Nonsingular vector fields in $\mathcal{G}^1(M^3)$ satisfy Axiom A and no cycle: a new proof of Liao's theorem

Hiroyoshi Toyoshiba

(Received November 2, 1998; Revised April 26, 1999)

Abstract. In 1992, Hayashi [4] proved that diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A. However, there exists a vector field which does not satisfy Axiom A in $\mathcal{G}^1(M^3)$ [3]. So, we consider the following problem: Does $X \in \mathcal{G}^1(M)$ without singularity satisfy Axiom A? In 1981, Liao [7] solved this problem for the case of dim M = 3, making use of, the so called, 'obstruction set' technique. But we are not familiar with the 'obstruction set' very much. So we try to prove the same theorem by a different method based on Mañé's Ergodic Closing Lemma.

Key words: $\mathcal{G}^1(M)$, Axiom A, basic set.

1. Introduction

Let M^n be a *n*-dimensional compact smooth manifold without boundary and let $\mathcal{X}^1(M^n)$ be the set of C^1 vector fields on M^n with the C^1 topology. We denote by X_t $(t \in \mathbb{R})$ the C^1 flow on M^n generated by $X \in \mathcal{X}^1(M^n)$. $\Omega(X)$ is the nonwandering set of X. A set $\Lambda \subset M^n$ is said to be hyperbolic set of $X \in \mathcal{X}^1(M^n)$ if it is compact, X_t -invariant for all $t \in \mathbb{R}$ and there is a continuous splitting $TM^n | \Lambda = E^0 \oplus E^s \oplus E^u$ $(E^0(x) = \mathbb{R} \cdot X(x), x \in \Lambda)$, invariant under $D_x X_t$ such that there exist $K > 0, 0 < \lambda < 1$, satisfying

$$\|(D_x X_t) \,|\, E_x^s\| \le K\lambda^t$$

and

$$\|(D_x X_{-t}) \,|\, E_x^u\| \le K \lambda^t$$

for all $t \ge 0, x \in \Lambda$.

When $\Omega(X)$ is hyperbolic and the periodic points are dense in $\Omega(X)$, we say that X satisfies Axiom A. Let $\mathcal{G}^1(M^n)$ denote the set of $X \in \mathcal{X}^1(M^n)$ which has a neighborhood \mathcal{U} such that if $Y \in \mathcal{U}$, then all periodic orbits and singularities of Y are hyperbolic. Hayashi proved that $f \in \mathcal{F}^1(M^n)$ satisfies Axiom A in [4] where $\mathcal{F}^1(M^n)$ is the diffeomorphism version of

¹⁹⁹¹ Mathematics Subject Classification : Primary 58F10.

 $\mathcal{G}^1(M^n)$. However, for $\mathcal{G}^1(M^n)$, there exists a vector field in $\mathcal{G}^1(S^3)$ which does not satisfy Axiom A ([3]). Thus, it is quite natural for us to consider the following problem: Does $X \in \mathcal{G}^1(M^n)$ without singularity satisfy Axiom A? In 1981, Liao [7] solved this problem affirmatively for dim M = 3, making use of, the so called, 'obstruction set' technique. Here we will prove the same proposition by a different method based on Mañé's Ergodic Closing Lemma.

Main Theorem If a vector field X is in $\mathcal{G}^1(M^3)$ and has no singularities, then X satisfies Axiom A and no cycle condition.

Now, we attempt to give an outline of the proof without giving precise definitions. It is known that for $X \in \mathcal{G}^1(M^n)$, the number of attracting and repelling periodic orbits is finite (Pliss [15]). $L^-(X)$ denotes the set of α -limit points of X. $L^-(X)' = L^-(X) - \{$ attracting and repelling periodic orbits $\}$ and $\overline{L^-(X)'}$ is the closure of $L^-(X)'$. So attracting and repelling periodic orbits are isolated, $\overline{L^-(X)'} \cap \{$ attracting and repelling periodic orbits $\} = \emptyset$. For any $p \in L^-(X)'$, there exist a sequence $\{t_n\}, t_n \ge 0$ ($t_n \to \infty$ as $n \to \infty$) and $x \in M^3$ such that

$$p = \lim_{n \to \infty} X_{-t_n}(x).$$

Among the points $\{X_{-t_n}(x)\}\)$, we can find a pair $(X_{-t_{n_1}}(x), X_{-t_{n_2}}(x))\)$ which are arbitrarily close to each other and can be closed by Pugh's Closing Lemma. Therefore we have a sequence $\{Y^n\}\)$ of C^1 vector fields such that $\{Y^n\}\)$ converges to X and each Y^n has a periodic orbit P_n which is obtained by closing two points in $\{X_{-t_n}(x)\}\)$.

In §2, we prove that for sufficiently large n, P_n is a saddle type hyperbolic periodic orbit. Let $\{a_n\}$ be a sequence such that $a_n \in P_n$ and $\lim_{n\to\infty} a_n = p$. Making use of this fact, we can show that $\overline{L^-(X)'}$ has a dominated splitting. In §3, using Ergodic Closing Lemma we prove that this dominated splitting over $\overline{L^-(X)'}$ is hyperbolic. Thus, we have $\overline{L^-(X)} = \overline{\operatorname{per}(X)}$ by theorem 3.1 in [12]. Hence, $\overline{L^-(x)}$ may be decomposed into a finite union of basic sets as

$$\overline{L^{-}(X)} = \Lambda_1 \cup \cdots \cup \Lambda_k.$$

In §4, we prove that $\overline{L^{-}(X)}$ has no cycles, then by theorem 4.1 in [12], we

obtain

$$\overline{L^{-}(X)} = \overline{\operatorname{per}(X)} = \Omega(X).$$

Therefore X satisfies Axiom A and no cycle condition.

2. Dominated-Splitting

Let N^* be the normal bundle to X over M^3 . Each $x \in M^3$, the fiber N_x is a subspace of $T_x M^3$ with codimension one that is perpendicular to X(x). For any $u \in N_x$, let $P_t^X(u)$ be the orthogonal projection of $D_x X_t(u)$ onto $N_{X_t(x)}$. Then

$$P_t^X : N^* \to N^*$$

is a C^0 flow, which is linear on fibers. Let \mathcal{U}_0 be a neighborhood of X in $\mathcal{G}^1(M^3)$ such that any $Y \in \mathcal{U}_0$ has no singularities.

Theorem 2.1 Let X belong to $\mathcal{G}^1(M^3)$ and have no singularities. Then there exist two numbers $0 < \lambda < 1$, T > 0 such that there is a continuous P_t^X -invariant splitting $G^s \oplus G^u$ (a dominated splitting) on $\overline{L^-(X)'}$ which satisfies the following conditions:

- (a) $G^{s}(x) = E^{s}(x), G^{u}(x) = E^{u}(x)$ if $x \in per(X)$ $(E^{s} \oplus E^{u}$ is a hyperbolic splitting),
- (b) $||P_t^X | G^s(x)|| \cdot ||P_{-t}^X | G^u(X_t(x))|| \le e^{-2\lambda t}$ for any $t \ge T$,
- (c) If τ is the period of $x \in per(X)$, m is any positive integer, and $0 = t_0 < t_1 < \cdots < t_k = m\tau$ is any partition of the time interval $[0, m\tau]$ with $t_{i+1} t_i \ge T$, then

$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log ||P_{t_{i+1}-t_i}^X| E^s(X_{t_i}(x))|| \le -\lambda,$$

$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log ||P_{-(t_{i+1}-t_i)}^X| E^u(X_{t_{i+1}}(x))|| \le -\lambda$$

Proof. For any $q \in L^{-}(X)'$, there exist a sequence t_n $(t_n \ge 0, t_n \to \infty)$ as $n \to \infty$) and $x \in M^3$ such that

$$\lim_{n \to \infty} X_{-t_n}(x) = q.$$

We may choose a pair of points in the sequence $\{X_{-t_n}(x)\}$ and close the

pair by Pugh's Closing Lemma. That is, there exist a vector field Y, C^1 close to X, and a periodic orbit P of Y through some point of $\{X_{-t_n}(x)\}$. From this, we may obtain sequences $\{Y^n\}$, $\{P_n\}$ such that

$$\lim_{n \to \infty} Y^n = X$$

and each Y^n has a periodic orbit P_n through some point of $\{X_{-t_n}(x)\}$. Let a_n be a point in P_n such that

$$\lim_{n \to \infty} a_n = q.$$

We obtain the next lemma.

Lemma 2.2 In $\{P_n\}$ there is only a finite number of attracting and repelling periodic orbits.

Proof. Suppose $\{P_n\}$ has an infinite number of attracting periodic orbits, for the other case follows similarly by applying the same method to X_{-t} instead of X_t . We may assume that all the P_n are attracting periodic orbits of Y^n . Since each P_n is compact, a subsequence of $\{P_n\}$, denoted also by $\{P_n\}$, converges to some X_t -invariant closed subset F in $\overline{L^-(X)'}$ with respect to Hausdorff metric. We take an individual measure μ_n corresponding to a point a_n , and we may assume that the sequence $\{\mu_n\}$ converges with weak-star topology to a probability measure μ on M. Each μ_n is invariant under Y_t^n . And μ is a measure supported on F. Let $\varphi_n : M^3 \to \mathbb{R}$ $(n \ge 1)$ be a sequence of real-valued continuous functions on M^3 such that

$$\lim_{n \to \infty} \varphi_n(a) = \varphi(a) \quad \text{uniformly on} \quad M^3.$$

Then we have

$$\lim_{n \to \infty} \int_{M^3} \varphi_n(a) d\mu_n = \int_{M^3} \varphi(a) d\mu.$$
(1)

Because

$$\begin{split} \left| \int_{M^3} \varphi_n(a) d\mu_n - \int_{M^3} \varphi(a) d\mu \right| \\ &\leq \left| \int_{M^3} \varphi_n(a) d\mu_n - \int_{M^3} \varphi(a) d\mu_n \right| + \left| \int_{M^3} \varphi(a) d\mu_n - \int_{M^3} \varphi(a) d\mu \right| \end{split}$$

and $\varphi_n(a) \to \varphi(a)$ implies

$$\left|\int_{M^3} \varphi_n(a) d\mu_n - \int_{M^3} \varphi(a) d\mu_n \right| \leq \int_{M^3} |\varphi_n(a) - \varphi(a)| d\mu_n o 0$$

while $\mu_n \to \mu$ implies

$$\left|\int_{M^3} \varphi(a) d\mu_n - \int_{M^3} \varphi(a) d\mu\right| o 0.$$

Moreover, since each μ_n is Y_t^n -invariant, μ is X_t -invariant. In fact, by (1) above, for any $t \in \mathbb{R}$,

$$\begin{split} &\int_{M^3} \varphi(X_t(a)) d\mu \\ &= \lim_{n \to \infty} \int_{M^3} \varphi_n(X_t(a)) d\mu_n - \lim_{n \to \infty} \int_{M^3} \varphi_n(Y_t^n(a)) d\mu_n \\ &\quad + \lim_{n \to \infty} \int_{M^3} \varphi_n(Y_t^n(a)) d\mu_n \\ &= \lim_{n \to \infty} \left(\int_{M^3} \varphi_n(X_t(a)) d\mu_n - \int_{M^3} \varphi_n(Y_t^n(a)) d\mu_n \right) \\ &\quad + \lim_{n \to \infty} \int_{M^3} \varphi_n(Y_t^n(a)) d\mu_n \\ &= \lim_{n \to \infty} \int_{M^3} \varphi_n(Y_t^n(a)) d\mu_n = \lim_{n \to \infty} \int_{M^3} \varphi_n(a) d\mu_n = \int_{M^3} \varphi(a) d\mu. \end{split}$$

Remark

$$\lim_{n\to\infty}\left(\int_{M^3}\varphi_n(X_t(a))d\mu_n-\int_{M^3}\varphi_n(Y_t^n(a))d\mu_n\right)=0.$$

In fact, since $\lim_{n\to\infty} Y^n = X$, $d(X_t(a), Y_t^n(a))$ is very small for sufficiently large n (for any $a \in M^3$ and a fixed t). On the other hand, as φ_n is uniformly continuous on M^3

$$|\varphi_n(X_t(a)) - \varphi_n(Y_t^n(a))| < \varepsilon$$

for any $a \in M^3$ and sufficiently large n.

As μ_n is an individual measure corresponding to a_n

$$\int_{M^3} \varphi_n(a) d\mu_n = \lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi_n(Y_s^n(a_n)) ds.$$
(2)

Here we have the following lemma from Liao [6].

Lemma 2.3 (Theorem 2.1 in Liao [6]). Let X be in $\mathcal{G}^1(M^n)$. Then there exist a C^1 neighborhood $\tilde{\mathcal{U}}$ of X in $\mathcal{G}^1(M^n)$ and two numbers $0 < \lambda = \lambda(\tilde{\mathcal{U}}) < 1$ and $T = T(\tilde{\mathcal{U}}) > 0$ such that for any $Y \in \tilde{\mathcal{U}}$ and any periodic point p of Y, the following two estimates hold:

a) $||P_t^Y| E^s(p)|| \cdot ||P_{-t}^Y| E^u(Y_t(p))|| \le e^{-2\lambda t} \text{ for any } t \ge T,$

b) If τ is the period of p, m is any positive integer, and if $0 = t_0 < t_1 < \cdots < t_k = m\tau$ is any partition of the interval $[0, m\tau]$ with $t_{i+1}-t_i \geq T$, then

$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log ||P_{t_{i+1}-t_i}^Y| E^s(Y_{t_i}(p))|| < -\lambda,$$

$$\frac{1}{m\tau} \sum_{i=0}^{k-1} \log ||P_{-(t_{i+1}-t_i)}^Y| E^u(Y_{t_{i+1}}(p))|| < -\lambda.$$

Assuming this lemma, we have a neighborhood \mathcal{U} of X in \mathcal{U}_0 and $\lambda > 0$, T > 0 satisfying above theorem. Since Y^n converges to X, we may assume that Y^n is in \mathcal{U} for all n. For each n, let T_n be the period of P_n of Y^n , the periodic orbit with which we have been dealing. Since $Y^n \to X$ and we may assume that q is not a periodic point of X, we have

$$\lim_{n \to \infty} T_n = +\infty.$$

Now let

$$\xi_T^n(a) = rac{1}{T} \log ||P_T^{Y^n}(a)||,$$

 $\xi_T(a) = rac{1}{T} \log ||P_T^X(a)||.$

Then $\lim_{n\to\infty} \xi_T^n(a) = \xi_T(a)$ uniformly on M^3 for the number $T = T(\mathcal{U}) > 0$. From Lemma 2.3 b), for sufficiently large n,

$$\frac{T}{T_n} \left\{ \sum_{k=1}^{m_n} \xi_T^n(Y_{(k-1)T}^n(a_n)) + \frac{1}{T} \log ||P_{T_n-m_nT}^{Y^n}(Y_{m_nT}^n(a_n))|| \right\} \le -\lambda$$

where m_n is the greatest integer with $T_n - m_n T \ge T$ which certainly exists

for sufficiently large n. For sufficiently large n, we have

$$\frac{T}{m_n T} \sum_{k=1}^{m_n} \xi_T^n(Y_{(k-1)T}^n(x)) < -\frac{\lambda}{2} \quad \text{for all} \ x \in P_n$$

Thus

$$\frac{1}{lm_n} \left(\sum_{k=1}^{lm_n} \xi_T^n(Y_{(k-1)T}^n(a_n)) \right) < -\frac{\lambda}{2} \quad l = 1, 2 \dots$$

Therefore

$$\frac{1}{lm_n T} \int_0^{lm_n T} \xi_T^n(Y_s^n(a_n)) ds$$

$$= \frac{1}{lm_n T} \sum_{k=0}^{lm_n - 1} \int_{kT}^{(k+1)T} \xi_T^n(Y_s^n(a_n)) ds$$

$$= \frac{1}{T} \int_0^T \frac{1}{lm_n} \sum_{k=0}^{lm_n - 1} \xi_T^n(Y_{kT}^n(Y_s^n(a_n))) ds < -\frac{\lambda}{2} \quad l = 1, 2, \dots .$$

Thus from (2)

$$\int_{P_n} \xi_T^n(a) d\mu_n < -\frac{\lambda}{2}$$

Thus, from (1) we have

$$\int_F \xi_T(a) d\mu = \lim_{n \to \infty} \int_{P_n} \xi_T^n(a) d\mu_n \le -\frac{\lambda}{2} < 0.$$

Now we need a lemma from Liao [6] to proceed.

Lemma 2.4 (Liao [6], Lemma 3.2). Let F be a closed subset of M^n , invariant under X_t . Assume that for a certain $\tilde{T} \in (0, \infty)$, there is a probability measure μ on F, invariant under X_t such that:

$$\int_{F} \xi_{\tilde{T}}(a) d\mu < 0 \quad or \quad \int_{F} \xi_{-\tilde{T}}(a) d\mu > 0 \tag{(*)}$$

Then, F contains a periodic orbit of X attracting or repelling corresponding to the first inequality or the second of (*).

Using this lemma, we obtain attracting periodic orbit in F but this is a contradiction because attracting periodic orbit is isolated from $\overline{L^{-}(X)'}$. Thus we have completed the proof of Lemma 2.2.

For any $q \in L^{-}(X)'$, we can take sequences $\{Y^{n}\}, \{P_{n}\}, \{a_{n}\}$, such that

$$\lim_{n \to \infty} Y^n = X, \quad \lim_{n \to \infty} a_n = q \quad (a_n \in P_n)$$

and each P_n is a hyperbolic saddle. By Lemma 2.3 we may assume that for any P_n

$$||P_t^{Y^n}(a_n)| E^s(a_n)|| \cdot ||P_{-t}^{Y^n}(Y_t^n(a_n))| E^u(Y_t^n(a_n))|| \le e^{-2\lambda t}, \ t \ge T.$$

And for any $t \in \mathbb{R}$, the sequences $E^s(Y_t^n(a_n)), E^u(Y_t^n(a_n))$ converge to subspaces of $N_{X_t(q)}$ which we define as $G^s(X_t(q))$ and $G^u(X_t(q))$ respectively. Hence we attach to every $q \in L^-(X)'$ two subspaces $G^s(X_t(q))$ and $G^u(X_t(q))$ with the following properties:

$$\dim G_q^s + \dim G_q^u = 2,\tag{3}$$

$$(P_t^X(q))G_x^{\sigma} = G_{X_t(q)}^{\sigma} \quad \sigma = s, u \text{ for any } t \in \mathbb{R},$$
(4)

$$||P_t^X | G_x^s|| \cdot ||P_{-t}^X | G_{X_t(x)}^u|| \le e^{-2\lambda t}, \quad t \ge T$$
(5)

and if $x \in per(X)$, then $G^{s}(x) = E^{s}(x)$, $G^{u}(x) = E^{u}(x)$. Moreover, as in p. 526 of Mañé [8],

$$G^{s}(x) \oplus G^{u}(x) = N_{x}$$
 for any $x \in L^{-}(X)'$. (6)

By Proposition I.3 of Mañé [10], we can extend this splitting to $\overline{L^{-}(X)'}$. Properties (3)–(6) imply that the subspaces $G^{s}(x)$ and $G^{u}(x)$ depend continuously on $x \in \overline{L^{-}(X)'}$.

3. Hyperbolicity of $\overline{L^-(X)'}$

In §2 we obtained dominated splitting $N^* | \overline{L^-(X)'} = G^s \oplus G^u$. Now we show that this splitting is hyperbolic. By compactness of $\overline{L^-(X)'}$, it is easy to see that if

$$\liminf_{n \to \infty} ||P_n^X(a)| G^s(a)|| = 0 \tag{7}$$

and

$$\liminf_{n \to \infty} ||P_{-n}^X(a)| G^u(a)|| = 0$$

hold for all $a \in \overline{L^{-}(X)'}$, then the splitting $N^* | \overline{L^{-}(X)'} = G^s \oplus G^u$ is hyperbolic. We shall prove only the first one, because the second one follows if we apply the same method to X_{-t} instead of X_t . If (7) does not hold for all $a \in \overline{L^{-}(X)'}$, we can find $x \in \overline{L^{-}(X)'}$ and a sequence $j_n \to +\infty$ such that

$$\lim_{n \to \infty} \frac{1}{j_n} \log ||(P_{mj_n}^X(x))| G^s(x)|| \ge 0$$

where m is the smallest integer satisfying $m \ge T$ (T is given in Theorem 2.1). Without loss of generality we may suppose that the sequence $\{j_n\}$ is such that there exists an X_m -invariant probability measure μ on $\overline{L^-(X)'}$ such that

$$\int_{\overline{L^{-}(X)'}} \varphi d\mu = \lim_{n \to \infty} \frac{1}{j_n} \sum_{i=0}^{j_n - 1} \varphi(X_{mi}(x))$$

for every continuous $\varphi: M^3 \to \mathbb{R}$. Setting

$$\varphi(a) = \log ||(P_m^X(a))| G^s(a)||$$

we have

$$\int_{\overline{L^{-}(X)'}} \varphi d\mu = \lim_{n \to \infty} \frac{1}{j_n} \sum_{i=0}^{j_n - 1} \log ||(P_m^X(X_{mi}(x)) | G^s(X_{mi}(x)))||$$

$$\geq \lim_{n \to \infty} \frac{1}{j_n} \log ||(P_{mj_n}^X(x)) | G^s(x)|| \ge 0.$$
(8)

On the other hand, by Birkhoff's theorem

$$\int_{\overline{L^{-}(X)'}} \varphi d\mu$$

= $\int_{\overline{L^{-}(X)'}} \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log ||(P_m^X(X_{mi}(a)) | G^s(X_{mi}(a)))|| d\mu.$ (9)

Now we need the following lemma.

Lemma 3.1 (Ergodic Closing Lemma, Lemma VII.6 in Hayashi [5]).

$$\mu(\Sigma(X) \cup \operatorname{Sing}(X)) = 1$$

for every X_1 -invariant probability measure μ on the borel sets of M^n , where $\operatorname{Sing}(X)$ denotes the set of singularities of X.

We define $\Sigma(X)$ as the set of points $x \in M^3$ such that for every neighborhood $\mathcal{U}(X)$ and every $\varepsilon > 0$, there exist $Y \in \mathcal{U}(X)$ $y \in \operatorname{per}(Y)$, $T_0 > 0$ and $t_0, t_1 \in \mathbb{R}$ with $t_0 < t_1$ such that $Y_{T_0}(y) = y$, X = Y on $M^3 - B_{\varepsilon}(X, x)$ $(B_{\varepsilon}(X, x) = \{y \in M^3 : d(X_t(x), y) \leq \varepsilon \text{ for some } t \in \mathbb{R}\}), \{X_t(x) : t_0 \leq t \leq t_1\} \subset \{Y_t(y) : t \geq 0\}, (t_1 - t_0)/T_0 > 1 - \varepsilon \text{ and } d(Y_t(y), X_t(x)) \leq \varepsilon \text{ for all}$ $0 \leq t \leq T_0$. Note that $\Sigma(X)$ is X_1 -invariant. From the above Lemma 3.1 and (8), (9), there exists $p \in \Sigma(X) \cap \overline{L^-(X)'}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log ||P_m^X(X_{mi}(p))| G^s(X_{mi}(p))|| \ge 0.$$
(10)

Now take $-\lambda < -\lambda_0 < 0$, $n_0 >$ such that

$$\frac{1}{n}\sum_{i=0}^{n-1}\log||P_m^X(X_{mi}(p))|G^s(X_{mi}(p))|| \ge -\frac{\lambda_0}{2}m\tag{11}$$

where $n \geq n_0$. Observe that the point p is not periodic because if it were, it should be hyperbolic with $E^s(p) = G^s(p)$ and then (11) would contradict the first inequality of (b) of Lemma 2.3. Since $p \in \Sigma(X) \cap \overline{L^-(X)'}$, we can find Y arbitrarily near X and $\bar{p} \in per(Y)$ such that X = Y on $M^3 - B_{\varepsilon}(X, p)$ with sufficiently small $\varepsilon > 0$ and such that the distance between $X_t(p)$ and $Y_t(\bar{p})$ is small for all $0 \leq t \leq T_0$, where T_0 denotes the minimum Y-period of \bar{p} . Since p is not X_t -periodic, the period T_0 goes to ∞ when Y approaches X. Using the same technique as that in p. 349 of Wen [17], we may take \bar{Y} arbitrarily close to Y and a periodic point \bar{p} of \bar{Y} with period T_0 . That is, N^* restricted to the \bar{Y} -orbit \bar{p} has an $P_t^{\bar{Y}}$ -invariant splitting $\bar{G}^s \oplus \bar{G}^u$ such that

$$\begin{aligned} \|P_{-m}^{\bar{Y}}(\bar{Y}_{m(j+1)}(\bar{p})) \| \bar{G}^{u}(\bar{Y}_{m(j+1)}(\bar{p})) \| \\ &= \|P_{-m}^{X}(X_{m(j+1)}(p)) \| G^{u}(X_{m(j+1)}(p)) \|, \\ \|P_{m}^{\bar{Y}}(\bar{Y}_{mj}(\bar{p})) \| \bar{G}^{s}(\bar{Y}_{mj}(\bar{p})) \| \\ &= \|P_{m}^{X}(X_{mj}(p)) \| G^{s}(X_{mj}(p)) \| \end{aligned}$$

for all $0 \le j \le [T_0/m] - 2$,

$$\begin{split} \|P_{-(T_0-m[T_0/m]+m)}^{\bar{Y}}(\bar{Y}_{T_0}(\bar{p})) \,|\, \bar{G}^u(\bar{Y}_{T_0}(\bar{p}))\| \\ &= \|P_{-(T_0-m[T_0/m]+m)}^X(X_{T_0}(p)) \,|\, G^u(X_{T_0}(p))\|, \end{split}$$

and

$$\begin{aligned} \|P_{T_0-m[T_0/m]+m}^{\bar{Y}}(\bar{Y}_{m[T_0/m]-m}(\bar{p})) \,|\,\bar{G}^s(\bar{Y}_{m[T_0/m]-m}(\bar{p}))\| \\ &= \|P_{T_0-m[T_0/m]+m}^X(X_{m[T_0/m]-m}(p)) \,|\,G^s(X_{m[T_0/m]-m}(p))\| \end{aligned}$$

Then we have

$$\begin{split} |P_{-T_{0}}^{\bar{Y}}(\bar{Y}_{T_{0}}(\bar{p}))| \bar{G}^{u}(\bar{Y}_{T_{0}}(\bar{p})) \| & (k = [T_{0}/m] - 1) \\ \leq \prod_{i=0}^{k-1} \left(\|P_{-m}^{\bar{Y}}(\bar{Y}_{mk-mi}(\bar{p}))| \bar{G}^{u}(\bar{Y}_{mk-mi}(\bar{p})) \| \\ & \times \|P_{m}^{\bar{Y}}(\bar{Y}_{m(k-1)-mi}(\bar{p}))| \bar{G}^{s}(\bar{Y}_{m(k-1)-mi}(\bar{p})) \| \right) \\ & \times \left(\prod_{i=0}^{k-1} \|P_{m}^{X}(X_{m(k-1)-mi}(p))| |G^{s}(X_{m(k-1)-mi}(p))\| \right)^{-1} \\ & \times \|P_{-(T_{0}-mk)}^{\bar{Y}}(\bar{Y}_{T_{0}}(\bar{p}))| \bar{G}^{u}(\bar{Y}_{T_{0}}(\bar{p})) \| \\ \leq e^{-2\lambda mk} \times e^{\frac{\lambda_{0}}{2}mk} \times \|P_{-(T_{0}-mk)}^{\bar{Y}}(\bar{Y}_{T_{0}}(\bar{p}))| |\bar{G}^{u}(\bar{Y}_{T_{0}}(\bar{p}))\|. \end{split}$$

Note that we used (11) to induced the last inequality above. If T_0 is very large, then k can be also large so that:

$$e^{-2\lambda mk} \times e^{\frac{\lambda_0}{2}mk} \times \|P_{-(T_0-mk)}^{\bar{Y}}(\bar{Y}_{T_0}(\bar{p})) | \bar{G}^u(\bar{Y}_{T_0}(\bar{p})) \| < 1$$

Thus, $\bar{G}^u \subset E^u$ (where $E^s \oplus E^u$ is hyperbolic splitting of orbit \bar{p} for \bar{Y}). Therefore dim $E^u \ge \dim \bar{G}^u = 1$. That is, dim $E^s \le 1$. If dim $E^s = 1$, then $\bar{G}^u = E^u$, $\bar{G}^s = E^s$. By Lemma 2.3 b) and (11) above, we have,

$$e^{-\frac{\lambda}{2}mk} > \prod_{i=0}^{k-1} \|P_m^{\bar{Y}}(\bar{Y}_{mi}(\bar{p})) | E^s(\bar{Y}_{mi}(\bar{p}))\|$$

$$= \prod_{i=0}^{k-1} \|P_m^X(X_{mi}(p)) | G^s(X_{mi}(p))\| \quad (\text{from (11)})$$

$$> e^{-\frac{\lambda_0}{2}mk}.$$

This is a contradiction. Thus, dim $E^s = 0$ whenever we create $\bar{Y} C^1$ -close to Y. Therefore, we obtain a sequence $\{\bar{Y}^n\}, \bar{Y}^n \to X$ such that \bar{Y}^n has a periodic orbit with index 0 and which converges to some closed set in $\overline{L^-(X)'}$. Then as in the argument of Lemma 2.2, $\overline{L^-(X)'}$ has a periodic

orbit with index 0, contradicting the definition of $\overline{L^{-}(X)'}$. Thus, we can conclude that G^{s} is contracting and that $\overline{L^{-}(X)'}$ is a hyperbolic set for X.

4. Proof of Main Theorem

In §3 we proved that if X is in $\mathcal{G}^1(M^3)$ and has no singularities, then $\overline{L^-(X)}$ is hyperbolic. In this section we show that X satisfies Axiom A.

Theorem 4.1 (Theorem 3.1 in Newhouse [12]). If $\overline{L^-(X)}$ is hyperbolic, then $\overline{L^-(X)} = \overline{\operatorname{per}(X)}$.

Proof. The same method as in Theorem 3.1 of [12].

Therefore, we can conclude that $\overline{L^{-}(X)} = \overline{\operatorname{per}(X)}$ and $\overline{L^{-}(X)}$ is a hyperbolic set for X. Now, $\overline{L^{-}(X)}$ is decomposable to finite union of basic sets.

$$\overline{L^{-}(X)} = \Lambda_1 \cup \Lambda_2 \cdots \cup \Lambda_k.$$

A basic set means an isolated, transitive hyperbolic set. If $\overline{L^{-}(X)}$ has no cycles, we obtain the next theorem from [12].

Theorem 4.2 (Theorem 4.1 in [12]). If $\overline{L^{-}(X)}$ is hyperbolic and X has no cycles, then $\overline{L^{-}(X)} = \overline{\operatorname{per}(X)} = \Omega(X)$.

Proof. In this theorem if $L^{-}(X)$ is hyperbolic and X has no c-cycle, then the conditions are the same as in Theorem 4.1 in [12]. But by Proposition 3.10 in [12], we have that no cycle implies no c-cycle. Therefore, we may apply the Theorem 4.1 in [12]. And as the proof of Theorem 4.1 in [12] depends on a filtration theorem to basic sets which have no c-cycle, we can apply the proof of Theorem 4.1 in [12] to flows.

By this theorem, it suffices to prove that $\overline{L^{-}(X)}$ has no cycles, to conclude that X satisfies Axiom A and no cycle condition.

Theorem 4.3 If X is in $\mathcal{G}^1(M^3)$ and has no singularities, then $\overline{L^-(X)} = \Lambda_1 \cup \cdots \cup \Lambda_k$ has no cycles.

Proof. Suppose that there is a cycle $\Lambda_{i_1}, \ldots, \Lambda_{i_s}$ of basic sets with $\Lambda_{i_j} \neq \Lambda_{i_k}$ $(0 \leq j < k \leq s)$. Let b_j $(j = 1, \ldots, s)$ be points of M^3 such that

$$b_j \in W^u(\Lambda_{i_j}) \cap W^s(\Lambda_{i_{j+1}}), \quad j = 1, \dots, s-1$$

$$b_s \in W^u(\Lambda_{i_s}) \cap W^s(\Lambda_{i_1})$$

Then at least one of them is not transversal intersection. We obtain next lemma which is the flow version of Lemma II.9 in [8]. For the next lemma we shall need the concept of angle between subspaces of the Euclidean space. If E_1 , E_2 are subspaces of \mathbb{R}^2 such that $E_1 \oplus E_2 = \mathbb{R}^2$ we define the angle $\alpha(E_1, E_2)$ as $\alpha(E_1, E_2) = ||L||^{-1}$, where $L : E_1^{\perp} \to E_1$ is the linear map such that $E_2 = \{v + Lv \mid v \in E_1^{\perp}\}$; in particular, $\alpha(E_1, E_1^{\perp}) = +\infty$.

Lemma 4.4 If X is in $\mathcal{G}^1(M^n)$ then there exist $\alpha' > 0$, neighborhood \mathcal{U}' of X and T' > 0 such that if $Y \in \mathcal{U}'$ and P is a periodic orbit of Y with period $T_Y(>T')$ then $\alpha(E^s(p), E^u(p)) > \alpha'$ $(p \in P, E^s(p), E^u(p) \subset N^*)$.

Now we assume that only b_1 is not transversal intersection. Then we perturb X at b_1 and obtain Y C^1 -close to X such that b_1 is transversal intersection and $v_1, v_2 \in N^*(b_1)$ are tangent to $W^s(\Lambda_{i_2}), W^u(\Lambda_{i_1})$ respectively such that $\alpha(V_1, V_2) < \alpha'$, where V_1 and V_2 are subspaces in $N^*(b_1)$ spanned by v_1, v_2 respectively. Then we can find a periodic point p arbitrarily close to b_1 whose period T_p is sufficiently large. Since p is very close to $b_1, W^s(p)$ and $W^u(p)$ are C^1 close to $W^s(\Lambda_{i_2}), W^u(\Lambda_{i_1})$ respectively at b_1 . So, $\alpha(E^s(p), E^u(p)) < \alpha'$. But this contradicts Lemma 4.4. We have completed the proof of Theorem 4.3.

References

- Doering C., Persistently transitive vector fields on three-dimensional manifolds. Dynamical Systems and Bifurcation Theory (M.I. Camacho, M.J. Pacifico and F. Takens, eds.), Pitman Res. Notes Math. Vol. 160, Longman, 1987, 59–89.
- Franks J., Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301–308.
- [3] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its application, Applied Mathmatical Series, Vol. 19, Springer-Verleg, 1976, 368–381.
- [4] Hayashi S., Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A. Ergod. Th. and Dynam. Sys. 12 (1992), 233-253.
- [5] Hayashi S., Connecting invariant manifolds and the solution of the C^1 stability and Ω -stability Conjecture for flows. Ann. of Math. **145** (1997), 81–137.
- [6] Liao S.T., On the stability conjecture. Chinese Ann. Math. 1 (1980), 9-30.
- [7] Liao S.T., Obstruction sets II. Acta Sci. Natur. Univ. Pekinensis. 2 (1981), 1–36.
- [8] Mañé R., An ergodic closing lemma. Ann. of Math. 116 (1982), 503–540.

- [9] Mañé R., On the creation of homoclinic point. Publ. Math. IHES 66 (1988), 139– 159.
- [10] Mañé R., A proof of the C^1 -Stability Conjecture. Publ. Math. IHES **66** (1988), 161–210.
- [11] Mañé R., Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc. 246 (1978), 261–283.
- [12] Newhouse S., Hyperbolic limit sets. Trans. Amer. Math. Soc. 167 (1972), 125–150.
- [13] Palis J., A note on Ω-stability. Global Analysis, Proc. Sympos. Pure Math Vol. 14, Amer. Math. Soc., 1970, 221–222.
- [14] Palis J., On the $C^1\Omega$ -Stability Conjecture. Publ. Math. IHES 66 (1988), 211–215.
- [15] V.A. Pliss, On a conjecture due to Smale. Diff. Uravenyia. 8 (1972), 268-282.
- [16] Pugh C. and Robinson C., The C¹ Closing Lemma, including Hamiltonians. Erg. Th. and Dynam. Sys. 3 (1983), 261-313.
- [17] Wen L., On the C^1 stability conjecture for flows. J. Diff. Eq. **129** (1996), 334–357.

Department of Mathematics Waseda University Nishi-Waseda, Shinjukuku Tokyo 169-8050, Japan