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On the scaling exponents of Takagi, Lévy
and Weierstrass functions

Hidenori WATANABE
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Abstract. We study the scaling exponents of the Takagi, Lévy and Weierstrass func-
tions. We show that their pointwise Holder exponents coincide with their weak scaling
exponents at each point of the real line. A partial result about the scaling exponent of
the Lévy function is also given.
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1. Introduction

Let s be a positive number, which is not an integer and let zy be a
point in R™. Then a function f on R™ belongs to the pointwise Holder
space C*(xp), if there exists a polynomial P of degree less than s such that

|f(z) = P(z — z0)| < Clz — zo*

in a neighborhood of zy. Sp(R"™) denotes the closed subspace of the Schwartz
class S(R™) such that

/n z*Y(x)dr =0

for any multi-index o in Z7. Then a tempered distribution f belongs to
I'*(xp), if for each 9 in Sp(R™), there exists a constant C(1) such that

‘ f(x)in¢(x_x0)dm
R" a a

Let ¢ be a function in the Schwartz class S(R"™) such that

<C(y)a®, 0<a<l.

1

X 1 on [£ <=
P(&) = 2,

0 on [£]>1
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where ¢ is the Fourier transform of ¢. For any non-negative integer 7, we
define the convolution operator S;(f) = f * o1 where a(T) = aleO (%)»
27

and the difference operator A; = S; 11 —S;. Then
o
I = So + Z Aj.
7=0
Let ¥ = o1 — . Then ¢ € So(R™) and
Aj(f)=f*va.

Here let us recall the definition of the two-microlocal spaces CSyF .

Let s and s’ be two real numbers and xg a point in R"™. Then a tempered
distribution f belongs to the two-microlocal spaces Cf;gsl, if there exists a
constant C' such that

1So(P@)] < O+ [z — zol)~
and
14;(f)(z)] < 02—]’3(1 + 2j|x _ xol)—s’

for j € Z, and x € R".
The following remarkable theorems with respect to the two-microlocal
spaces Cz; and I'*(zo) were given in [3].

Theorem A [3, Theorem 1.8] Let s and s’ be two real numbers and xo a
point in R™ and let us assume two non-negative integers r and N satisfying

r+s+inf(s’,n) > 0
and
N > sup(s,s +§').
Let ¢ be a function such that
0%(z)] < Clg(L +[z)™% of <7, ¢2=1

and

/mﬂw(:p)d:ﬂzo, IB| < N —1.
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s,s’

If a function or a distribution f belongs to the two-microlocal spaces Cyy |

then we have

|b—ZL’0|

) , O0<a<l, |b—$0|§1,
a

|[W(a,b)| < Ca® <1 +

where W(a7 b) = <fa ¢(a,b)> and w(a,b) (CE) = aLnd) (:c_;lg)

Theorem B [3, Theorem 1.2] Let s be a real number and f a function
or a distribution defined on a neighborhood V of xg.

Then f locally belongs to I'*(xg) if and only if f locally belongs to the
two-microlocal spaces C;g,sl for some s'.

The pointwise Holder exponent of a function f at a point g in R" is
defined as

H(f,zo) =sup{s > 0; f € C°(zo)}.
The weak scaling exponent of a function f at a point z¢ in R" is defined as
B(f,z0) =sup{s € R; f locally belongs to I'*(zo)}.

Since it is known that the pointwise Holder space C*(xg) is contained in
local I'*(xg), it is obvious that

H(faxO) < ﬁ(fa :CO)'

Using the exponents, Meyer defined two types of singularities of func-
tions as follows [3]: a point z in R™ is called a cusp singularity of a function
f, when

H(f,il?o) :ﬁ(faxo) < 00,

while a point zg in R” is called an oscillating singularity of a function f,
when

H(fv CEO) < ﬁ(f’ :170)'

From now on, in the following two sections, we study what kind of
singularities have Takagi, Lévy and Weierstrass functions.
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2. Takagi and Lévy Functions

Let (z) and |(z)| be the 1-periodic functions such that

1
z if |z| <=

(z) = . and @)=z if -

ook
lez

Using these notations, the Takagi and Lévy functions are defined as follows:

(Takagi function)

n=0 2"
oo
2’n
L(r) = Z ( 2:) (Lévy function).
n=0

It is known that H(7,xo) = 1 at each point zo in R and that H(L, ) =
—liminf;_, m at each nondyadic point x¢ [2], where

Ap(z) = dist (m, %) :

Theorem 1 Let f be a function such that f(z) = (z) or f(z) = |(z)|.
We define a function F by

Fa)=Y" f(;:x).
n=0

Then the weak scaling exponent B(F, o) at each point o in R satisfies
ﬂ(F, Cl?()) S 1.

Proof. Let us assume F' locally belongs to I'*(zg). Then by Theorem B, F
locally belongs to Cigf' for some s’ < 0. Let N be an integer greater than s.
Let 9 be a function supported on [0, 1], has N — 1 vanishing moments. Since
F locally belongs to C;ng,, by Theorem A, there exist C > 0 and ¢ € (0, 1]

such that
< Ca’® (1+ L $0|> ,

|Aﬁ%@%¢<$;b)dx :

0<a<d, |b—zo<5. (1)
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Let jo be a non-negative 1nteger such that 2J0 < 4. For each 57 > jo,
there exists k; € Z such that + < T < bl 23 L and we define a; and b; by

aj = g and b; = 2j. Then IbJ - :z:gl < a; and we have from (1)

[ F@p o k)del < S iz e )
R
Since
1 .
/F(w)?jz/z(Zja:—kj)d:c:/ F(w—l—.kJ)z/)(x)dx, (3)
R 0 2)

now we consider F' (

<m+k> ZfZ"‘J )

When 1 < n < j, we have

koK1 1 , kil etk k] 1
ki Th) LG cpct mply | B k], 1
on 2| <2 TSLMRY 50| S Tom [2n]+2’

ki [k 1 | k1 1zt k [k
N \EsL 1 imply |24z Il B
b <z < imply _2n_+2< on <[2n]+ ;

where [z] denotes the largest integer not greater than xz. Hence f(x+k )
equals a polynomial of degree at most 1 on the support of 1. Therefore

Thus
1

=5

1
/0 F(x)y(x)dx|. (4)

/01 F (“” ;.kj) ¥(z) do

Since F is not a polynomial, we can select a wavelet ¢ such that
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fol F(z)y(z)dx = 1. ,

Then from (2), (3) and (4), F € I'*(xg) implies 2% < %s— for every
J 2 jo and hence we have s < 1.

Therefore we have B(F,zg) < 1. a

By Theorem 1 and the fact that H (T, xo9) = 1 at each point zy in R

and that H(L,zo9) = —liminf;_ —L——logz Aw0) at each nondyadic point zg,
J
we have the following corollaries.

Corollary 1 Each point in R is a cusp singularity of the Takagi function
7.

Corollary 2 A nondyadic point xo is a cusp singularity of the Lévy func-
tion L when the pointwise Holder exponent H(L,zo) equals 1.

In particular a nondyadic rational point is a cusp singularity of Lévy
function L.

In fact, if g be a nondyadic rational point, then we have

p_ ks L
>

q 2

for any integer k and hence we have A;(E) > -L. Therefore we have

q q27
H(L, g) = 1. Thus %’ is a cusp singularity of Lévy function L.
3. Weierstrass Functions

Let b be an integer, a and 3 greater than 1. Then the functions which
are defined by

. cos bz
We(z) = Z

an

n=0

are called the Weierstrass functions. Similarly the Weierstrass functions of
sine series

. sinb"z
Ws(z) = Z

an

n=0

are also defined. It is known that H(W,,xo) = H(Ws,xg) = ll%g—z at each
point zp in R [1].
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Theorem 2 Let w be a function such that w(x) = cosx or w(z) = sinz.
We define the Weierstrass functions W by

vvug::}jz“%zxx
n=0

Then the weak scaling exponents (W, xo) of the Weierstrass functions W
at each point xo in R satisfy

loga
< .
BV, z0) < log b

In order to prove this fact, we first show the following lemmas

Lemma 1 Let | be a non-negative integer. Then

3n
2 2141 2021+ 1)
(A) _% WC(II?) COS rxdr > W
27
: 2020+ ) 1
2041
(B) . Ws(x) s rdx > W (1 - E)
Proof. We use the following formulas.
T 2n+1
s if n>m
/2 cos?™ 1 g cos(2m + Vo dr = { 22" (n - m) , (5)
2 0 if n<m
(-1)™r (2n+1 .
™ . omtl . B 22n+1 _ if n Z m
sin zsin(2m + 1)z dr = n—m , (6)
0
0 if n<m

wl‘;"

/ cos®™ ! ¢ cos 2ma dz = 0,

x (7)

/ sin” z sin 2mx dx = 0 (8)
0
for any n,m € Z,. When b € 2Z + 1, we have by (5) and (6)
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3n © 4 I
2 2
/ W,(z) cos? T z dz = 2 Z — / cos(b"z) cos® ! x da
g a s
T2 =0 2

Z 1 20+1
am 22+1 \ 21+1-b
n=0 2
2 [20+1
2 221+1 ( l )

2020+ D)
(204 2)!

and

27 e
1
/ W, (z)sin®?H xde = 2 E — | sin(b"z)sin®*' zd
0 n=0 a

0

log(2141)
log b b

-1
1 (-1) =z« 20+ 1
=2 Z a_n 22l+1 (

204+1-b"
n=0 2
[log(QH—l) ]

logb

1\" =« 20+1
2 2 Z (—g) 921+1 (21+1—b”>
n=0 2
2w (2041 1 1
> 52T I T a

221+ D7 1
AT (2,
(20 4+ 2)! a
When b € 2Z, we have by (7) and (8)

37r

W( )COSl 1$d$— E / COS b” COS2l 1
_.2_"

us

2
=2 / cos?t2 ¢ dx

2
2020+ e
T TR )

rdx

MH



On the scaling exponents of Takagi, Lévy and Weierstrass functions 597

and
2m o0 1 T
W (z) sin® ! 2 dz = 2 Z — / sin(b"z) sin? ! z dx
0 n=0 a 0
=2 / sin?*? z dz
0
2120+ D)t
@242
Therefore the lemma is proved. .

Lemma 2 Let | and p be non-negative integers such that
220 & no (2L 1) 1
(2§ +)1;TH 2. (%) < ((211 2))':r (1 a 5)‘ ()
et "
(A) If k is an integer such that

ﬁn(uk+nw

) <0 1<asp (10)

then

3T

7 2%
/ Za" cos (x—;n ﬁ) cos?t z dx

jus
2 n=1

- 20+ 2)M
(B) If k is an integer such that

2
cos (—(k%nl)g <0, 1<n<p, (11)

204+ 1! 1
(+')”@—5),jzp+x

then
o J
2k
Zan sin T+ 2k sin?t! z dz
o X b"

=1
(20 + 1)lir 1 .
> (1= > .

2 @ \Tg) I=ptl
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Proof. (A) Since

3
2 2k
/ * cos (x _;n ﬂ) cos?=m+ ¢ dg

3n
o —m)2l—m)+1) [F
- ((2(1 mii)il);n) 5 )/  oos (H%W) cost ™ 2 da,
— —_ W —

(SIE]

SIE]

and
(4k+1)
/ : (:17 + zm) 2sin ( o ) sin (x)
cos cosxdxr = — )
_r b” 1- o
. b2n
we have
3r
2k
/ ’ Za" CoS (:c Zn W) cos? ™t rdx
—% n=1

7 2(2l +1)!la™ sin (M—k;gal)—ﬂ) sin ()

— oo (em+1)2 - )

zﬂ: 4(20)Ma™ sin ((4];1—"1)7r) sin (55 ) cos (77)
D @Dy (1 i)

2@ o 4k + D sin ()
21+ )N & 25"

BmT )25
202!t i “in ((4k + 1)7r> sin (an)

cos (557) )(%)” (12)

l
Hsz (1 o (2m+1)§b§n

where the last inequality is due to (10). Since H;’ozo(l — ——Q(anjl) ) = COoS (%),
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Cos (ﬁ;—n) <1

0<

(13)
an;o (1 - m)

Then we have from (12), (13) and (9)
37r ) o0
x + 2kn 241 220N a\nm
E a” cos (T) cos rdr > 2l n 1 :E (3)

%n 1
S @it D (01
- 2+ 2! a)’

(B) Since

2m
/ sin <$ -23]”) sin2U—m+1 4 4o
0

o _ 27
_ 2(l—m)(2(l—m) + 1) an (& + 2km sin2(-m-1 2 gy
(2(l - m) + 1)2 - 5-21-,7 0 b"

0<m<Il-1

and

Y

2k+1)m .
/27r . (x—|—2k7r) - 2cos(( ) )sm(bln)
sin sinzdr = —
b" 1—
0

o
3 [l

we have

27 J
2k
/ E a” sin (z—t—ﬂ’) sin?t! z dz
bn
0 n=1

i 2(21 + 1)la™ cos (%%””) sin ()
I o (Cm+1)2 - 55)

i 4(2)Ma™ cos ((%b;n)ﬂ) sin (5w ) cos (55w)
I S Y (—

2@ (@k+m )an@%)
(21 )N &%
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2020 ! (2k + 1)7 sin (55)
N TS 2 COS( b T
n=p+1 26

a\”"

O (p— )(3) (14)

m=0 (2m+1)2p%n

where the last inequality is due to (11). Then we have from (14), and
(9)

2r J o0
n . [(TH2kTY . gy 220N a\”
/0 2 Sm( b )Sm T2 T 2 (E)

n=p+1

(2l + 1)!lw 1
T @ron (1 - a)-
l

Proof of Theorem 2. Since W is 2m-periodic, we only need to prove at
Tg € [O, 271').

Let us assume W locally belongs to I'*(zg) with s < 1. Then by The-
orem B, W locally belongs to C5; for some s' < 0. When w(z) is cosz, 1
denotes the function on R defined by

) s 3T
cos?tly if — = <z < =—

P(z) = 2 2,

0 otherwise
where | € Z; with 2l + 1+ s+ s > 0. On the other hand, when w(z) is
sinz, v is the function on R defined by

¥(z) =

b

sin? g if 0<z<2rm
0 otherwise

where | € Z, with 21 + 1+ s+ s’ > 0. Then we can apply Theorem A to
W and ¢ with r =2/ 4+ 1 and N = 1. Since W locally belongs to Cz; , by
Theorem A, there exist C > 0 and § € (0, 1] such that

‘/ W) 2y (‘r—ﬂ> d:cl < Cao’ (1+ |5_;,,-0|)—S ,
R a a a

O<a<é, |B-xz<s (1)
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Let p and jg be positive integers such that

220 X sa\t _ (2l+ Dlx 1
S AR ) < X7 (12
@ 2 (5) < 212 2 (16)
n=p+1
and
21
Sy SO (17)

For each j € Z, there exists k; € Z, such that 2—’;& <1z < 2(—’“%)” We
can represent k; =g+ - + €157 with ; € {0,1,...,b— 1}.

First, we treat the case where w(xr) = cosz. We first choose €], €
{0,...,b— 1} such that

. [ (deg+ D)
0 T T ) <.
sin ( 5 <0

Suppose we have chosen ¢y, ...,e; with ¢ < p—2 and €] € {0,...,b— 1}
such that

, ((456 o del 4 D
Sin

)SO, 1<n<q+1.

2™
Then we can choose ;1 € {0,...,b— 1} such that
[ (deg+ -+ del b + D)
sin ( et <0
By induction we can choose &g, . . ., 5;,_1 such that

“in <(456 4t del B4+ )
2bn

)go, 1<n<p. (18)

; 2k’
Define k;. = ¢ +...+51/D_1bp—1 +epb? + - +¢; 16! and put B; = ey

Then we have by (18)

. ((4k;-+1)7r
sin | ———

< 1<n<np. 19
) <0 1snsp (19)

Further by
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2k'm k. 2k
|@—M§|;-—; ‘é—%o
< 2(bP — 1) N 2m
b b
2T ) )
= bi-p <94, J=Jjo (20)

Second, we treat the case where w(x) = sinz. In the same way as
above, we can choose k; € Z. such that

2k +1
cos<(—an—)7z>§0, 1<n<p (21)
and
8; — ol <&, J = Jo, (22)
where 3; = ?%;ﬁ
Therefore we have from (15), [20) and [22) with o = 5
oy C(1 + 2bPm)~*
/ W(z)P (Y x — 2k)m) d:c‘ < ( +bj5 ) . J>Jo-  (23)
R
Since
o x + 2k.m
/ W(z)V Ytz — 2K)m) dx = / 12% (——J—) Y(z)dz, (24)
R R b
now we consider W (%lﬂ) Then
x + 2kim > w(b I (z + 2k’ 7))
3TN J
()T

M

—w(b" I (z + 2kim)) 1

=) — + = W(a)

n=0

1 T+ 2k' 1

— ) d"w ( ) + —=W(z). (25)
a] al

n=1

When w(z) = cosz, from and (19), we can use the result of Lemma 2.
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From (25), Lemmas 1 and 2, we have
b )

(20 + 1) 1 .
> —— 1+ — > Jo- 2
— (214 2)Na? * a) 1= (26)
When w(z) = sinz, from (16) and (21), we can use the result of Lemma 2.
Similarly from (25), Lemmas 1 and 2, we have

T + 2k (20 + Dlx 1 o

(27)

Then from (23), (24), (26) and (27), W € I'*(zo) implies
((22_;;521))'% (1-1H< C(Hi# for every j > jo and hence we have s < ll%g—z.
Therefore we have S(W, zy) < 184 O

logb*

By Theorem 2 and the fact that H(W, x¢) = %é% at each point xg in
R, we have the following corollary.

Corollary 3 Fach point in R is a cusp singularity of the Weierstrass
functions W.
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