\right)$ such that any $Y \in \mathcal{U}_{0}$ has no singularities.

Theorem 2.1 Let X belong to $\mathcal{G}^{1}\left(M^{3}\right)$ and have no singularities. Then there exist two numbers $0<\lambda<1, T>0$ such that there is a continuous P_{t}^{X}-invariant splitting $G^{s} \oplus G^{u}$ (a dominated splitting) on $\overline{L^{-}(X)^{\prime}}$ which satisfies the following conditions:
(a) $G^{s}(x)=E^{s}(x), G^{u}(x)=E^{u}(x)$ if $x \in \operatorname{per}(X)\left(E^{s} \oplus E^{u}\right.$ is a hyperbolic splitting),
(b) $\left\|P_{t}^{X}\left|G^{s}(x)\|\cdot\| P_{-t}^{X}\right| G^{u}\left(X_{t}(x)\right)\right\| \leq e^{-2 \lambda t}$ for any $t \geq T$,
(c) If τ is the period of $x \in \operatorname{per}(X), m$ is any positive integer, and $0=$ $t_{0}<t_{1}<\cdots<t_{k}=m \tau$ is any partition of the time interval $[0, m \tau]$ with $t_{i+1}-t_{i} \geq T$, then

$$
\begin{aligned}
& \frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|P_{t_{i+1}-t_{i}}^{X} \mid E^{s}\left(X_{t_{i}}(x)\right)\right\| \leq-\lambda \\
& \frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|P_{-\left(t_{i+1}-t_{i}\right)}^{X} \mid E^{u}\left(X_{t_{i+1}}(x)\right)\right\| \leq-\lambda
\end{aligned}
$$

Proof. For any $q \in L^{-}(X)^{\prime}$, there exist a sequence $t_{n}\left(t_{n} \geq 0, t_{n} \rightarrow \infty\right.$ as $n \rightarrow \infty)$ and $x \in M^{3}$ such that

$$
\lim _{n \rightarrow \infty} X_{-t_{n}}(x)=q
$$

We may choose a pair of points in the sequence $\left\{X_{-t_{n}}(x)\right\}$ and close the
pair by Pugh's Closing Lemma. That is, there exist a vector field Y, C^{1} close to X, and a periodic orbit P of Y through some point of $\left\{X_{-t_{n}}(x)\right\}$. From this, we may obtain sequences $\left\{Y^{n}\right\},\left\{P_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} Y^{n}=X
$$

and each Y^{n} has a periodic orbit P_{n} through some point of $\left\{X_{-t_{n}}(x)\right\}$. Let a_{n} be a point in P_{n} such that

$$
\lim _{n \rightarrow \infty} a_{n}=q
$$

We obtain the next lemma.
Lemma 2.2 In $\left\{P_{n}\right\}$ there is only a finite number of attracting and repelling periodic orbits.

Proof. Suppose $\left\{P_{n}\right\}$ has an infinite number of attracting periodic orbits, for the other case follows similarly by applying the same method to X_{-t} instead of X_{t}. We may assume that all the P_{n} are attracting periodic orbits of Y^{n}. Since each P_{n} is compact, a subsequence of $\left\{P_{n}\right\}$, denoted also by $\left\{P_{n}\right\}$, converges to some $X_{t^{-}}$-invariant closed subset F in $\overline{L^{-}(X)^{\prime}}$ with respect to Hausdorff metric. We take an individual measure μ_{n} corresponding to a point a_{n}, and we may assume that the sequence $\left\{\mu_{n}\right\}$ converges with weak-star topology to a probability measure μ on M. Each μ_{n} is invariant under Y_{t}^{n}. And μ is a measure supported on F. Let $\varphi_{n}: M^{3} \rightarrow \mathbb{R}(n \geq 1)$ be a sequence of real-valued continuous functions on M^{3} such that

$$
\lim _{n \rightarrow \infty} \varphi_{n}(a)=\varphi(a) \quad \text { uniformly on } M^{3} .
$$

Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}(a) d \mu_{n}=\int_{M^{3}} \varphi(a) d \mu . \tag{1}
\end{equation*}
$$

Because

$$
\begin{aligned}
& \left|\int_{M^{3}} \varphi_{n}(a) d \mu_{n}-\int_{M^{3}} \varphi(a) d \mu\right| \\
& \quad \leq\left|\int_{M^{3}} \varphi_{n}(a) d \mu_{n}-\int_{M^{3}} \varphi(a) d \mu_{n}\right|+\left|\int_{M^{3}} \varphi(a) d \mu_{n}-\int_{M^{3}} \varphi(a) d \mu\right|
\end{aligned}
$$

and $\varphi_{n}(a) \rightarrow \varphi(a)$ implies

$$
\left|\int_{M^{3}} \varphi_{n}(a) d \mu_{n}-\int_{M^{3}} \varphi(a) d \mu_{n}\right| \leq \int_{M^{3}}\left|\varphi_{n}(a)-\varphi(a)\right| d \mu_{n} \rightarrow 0
$$

while $\mu_{n} \rightarrow \mu$ implies

$$
\left|\int_{M^{3}} \varphi(a) d \mu_{n}-\int_{M^{3}} \varphi(a) d \mu\right| \rightarrow 0 .
$$

Moreover, since each μ_{n} is Y_{t}^{n}-invariant, μ is X_{t}-invariant. In fact, by (1) above, for any $t \in \mathbb{R}$,

$$
\begin{aligned}
& \int_{M^{3}} \varphi\left(X_{t}(a)\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}\left(X_{t}(a)\right) d \mu_{n}-\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n} \\
& \quad \quad+\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n} \\
& =\lim _{n \rightarrow \infty}\left(\int_{M^{3}} \varphi_{n}\left(X_{t}(a)\right) d \mu_{n}-\int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n}\right) \\
& \quad+\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n} \\
& =\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n}=\lim _{n \rightarrow \infty} \int_{M^{3}} \varphi_{n}(a) d \mu_{n}=\int_{M^{3}} \varphi(a) d \mu .
\end{aligned}
$$

Remark

$$
\lim _{n \rightarrow \infty}\left(\int_{M^{3}} \varphi_{n}\left(X_{t}(a)\right) d \mu_{n}-\int_{M^{3}} \varphi_{n}\left(Y_{t}^{n}(a)\right) d \mu_{n}\right)=0
$$

In fact, since $\lim _{n \rightarrow \infty} Y^{n}=X, d\left(X_{t}(a), Y_{t}^{n}(a)\right)$ is very small for sufficiently large n (for any $a \in M^{3}$ and a fixed t). On the other hand, as φ_{n} is uniformly continuous on M^{3}

$$
\left|\varphi_{n}\left(X_{t}(a)\right)-\varphi_{n}\left(Y_{t}^{n}(a)\right)\right|<\varepsilon
$$

for any $a \in M^{3}$ and sufficiently large n.
As μ_{n} is an individual measure corresponding to a_{n}

$$
\begin{equation*}
\int_{M^{3}} \varphi_{n}(a) d \mu_{n}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \varphi_{n}\left(Y_{s}^{n}\left(a_{n}\right)\right) d s . \tag{2}
\end{equation*}
$$

Here we have the following lemma from Liao [6].
Lemma 2.3 (Theorem 2.1 in Liao [6]). Let X be in $\mathcal{G}^{1}\left(M^{n}\right)$. Then there exist a C^{1} neighborhood $\tilde{\mathcal{U}}$ of X in $\mathcal{G}^{1}\left(M^{n}\right)$ and two numbers $0<\lambda=$ $\lambda(\tilde{\mathcal{U}})<1$ and $T=T(\tilde{\mathcal{U}})>0$ such that for any $Y \in \tilde{\mathcal{U}}$ and any periodic point p of Y, the following two estimates hold:
a) $\left\|P_{t}^{Y}\left|E^{s}(p)\|\cdot\| P_{-t}^{Y}\right| E^{u}\left(Y_{t}(p)\right)\right\| \leq e^{-2 \lambda t}$ for any $t \geq T$,
b) If τ is the period of p, m is any positive integer, and if $0=t_{0}<$ $t_{1}<\cdots<t_{k}=m \tau$ is any partition of the interval $[0, m \tau]$ with $t_{i+1}-t_{i} \geq T$, then

$$
\begin{aligned}
& \frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|P_{t_{i+1}-t_{i}}^{Y} \mid E^{s}\left(Y_{t_{i}}(p)\right)\right\|<-\lambda, \\
& \frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|P_{-\left(t_{i+1}-t_{i}\right)}^{Y} \mid E^{u}\left(Y_{t_{i+1}}(p)\right)\right\|<-\lambda .
\end{aligned}
$$

Assuming this lemma, we have a neighborhood \mathcal{U} of X in \mathcal{U}_{0} and $\lambda>0$, $T>0$ satisfying above theorem. Since Y^{n} converges to X, we may assume that Y^{n} is in \mathcal{U} for all n. For each n, let T_{n} be the period of P_{n} of Y^{n}, the periodic orbit with which we have been dealing. Since $Y^{n} \rightarrow X$ and we may assume that q is not a periodic point of X, we have

$$
\lim _{n \rightarrow \infty} T_{n}=+\infty
$$

Now let

$$
\begin{aligned}
\xi_{T}^{n}(a) & =\frac{1}{T} \log \left\|P_{T}^{Y^{n}}(a)\right\| \\
\xi_{T}(a) & =\frac{1}{T} \log \left\|P_{T}^{X}(a)\right\|
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} \xi_{T}^{n}(a)=\xi_{T}(a)$ uniformly on M^{3} for the number $T=T(\mathcal{U})>$ 0 . From Lemma 2.3 b), for sufficiently large n,

$$
\frac{T}{T_{n}}\left\{\sum_{k=1}^{m_{n}} \xi_{T}^{n}\left(Y_{(k-1) T}^{n}\left(a_{n}\right)\right)+\frac{1}{T} \log \left\|P_{T_{n}-m_{n} T}^{Y_{n}^{n}}\left(Y_{m_{n} T}^{n}\left(a_{n}\right)\right)\right\|\right\} \leq-\lambda
$$

where m_{n} is the greatest integer with $T_{n}-m_{n} T \geq T$ which certainly exists
for sufficiently large n. For sufficiently large n, we have

$$
\frac{T}{m_{n} T} \sum_{k=1}^{m_{n}} \xi_{T}^{n}\left(Y_{(k-1) T}^{n}(x)\right)<-\frac{\lambda}{2} \quad \text { for all } x \in P_{n}
$$

Thus

$$
\frac{1}{l m_{n}}\left(\sum_{k=1}^{l m_{n}} \xi_{T}^{n}\left(Y_{(k-1) T}^{n}\left(a_{n}\right)\right)\right)<-\frac{\lambda}{2} \quad l=1,2 \ldots
$$

Therefore

$$
\begin{aligned}
& \frac{1}{l m_{n} T} \int_{0}^{l m_{n} T} \xi_{T}^{n}\left(Y_{s}^{n}\left(a_{n}\right)\right) d s \\
& \quad=\frac{1}{l m_{n} T} \sum_{k=0}^{l m_{n}-1} \int_{k T}^{(k+1) T} \xi_{T}^{n}\left(Y_{s}^{n}\left(a_{n}\right)\right) d s \\
& \quad=\frac{1}{T} \int_{0}^{T} \frac{1}{l m_{n}} \sum_{k=0}^{l m_{n}-1} \xi_{T}^{n}\left(Y_{k T}^{n}\left(Y_{s}^{n}\left(a_{n}\right)\right)\right) d s<-\frac{\lambda}{2} \quad l=1,2, \ldots .
\end{aligned}
$$

Thus from (2)

$$
\int_{P_{n}} \xi_{T}^{n}(a) d \mu_{n}<-\frac{\lambda}{2} .
$$

Thus, from (1) we have

$$
\int_{F} \xi_{T}(a) d \mu=\lim _{n \rightarrow \infty} \int_{P_{n}} \xi_{T}^{n}(a) d \mu_{n} \leq-\frac{\lambda}{2}<0 .
$$

Now we need a lemma from Liao [6] to proceed.
Lemma 2.4 (Liao [6], Lemma 3.2). Let F be a closed subset of M^{n}, invariant under X_{t}. Assume that for a certain $\tilde{T} \in(0, \infty)$, there is a probability measure μ on F, invariant under X_{t} such that:

$$
\begin{equation*}
\int_{F} \xi_{\tilde{T}}(a) d \mu<0 \text { or } \int_{F} \xi_{-\tilde{T}}(a) d \mu>0 \tag{*}
\end{equation*}
$$

Then, F contains a periodic orbit of X attracting or repelling corresponding to the first inequality or the second of (*).

Using this lemma, we obtain attracting periodic orbit in F but this is a contradiction because attracting periodic orbit is isolated from $\overline{L^{-}(X)^{\prime}}$.

Thus we have completed the proof of Lemma 2.2.
For any $q \in L^{-}(X)^{\prime}$, we can take sequences $\left\{Y^{n}\right\},\left\{P_{n}\right\},\left\{a_{n}\right\}$, such that

$$
\lim _{n \rightarrow \infty} Y^{n}=X, \quad \lim _{n \rightarrow \infty} a_{n}=q \quad\left(a_{n} \in P_{n}\right)
$$

and each P_{n} is a hyperbolic saddle. By Lemma 2.3 we may assume that for any P_{n}

$$
\left\|P_{t}^{Y^{n}}\left(a_{n}\right)\left|E^{s}\left(a_{n}\right)\|\cdot\| P_{-t}^{Y^{n}}\left(Y_{t}^{n}\left(a_{n}\right)\right)\right| E^{u}\left(Y_{t}^{n}\left(a_{n}\right)\right)\right\| \leq e^{-2 \lambda t}, \quad t \geq T
$$

And for any $t \in \mathbb{R}$, the sequences $E^{s}\left(Y_{t}^{n}\left(a_{n}\right)\right), E^{u}\left(Y_{t}^{n}\left(a_{n}\right)\right)$ converge to subspaces of $N_{X_{t}(q)}$ which we define as $G^{s}\left(X_{t}(q)\right)$ and $G^{u}\left(X_{t}(q)\right)$ respectively. Hence we attach to every $q \in L^{-}(X)^{\prime}$ two subspaces $G^{s}\left(X_{t}(q)\right)$ and $G^{u}\left(X_{t}(q)\right)$ with the following properties:

$$
\begin{align*}
& \operatorname{dim} G_{q}^{s}+\operatorname{dim} G_{q}^{u}=2 \tag{3}\\
& \left(P_{t}^{X}(q)\right) G_{x}^{\sigma}=G_{X_{t}(q)}^{\sigma} \sigma=s, u \text { for any } t \in \mathbb{R} \tag{4}\\
& \left\|P_{t}^{X}\left|G_{x}^{s}\|\cdot\| P_{-t}^{X}\right| G_{X_{t}(x)}^{u}\right\| \leq e^{-2 \lambda t}, \quad t \geq T \tag{5}
\end{align*}
$$

and if $x \in \operatorname{per}(X)$, then $G^{s}(x)=E^{s}(x), G^{u}(x)=E^{u}(x)$. Moreover, as in p. 526 of Mañé [8],

$$
\begin{equation*}
G^{s}(x) \oplus G^{u}(x)=N_{x} \quad \text { for any } \quad x \in L^{-}(X)^{\prime} \tag{6}
\end{equation*}
$$

By Proposition I. 3 of Mañé [10], we can extend this splitting to $\overline{L^{-}(X)^{\prime}}$. Properties (3)-(6) imply that the subspaces $G^{s}(x)$ and $G^{u}(x)$ depend continuously on $x \in \overline{L^{-}(X)^{\prime}}$.

3. Hyperbolicity of $\overline{L^{-}(X)^{\prime}}$

In $\S 2$ we obtained dominated splitting $N^{*} \mid \overline{L^{-}(X)^{\prime}}=G^{s} \oplus G^{u}$. Now we show that this splitting is hyperbolic. By compactness of $\overline{L^{-}(X)^{\prime}}$, it is easy to see that if

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|P_{n}^{X}(a) \mid G^{s}(a)\right\|=0 \tag{7}
\end{equation*}
$$

and

$$
\liminf _{n \rightarrow \infty}\left\|P_{-n}^{X}(a) \mid G^{u}(a)\right\|=0
$$

hold for all $a \in \overline{L^{-}(X)^{\prime}}$, then the splitting $N^{*} \mid \overline{L^{-}(X)^{\prime}}=G^{s} \oplus G^{u}$ is hyperbolic. We shall prove only the first one, because the second one follows if we apply the same method to X_{-t} instead of X_{t}. If (7) does not hold for all $a \in \overline{L^{-}(X)^{\prime}}$, we can find $x \in \overline{L^{-}(X)^{\prime}}$ and a sequence $j_{n} \rightarrow+\infty$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{j_{n}} \log \left\|\left(P_{m j_{n}}^{X}(x)\right) \mid G^{s}(x)\right\| \geq 0
$$

where m is the smallest integer satisfying $m \geq T$ (T is given in Theorem 2.1). Without loss of generality we may suppose that the sequence $\left\{j_{n}\right\}$ is such that there exists an X_{m}-invariant probability measure μ on $\overline{L^{-}(X)^{\prime}}$ such that

$$
\left.\int \frac{}{L^{-}(X)^{\prime}}\right) \varphi d \mu=\lim _{n \rightarrow \infty} \frac{1}{j_{n}} \sum_{i=0}^{j_{n}-1} \varphi\left(X_{m i}(x)\right)
$$

for every continuous $\varphi: M^{3} \rightarrow \mathbb{R}$. Setting

$$
\varphi(a)=\log \left\|\left(P_{m}^{X}(a)\right) \mid G^{s}(a)\right\|
$$

we have

$$
\begin{align*}
\int \frac{L^{-}(X)^{\prime}}{} \varphi d \mu & =\lim _{n \rightarrow \infty} \frac{1}{j_{n}} \sum_{i=0}^{j_{n}-1} \log \|\left(P_{m}^{X}\left(X_{m i}(x)\right) \mid G^{s}\left(X_{m i}(x)\right) \|\right. \\
& \geq \lim _{n \rightarrow \infty} \frac{1}{j_{n}} \log \left\|\left(P_{m j_{n}}^{X}(x)\right) \mid G^{s}(x)\right\| \geq 0 \tag{8}
\end{align*}
$$

On the other hand, by Birkhoff's theorem

$$
\begin{align*}
& \int \frac{L^{-}(X)^{\prime}}{} \varphi d \mu \\
& \quad=\int \frac{\lim _{\overline{L^{-}(X)^{\prime}}} \frac{1}{n} \sum_{i=0}^{n-1} \log \|\left(P_{m}^{X}\left(X_{m i}(a)\right) \mid G^{s}\left(X_{m i}(a)\right) \| d \mu\right.}{} . \tag{9}
\end{align*}
$$

Now we need the following lemma.
Lemma 3.1 (Ergodic Closing Lemma, Lemma VII. 6 in Hayashi [5]).

$$
\mu(\Sigma(X) \cup \operatorname{Sing}(X))=1
$$

for every X_{1}-invariant probability measure μ on the borel sets of M^{n}, where $\operatorname{Sing}(X)$ denotes the set of singularities of X.

We define $\Sigma(X)$ as the set of points $x \in M^{3}$ such that for every neighborhood $\mathcal{U}(X)$ and every $\varepsilon>0$, there exist $Y \in \mathcal{U}(X) y \in \operatorname{per}(Y), T_{0}>0$ and $t_{0}, t_{1} \in \mathbb{R}$ with $t_{0}<t_{1}$ such that $Y_{T_{0}}(y)=y, X=Y$ on $M^{3}-B_{\varepsilon}(X, x)$ $\left(B_{\varepsilon}(X, x)=\left\{y \in M^{3}: d\left(X_{t}(x), y\right) \leq \varepsilon\right.\right.$ for some $\left.\left.t \in \mathbb{R}\right\}\right),\left\{X_{t}(x): t_{0} \leq t \leq\right.$ $\left.t_{1}\right\} \subset\left\{Y_{t}(y): t \geq 0\right\},\left(t_{1}-t_{0}\right) / T_{0}>1-\varepsilon$ and $d\left(Y_{t}(y), X_{t}(x)\right) \leq \varepsilon$ for all $0 \leq t \leq T_{0}$. Note that $\Sigma(X)$ is X_{1}-invariant. From the above Lemma 3.1 and (8), (9), there exists $p \in \Sigma(X) \cap \overline{L^{-}(X)^{\prime}}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log \left\|P_{m}^{X}\left(X_{m i}(p)\right) \mid G^{s}\left(X_{m i}(p)\right)\right\| \geq 0 \tag{10}
\end{equation*}
$$

Now take $-\lambda<-\lambda_{0}<0, n_{0}>$ such that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-1} \log \left\|P_{m}^{X}\left(X_{m i}(p)\right) \mid G^{s}\left(X_{m i}(p)\right)\right\| \geq-\frac{\lambda_{0}}{2} m \tag{11}
\end{equation*}
$$

where $n \geq n_{0}$. Observe that the point p is not periodic because if it were, it should be hyperbolic with $E^{s}(p)=G^{s}(p)$ and then (11) would contradict the first inequality of (b) of Lemma 2.3. Since $p \in \Sigma(X) \cap \overline{L^{-}(X)^{\prime}}$, we can find Y arbitrarily near X and $\bar{p} \in \operatorname{per}(Y)$ such that $X=Y$ on $M^{3}-B_{\varepsilon}(X, p)$ with sufficiently small $\varepsilon>0$ and such that the distance between $X_{t}(p)$ and $Y_{t}(\bar{p})$ is small for all $0 \leq t \leq T_{0}$, where T_{0} denotes the minimum Y-period of \bar{p}. Since p is not X_{t}-periodic, the period T_{0} goes to ∞ when Y approaches X. Using the same technique as that in p. 349 of Wen [17], we may take \bar{Y} arbitrarily close to Y and a periodic point \bar{p} of \bar{Y} with period T_{0}. That is, N^{*} restricted to the \bar{Y}-orbit \bar{p} has an $P_{t}^{\bar{Y}}$-invariant splitting $\bar{G}^{s} \oplus \bar{G}^{u}$ such that

$$
\begin{aligned}
& \left\|P_{-m}^{\bar{Y}}\left(\bar{Y}_{m(j+1)}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{m(j+1)}(\bar{p})\right)\right\| \\
& \quad=\left\|P_{-m}^{X}\left(X_{m(j+1)}(p)\right) \mid G^{u}\left(X_{m(j+1)}(p)\right)\right\| \\
& \quad\left\|P_{m}^{\bar{Y}}\left(\bar{Y}_{m j}(\bar{p})\right) \mid \bar{G}^{s}\left(\bar{Y}_{m j}(\bar{p})\right)\right\| \\
& \quad=\left\|P_{m}^{X}\left(X_{m j}(p)\right) \mid G^{s}\left(X_{m j}(p)\right)\right\|
\end{aligned}
$$

for all $0 \leq j \leq\left[T_{0} / m\right]-2$,

$$
\begin{aligned}
& \left\|P_{-\left(T_{0}-m\left[T_{0} / m\right]+m\right)}^{\bar{Y}}\left(\bar{Y}_{T_{0}}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{T_{0}}(\bar{p})\right)\right\| \\
& \quad=\left\|P_{-\left(T_{0}-m\left[T_{0} / m\right]+m\right)}^{X}\left(X_{T_{0}}(p)\right) \mid G^{u}\left(X_{T_{0}}(p)\right)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|P_{T_{0}-m\left[T_{0} / m\right]+m}^{\bar{Y}}\left(\bar{Y}_{m\left[T_{0} / m\right]-m}(\bar{p})\right) \mid \bar{G}^{s}\left(\bar{Y}_{m\left[T_{0} / m\right]-m}(\bar{p})\right)\right\| \\
& \quad=\left\|P_{T_{0}-m\left[T_{0} / m\right]+m}^{X}\left(X_{m\left[T_{0} / m\right]-m}(p)\right) \mid G^{s}\left(X_{m\left[T_{0} / m\right]-m}(p)\right)\right\|
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \left\|P_{-T_{0}}^{\bar{Y}}\left(\bar{Y}_{T_{0}}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{T_{0}}(\bar{p})\right)\right\| \quad\left(k=\left[T_{0} / m\right]-1\right) \\
& \leq \prod_{i=0}^{k-1}\left(\left\|P_{-m}^{\bar{Y}}\left(\bar{Y}_{m k-m i}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{m k-m i}(\bar{p})\right)\right\|\right. \\
& \left.\quad \times\left\|P_{m}^{\bar{Y}}\left(\bar{Y}_{m(k-1)-m i}(\bar{p})\right) \mid \bar{G}^{s}\left(\bar{Y}_{m(k-1)-m i}(\bar{p})\right)\right\|\right) \\
& \quad \times\left(\prod_{i=0}^{k-1}\left\|P_{m}^{X}\left(X_{m(k-1)-m i}(p)\right) \mid G^{s}\left(X_{m(k-1)-m i}(p)\right)\right\|\right)^{-1} \\
& \quad \times\left\|P_{-\left(T_{0}-m k\right)}^{\bar{Y}}\left(\bar{Y}_{T_{0}}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{T_{0}}(\bar{p})\right)\right\|
\end{aligned}
$$

Note that we used (11) to induced the last inequality above. If T_{0} is very large, then k can be also large so that:

$$
e^{-2 \lambda m k} \times e^{\frac{\lambda_{0}}{2} m k} \times\left\|P_{-\left(T_{0}-m k\right)}^{\bar{Y}}\left(\bar{Y}_{T_{0}}(\bar{p})\right) \mid \bar{G}^{u}\left(\bar{Y}_{T_{0}}(\bar{p})\right)\right\|<1
$$

Thus, $\bar{G}^{u} \subset E^{u}$ (where $E^{s} \oplus E^{u}$ is hyperbolic splitting of orbit \bar{p} for \bar{Y}). Therefore $\operatorname{dim} E^{u} \geq \operatorname{dim} \bar{G}^{u}=1$. That is, $\operatorname{dim} E^{s} \leq 1$. If $\operatorname{dim} E^{s}=1$, then $\bar{G}^{u}=E^{u}, \bar{G}^{s}=E^{s}$. By Lemma 2.3 b) and (11) above, we have,

$$
\begin{aligned}
e^{-\frac{\lambda}{2} m k} & >\prod_{i=0}^{k-1}\left\|P_{m}^{\bar{Y}}\left(\bar{Y}_{m i}(\bar{p})\right) \mid E^{s}\left(\bar{Y}_{m i}(\bar{p})\right)\right\| \\
& =\prod_{i=0}^{k-1}\left\|P_{m}^{X}\left(X_{m i}(p)\right) \mid G^{s}\left(X_{m i}(p)\right)\right\| \quad(\text { from }(11)) \\
& >e^{-\frac{\lambda_{0}}{2} m k}
\end{aligned}
$$

This is a contradiction. Thus, $\operatorname{dim} E^{s}=0$ whenever we create $\bar{Y} C^{1}$-close to Y. Therefore, we obtain a sequence $\left\{\bar{Y}^{n}\right\}, \bar{Y}^{n} \rightarrow X$ such that \bar{Y}^{n} has a periodic orbit with index 0 and which converges to some closed set in $\overline{L^{-}(X)^{\prime}}$. Then as in the argument of Lemma 2.2, $\overline{L^{-}(X)^{\prime}}$ has a periodic
orbit with index 0 , contradicting the definition of $\overline{L^{-}(X)^{\prime}}$. Thus, we can conclude that G^{s} is contracting and that $\overline{L^{-}(X)^{\prime}}$ is a hyperbolic set for X.

4. Proof of Main Theorem

In $\S 3$ we proved that if X is in $\mathcal{G}^{1}\left(M^{3}\right)$ and has no singularities, then $\overline{L^{-}(X)}$ is hyperbolic. In this section we show that X satisfies Axiom A.

Theorem 4.1 (Theorem 3.1 in Newhouse [12]). If $\overline{L^{-}(X)}$ is hyperbolic, then $\overline{L^{-}(X)}=\overline{\operatorname{per}(X)}$.

Proof. The same method as in Theorem 3.1 of [12].
Therefore, we can conclude that $\overline{L^{-}(X)}=\overline{\operatorname{per}(X)}$ and $\overline{L^{-}(X)}$ is a hyperbolic set for X. Now, $\overline{L^{-}(X)}$ is decomposable to finite union of basic sets.

$$
\overline{L^{-}(X)}=\Lambda_{1} \cup \Lambda_{2} \cdots \cup \Lambda_{k}
$$

A basic set means an isolated, transitive hyperbolic set. If $\overline{L^{-}(X)}$ has no cycles, we obtain the next theorem from [12].

Theorem 4.2 (Theorem 4.1 in [12]). If $\overline{L^{-}(X)}$ is hyperbolic and X has no cycles, then $\overline{L^{-}(X)}=\overline{\operatorname{per}(X)}=\Omega(X)$.

Proof. In this theorem if $\overline{L^{-}(X)}$ is hyperbolic and X has no c-cycle, then the conditions are the same as in Theorem 4.1 in [12]. But by Proposition 3.10 in [12], we have that no cycle implies no c-cycle. Therefore, we may apply the Theorem 4.1 in [12]. And as the proof of Theorem 4.1 in [12] depends on a filtration theorem to basic sets which have no c-cycle, we can apply the proof of Theorem 4.1 in [12] to flows.

By this theorem, it suffices to prove that $\overline{L^{-}(X)}$ has no cycles, to conclude that X satisfies Axiom A and no cycle condition.

Theorem 4.3 If X is in $\mathcal{G}^{1}\left(M^{3}\right)$ and has no singularities, then $\overline{L^{-}(X)}=$ $\Lambda_{1} \cup \cdots \cup \Lambda_{k}$ has no cycles.

Proof. Suppose that there is a cycle $\Lambda_{i_{1}}, \ldots, \Lambda_{i_{s}}$ of basic sets with $\Lambda_{i_{j}} \neq$ $\Lambda_{i_{k}}(0 \leq j<k \leq s)$. Let $b_{j}(j=1, \ldots, s)$ be points of M^{3} such that

$$
b_{j} \in W^{u}\left(\Lambda_{i_{j}}\right) \cap W^{s}\left(\Lambda_{i_{j+1}}\right), \quad j=1, \ldots, s-1
$$

and

$$
b_{s} \in W^{u}\left(\Lambda_{i_{s}}\right) \cap W^{s}\left(\Lambda_{i_{1}}\right) .
$$

Then at least one of them is not transversal intersection. We obtain next lemma which is the flow version of Lemma II. 9 in [8]. For the next lemma we shall need the concept of angle between subspaces of the Euclidean space. If E_{1}, E_{2} are subspaces of \mathbb{R}^{2} such that $E_{1} \oplus E_{2}=\mathbb{R}^{2}$ we define the angle $\alpha\left(E_{1}, E_{2}\right)$ as $\alpha\left(E_{1}, E_{2}\right)=\|L\|^{-1}$, where $L: E_{1}^{\perp} \rightarrow E_{1}$ is the linear map such that $E_{2}=\left\{v+L v \mid v \in E_{1}^{\perp}\right\}$; in particular, $\alpha\left(E_{1}, E_{1}^{\perp}\right)=+\infty$.

Lemma 4.4 If X is in $\mathcal{G}^{1}\left(M^{n}\right)$ then there exist $\alpha^{\prime}>0$, neighborhood \mathcal{U}^{\prime} of X and $T^{\prime}>0$ such that if $Y \in \mathcal{U}^{\prime}$ and P is a periodic orbit of Y with period $T_{Y}\left(>T^{\prime}\right)$ then $\alpha\left(E^{s}(p), E^{u}(p)\right)>\alpha^{\prime}\left(p \in P, E^{s}(p), E^{u}(p) \subset N^{*}\right)$.

Now we assume that only b_{1} is not transversal intersection. Then we perturb X at b_{1} and obtain $Y C^{1}$-close to X such that b_{1} is transversal intersection and $v_{1}, v_{2} \in N^{*}\left(b_{1}\right)$ are tangent to $W^{s}\left(\Lambda_{i_{2}}\right), W^{u}\left(\Lambda_{i_{1}}\right)$ respectively such that $\alpha\left(V_{1}, V_{2}\right)<\alpha^{\prime}$, where V_{1} and V_{2} are subspaces in $N^{*}\left(b_{1}\right)$ spanned by v_{1}, v_{2} respectively. Then we can find a periodic point p arbitrarily close to b_{1} whose period T_{p} is sufficiently large. Since p is very close to $b_{1}, W^{s}(p)$ and $W^{u}(p)$ are C^{1} close to $W^{s}\left(\Lambda_{i_{2}}\right), W^{u}\left(\Lambda_{i_{1}}\right)$ respectively at b_{1}. So, $\alpha\left(E^{s}(p), E^{u}(p)\right)<\alpha^{\prime}$. But this contradicts Lemma 4.4. We have completed the proof of Theorem 4.3.

References

[1] Doering C., Persistently transitive vector fields on three-dimensional manifolds. Dynamical Systems and Bifurcation Theory (M.I. Camacho, M.J. Pacifico and F. Takens, eds.), Pitman Res. Notes Math. Vol. 160, Longman, 1987, 59-89.
[2] Franks J., Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301-308.
[3] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its application, Applied Mathmatical Series, Vol. 19, Springer-Verleg, 1976, 368-381.
[4] Hayashi S., Diffeomorphisms in $\mathcal{F}^{1}(M)$ satisfy Axiom A. Ergod. Th. and Dynam. Sys. 12 (1992), 233-253.
[5] Hayashi S., Connecting invariant manifolds and the solution of the C^{1} stability and Ω-stability Conjecture for flows. Ann. of Math. 145 (1997), 81-137.
[6] Liao S.T., On the stability conjecture. Chinese Ann. Math. 1 (1980), 9-30.
[7] Liao S.T., Obstruction sets II. Acta Sci. Natur. Univ. Pekinensis. 2 (1981), 1-36.
[8] Mañé R., An ergodic closing lemma. Ann. of Math. 116 (1982), 503-540.
[9] Mañé R., On the creation of homoclinic point. Publ. Math. IHES 66 (1988), 139159.
[10] Mañé R., A proof of the C^{1}-Stability Conjecture. Publ. Math. IHES 66 (1988), 161-210.
[11] Mañé R., Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc. 246 (1978), 261-283.
[12] Newhouse S., Hyperbolic limit sets. Trans. Amer. Math. Soc. 167 (1972), 125-150.
[13] Palis J., A note on Ω-stability. Global Analysis, Proc. Sympos. Pure Math Vol. 14, Amer. Math. Soc., 1970, 221-222.
[14] Palis J., On the $C^{1} \Omega$-Stability Conjecture. Publ. Math. IHES 66 (1988), 211-215.
[15] V.A. Pliss, On a conjecture due to Smale. Diff. Uravenyia. 8 (1972), 268-282.
[16] Pugh C. and Robinson C., The C^{1} Closing Lemma, including Hamiltonians. Erg. Th. and Dynam. Sys. 3 (1983), 261-313.
[17] Wen L., On the C^{1} stability conjecture for flows. J. Diff. Eq. 129 (1996), 334-357.

Department of Mathematics
Waseda University
Nishi-Waseda, Shinjukuku
Tokyo 169-8050, Japan

[^0]: 1991 Mathematics Subject Classification : Primary 58F10.

