The discrete and nondiscrete subgroups of $S L(2, R)$ and $S L(2, C)^{*}$

Yuming Chu and Xiantao Wang

(Received June 5, 2000)

Abstract

It is shown in this paper that some special subsets of $\operatorname{tr}(G)=\{\operatorname{tr}(f): f \in G\}$ are sufficient to determine whether G is discrete or not when $G \subset S L(2, R)$ or $S L(2, C)$ is nonelementary. One of Beardon's open problems is affirmatively answered.

Key words: discreteness, nondiscreteness, trace.

1. Introduction

In [1], Beardon tried to determine whether a group G of $S L(2, R)$ is discrete or not by using some subset of $\operatorname{tr}(G)=\{\operatorname{tr}(f): f \in G\}$ when G is finitely generated and contains parabolic elements.

The main aim of this paper is twofold. The first is to generalize Beardon's discussion as mentioned above. Our main results are Theorems 3.1 and 3.2. The second is to give an affirmative answer to one of the open problems raised by Beardon in [1].

2. Some concepts and notations

Let G be a subgroup of $S L(2, C)$. G is called elemetary if G has a finite orbit in \bar{H}^{3}, i.e., there is $z \in \bar{H}^{3}$ such that $G_{z}=\{\widetilde{f}(z): f \in G\}$ is finite, where \tilde{f} denotes the Poincaré extension of f (cf. [2]). Otherwise G is called nonelementary.

From [7], the following is obvious.
Lemma 2.1 Two elliptic elements $f, g \in S L(2, R)$, whose orders are not both equal to 2, generate a nonelementary group if and only if f and g have no common fixed points in \bar{C}.

For any nonelementary group $G \in S L(2, R)$, let

[^0]$H(G, G)=\{[f, g]: f, g$ hyperbolic elements of G with no common fixed points\};
$T H(G, G)=\{\operatorname{tr}(Q)-2: Q \in H(G, G)\}$.
If G contains parabolic elements, then
$P(G, G)=\{[f, g]: f, g \in G$ parabolic elements with no common fixed point $\}$;
$T P(G, G)=\{\operatorname{tr}(Q)-2: Q \in P(G, G)\}$.
If G contains elliptic elements, then
$E(G, G)=\{[f, g]: f, g \in G$ elliptic elements with
$\langle f, g\rangle$ being nonelementary\};
$T E(G, G)=\{\operatorname{tr}(Q)-2: Q \in E(G, G)\}$.
By a sequence in G we will always mean an infinite sequence of distinct elements of G.

For $f \in S L(2, R)$, $\operatorname{fix}(f)=\{x \in \bar{C}: f(x)=x\} ;$ ord $(f)=$ the order of f when f is regarded as a Möbius transformation.

3. Discrete and nondiscrete subgroups of $S L(2, R)$

In [1], Beardon proved
Theorem A Let $G \subset S L(2, R)$ be nonelementary and finitely generated. If G contains parabolic elements, then
(1) G is discrete if and only if $\operatorname{TP}(G, G)$ is a discrete subset of $[1, \infty)$;
(2) G is nondiscrete if and only if $T P(G, G)$ is dense in $[1, \infty)$.

We will prove
Theorem 3.1 Let $G \subset S L(2, R)$ be nonelementary. Then
(1) G is discrete if and only if either $E(G, G)=\emptyset$ or $\inf \{T E(G, G)\} \geq c_{0}$, where $c_{0}=2-2 \cos \frac{\pi}{7}$;
(2) G is not discrete if and only if $\operatorname{TE}(G, G)$ is dense in $[0, \infty)$.

Proof. The necessity of (1) follows from [6-7]. For the proof of the sufficiency, by [4], we may assume that $E(G, G) \neq \emptyset$, i.e., G contains some elliptic elements of order at least 3 , cf. [7, Corollary 2.3].

Assume that $\inf \{T E(G, G)\} \geq c_{0}$, but G is not discrete. Then by [3, Corollary p.199], there is a sequence $\left\{h_{n}\right\}$ of G such that each h_{n} is elliptic and

$$
h_{n} \rightarrow I(n \rightarrow \infty),
$$

where I denotes the unit element. Then there are an elliptic element g_{1} of order at least 3 and a suitable subsequence of $\left\{h_{n}\right\}$ (denoted by the same manner) (cf. [7]) in G such that

$$
\operatorname{fix}\left(g_{1}\right) \cap \operatorname{fix}\left(h_{n}\right)=\emptyset
$$

The assumptions imply that for large $n,\left\langle g_{1}, h_{n}\right\rangle$ is elementary. By Lemma 2.1, it is impossible. So G is discrete.

The proof of (1) is completed.
The sufficiency of (2) follows from (1). For the proof of the necessity, since G is nonelementary, by [3], we can find two sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\} \subset$ G such that each f_{n} is elliptic, each g_{n} is hyperbolic and

$$
f_{n} \rightarrow I, g_{n} \rightarrow I(n \rightarrow \infty) .
$$

Then for any $r_{1}, r_{2}: 0<r_{1}<r_{2}$, there is a hyperbolic element $f \in G$ with the multiplier r^{2} which satisfies

$$
1<r^{2}<2 \beta(\alpha+\beta)^{-1}
$$

where $\alpha=\sqrt{\left[(p+1) r_{1}+r_{2}\right] p^{-1}}, \beta=\sqrt{\left[(p-1) r_{2}-r_{1}\right] p^{-1}}, p>\frac{2\left(r_{1}+r_{2}\right)}{r_{2}-r_{1}}$.
Without loss of generality, suppose that

$$
f=\left(\begin{array}{cc}
r & 0 \\
0 & r^{-1}
\end{array}\right)
$$

By passing to a subsequence we assume that fix $\left(f_{n}\right)$ tends in the Hausdorff metric toward a one or two point set X. Since G is nonelementary, we may further assume that for large n and $t\left(t>T_{0}\right)$,

$$
\operatorname{fix}\left(f_{n}\right) \cap \operatorname{fix}\left(f^{t} f_{n} f^{-t}\right)=\emptyset .
$$

Let

$$
f_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) .
$$

Then

$$
a_{n}, d_{n} \rightarrow 1, b_{n}, c_{n} \rightarrow 0(n \rightarrow \infty)
$$

An elementary calculation shows that for each $t \in N$,

$$
\begin{aligned}
& \operatorname{tr}\left[f_{n}, f^{t} f_{n} f^{-t}\right]-2 \\
& \quad=\left[b_{n}^{2} c_{n}^{2}+\left(a_{n}-d_{n}\right)^{2} b_{n} c_{n}\left(r^{t}+r^{-t}\right)^{-2}\right]\left(r^{2 t}-r^{-2 t}\right)^{2}
\end{aligned}
$$

Let $r^{2 t}-r^{-2 t}=s_{t},\left(r^{t}+r^{-t}\right)^{2}=q_{t}$. Then for large n and $t\left(t>T_{0}\right)$,

$$
\operatorname{tr}\left[f_{n}, f^{t} f_{n} f^{-t}\right]-2=\left[b_{n}^{2} c_{n}^{2}+\left(a_{n}-d_{n}\right)^{2} b_{n} c_{n} q_{t}^{-1}\right] s_{t}^{2} \in T E(G, G)
$$

Since $a_{n}, d_{n} \rightarrow 1(n \rightarrow \infty)$, there is $M>0$ such that for all $n>M$,

$$
\left(a_{n}-d_{n}\right)^{2}<\left(r_{1}+r_{2}\right) p^{-1} \beta^{-1}
$$

For large enough T, the union of intervals

$$
\left(\frac{\alpha}{s_{T}}, \frac{\beta}{s_{T}}\right) \cup\left(\frac{\alpha}{s_{T+1}}, \frac{\beta}{s_{T+1}}\right) \cup \ldots
$$

is connected and so contains some interval of the form $(0, q)$, where $q>0$.
Since $b_{n} c_{n} \rightarrow 0(n \rightarrow \infty)$, for large $n(n>M),\left|b_{n} c_{n}\right| \in(0, q)$. Then there is $t\left(t \geq T_{0}\right)$ such that

$$
\frac{\alpha}{s_{t}}<\left|b_{n} c_{n}\right|<\frac{\beta}{s_{t}}
$$

Since $n>M$, we have

$$
\frac{r_{1}}{s_{t}^{2}}<b_{n}^{2} c_{n}^{2}+\left(a_{n}-d_{n}\right)^{2} b_{n} c_{n} q_{t}^{-1}<\frac{r_{2}}{s_{t}^{2}}
$$

i.e.,

$$
\operatorname{tr}\left[f_{n}, f^{t} f_{n} f^{-t}\right]-2 \in\left(r_{1}, r_{2}\right)
$$

Since $\left[f_{n}, f^{t} f_{n} f^{-t}\right] \in E(G, G)$, by the arbitrariness of $r_{1}, r_{2}\left(0<r_{1}<\right.$ r_{2}), we know $\operatorname{TE}(G, G)$ is dense in $[0, \infty)$.

By [5] and Theorem 3.1, the following is obvious.
Corollary 3.1 Let $G \subset S L(2, R)$ be nonelementary and finitely generated. Then
(1) G is discrete if and only if either $\operatorname{TE}(G, G)=\emptyset$ or $\operatorname{TE}(G, G)$ is discrete in $\left[c_{0}, \infty\right)$;
(2) G is nondiscrete if and only if $T E(G, G)$ is dense in $[0, \infty)$.

Theorem 3.2 Let $G \subset S L(2, R)$ be nonelementary. Then
(1) G is discrete if and only if $\inf \{|A|: A \in T H(G, G)\} \geq c_{0}$;
(2) G is nondiscrete if and only if $T H(G, G)$ is dense in R.

Proof. By [6], the necessity of (1) is obvious. For the sufficiency, we suppose that $\inf \{|A|: A \in T H(G, G)\} \geq c_{0}$, but G is not discrete.

Let $h_{j}(j=1,2,3) \in G$ be hyperbolic such that

$$
\operatorname{fix}\left(h_{i}\right) \cap \operatorname{fix}\left(h_{j}\right)=\emptyset(i \neq j, i, j=1,2,3) .
$$

By [3], there is a sequence $\left\{g_{n}\right\}$ of G satisfying that each g_{n} is hyperbolic and

$$
g_{n} \rightarrow I(n \rightarrow \infty) .
$$

Then for large enough $n,\left\langle h_{j}, g_{n}\right\rangle(j=1,2,3)$ are elementary by the assumptions. It is impossible. So G is discrete.

The sufficiency of (2) follows from (1). For the necessity of (2), let $f \in G$ be hyperbolic and

$$
f=\left(\begin{array}{cc}
r & 0 \tag{3.1}\\
0 & r^{-1}
\end{array}\right)(r>1) .
$$

Then for any $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, we have

$$
\operatorname{tr}[f, g]-2=-\left(r-r^{-1}\right)^{2} b c .
$$

Since G is nondiscrete and nonelementary, there is a sequence $\left\{f_{n}\right\}$ of G such that each f_{n} is hyperbolic,

$$
f_{n} \rightarrow I \quad(n \rightarrow \infty)
$$

and for each n,

$$
\operatorname{fix}(f) \cap \operatorname{fix}\left(f_{n}\right)=\emptyset .
$$

Then $\left[f, f_{n}\right] \in H(G, G)$. Hence there is a sequence $\left\{x_{n}\right\} \in T H(G, G)$ such that

$$
\begin{equation*}
x_{n} \rightarrow 0(n \rightarrow \infty) . \tag{3.2}
\end{equation*}
$$

For every $t \in N$, if $f_{n}=\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)$, then

$$
\operatorname{tr}\left[f^{t+1}, f_{n}\right]-2=-\left(r-r^{-1}\right)^{2} b_{n} c_{n} s_{t}
$$

where $s_{t}=\left(r^{t+1}-r^{-(t+1)}\right)^{2}\left(r-r^{-1}\right)^{-2}$.
Obviously

$$
\begin{equation*}
s_{t} \rightarrow \infty(t \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

Thus if $x_{n} \in T H(G, G)$, then $s_{t} x_{n} \in T H(G, G)$ for each $t \in N$.
For any $v_{1}, v_{2}\left(0<v_{1}<v_{2}\right)$, by [3], we may assume in (3.1) that

$$
1<r^{4}<\left(p_{2} p_{1}^{-1}\right)^{\frac{1}{4}}
$$

where $p_{1}=\frac{2 v_{1}+v_{2}}{3}, p_{2}=\frac{v_{1}+2 v_{2}}{3}$.
Then there is T_{1} such that for all $T>T_{1}$, the unions of intervals

$$
\left(\frac{v_{1}}{s_{T}}, \frac{v_{2}}{s_{T}}\right) \cup\left(\frac{v_{1}}{s_{T+1}}, \frac{v_{2}}{s_{T+1}}\right) \cup \ldots
$$

and

$$
\left(\frac{v_{1}}{s_{T}^{2}}, \frac{v_{2}}{s_{T}^{2}}\right) \cup\left(\frac{v_{1}}{s_{T+1}^{2}}, \frac{v_{2}}{s_{T+1}^{2}}\right) \cup \ldots
$$

are connected and so contains intervals with the forms $(0, p)(p>0)$.
If there is a subsequence of $\left\{f_{n}\right\}$ (still denoted by the same manner) such that for each $n, b_{n} c_{n}<0$, then, by (3.2), there is $M_{2}\left(>M_{1}\right)$ such that for all $n>M_{2}$,

$$
-\left(r-r^{-1}\right)^{2} b_{n} c_{n} \in(0, p)
$$

Hence, there is $t \in N$ such that

$$
\frac{v_{1}}{s_{t}}<-\left(r-r^{-1}\right)^{2} b_{n} c_{n}<\frac{v_{2}}{s_{t}}
$$

Then

$$
v_{1}<-\left(r-r^{-1}\right)^{2} b_{n} c_{n} s_{t}<v_{2}
$$

(3.3) implies that there is $Q \in H(G, G)$ such that

$$
\operatorname{tr}(Q)-2 \in\left(v_{1}, v_{2}\right)
$$

Thus we assume that for each $n, b_{n} c_{n}>0$, then there is $M_{3}\left(>M_{2}\right)$ such that for all $n>M_{3}$,

$$
\left(r-r^{-1}\right)^{4} b_{n} c_{n}\left(1+b_{n} c_{n}\right) \in(0, p)
$$

Hence there is $t \in N$ such that

$$
\frac{v_{1}}{s_{t}^{2}}<\left(r-r^{-1}\right)^{4} b_{n} c_{n}\left(1+b_{n} c_{n}\right)<\frac{v_{2}}{s_{t}^{2}}
$$

Then

$$
v_{1}<\left(r-r^{-1}\right)^{4} b_{n} c_{n}\left(1+b_{n} c_{n}\right) s_{t}^{2}<v_{2} .
$$

Since for large $n,\left[f, f_{n}\right] \in H(G, G)$ if and only if $\left[f, f_{n} f f_{n}^{-1}\right] \in H(G, G)$, this implies that there is $Q \in H(G, G)$ such that

$$
\operatorname{tr}(Q)-2 \in\left(v_{1}, v_{2}\right) .
$$

Now we prove that $T H(G, G) \cap[0, \infty)$ is dense in $[0, \infty)$.
In the same way as above we can show that $\operatorname{TH}(G, G) \cap(-\infty, 0]$ is dense in $(-\infty, 0]$.

Hence $\operatorname{TH}(G, G)$ is dense in R.
Corollary 3.2 Let G be nonelementary and finitely generated, then
(1) G is discrete if and only if $T H(G, G)$ is discrete in $\left(-\infty,-c_{0}\right] \cup\left[c_{0}, \infty\right)$;
(2) G is nondiscrete if and only if $T H(G, G)$ is dense in R.

For any nonelementary subgroup $G \subset S L(2, R)$ and nontrivial $f \in G$, let

$$
\begin{aligned}
& G_{f}(G, G)=\left\{\left[f, g f g^{-1}\right]:\left\langle f, g f g^{-1}\right\rangle \text { nonelementary for } f, g \in G\right\} ; \\
& T G_{f}(G, G)=\left\{\operatorname{tr}(Q)-2: Q \in G_{f}(G, G)\right\} .
\end{aligned}
$$

Then, by the proofs of Theorems 3.1, 3.2 and [7], we get
Theorem 3.3 Let G be nonelementary.
(1) If G contains an elliptic element f of order at least 3 , then G is discrete if and only if $\inf \left\{T G_{f}(G, G)\right\} \geq c_{0}$.
(2) G is discrete if and only if for any fixed hyperbolic element f, $\inf \left\{|A|: A \in T G_{f}(G, G)\right\} \geq c_{0}$.

We also can get the following form of (1) of Theorem A (i.e., Theorem 4.1 in [1]) as follows.

Theorem 3.4 Let $G \subset S L(2, R)$ be nonelementary and $f \in G$ be parabolic. Then
(1) G is discrete if and only if $\inf \left\{T G_{f}(G, G)\right\} \geq 1$;

Furthermore, if G is finitely generated, then
(2) G is discrete if and and if $T G_{f}(G, G)$ is discrete in $[1, \infty)$.

Proof. The proof of (2) follows from (1) and [5], we need only prove (1). The necessity of (1) is obvious. For the sufficiency, we suppose that $\inf \left\{T G_{f}(G, G)\right\} \geq 1$, but G is not discrete, contrary to our assertion.

Without loss of generality, let

$$
f=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Since G is nonelementary, there is a hyperbolic element $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ G with $c \neq 0$. Let G_{∞} be the stabilizer of ∞ of G. Then for every parabolic element $q \in G_{\infty}$,

$$
q=\left(\begin{array}{cc}
\epsilon & s \\
0 & \epsilon
\end{array}\right)(s \neq 0, \epsilon= \pm 1)
$$

We deduce from $\left[f, g f g^{-1}\right] \in G_{f}(G, G)$ that

$$
|s| \geq|c|^{-\frac{1}{2}}
$$

Fixing g and varying s, the above inequality shows that there is $s_{0} \neq 0$ such that for any parabolic element $q=\left(\begin{array}{cc}\epsilon & s \\ 0 & \epsilon\end{array}\right) \in G_{\infty}$,

$$
|s| \geq\left|s_{0}\right|>0
$$

By our assumptions and [3], there is a squence $\left\{f_{n}\right\} \subset G$ such that each f_{n} is hyperbolic and

$$
f_{n} \rightarrow I(n \rightarrow \infty)
$$

Let

$$
f_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

If $c_{n} \neq 0$, then

$$
\operatorname{tr}\left[f, f_{n} f f_{n}^{-1}\right] \geq 3
$$

This implies that $c_{n}^{4} \geq 1$ if $c_{n} \neq 0$. This contradiction shows that for large enough $n, \infty \in \operatorname{fix}\left(f_{n}\right)$. So either $\left[f, f_{n}\right]=I$ or $\left[f, f_{n}\right] \in G_{\infty}$ is parabolic. Hence

$$
\left|1-a_{n}^{2}\right| \geq\left|s_{0}\right|>0 \quad \text { or } \quad a_{n}^{2}=1
$$

These are impossible. Hence G is discrete.
Remark By using the method in the proof of theorem 3.1 in [8], we can get a different proof of theorem 3.4.

4. Discrete and nondiscrete subgroups in $S L(2, C)$

Given a point $z \in C$ and a set $F \subset \bar{C}$, we call F is quasi-dense about z if $S \cap F \neq \emptyset$ for any annulus $S=\{x \in \bar{C}: a<|x-z|<b\}(0<a<b)$.

By using similar discussions as in Section 3 and [1,8], we can get
Theorem 4.1 Let $G \subset S L(2, C)$ be nonelementary. If G contains parabolic elements, then
(1) G is discrete if and only if $\inf \{|A|: A \in T P(G, G)\} \geq 1$;
(2) G is nondiscrete if and only if $\operatorname{TP}(G, G)$ is quasi-dense about the point $(0,0)$.

5. On one of Beardon's problems

As in [1], let

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
1 & \tau \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
\tau & 1
\end{array}\right), \\
G & =\langle A, B\rangle
\end{aligned}
$$

where τ is an indeterminate in \bar{C}.
For any $t \in C, G_{t}=\left\langle A_{t}, B_{t}\right\rangle$, where $A_{t}=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right), B_{t}=\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)$.
After showing when two non-commuting parabolic elements of G generate G, Beardon raised the following problem:
A and B are not conjugate in G, but can A_{t} and B_{t} ever be conjugate in G_{t} ?

In the following, we show that the answer to this problem is affirmative.
Let $\tau=i\left(i^{2}=-1\right)$. Then

$$
A_{i}=\left(\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right), \quad B_{i}=\left(\begin{array}{cc}
1 & 0 \\
i & 1
\end{array}\right) .
$$

By taking $h=A_{i} B_{i}$, we know

$$
A_{i} h=h B_{i} .
$$

This shows that A_{t} and B_{t} are conjugate in G_{t} when $t=i$.
Let

$$
G_{A B}=\{F \in G: A F=F B\} .
$$

Obviously

$$
\begin{aligned}
G_{\sqrt{2}} & =\left\langle A_{\sqrt{2}}, B_{\sqrt{2}}\right\rangle \\
& =\left\{\left(\begin{array}{cc}
a & \sqrt{2} b \\
\sqrt{2} c & d
\end{array}\right): a, b, c, d \in Z, a d-2 b c=1\right\} .
\end{aligned}
$$

Then $G_{A_{\sqrt{2}} B_{\sqrt{2}}}=\emptyset$. This implies that A and B are not conjugate in G.
Acknowledgements This work was completed during the second author's visit to the University of Helsinki. He wishes to express his thanks to professor Pekka Tukia for his help, the Väisälä foundation for financial support, and the Department of Mathematics of the University of Helsinki for hospitality.

References

[1] Beardon A.F., Some remarks on nondiscrete Möbius groups. Ann. Acad. Sci. Fenn. Math. 21 (1996), 69-79.
[2] Beardon A.F., The geometry of discrete groups. Springer-Verlag, 1983.
[3] Doyle C. and James D., Discrete criteria and high order generators for subgroups of $S L(2, C)$, Ill. J. Math. 25 (1981), 191-200.
[4] Jorgensen T., A note on subgroups of $S L(2, C)$. Quart. J. Math. Oxford 28 (1977), 209-212.
[5] Greenberg L., Finiteness theorems for Fuchsian and Kleinian groups. Discrete groups and Automorphic Functions, edited by W.J. Harvey, Academic Press, 1977.
[6] Rosenberger G., All generating pairs of all two-generator Fuchsian groups. Arch. Math. 46 (1986), 198-204.
[7] Tukia P. and Wang X., Discreteness criteria of subgroups of $S L(2, C)$ with elliptic elements. Priprint 251, University of Helsinki, January 2000.
[8] Wang X. and Yang W., Dense subgroups and discrete subgroups in $S L(2, C)$. Quart. J. Math. Oxford 50 (1999), 517-521.

Yuming Chu
Department of Mathematics Hunan Normal University Changsha, Hunan 410082
P. R. China

Xiantao Wang
Department of Mathematics
Hunan University
Changsha, Hunan 410082
P. R. China

E-mail: xtwang@mail.hunu.edu.cn

[^0]: 1991 Mathematics Subject Classification : Primary 30F35; Secondary 20F10.
 *The reseach is supported by N. S. Foundation of China, grant number 19801011. The second author is the corresponding author.

