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Absence of resonances for semiclassical Schr\"odinger
operators with Gevrey coefficients
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Abstract. We give lower bounds on resonance free domains for a Schr\"odinger operator
-h^{2}\triangle+V in the semi-classical limit harrow 0 , near a non-trapping energy level E_{0} , when
the potential V is dilation analytic at infinity, but only of Gevrey class in a compact set
of R^{n} .
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Introduction

In this paper, we give lower bounds on the width of resonance free
domains near a non-trapping energy level, for semi-classical operators like

P=-h^{2}\triangle+V(x) (0.1)

as V is long range, dilation analytic at infinity but may be only of Gevrey
class on a compact set of R^{n} .

As is well known, (see e.g. [Sj2]), many of the phenomena in semi-
classical Quantum Mechanics have their counterpart in geometrical optics.
Namely, if one considers the exterior Dirichlet problem for the Helmholtz
equation

(\triangle+k^{2})u=0 in R^{n}\backslash \Omega (n odd) (0.2)

for a bounded domain \Omega with smooth boundary, the resonances can be
defined as the poles of the scattering matrix in the framework of the Lax-
Phillips theory [LaPh], or as the set of k\in C , Im k<0 , for which (0.2) has
a non-trivial solution in some suitable Hilbert space. If the obstacle is non
trapping and has a C^{\infty} boundary, it follows from the results of propagation
of singularities of Melrose-Sj\"ostrand and Ivrii (see [H\"o Chap. 24]), that there
are only finitely many resonances inside any logarithmic neighborhood of
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the real axis. For an analytic boundary, C. Bardos, G. Lebeau and J. Rauch
[BaLeR] showed that there can be only finitely many resonances inside a
parabolic neighborhood of the real axis of the form Im k\geq-C\langle{\rm Re} k\rangle^{1/3}

(here we use the notation \langle x\rangle=(1+x^{2})^{1/2} ); this again follows from the
results on propagation of G^{3} singularities due to Lebeau [Le]. More recently,
B. and R. Lascar [BRLas] showed in turn that if \Omega has a G^{s’} boundary, there
are at most a finite number of resonances inside Im k\geq-C\langle{\rm Re} k\rangle^{1/s} , for all
s>2s’+1 .

Now, consider the Schr\"odinger operator (0.1). We say that V\in C^{\infty}(R^{n})

is dilation analytic outside a compact set K\subset R^{n} if V extends analytically
in a domain:

\Gamma= { x\in C^{n}||{\rm Im} x|\leq C\langle{\rm Re} x\rangle , Re x\in R^{n}\backslash K } (0.3)

where it satisfies:

lim V(x)=0 (0.4)
x\in\Gamma,|x|arrow\infty

Then inf \sigma_{ess}(P)=0 , (actually P has only continuous spectrum above 0)
and we may define the resonances of P near the energy level E_{0}>0 by
the method of analytic distorsions (W. Hunziker [Hu], B. Simon [Si] where
technics of exterior complex scaling were introduced). When K=\emptyset , this
method reduces to the celebrated Aguilar-Balslev-Combes theory of ana-
lytic dilations (see [ReSi Chap. 13]). Indeed, let M\subset C^{n} be a real sub-
manifold of dimension n , totally real (i.e. \forall x\in M , T_{x}M\cap iTxM=0 )
and P= \sum_{|\alpha|\leq d}a_{\alpha}(z)(hD_{z})^{\alpha} a differential operator with C^{\infty} coefficients
in some suitable complex neighborhood M^{C} of M. (Here D_{z} denotes the
holomorphic derivative with respect to coordinates in M^{C} ). Then we can
define a differential operator P_{M} : C^{\infty}(M)arrow C^{\infty}(M) such that, if u is
holomorphic, then (Pu)_{|M}=P_{M}(u_{|M}) . Now assume P is dilation analytic
outside a compact set K in the sense above. For 0\leq\theta\leq\theta_{0} , we let M=M_{\theta}

be parametrized by f_{\theta}\in C^{\infty}(R^{n}; C^{n}) such that f_{\theta}(x)=x for x in a neigh-
borhood of K and f_{\theta}(x)=e^{i\theta}x for large x . The corresponding family of
operators P_{\theta}=P_{M_{\theta}} on L^{2} is known to be an analytic family of type (A); the
essential spectrum of P_{\theta} is now e^{-2i\theta}R^{+} , and when \theta>0 , P_{\theta} may also have
discrete eigenvalues in the lower half plane near E_{0} , which are called (out-
going) resonances. The resonnant (or extended) states are the associated
eigenfunctions. This presentation due to J. Sj\"ostrand and M. Zworski [SjZ]
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is adapted from [Hu] (see also [Co], or [HeSj] where a phase-space theory of
resonances was introduced; various equivalences are proved in [HeMa] ) .

Let E_{0}>0 (i.e. an energy away from the threshold). Conditions (0.3)
and (0.4) ensure that the underlying classical dynamical system is non-
trapping near infinity for all energies E\in I=[E_{0}-\epsilon_{0}, E_{0}+\epsilon_{0}] for \epsilon_{0}>0

small enough. Actually, if p(x, \xi)=\xi^{2}+V(x) is the classical hamiltonian
and H_{p}= \frac{\partial p}{\partial\xi}\frac{\partial}{\partial x}-\frac{\partial p}{\partial x}\frac{\partial}{\partial\xi} the hamiltonian vector field, then exp tH_{p}(x, \xi) -

\infty , as t tends either to +\infty or to -\infty for all (x, \xi)\in p^{-1}(I) if x is large
enough. This is a consequence of the virial condition, which is in turn
implied by (0.4) and Cauchy’s inequalities for large x . Let

\Gamma_{\pm}(I)= { (x, \xi)\in p^{-1}(I)| exp tH_{p}(x, \xi)\star \infty as tarrow\mp\infty }
be the outgoing and incoming tails, and K(I)=\Gamma_{+}(I)\cap\Gamma_{-}(I) be the set
of trapped trajectories (see the Appendix of [GeSj]). When K(I)=\emptyset , we
can construct a global escape function (in the terminology of [HeSj] and
[MRS] for the exterior Dirichlet problem), i.e. construct G\in C^{\infty}(R^{2n}) such
that:

H_{p}G(x, \xi)\geq C_{0}>0\forall(x, \xi)\in p^{-1}(I) for some C_{0}>0 . (0.5)

When the potential is everywhere analytic and under some global virial
conditions, which imply K(I)=\emptyset , it is known ([BrCoDu], [K], [Nal]) that
there are no resonances for h>0 small enough in a h-independent neigh-
borhood of E_{0} in Im z<0 . This result was obtained already implicitely in
[HeSj] for more general V and under the mere assumption K(I)=\emptyset .

A natural question arises when considering non analytic potentials; thus
the distribution of poles for the S-matrix of short range Schr\"odinger (or more
general) operators is discussed by W. Goodhue [Go] for a potential of Gevrey
class. More recently S. Nakamura [Na2] proved the absence of resonances
for some short range C^{\infty} potentials. Here we prove the following:

Theorem 0.1 Let P=-h^{2}\triangle+V(x) , where V\in G^{s}(R^{n}) is dilation
analytic outside a compact set K\subset R^{n} (in the sense above). Assume E_{0}>

0 is a non-trapping energy, i.e . there is \epsilon_{0}>0 such that K(I)=\emptyset for
I=[E_{0}-\epsilon_{0}, E_{0}+\epsilon_{0}] . Then there is \delta>0 such that P has no resonances
in I-i[0, \delta h^{1-1/s}] for h>0 sufficiently small

In [Ro] we have constructed a potential of class G^{s} such that there are
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actually resonances E near a non-trapping energy level E_{0}>0 with Im E\approx

-Const. h^{1-1/s} . for h>0 small enough; so we can consider that our lower
bound in Theorem 0.1 is optimal.

Let us say a few words about the proof. The main simple idea is to
derive a priori estimates for an eigenfunction u associated to the resonance
E , which in turn imply a lower bound on Im E. It is convenient to work
in the Bargmann representation which describes u (or rather its image Tu
by the Bargmann or FBI transform T), both in position and frequency
variables. As a rule Tu is small away from the characteristics of P_{\theta} . But
where dilation is turned on (i.e. for large x), P_{\theta} is elliptic; to give a global
control on Tu, it suffices to gain some ellipticity in the “classically allowed
phase-space region” ; there, by an argument of non-characteristic, or la-
grangian deformations in the directions of the hamiltonian vector field (for
complex, small h-dependent times) and using almost analytic extensions
of the potential, we show that condition (0.5) implies that Im P_{\theta} becomes
everywhere, but in some weak sense, non characteristic; this gives the con-
trol on Im E. Thus our proof heavily relies on the analytic machinery of
[Sj] suitably adapted to the Gevrey classes. In particular, we deform a
plurisubharmonic weight function. An alternative approach would consist
in using the h-Pseudodifferential Weyl calculus of [H\"o] in suitable S(m, g)
classes, but in the real domain (see [BRLas]). Note that the corresponding
exterior Dirichlet problem treated in [BRLas] is considerably more difficult
than ours, but our method is somewhat conceptually different. It may also
help to reformulate in a simpler way the theory of [HeSj] when the potential
decays at infinity as in (0.4).

Note also that the width h^{1-1/s} is expected since this is precisely the
order of magnitude of admissible deformations of weights in the FBI trans-
form (and hence the size for the domain of ellipticity), for G^{s} functions: see
e.g. [BLas], [Le], [Li], . . We include also an auxiliary result on almost
analytic extensions of Gevrey functions which makes precise a well known
theorem (but for which we did not find any references in the literature).

It should be worth looking at the C^{\infty} case, where we would expect the
h^{1-1/s} term in Theorem 0.1 to be replaced by h log 1/h . It would be also
natural to ask what happens if the potential is everywhere of class G^{s} ; the
resonances would then not be intrinsically defined, but maybe only with an
exponentially small uncertainty (in some fractional power of h) if we assume
some decrease of \overline{\partial}V(x) near infinity. Se also [GeSig] for a time-dependent
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approach.

1. Review of h-pseudo differential calculus in Gevrey classes

We begin with some statements on Weyl calculus with small parameter

h>0 , essentially due to B. Lascar [BLas].
Let V be a n-dimensional vector space over R, V’ its dual space, and

W=V\oplus V’ . The duality pairing is denoted simply by (x, \xi)\in W\mapsto x.\xi .

Actually we shall use the results below in a different context, where W is
replaced by a totally real submanifold \Lambda_{\Phi} of C^{n} . As the calculus is exactly
the same, it is not suitable to carry it out in this setting, for it would
uselessly complicate the notations. However, we shall show the link with
the calculus as it will be used in this work in Section 2. The presentation
below is adapted from H\"ormander [H\"o Chap. 18], and Ivrii [Iv Chap. 1] in
the C^{\infty} case.

a) Some classes of symbols

We recall the definition of G^{s} symbols, for s>1 . Such classes were
introduced by L. Boutet de Monvel and P. Kr\’ee [BoK] for functions partially
holomorphic with respect to x , then extended by R. Lascar [RLas], where a
G^{s} regularity in the cotangent variable is permitted as well, for the purposes
of microlocal analysis. For m\in Z , we denote by S(m, s) the set of a\in

C^{\infty}(W) , such that \exists A , C>0 with:

\sup |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x, \xi, h)|\leq Ch^{-m}A^{|\alpha+\beta|}\alpha!^{s}\beta!^{s} (1.1)
(x,\xi)\in W

for all multi-indices \alpha , \beta\in N^{n} . We call a a G^{s} symbol of order m, and
emphasize that we do not require here any decrease in \xi . The variable in
W will be denoted by X=(x, \xi) . As usual, if \alpha=(\alpha_{1}, . , \alpha_{n}) , we note
|\alpha|=\alpha_{1}+ +\alpha_{n} and \alpha!=\alpha_{1} ! \cdots\alpha_{n} ! If T=(T_{x}, T_{\xi})\in(R^{+})^{2n} , R^{+}=

]0, +\infty [, we shall write T\succ 0 , and T^{(\alpha,\beta)}=T_{x_{1}}^{\alpha_{1}}\cdot\cdot T_{\xi_{1}}^{\beta_{1}}\cdot . Let:

N_{s}(a, m, T)(X, h)=h^{m} \sum_{\alpha,\beta\in N^{n}}|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(X, h)|T^{(\alpha,\beta)}/\alpha!^{s}\beta!^{s}
(1.2)

and:

\overline{N}_{s}(a, m, T)(h)=\sup_{X\in W}N_{s}(a, m, T)(X, h)
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which converges if T\succ 0 is small enough. (Note that we can replace
the supremum norm by suitable Sobolev norms). Then a\in S(m, s) iff
\overline{N}_{s}(a, m, T)(h)=O(1) , uniformly for h>0 small enough, for some T\succ 0 .

Let S(m, T, s) be the set of those a\in S(m, s) such that \overline{N}_{s}(a, m, T)

is uniformly bounded for h>0 small enough. If a\in S(m’, T, s) , b\in

S(m, T, s) , then ab\in S(m+m’, T, s) and we have the easy multiplicative
property:

\overline{N}_{s} (ab, m’+m, T) (h)\leq\overline{N}_{s}(a, m’, T)(h)\overline{N}_{s}(b, m, T)(h)

In particular, \Sigma(T, s)=\oplus_{m\in Z}S(m, T, s) is a graded Banach algebra, and
(\Sigma(T, s))_{T\succ 0} , for the usual ordering on (R^{+})^{2n} a decreasing family of Ba-
nach algebras, whose union is exactly S(s)=\oplus_{m\in Z}S(m, s) . The topology
of S(m, s) is the inductive limit of the S(m, T, s) topologies filtered by the
norms \overline{N}_{s} (\cdot, m, T)(h) as T\succ 0 , Tarrow 0 .

We next define the class of negligible symbols for our pseud0-differential
calculus as:

S(-\infty, s)=\{a\in C^{\infty}(W)|\exists T\succ 0\forall m\in Z : \overline{N}_{s}(a, m, T)(h)

\leq C exp (-1/Ch^{1/s}) for some C=C(m, T) , 0<h<h_{0}\}

Note that we can replace “for all m” by “there is some m” in the definition
above.

We need also the existence of almost analytic extensions for G^{s} symbols.
Indeed, if a\in S(m, s) , then Corollary a.4 (see Appendix) shows that for all
s’>s , there exists an almost analytic extension \overline{a}(x, \xi, h) of a(x, \xi, h) to a
neighborhood \overline{W}=W+iB(0, c) of W in W^{C} (the complexification of W),
such that \overline{a}\in S(m, s’) and

|\overline{\partial}_{(x,\xi)}\overline{a}(X, h)|\leq Ch^{-m} exp( -| Im X|^{-1/(s-1)}/C),
X=(x, \xi)\in\overline{W} (1.3)

We also have to consider more general symbols. Following [BLas] we say
that a(x, \xi, h) is a G^{s} symbol of degree d and order m iff a\in C^{\infty}(W) , and
\exists A , C>0 such that:

|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x, \xi, h)|\leq Ch^{-m}A^{|\alpha+\beta|}\alpha!^{s}\beta!^{s}\langle\xi\rangle^{d-|\beta|} (1.3)

(We could as well introduce more general spaces as S(m, g) where m is a



Absence of resonances for semiclassical Schr\"odinger operators 481

weight and g(x, \xi) is a slowly varying metric, see [H\"oIII, Sect. 18] and [Iv].
Here g(x, \xi)=dx^{2}+\langle\xi\rangle^{-2}d\xi^{2}) . We shall denote this class by S((m, d), s) ,
whose topology can be described exactly as the S(m, s) topology. A careful
inspection of the proof of Theorem a.3 and Corollary a.4 shows also that the
almost analytic extension process carries over the S((m, d) , s) class. More
precisely, if a\in S((m, d) , s) , and s’>s , there exists \overline{a}\in S((m, d), s’) in a
neighborhood \overline{W}=W+iB(0, c) of W in W^{C} such that

|\overline{\partial}_{(x,\xi)}\overline{a}(X, h)|\leq Ch^{-m}\langle\xi\rangle^{d-1} exp(-|{\rm Im} X|^{-1/(s-1)}/C) ,

X=(x, \xi)\in\overline{W} (1.5)

b) h-Pseudodifferential Weyl calculus

It is very convenient to work with Weyl quantization of G^{s} symbols.
With any a\in S(W) (Schwartz space) we associate the operator

a^{w}(x, hD, h)u(x, h)

=(2 \pi h)^{-n}\iint e^{i(x-y)x/h}a((x+y)/2, \xi, h)u(y)dyd\xi , u\in S(V)

(1.6)

(here dy is a Lebesgue measure in V and d\xi is the dual one in V’ such that
Fourier inversion formula holds with the usual constant). If a , b\in S(W)

then:

a^{w}(x, hD, h)b^{w}(x, hD, h)=c^{w}(x, hD, h) (1.7)

where c=a\# b is given by:

c(X, h)=( \pi h)^{-2n}\iint e^{-2i\sigma(Y,Z)/h}a(X+Y, h)b(X+Z, K)dYdZ .

(1.8)

Here, X=(x, \xi) , Y=(y, \eta) , Z=(z, \zeta) , \sigma is the canonical symplectic
2-form defined by \sigma(Y, Z)=z\eta-y\zeta . An arbitrary continuous linear map
on S(m’, s)\cross S(m, s) is not determined by its restriction to G^{s} functions in
S(W)\cross S(W) , since this is not a dense set; so following [H\"o, Def. 18.4.9]
we say that the bilinear continuous map (a, b) –a$b is weakly continuous
iff its restriction to a bounded subset of S(m’, s)\cross S(m, s) is continuous
for the G^{s} topology. A weakly continuous map is then determined by its
restriction to (S(W)\cap S(m’, s))\cross(S(W)\cap S(m, s)) , since a\in S(m, s)
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can be approximated by \sum_{g\in Z^{2n},|g|\leq N}X_{g}a , Narrow\infty (here X_{g} are cutt-0ff
functions; see Corollary a.4 below for notations). The main result on Weyl
calculus of G^{s} symbols is the following:

Proposition 1.1 [BLas] The composition formula (1.8) extends from
S(W)\cross S(W) – S(W) to a bilinear map S(m’, s)\cross S(m, s)arrow S(m+

m’ , s) , (a, b) – a\# b . More precisely, let \chi\in G_{0}^{s}(W^{2}) be equal to 1 near
(Y, Z)=0 ,

c_{\chi}(X, h)

=( \pi h)^{-2n}\iint e^{-2i\sigma(Y,Z)/h}a(X+Y, h)b(X+Z, h)\chi(Y, Z)dYdZ

(1.9)

and c_{\hat{\chi}}(X, h)=c(X, h)-c_{\chi}(X, h) . Then the bilinear maps (a, b)\mapsto(a\# b)_{\chi}

[resp. (a , b) – (a\# b)_{\hat{\chi}} ] are weakly continuous from S(m’, s)\cross S(m, s) to
S(m+m’+2n, s) [resp. to S(-\infty, s) ]. Moreover, the map (a, b)\in S(m’, s)\cross

S(m, s) , to the remainder term r_{a,b} defined by

r_{a,b}(X, h)=c_{\chi}(X, h)

-

\sum_{j<N}\frac{h^{j}}{j!}(i\sigma(D_{x}, D_{\xi}, D_{y}, D_{\eta})/2)^{j}a(X, h)b(Y, h)_{|X=Y}

is valued in S(m’+m-N, s) for all N\in N , (but may not be weakly
continuous).

Remark Using stationary phase we can show that (a, b)\in S(m’, s)\cross

S(m, s) – r_{a,b}\in S(m+rn’-N, 2s-1) is weakly continuous, that is (weak)
continuity holds with a loss of s-1 Gevrey regularity. This fact will not be
used in the sequel however.

We consider now a division problem. We say that b\in S(0, s) is elliptic
at infinity iff |b(x, \xi, h)|\geq C>0 for (x, \xi) outside a compact set K_{1}\subset\subset W

Let c\in S(0, s) vanish in a neighborhood of K_{1} . We have:

Proposition 1.2 [BLas] Let b , c 6e as above. Then there exist left and
right parametrices a_{L} , a_{R}\in S(0, s) and remainders r_{L} , r_{R}\in S(-\infty, s) such
that

a_{L}^{w}(x, hD, h)b^{w}(x, hD, h)=c^{w}(x, hD, h)+r_{L}^{w}(x, hD, h)

b^{w}(x, hD, h)a_{R}^{w}(x, hD, h)=c^{w}(x, hD, h)+r_{R}^{w}(x, hD, h) (1.10)
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As an application of the notions and statements we have just reviewed we
recall the:

Proof. We treat the case of the right parametrix a_{R} , the other one is sim-
ilar. We may assume b\in S(W) as before. Let \phi(x, \xi)\in G^{s}(W) to be equal
to 0 on some neighborhood of K_{1} , to 1 on a neighborhood of supp c . For
fixed N. we construct by means of successive divisions and Proposition 1.1,
a symbol a’\in S(0, s) such that b\# a’=\phi-r , with r\in S(-N, s) . By induc-
tion, define a sequence of functions r_{j} such that r_{0}=1 , r_{j}=(r\# r_{j-1})_{\chi} , j\geq

1 , where the cutoff function \chi is chosen as in Proposition 1.1. Put r’=1+
r_{1}+r_{2}+ \cdot , and compute (1-r)\# r’ Using again Proposition 1.1 we see
that the series defining r’ is summable, and still with notations of PropO-
sition 1.1: (1-r) \# r’=1-\sum_{j\geq 0}(r\# r_{j})_{\hat{\chi}} . We start with estimating r_{j} . For
T’\succ 0 small enough, and j\geq 1 we have by Proposition 1.1:

\overline{N}_{s}(r_{j}, 0, T’)(h)\leq C_{0}h^{-2n}\overline{N}_{s}(r, 0, T’)(h)\overline{N}_{s}(r_{j-1},0, T’)(h)

where C_{0} depends only on the diameter of supp \chi . (The proof of Proposi-
tion 1.1 tells us that we can take the same T’ on both sides of the inequality,
although this is actually irrelevant). Since \overline{N}_{s}(r, 0, T’)(h)\leq Ch^{N} . we get for
some new constant C>0:\overline{N}_{s}(r_{j}, 0, T’)(h)\leq C^{j+1}h^{(N-2n)j} . On the other
hand, from Proposition 1.1 and its proof, we can find C_{1}>0 depending
on the diameter of supp \chi only, but not on r or r_{j} , and O\prec T\prec T’ small
enough, such that:

\overline{N}_{s}((r\# r_{j})_{\hat{\chi}}, 0, T)(h)\leq C_{1}\overline{N}_{s}(r, 0, T’)(h)\overline{N}_{s}(r_{j}, 0, T’)(h)e^{-1/C_{1}h^{1/s}}

From the above estimates there follows that for N\geq 2n+1 the series r’=
\sum_{j\geq 1}(r\beta r_{j})_{\hat{\chi}} converges absolutely in the S(0, T, s) topology for h>0 small
enough, and:

\sum_{j\geq 1}\overline{N}_{s}((r\# r_{j})_{\hat{\chi}}, 0, T)(h)\leq C_{2}e^{-1/C_{1}h^{1/s}}

So r’\in S(-\infty, s) and:

b\#(a’\# r’\# c)=(b\beta a’)\#(r’\# c)=(\phi-r)\beta(r’\# c)

=((1-r)\# r’)\# c+(\phi-1)\# r’\# c=c-r’\# c+(\phi-1)\# r’\# c

Because supp(\phi-1)\cap suppc=\emptyset , we can choose supp \chi so small that (\phi-

1)\# c\in S(-\infty, s) , so the last 2 terms belong to S(-\infty, s) and the right
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parametrix is given by a_{R}=a’\# r’\# c , and r_{R}=-r’\# c+(\psi-1)\# r’\# c . \square

There is a natural composition result as in Proposition 1.2 for G^{s} sym-
bols of degree d, and order m, which tells essentially that the G^{s} sym-
bols form a graded algebra for the composition law \# . Now let d\geq 0

and b\in S((0, d) , s) be a G^{s} symbol of degree d elliptic at infinity, that is,
|b(x, \xi, h)|\geq C\langle\xi\rangle^{d} for (x, \xi) outside a compact set K_{1}\subset\subset W . Then for
any c\in S((0, 0) , s) vanishing in a neighborhood of K_{1} , there exist a_{L} , a_{R}\in

S((0, -d) , s) , and r_{L} , r_{R}\in S(-\infty, s) such that

a_{L}^{w}(x, hD, h)b^{w}(x, hD, h)=c^{w}(x, hD, h)+r_{L}^{w}(x, hD, h)

b^{w}(x, hD, h)a_{R}^{w}(x, hD, h)=c^{w}(x, hD, h)+r_{R}^{w}(x, hD, h) (1.11)

Moreover, r_{L} and r_{R} are rapidly decreasing with respect to \xi (see [BLas]):

\exists C>0 , \forall(\alpha, \beta, N)\in N^{n}\cross N^{n}\cross N ,
\exists C_{\alpha,\beta,N}>0 : |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}r(x, \xi, h)|\leq C_{\alpha,\beta,N}\langle\xi\rangle^{-N}\exp(-1/Ch^{1/s}) (1.12)

(these estimates can certainly be improved). We shall now study the rela-
tion between Weyl and standard pseudo differential calculus. Recall [H\"o,
Chap. 18.5] that if a(x, \xi, h)\in S(W) we can write a(x, hD, h)=b^{w}(x, hD, h)

where b(x, \xi, h)\in S(W) is given by:

b(X, h)=( \pi h)^{-n}\int a(X+Y, h)e^{2iy\eta/h}dY=e^{h<D_{x},D_{\xi}>/2i}a(X, h) ,

X=(x, \xi) , Y=(y, \eta) (1.13)

In the same spirit as in Proposition 1.2 above, we have:

Proposition 1.3 Formula (1.13) extends from S(W) to a weakly contin-
uous linear map aarrow b from S(m, s) to itself More precisely, let c\in G_{0}^{s}(W)

be equal to 1 near Y=0,

b_{\chi}(X, h)=( \pi h)^{-n}\int a(X+Y, h)e^{2iy\eta/h}\chi(Y)dY

and b_{\hat{\chi}}(X, h)=b(X, h)-b_{\chi}(X, h) . Then the maps a\mapsto b_{\chi} [resp. a\mapsto b_{\hat{\chi}} ] are
weakly continuous from S(m, s) to itself [resp from S(m, s) to S(-\infty, s) ],
and the map from a\in S(m, s) to the remainder term:

b_{\chi}(X, h)- \sum_{j<N}\frac{(h/2)^{j}}{j!}\langle iD_{x}, D_{\xi}\rangle^{j}a(X, h)
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is valued in S(m-N, s) for all N\in N .

Notice that we have a completely analogous result for G^{s} symbols of
degree d as in (1.4). In particular if:

P(x, hD, h)= \sum_{|\alpha|\leq d}a_{\alpha}(x, h)(hD_{x})^{\alpha}
, a_{\alpha}(x, h)\in S(0, s) (1.14)

is a differential operator of order d , the Weyl symbol of P is a G^{s} symbol
of degree d . Let us close this section by recalling a wellknown L^{2} estimate
for h-Pseudo Differential operators, see [H\"o], [Ho], . . . We denote as usual
by W^{\sigma,2}(V) the Sobolev space with L^{2}-norm ||u||_{\sigma,2}^{2}= \int\langle\xi\rangle^{2\sigma}|\mathcal{F}_{h}u(\xi)|^{2}d\xi ,
\sigma\in R , \mathcal{F}_{h}u(\xi)=\int e^{-ix\xi/h}u(x)dx . For \sigma\in N , we have ||u||_{\sigma,2}^{2}=

\sum_{|\alpha|\leq\sigma}||(hD)^{\alpha}u||_{L^{2}}^{2} .

Proposition 1.4 If a\in S(0, s) then a^{w}(x, hD, h)=O(1) : L^{2}(V)arrow

L^{2}(V) , and more generally a^{w}(x, hD, h)=O(1) : W^{\sigma,2}(V) – W^{\sigma,2}(V) .
For P(x, hD, h) as in (1.14) we a/so have P(x, hD, h)=O(1) : W^{\sigma,2}(V) -

W^{\sigma-d,2}(V) .

2. Bargmann transform and Weyl calculus in the complex d0-
main

a) Bargmann transform

It will be convenient to replace L^{2} functions by holomorphic ones; this
can be achieved by performing a Bargmann transform (or FBI transform,
in the terminology of [Sj] which we follow here, see also [BLasSj] ) . Let

Tu{x, h) =C_{0}h^{-3n/4} \int e^{-(x-y)^{2}/2h}u(y)dy , u\in C_{0}^{\infty}(R^{n}) (2.1)

For a suitable choice of C_{0} , T extends to a unitary operator from L^{2}(R^{n})

to H_{\Phi} , the space of entire functions in C^{n} which are L^{2} with respect to
e^{-2\Phi(x)/h}L(dx) where L(dx)=(2i)^{-n}dx\wedge d\overline{x} is the standard Lebesgue mea-
sure on C^{n}\approx R^{2n} , and \Phi(x)=({\rm Im} x)^{2}/2 the weight function associated to
T, Then the adjoint of T is:

T^{*}v(y, h)= \overline{C_{0}}h^{-3n/4}\int_{C^{n}}e^{-(\overline{z}-y)^{2}/2h}v(z)e^{-2\Phi(z)/h}L(dz)

The canonical relation associated to \varphi(x, y)=i(x-y)^{2}/2 is given by \kappa_{T} :
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(y, \eta)\mapsto(x, \xi) , with \eta=-\frac{\partial\varphi}{\partial y} , \xi=\frac{\partial\varphi}{\partial x} . In other words (x, \xi)=\kappa_{T}(y, \eta)

if and only if \xi=\eta and x=y-i\eta . \kappa_{T} maps isomorphically T^{*}R^{n} en-
dowed with its symplectic structure given by the 2-form dy\wedge d\eta , onto the
I-lagrangian linear manifold \Lambda_{\Phi}\subset T^{*}C^{n} (i.e. Im dx\wedge d\xi|\Lambda_{\Phi}=0 ) given by
\Lambda_{\Phi}= { \xi=\xi(x)=\frac{2}{i}\frac{\partial\Phi}{\partial x}(x)=- Im x }. The space \Lambda_{\Phi} is a totally real mani-
fold of T^{*}C^{n} , i.e. \Lambda_{\Phi}\cap i\Lambda_{\Phi}=0 , which allows to define its complexification
\Lambda_{\Phi}^{C} in a canonical way. Thus, T can be viewed as a Wave-Packet Ikansform
(in the sense of A. Cordoba and Ch. Feffermann [CorFe]), which localizes
on \Lambda_{\Phi} . We shall identify the symbols on \Lambda_{\Phi} with symbols on R^{2n} via the
canonical isomorphism \kappa_{T} . Let

S_{\Phi}=S(\Lambda_{\Phi})=T(S(R^{n}))

=\{u\in H_{\Phi} : |u(x)|\leq C_{N}(1+|x|)^{-N}e^{\Phi(x)/h}, N=1,2, \ldots\}

be the Schwartz space on \Lambda_{\Phi} .

b) PseudO-differential calculus

If a\in S(\Lambda_{\Phi}) , we put:

a^{w}(x, hD, h)u(x, h)

=(2 \pi h)^{-n}\int_{\Gamma(x)}e^{i(x-y)\theta/h}a((x+y)/2, \theta, h)u(y, h)dy\wedge d\theta (2.2)

for u\in H_{\Phi} . Here \Gamma(x) is the contour:

\Gamma(x)=\{\theta=\xi((x+y)/2)=\frac{2}{i}\frac{\partial\Phi}{\partial x}((x+y)/2) : y\in C^{n}\}\approx\Lambda_{\Phi} .

(2.3)

We can check that there is, for instance, a one to one correspondance be-
tween the h-quantization of symbols in S(R^{2n}) and those in S(\Lambda_{\Phi}) , given by:
Q=TPT^{-1} where P=p^{w}(x, hD, h) , p\in S(R^{2n}) and Q=q^{w}(x, hD, h) ,
q\in S(\Lambda_{\Phi}) with the quantization rule (2.2). The symbols are related by
p=q\circ\kappa_{T} . The remarkable fact (wellknown when T is any metaplectic
operator, see [H\"o Theorem 18-5-9] ) is that this relation is exact, i.e. no
remainder term occurs in the formula Q=TPT^{-1} . The /i-quantization
rule (2.2) extends to symbols in the class S(m, s) defined on \Lambda_{\Phi} . We now
consider the composition of 2 operators of the form (2.2); because of the
result in R^{2n} and the symplectic invariance, we get:
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Proposition 2.1 Let a\in S(m’, s) , b\in S(m, s) be Gevrey s symbols of
order m’ , m respectively, defined on \Lambda_{\Phi} and a^{w}(x, hD, h) , b^{w}(x, hD, h)

their corresponding Weyl h -quantization given by (2.2). Then
a^{w}(x, hD, h)b^{w}(x, hD, h)=c^{w}(x, hD, h) with:

c(x, \xi, h)_{|\Lambda_{\Phi}}

=( \pi h)^{-2n}\iint e^{-2i\sigma(Y,Z)/h}a(X+Y, h)b(X+Z, h)L(dY)L(dZ) (2.4)

Here we put: X=(x, \xi)\in\Lambda_{\Phi} , Y=(y, \eta)\in\Lambda_{\Phi} , Z=(z, \zeta)\in\Lambda_{\Phi} . Again,
L(dY)=(2i)^{-n}dy\wedge d\overline{y} is the Lebesgue measure on \Lambda_{\Phi} and \sigma(Y, Z)=z\eta-

y\zeta the symplectic 2-form on C^{2n} (because \Lambda_{\Phi} is I-lagrangian, \sigma|\Lambda_{\Phi} is real
and non degenerate).

c) Method of stationary phase

For real analytic phase functions and G^{s} symbols (in the real domain),
the method of stationary phase is discussed by Gramchev [Gr]. A more
general situation is considered in [BLas]. It is known in particular that
stationary phase method gives a loss of Gevrey smoothness equal to s-
1 . For the case at hand, we content ourselves to give a few terms in the
expansion, and mimick the proof of [Sj2 Lemma 1.1], but it should not be
too hard to give the full expansion along the same lines using the results
in Appendix. Let \psi\in G_{0}^{s}(C^{n}) be real valued, \mu a small parameter we will
eventually set to h^{1-1/s} and:

\Phi_{\mu}(x)=\Phi(x)+\mu\psi(x) (2.5)

be the weight function. We denote by L_{\Phi_{\mu}}^{2} the space of functions on C^{n}

which are L^{2} with respect to e^{-2\Phi_{\mu}(x)/h}L(dx) and by H_{\Phi_{\mu}}\subset L_{\Phi_{\mu}}^{2} the
(closed) subspace of entire functions. As Hilbert spaces we have, for in-
stance: H_{\Phi_{\mu}}=H_{\Phi} but the corresponding norms depend on h . We also
need:

S_{\Phi_{\mu}}=\{u\in H_{\Phi_{\mu}} : |u(x)|\leq C_{N}(1+|x|)^{-N}e^{\Phi_{\mu}(x)/h}- N=1,2, \ldots\} .
(2.6)

As Fr\’echet spaces we have S_{\Phi_{\mu}}=S_{\Phi} but the best constants C_{N} in the
respective definitions depend on h . Let b\in S(m, s) be defined on \Lambda_{\Phi} ;
by the same letter we denote an almost analytic extension to T^{*}C^{n} as in
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Corollary a.4 . Note that inequality (1.3) becomes:

|\overline{\partial}_{(x,\theta)}b(x, \theta, h)|\leq Ch^{-m} exp(-|\theta-\xi(x)|^{-1/(s-1)}/C) ,
(x, \theta)\in T^{*}C^{n} . |\theta-\xi(x)|\leq c (2.7)

Let \chi\in C_{0}^{\infty}C^{n} be equal to one in a neighborhood of 0. We quantize b in
the following way:

b_{\chi,0}u(x, h)

=(2 \pi h)^{-n}\int_{\Gamma_{0}(x)}e^{i(x-y)\theta/h}b((x+y)/2, \theta, h)\chi(x-y)u(y, h)dy\wedge d\theta

(2.8)

where \Gamma_{0}(x) is the integration contour parametrized by y\in C^{n} : \theta=\xi_{\mu}(x)+

ic\overline{x-y} , (c>0) , and u\in H_{\Phi_{\mu}} . We have set \xi_{\mu}(x)=\frac{2}{i}\frac{\partial\Phi_{\mu}}{\partial x}(x) . Since u\in

H_{\Phi_{\mu}} is microlocalized near (x, \xi_{\mu}(x)) , the action of a h-Pseudo differential
operator on u is approximated to every order in h^{1/2} by expanding its symbol
in powers of hD_{x}-\xi_{\mu}(x) . The following is a straightforward generalization
of Proposition 4.4 of [GeSj] and Lemma 1.1 of [Sj2].

Proposition 2.2 For u\in H_{\Phi_{\iota}}, , b\in S(m, s) , \mu=h^{1-1/s} and x\in C^{n} , we
have:

b_{\chi,0}u(x, h)=b(x, \xi_{\mu}(x), h)u(x, h)

+d_{\xi}b(x, \xi_{\mu}(x) , h)(hD_{x}-\xi_{\mu}(x))u(x, h)+Ru(x, h)

(2.9)

where R is of norm O(h^{1-m}) from H_{\Phi_{\mu}} to L_{\Phi_{\mu}}^{2} .

Proof. Although the only thing really new compared to [Sj2] (beside the
fact we use Weyl quantization), is the control on the anti-holomorphic terms,
we recall the argument. We make the Taylor expansion:

b((x+y)/2, \theta, h)

=b(x, \xi_{\mu}(x) , h)+d_{\xi}b(x, \xi_{\mu}(x), h)(\theta-\xi_{\mu}(x))

+d_{\overline{\xi}}b(x, \xi_{\mu}(x) , h)\overline{(\theta-\xi_{\mu}(x))}+d_{x}b(x, \xi_{\mu}(x), h)(y-x)/2
+d_{\overline{x}}b(x, \xi_{\mu}(x) , h)\overline{(y-x)}/2+R_{0}(x, y, \theta, h) (2.10)

where R_{0}(x, y, \theta, h)\in S(m, s) is defined for x , y\in C^{n} , and verifies
R_{0}(x, y, \theta, h)=O(|x-y|^{2}+|\theta-\xi_{\mu}(x)|^{2})=O(|x-y|^{2}) for \theta\in\Gamma_{0}(x) .
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The corresponding operator, that we also denote by R_{0} , is of the form:

R_{0}u(x,h)=h^{-n-m} \int o(1)e^{-c|x-y|^{2}/h}e^{i(x-y)\xi_{\mu}(x)/h}|x-y|^{2}\chi(x-y)u(y)L(dy)

The phase function in the reduced kernel e^{-\Phi_{\mu}(x)/h}R_{0}(x, y)e^{\Phi_{\mu}(y)/h} is given
by:

\varphi(x, y, \mu)=-c|x-y|^{2}+i(x-y)\xi_{\mu}(x)+\Phi_{\mu}(y)-\Phi_{\mu}(x)

Hence:

Re \varphi(x, y, \mu)\leq-c|x-y|^{2}+({\rm Im}(x-y))^{2}/2+C_{1}\mu|x-y|^{2} , C_{1}>0

(here C_{1} is chosen so that |\psi’(x)|\leq C_{1} ). So when c>1/2 and \mu>0 is
small enough, we have:

Re \varphi(x, y, \mu)\leq-\delta|x-y|^{2} . \delta>0

As in [Sj2], using the very first terms in the expansion of R_{0}u(x, h) by
stationary phase (in the C^{\infty} sense), we see that R_{0}=O(h^{1-m}) : H_{\Phi_{\mu}}

-

L_{\Phi_{\mu}}^{2} . Now we examine the contribution to b_{\chi,0} of the various terms in (2.10).
First we know from [Sj 1] that:

(2 \pi h)^{-n}\int_{\Gamma_{0}(x)}e^{i(x-y)\theta/h}u(y, h)\chi(x-y)dy\wedge d\theta=u(x, h)+R_{1}u(x, h)

(2.11)

where R_{1}=O(e^{-1/Ch}) : H_{\Phi_{\mu}}
–

L_{\Phi_{\mu}}^{2} (this is Fourier’s inversion formula in
the H_{\Phi_{\mu}} spaces), so the first term in (2.10) gives b(x, \xi_{\mu}(x), h)u(x, h) with
an error that enters into R. Next we have

d_{\xi}b(x, \xi_{\mu}(x) , h)(2 \pi h)^{-n}\int_{\Gamma_{0}(x)}e^{i(x-y)\theta/h}(\theta-\xi_{\mu}(x))u(y, h)\chi(x-y)dy\wedge d\theta

=d_{\xi}b(x, \xi_{\mu}(x) , h)(2\pi h)^{-n}

\cross\int_{\Gamma_{0}(x)}[(-hD_{y}-\xi_{\mu}(x))e^{i(x-y)\theta/h}]u(y, h)\chi(x-y)dy\wedge d\theta

so by an argument similar to this leading to (2.11) the second term in (2.10)
gives: d_{\xi}b(x, \xi_{\mu}(x) , h)(hD_{x}-\xi_{\mu}(x))u(x, h) up to an error that enters also
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into R. Similarly one has

d_{x}b(x, \xi_{\mu}(x) , h)(2 \pi h)^{-n}\int_{\Gamma_{0}(x)}e^{i(x-y)\theta/h}(y-x)u(y, h)\chi(x-y)dy\wedge d\theta

=R_{2}u(x, h)+ih \sum_{j=1}^{n}\partial_{x_{j}}b(x, \xi_{\mu}(x), h)(2\pi h)^{-n}

\cross\int_{\Gamma_{0}(x)}d(e^{i(x-y)\theta/h}u(y, h)\chi(x-y)dy\wedge d\theta_{1}
\wedge d\hat{\theta_{j}} \wedge d\theta_{n})

where R_{2}=O(e^{-1/Ch}) : H_{\Phi_{\mu}}
– L_{\Phi_{\mu}}^{2} (here d denotes the exterior derivative,

and d\hat{\theta_{j}} means as usual that this factor has been omitted). So we are left
with the antiholomorphic terms. For instance we have, for \mu=h^{1-1/s} :

d_{\overline{\xi}}b(x, \xi_{\mu}(x) , h)=h^{-m}O (exp (-|\xi_{\mu}(x)-\xi(x)|^{-1/(s-1)}/C)

=O(\exp(-1/Ch^{1/s})) , C>0
and we see easily that the corresponding operator enters also into R, which
brings the proof to an end. \square

Actually, we shall use the following quantization of b :

b_{\chi,1}u(x, h)

=(2 \pi h)^{-n}\int_{\Gamma_{1}(x)}e^{i(x-y)\theta/h}b((x+y)/2, \theta, h)\chi(x-y)u(y, h)dy\wedge d\theta

(2.12)

where \Gamma_{1}(x) is given by \theta=\xi_{\mu}((x+y)/2)+ic\overline{x-y} .

Proposition 2.3 Let b\in S(m, s) as before. For u\in H_{\Phi_{\mu}} , \mu=h^{1-1/s}

and x\in C^{n} we have:

b_{\chi,1}u(x, h)=b(x, \xi_{\mu}(x), h)u(x, h)

+d_{\xi}b(x, \xi_{\mu}(x) , h)(hD_{x}-\xi_{\mu}(x))u(x, h)+Ru(x, h)

(2.13)

where R=O(h^{1-m}) : H_{\Phi_{\mu}}
– L_{\Phi_{\mu}}^{2} .

Proof. We shall reduce b_{\chi,1}u(x, h) to b_{\chi,0}u(x, h) by a deformation of con-
tours. For t\in[0,1] , consider: \Gamma_{t}(x)=\{\theta=(1-t)\xi_{\mu}(x)+t\xi_{\mu}(\hat{x})+

ic\overline{x-y}=_{def}\gamma_{x}(t, y) , y\in C^{n}\} where for short we have put \hat{x}=(x+
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y)/2 . By Stokes’ formula,

b_{\chi,1}u(x, h)=b_{\chi,0}u(x, h)+(2 \pi h)^{-n}\int_{[0,1]\cross C^{n}}e^{i(x-y)\theta/h}u(y, h)\gamma_{x}^{*}(d\omega)

where \omega=b(\hat{x}, \theta, h)\chi(x-y)dy\wedge d\theta . (Here we have used that u is holomor-
phic). As above, we estimate the reduced kernel e^{-\Phi_{\mu}(x)/h}\gamma_{x}^{*}(d\omega)e^{\Phi_{\mu}(y)/h} .
We have:

\gamma_{x}^{*}(d\omega)=\sum_{j=1}^{n}(i\overline{\partial}_{x_{j}}b(\hat{x}, \theta, h)J_{j}(x, y, t)

+\overline{\partial}_{\xi_{j}}b(\hat{x}, \theta, h)K_{j}(x, y, t))\chi(x-y)dy\wedge d\overline{y}\wedge dt

+\omega_{1}(y, \overline{y}, t)

where \omega_{1}(y, \overline{y}, t) contains the derivatives of \chi , and:

J_{j}(x, y, t)=- det [ \frac{\partial(\theta_{1},\ldots,\theta_{j},\ldots,\theta_{n})}{\partial(\overline{y}_{1},\ldots,t,,\overline{y}_{n})}]=O(1) (2.14)

K_{j}(x, y, t)=- det [ \frac{\partial(\theta_{1},..,\theta_{j},\overline{\theta}_{j},\theta_{j+1},\cdots\theta_{n})}{\partial(\overline{y}_{1},\ldots,\overline{y}_{j},t,\overline{y}_{j+1},\ldots,\overline{y}_{n})}]=O(1) (2.15)

uniformly wich respect to all variables. We have: \omega_{1}(y, \overline{y}, t)=

O(e^{-1/Ch})L(dy)dt . On the other hand (1.3) gives:

\overline{\partial}_{(x,\theta)}b(\hat{x}, \theta, h)\leq Ch^{-m} exp ( -| Im \hat{x}+{\rm Re}\theta , Im \theta|^{-1/(s-1)}/C)

uniformly for x\in C^{n} , that is, for \mu>0 small enough

\overline{\partial}_{(x,\theta)}b(\hat{x}, \theta, h)\leq Ch^{-m} exp (-( \mu|2\frac{\partial\psi}{\partial x}(x)|+c’|x-y|)^{-1/(s-1)}/C)

with a new constant c’ . Let

\varphi_{\mu}(x, y, \theta)=i(x-y)\theta+\Phi_{\mu}(y)-\Phi_{\mu}(x) (2.16)

and

F_{t}(x, y)={\rm Re}( \psi(y)-\psi(x)+2\frac{\partial\psi}{\partial x}(\hat{x})(x-y)

+2(1-t) ( \frac{\partial\psi}{\partial x}(\hat{x})-\frac{\partial\psi}{\partial x}(x))(y-x))

so that:

Re \varphi_{\mu}(x, y, \theta)=\mu F_{t}(x, y)-c|x-y|^{2}-(1-t)({\rm Im}(x-y))^{2}/2
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We have |F_{t}(x, y)|\leq C||\psi||_{2,\infty}|x-y|^{2} (here ||\psi||_{2,\infty} denotes the norm of
\psi in the C^{2}-topology), so when c>1/2 and \mu>0 is small enough
Re \varphi_{\mu}(x, y, \theta)\leq-\delta|x-y|^{2} , \delta>0 . So we need a (positive) lower bound for:

\phi(x, y, \mu)=(\mu|2\frac{\partial\psi}{\partial x}(x)|+c’|x-y|)^{-1/(s-1)}+\delta|x-y|^{2}/h

Let \alpha=|x-y| . We have:

\phi(x, y, \mu)\geq Const . ( \frac{\alpha^{2}}{h}+(\alpha+C\mu)^{-1/(s-1)})

for some C>0 . Let f( \alpha)=\frac{\alpha^{2}}{h}+(\alpha+C\mu)^{-1/(s-1)} . It is easy to see
that f’(\alpha)>0 on [0, 1] . Rescaling \alpha by \alpha=\beta h^{(s-1)/(2s-1)} we find that
f’(\alpha) vanishes for some \beta=\beta_{0} verifying 1/C_{1}\leq\beta_{0}\leq C_{1} , where C_{1}>0 is
independent of h . The corresponding value for f(\alpha) is \sim Const . h^{-1/(2s-1)} .
We have proved that:

|e^{i(x-y)\theta/h}e^{-\Phi_{\mu}(x)/h}(\gamma_{x}^{*}(d\omega)-\omega_{1}(y, _{\overline{y}}, t))e^{\Phi_{\mu}(y)/h}|

=O(\exp(-1/Ch^{1/(2s-1)}))

uniformly for x\in C^{n} , t\in ]0, 1], and x-y\in supp\chi . As we clearly have:

|e^{i(x-y)\theta/h}e^{-\Phi_{\mu}(x)/h}\omega_{1}(y, \overline{y}, t)e^{\Phi_{\mu}(y)/h}|=O(\exp(-1/Ch))

we can conclude by Proposition 2.2. \square

Remark 2.4 Propositions 2.2 and 2.3 also hold, mutatis mutandis, when
b is a G^{s} symbol of degree d and order m as in (1.4). The remainder satisfies
then: R=O(h^{1-m}) : W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} , where the W_{\Phi_{\mu}}^{d,2}-norm of a function u\in

H_{\Phi_{\mu}} is given by:

||u||_{\mu}^{d,2}= \sum_{|\alpha|\leq d}||(hD)^{\alpha}u||_{\mu}
.

(see the proof of Proposition 3.1 below). The Schwartz space S_{\Phi_{\mu}} introduced
above is of course dense in every W_{\Phi_{\mu}}^{d,2}

The link between quantizations (2.2), (2.8) and (2.12) will be explained
in the next Section.
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3. Phase space distorsions or Lagrangian deformations

Here we use the method of non-characteristic deformations in a variant
due to Sj\"ostrand [Sjl, Sect. 10], where plurisubharmonic weight functions
are distorted rather than hypersurfaces or domains as in the classical tech-
niques of Holmgren. More explicitly, the method consists in deforming the
integration contour in (2.2) in order to gain ellipticity when operating on
certain weighted spaces. At the same time we are in a situation where the
method of stationary phase applies as in Sect. 2.

Let b(x, \theta, h)\in S((0, d), s) be a G^{s} symbol of degree d\geq 0 and order 0
(for simplicity) as in (1.4) defined for (x, \theta)\in\Lambda_{\Phi} , and B=b^{w}(x, hD, h) as
in (2.2). As before, the same letter denotes an almost analytic extension in
the sense of Corollary a.4 . The main result of this section is the following:

Proposition 3.1 With the notations above, if ||\psi||_{2,\infty} is small enough, B
extends as a continuous operator W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} and B=B_{1}+R , with:

B_{1}u(x, h)

=(2 \pi h)^{-n}\iint_{\overline{\Gamma}_{1}(x)}e^{i(x-y)\theta/h}b((x+y)/2, \theta, h)u(y, h)dy\wedge d\theta (3.1)

Here \overline{\Gamma}_{1}(x) is the contour given by:

\overline{\Gamma}_{1}(x)=\{\theta=\frac{2}{i}\frac{\partial\Phi_{\mu}}{\partial x}((x+y)/2)+ic(|x-y|)\overline{x-y} , y\in C^{n}\}

and c:R^{+}arrow R^{+} is a smooth, positive decreasing function such that c(\rho)=

c_{0}>0 for \rho\leq\lambda , (\lambda>0) and c(\rho)=c_{0}\lambda’/(2\rho) for \rho\geq\lambda’>\lambda . Moreover:

R=O(\exp-\delta/h^{1/(2s-1)}) : W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} , h -0, (2.2)

for some \delta>0 and:

B_{1}=O(1) : W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} , harrow 0 . (3.3)

Proof As before we set \hat{x}=(x+y)/2 . For t\in[0,1] we consider the
contours:

\overline{\Gamma}_{t}(x)=\{\theta=(1-t)\frac{2}{i}\frac{\partial\Phi}{\partial x}(\hat{x})+t(\frac{2}{i}\frac{\partial\Phi_{\mu}}{\partial x}(\hat{x})+ic(|x-y|)\overline{x-y})

=_{def}\gamma_{x}(t, y) , y\in C^{n}\} (3.4)
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By Stokes’ formula, for u\in S_{\Phi} we have:

Bu(x, h)=B_{1}u(x, h)-(2 \pi h)^{-n}\int_{[0,1]\cross C^{n}}e^{i(x-y)\theta/h}u\gamma_{x}^{*}(d\omega) (3.5)

where \omega=b((x+y)/2, \theta, h)dy\wedge d\theta . (Here we have used that u is holomor-
phic). We will estimate the reduced kernels. Let \varphi_{\mu}(x, y, \theta) be as in (2.16).
As in the proof of Proposition 2.3, we see that along \Gamma_{t}(x) :

Re \varphi_{\mu}(x, y, \theta)=\mu tF(x, y)+\mu(1-t)(\psi(y)-\psi(x))

-tc(|x-y|)|x-y|^{2} (3.6)

where

F(x, y)={\rm Re}( \psi(y)-\psi(x)+2\frac{\partial\psi}{\partial x}(\hat{x})(x-y)) (3.7)

verifies

|F(x, y)|\leq Const . ||\psi||_{2,\infty}|x-y|^{2} (3.8)

We first analyse the remainder term in the right hand side of (3.5). We
have:

\int_{[0,1]\cross C^{n}}e^{i(x-y)\theta/h}u\gamma_{x}^{*}(d\omega)=\int_{0}^{1}dt

\cross[\sum_{j=1}^{n}\int_{C^{n}}e^{i(x-y)\theta/h}\overline{\partial}_{y_{j}}b((x+y)/2, \theta, h)_{|\theta=\gamma_{x}(t,y)}J_{j}(x, y, t)u(y, h)dy\wedge c\Gamma y

+ \sum_{j=1}^{n}\int_{C^{n}}e^{i(x-y)\theta/h}\overline{\partial}_{\theta_{j}}b((x+y)/2, \theta, h)_{|\theta=\gamma_{x}(t,y)}K_{j}(x, y, t)u(y, h)dy\wedge d\overline{y}]

(3.9)

where J_{j}(x, y, t) and K_{j}(x, y, t) defined in (2.14) and (2.15), satisfy
J_{j}(x, y, t)=O(1) and K_{j}(x, y, t)=O(1) uniformly in all variables. For
\theta=\gamma_{x}(t, y)

| \theta-\xi(\hat{x})|=t|2\mu\frac{\partial\psi}{\partial x}(\hat{x})-c(|x-y|)\overline{x-y}| (3.5)

so that by (1.4):
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|\theta_{\overline{y}_{j}}b(\hat{x}, \theta, h)|+|\partial_{\theta_{j}}b(\hat{x}, \theta, h)|\leq C_{1}\langle\theta\rangle^{d}

\cross exp (-t^{-1/(s-1)}|2 \mu\frac{\partial\psi}{\partial x}(\hat{x})-c(x-y)\overline{x-y}|^{-1/(s-1)}/C_{1}) (3.11)

uniformly for x , y\in C^{n} , \theta\in\overline{\Gamma}_{t}(x) . The worst singularity of the reduced
kernel occurs in the neighborhood of the diagonal |x-y|<\lambda of C^{2n} .

Lemma 3.2 If \epsilon=||\psi||_{2,\infty} is small enough (depending on c_{0} and \lambda ) then
there exists C_{2}>0 such that for all t\in ]0, 1] :

e^{{\rm Re}\varphi_{\mu}(x,y,\theta)/h}(|\theta_{\overline{y}_{j}}b(\hat{x}, \theta, h)|+|b_{\theta_{j}}b(\hat{x}, \theta, h)|+)

\leq C_{2}\langle\theta\rangle^{d} exp(-1/C_{2}h^{1/(2s-1)}) , harrow 0 (3.12)

uniformly for \theta=\gamma_{x}(t, y) , |x-y|<\lambda .

Proof. Using (3.6), (3.8) and (3.11) we are led to find a (positive) lower
bound for:

\phi(x, y, t, \mu, h)

=- \frac{\mu}{h}(1-t)(\psi(y)-\psi(x))+\frac{t}{h}c(x-y)|x-y|^{2}-\frac{\mu t}{h}F(x, y)

+t^{-1/(s-1)}|2 \mu\frac{\partial\psi}{\partial x}(\hat{x})-c(|x-y|)\overline{x-y}|^{-1/(s-1)}/C_{1}

For |x-y|\leq\lambda , we have c(|x-y|)=c_{0} . Let \alpha=|x-y| . In (3.8) we can
assume, without loss of generality, that Const. =1 , so for \mu=h^{1-1/s} :

h^{1/s} \phi(x, y, t, \mu, h)\geq-\epsilon(1-t)\alpha+tc_{0}(1-\frac{\mu\epsilon}{c_{0}})\frac{\alpha^{2}}{\mu}

+t^{-1/(s-1)}(1+ \frac{\alpha c_{0}}{2\mu\epsilon})^{-1/(s-1)}/(\epsilon^{1/(s-1)}C_{1})

For \frac{\mu\epsilon}{c_{0}}\leq\frac{1}{2} , we get for a new C_{1}>0 , changing 2\epsilon to \epsilon :

2h^{1/s}\phi(x, y, t, \mu, h)

\geq-\epsilon(1-t)\alpha+tc\frac{\alpha^{2}}{\mu}+t^{-1/(s-1)}(1+\frac{\alpha c_{0}}{\mu\epsilon})^{-1/(s-1)}/(\epsilon^{1/(s-1)}C_{1})

Then we set c_{0}/\epsilon=c’ . factor out \epsilon , and put \epsilon’=C_{1}\epsilon^{s/(s-1)} . We get:
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2\epsilon^{-1}h^{1/s}\phi(x, y, t, \mu, h)

\geq-(1-t)\alpha+tc’\frac{\alpha^{2}}{\mu}+t^{-1/(s-1)}(1+\frac{\alpha c’}{\mu})^{-1/(s-1)}/\epsilon’

We shall remember that we can take \epsilon’ as small as we want, and drop the
primes to simplify the notations. Then we study the comparison function:

g(t, \alpha, \mu)=-(1-t)\alpha+tc\frac{\alpha^{2}}{\mu}+t^{-1/(s-1)}(1+\frac{\alpha c}{\mu})^{-1/(s-1)}/\epsilon

for t , \alpha , \mu\in ]0, 1] \cross[0, \lambda]\cross]0,1] . Actually, \mu will appear as a parameter.
We first show that g has only one critical point in the open set: (t, \alpha)\in

]0,1[\cross]0 , \lambda [. Indeed, p\partial\partial t(t, \alpha, \mu)=0 iff t=t(\alpha)=(\epsilon(s-1)\alpha)^{(1-s)/s}(1+

\frac{c\alpha}{\mu})^{-1} . But:

\frac{\partial g}{\partial\alpha}(t, \alpha, \mu)=(1+\frac{2c\alpha}{\mu})t-\frac{c}{\mu\epsilon(s-1)}(1+\frac{\alpha c}{\mu})^{-s/(s-1)}t^{-1/(s-1)}-1

After some straightforword calculation, we find that \overline{\partial}\alpha\partial_{4}(t_{0}, \alpha;\mu)=0 iff \alpha=

\alpha_{0}=(\epsilon(s-1))^{-1} . Then t_{0}=t( \alpha_{0})=(1+\frac{c}{\mu\in(s-1)})^{-1} and g(t_{0}, \alpha_{0}, \mu)=

\epsilon^{-1} . If this values is a minimum of g for (t, \alpha)\in]0,1]\cross[0, \lambda] , then we have
\phi(x, y, t, \mu, h)\geq\delta h^{-1/s} (actually we can check that this never holds when
s\geq 2) . Otherwise we have to look for a minimum of g on \partial(]0,1]\cross[0, \lambda]) .
We have:

g(t, 0;\mu)=t^{-1/(s-1)}/\epsilon\geq\epsilon^{-1}

g(1, \alpha;\mu)=\frac{c\alpha^{2}}{\mu}+(1+\frac{\alpha c}{\mu})^{-1/(s-1)}/\epsilon

g(0, \alpha;\mu)=+\infty

g(t, \lambda;\mu)=-(1-t)\lambda+\frac{ct\lambda^{2}}{\mu}+t^{-1/(s-1)}(1+\frac{c\lambda}{\mu})^{-1/(s-1)}/\epsilon

Let f( \alpha)=\frac{c\alpha^{2}}{\mu}+(1+\frac{\alpha c}{\mu})^{-1/(s-1)}/\epsilon . Then f’( \alpha)=\frac{2c\alpha}{\mu}-\frac{c}{\mu(s-1)}(1+

\frac{\alpha c}{\mu})^{-s/(s-1)}/\epsilon , and f’(\alpha)=0 iff (1+ \frac{\alpha c}{\mu})^{-s/(s-1)}=2\epsilon\alpha(s-1) . We n0-

tice that f’>0 so f’ is strictly increasing. Let \alpha=\beta\mu^{s/(2s-1)} ; we define:

f_{1}(\beta)=\epsilon(s-1)\mu c^{-1}f’(\alpha)

=\mu^{s/(2s-1)}[2\beta\alpha_{0}^{-1}-(c\beta+\mu^{(s-1)/(2s-1)})^{-s/(s-1)}]

Then it is easy to see that f_{1}(\beta) changes its sign for \beta=\beta_{0} in the interval
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[C_{0}^{-1}, C_{0}] if C_{0} is large enough, but independent of \mu\in ]0, 1]. Therefore,
f(\alpha) reaches its minimum value for \alpha=\alpha_{1}=\beta 0\mu^{s/(2s-1)} and:

f(\alpha_{1})=\mu^{1/(2s-1)}(c\beta_{0}^{2}+(\mu^{(s-1)/(2s-1)}+c\beta_{0})^{-1/(s-1)}/\epsilon)

i.e. f(\alpha_{1})\geq\delta\mu 1/(2s-1) , with \delta>0 . At last, we examine h(t)=g(t, \lambda, \mu) .

We find: h’(t)=0 iff t=t_{1}=( \epsilon\lambda(s-1))^{-(s-1)/s}(1+\frac{c\lambda}{\mu})^{-1} and

h(t_{1})=\lambda^{1/s}(\epsilon(s-1))^{(s-1)/s}+\lambda^{1/s}(s-1)^{1/s}\epsilon^{-(s-1)/s}-\lambda

For given \lambda>0 , we have h(t_{1})>\delta>0 for \epsilon small enough. We eventually
proved that there is \delta_{0}>0 such that:

\phi(x, y, t, \mu, h)\geq\delta_{0}h^{-1/s1/(2s-1)}\mu=\delta_{0}h^{-1/(2s-1)}

uniformly for (t, \alpha)\in]0,1]\cross[0, \lambda] , which proves the Lemma. \square

Next we examine the reduced kernel outside the diagonal, i.e. for |x-
y|>\lambda , in the following easy:

Lemma 3.3 If \epsilon=||\psi||_{2,\infty} is small enough (depending on c_{0} and \lambda , then
there exists C_{3}>0 such that, uniformly for t\in ]0, 1] and \theta\in\Gamma_{t}(x) :

e^{{\rm Re}\varphi_{\mu}(x,y,\theta)/h}(|\partial_{\overline{y}_{j}}b(\hat{x}, \theta, h)|+|\theta_{\overline{\theta}_{j}}b(\hat{x}, \theta, h)|)

\leq C_{3}\langle\theta\rangle^{d} exp (-|x-y|^{1/s}/C_{3}h^{1/s}) , harrow 0 (3.6)

uniformly for \theta=\gamma_{x}(t, y) , |x-y|>\lambda

Proof It suffices to find a positive lower bound for:

\phi(x, y, t, h)=- Re \varphi_{\mu}(x, y, \theta)/h

+t^{-1/(s-1)}|2 \mu\frac{\partial\psi}{\partial x}(\hat{x})-c(x-y)\overline{x-y}|^{-1/(s-1)}/C_{1}

when \theta=\gamma_{x}(t, y) , |x-y|>\lambda . We have |2 \mu\frac{\partial\psi}{\partial x}(\hat{x})-c(x-y)\overline{x-y}|=O(1)

when |x-y|>\lambda , so by (3.6) and (3.8):

\phi(x, y, t)\geq[-\mu(\psi(y)-\psi(x))-2\mu t{\rm Re}\frac{\partial\psi}{\partial x}(\hat{x})(x-y)

+tc(x-y)|x-y|^{2}]/h+Ct^{-1/(s-1)}

for some C>0 . If we denote by f(t) the right hand side of the inequality
above, we find that f(t) reaches its minimum for t=t_{0}\sim Const . ( \frac{h}{|x-y|})^{1-1/s} ,
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and this minimum verifies f\{to ) \sim Const . ( \frac{|x-y|}{h})^{1/s} when \mu>0 and ||\psi||_{2,\infty}

are small enough. \square

We use integration by parts and a simple variant of Schur’s lemma to
deduce (3.2) from Lemmas 3.2 and 3.3, getting rid of the factor \langle\theta\rangle^{d} . Let
\chi\in G_{0}^{s}(C^{n}) be equal to 1 in a neighborhood of 0, \hat{\chi}=1-\chi and:

{}^{t}L= \chi(\theta)-\frac{\hat{\chi}(\theta)}{|\theta|^{2}}\sum_{j=1}^{n}\overline{\theta_{j}}hD_{y_{j}}

We have {}^{t}Le^{i(x-y)\theta/h}=e^{i(x-y)\theta/h} , so (^{t}L)^{d}e^{i(x-y)\theta/h}=e^{i(x-y)\theta/h} , and inte-
grating by parts, we can rewrite formula (3.5) in the form:

Bu(x, h)=B_{1}u(x, h)

-(2 \pi h)^{-n}\sum_{|\alpha|\leq d}\int_{[0,1]\cross C^{n}}e^{i(x-y)\theta/h}((hD_{y})^{\alpha}u)\gamma_{x}^{*}(d\omega_{\alpha})

(3.14)

where \omega_{\alpha}=b_{\alpha}(\hat{x}, \theta, h)dy\wedge d\theta . Here b_{\alpha}(x, \theta, h) is a G^{s} symbol of degree 0,
of the form:

b_{\alpha}(x, \theta, h)=\sum_{\beta\leq\alpha}a_{\alpha,\beta}(\theta)\partial_{x}^{\beta}b(x, \theta, h)
(3.15)

where a_{\alpha,\beta}(\theta) is a G^{s} symbol of degree -d. Each integral in the sum can
be treated with the same arguments as above, and inequalities similar to
(3.12) and (3.13) but without the factor \langle\theta\rangle^{d} . So we proved that R can be
written in the form:

Ru(x, h)= \sum_{|\alpha|\leq d}\int_{C^{n}}K_{\alpha}(x, y, h)(hD_{y})^{\alpha}u(y, h)L(dy)

where each of the kernels K_{\alpha}(x, y, h) satisfies:

e^{(\Phi_{\mu}(y)-\Phi_{\mu}(x))/h}|K_{\alpha}(x, y, h)|\leq C_{2}\exp(-1/C_{2}h^{1/(2s-1)}) , h -0
(3.16)

when |x-y|<\lambda , and:

e^{(\Phi_{\mu}(y)-\Phi_{\mu}(x))/h}|K_{\alpha}(x, y, h)|\leq C_{3} exp (-|x-y|^{1/s}/C_{3}h^{1/s}) , h -0
(3.17)
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when |x-y|>\lambda . It follows easily that R is continuous as an operator
W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} and that (3.2) holds (because also of the density of S_{\Phi_{\mu}} in
W_{\Phi_{\mu}}^{d,2}) .

We eventually estimate B_{1} . For t=1 , (3.6) gives Re \varphi_{\mu}(x, y, \theta)=

\mu F(x, y)-c(|x-y|)|x-y|^{2} for \theta\in\Gamma_{t}(x) . For |x-y|<\lambda and h>0
small enough we get Re \varphi_{\mu}(x, y, \theta)\sim- Const. |x-y|^{2} while for |x-y|>\lambda ,
Re \varphi_{\mu}(x, y, \theta)\sim- Const. |x-y| . We can conclude as above that B_{1}=

O(1) : W_{\Phi_{\mu}}^{d,2}arrow L_{\Phi_{\mu}}^{2} and the Proposition is proved. \square

Now we give a “local” version of Proposition 3.1 that will be directly
used in the sequel. Let b(x, \theta, h)\in S((0, d), s) , and \chi_{1}\in C_{0}^{\infty}(C^{n}) ; with the
notations of Proposition 3.1, we have:

Proposition 3.4 Let B=b^{w}(x, hD, h) as above. Then \chi_{1}B extends to a

conlinuous operator H_{\Phi_{\mu}}arrow L_{\Phi_{\mu}}^{2} and \chi_{1}B=\chi_{1}B_{1}+\chi_{1}R , where

\chi_{1}B_{1}=O(1) : H_{\Phi_{\mu}}
- L_{\Phi_{\mu}}^{2} , h -arrow 0 (3.18)

and

\chi_{1}R=O(\exp-\delta/h^{1/(2s-1)}) : H_{\Phi_{\mu}}arrow L_{\Phi_{\mu}}^{2} , h -0, (\delta>0) (3.19)

Proof. We can conclude directly from the proof of Proposition 3.1 and
usual Schur’s lemma that (3.18) and (3.19) hold, since x varies in a compact
set and thus the factor \langle\theta\rangle^{d} can be ignored in Lemmas 3.3 and 3.4. \square

4. Reduction of waves packets and weighted energy estimates

The method was initiated by A. Cordoba and Ch. Fefferman [CorFe],
(see also [Sj2,3] ) and adapted to the present context by C. G\’erard and
J. Sj\"ostrand [GeSj]. It is called the method of reduction of wave packets,
since it reduces a pseud0-differential operator to a “multiplier”

Let b(x, \theta, h)\in S((0, d), s) be elliptic at infinity on \Lambda_{\Phi} , uniformly for

h>0 small enough, i.e. |b(x, \theta, h)|\geq C\langle\theta\rangle^{d} for x outside a compact set
K_{1}\subset\subset C^{n} (we identify \Lambda_{\Phi} with its projection \pi_{x}(\Lambda_{\Phi}) on C^{n} , and a function
\chi on \Lambda_{\Phi} with \chi 0\pi_{x}^{-1} ).

Let \psi\in G_{0}^{s}(C^{n}) be real valued, supported in a neighborhood of K_{1}

and \Phi_{\mu} as in (2.5). Let \chi_{1}\in C_{0}^{\infty}(C^{n}) be equal to 1 in a neighborhood of
K_{1} and such that supp \chi_{1}\subset\subset supp\psi . The function \chi_{1} will be fixed later.
We denote also by b(x, \theta, h) an almost analytic extension of b(x, \theta, h) as in
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(1.5). First we compute \chi_{1}Bu(x, h) , u\in H_{\Phi_{\mu}} using Proposition 3.4. Let B_{1}

be associated with B as in Proposition 3.1 or 3.4. In the integral defining
B_{1}u(x, h) , we insert a cut-0ff function \chi\in C_{0}^{\infty}(C^{n}) . With the notations
of Sect. 2 we have: \chi_{1}B_{1}=\chi_{1}(B_{1})_{\chi}+\chi_{1}(B_{1})_{\hat{\chi}} . From now on, we work
modulo error terms O(h) . Propositions 3.4 and 2.3 give:

\chi_{1}(B_{1})_{\chi}u(x, h)=\chi_{1}(x)b(x, \xi_{\mu}(x), h)u(x, h)

+\chi_{1}(x)d_{\xi}b(x, \xi_{\mu}(x), h)(hD_{x}-\xi_{\mu}(x))u(x, h)

+Ru(x, h) , u\in H_{\Phi_{\mu}} (4.1)

where R=O(h) : H_{\Phi_{\mu}}arrow L_{\Phi_{\mu}}^{2} . We observe next that the contribution of
\chi_{1}(B_{1})_{\hat{\chi}} to \chi_{1}B_{1} gives an error term that also enters into R.

Proposition 4.1 With the hypotheses above, we have for (u, v)\in H_{\Phi_{\mu}}\cross

H_{\Phi_{\mu}} :

( \chi_{1}Bu|v)_{\mu}=\int b(x, \xi_{\mu}(x) , h)u(x, h)\overline{v(x,h)}\chi_{1}(x)e^{-2\Phi_{\mu}(x)/h}L(dx)

+O(h)||u||_{\mu}||v||_{\mu} , h-*0 (4.2)

(Here (\cdot|\cdot)_{\mu} denotes the scalar product in H_{\Phi_{\mu}} ).

Proof. From (4.1) and the following discussion, we have:

( \chi_{1}Bu|v)_{\mu}=\int b(x, \xi_{\mu}(x) , h))u(x, h)\overline{v(x,h)}\chi_{1}(x)e^{-2\Phi_{\mu}(x)/h}L(dx)

+ \sum_{j=1}^{n}\int\partial_{\xi_{j}}b(x, \xi_{\mu}(x) , h))[(hD_{x_{j}}-\xi_{\mu,j}(x))u(x, h)]

\overline{v(x,h)}\chi_{1}(x)e^{-2\Phi_{\mu}(x)/h}L(dx)

+O(h)||u||_{\mu}||v||_{\mu}

In the last sum, we integrate by parts; we have (-hD_{x_{j}}-\xi_{\mu,j}(x))e^{-2\Phi_{\mu}(x)/h}=

0 , while hD_{x_{j}}\overline{v(x,h)}=0 (since v is holomorphic) and
hD_{x_{j}} (\chi_{1}(x)\partial_{\xi_{j}}b(x, \xi_{\mu}(x), h))=O(h) . So this sum is again O(h)||u||_{\mu}||v||_{\mu} .

\square

Thus it follows that for any u\in H_{\Phi_{\mu}} :
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{\rm Im}(\chi_{1}Bu|u)_{\mu}

= \int{\rm Im}(b(x, \xi_{\mu}(x), h)\chi_{1}(x)|u(x, h)|^{2}e^{-2\Phi_{\mu}(x)/h}L(dx)+O(h)||u||_{\mu}^{2}

(4.3)

Now we estimate u in the elliptic zone, i.e. outside K_{1} . Let \chi_{0}\in S(0, s)

be equal to 1 near K_{1} and supp \chi_{0}\subset\subset supp\psi . We also denote by \chi_{0}

its almost analytic extension in the sense of Theorem a.3 . If \hat{\chi}_{0}=1 -

\chi_{0} , this relation makes sense also after almost analytic extension. Let \hat{\chi}_{0}^{w}

be the corresponding h-quantized Weyl operator. Since b(x, \theta, h) is ellip-
tic on supp \hat{\chi}_{0} , Proposition 1.2 shows there exists a\in S(0, s) , such that
A=a^{w}(x, hD, h) satisfies: AB=\hat{\chi}_{0}^{w}+r^{w} , where r\in S(-\infty, s) . In par-
ticular, r^{w}=O(\exp-1/Ch^{1/s}) : H_{\Phi} – L_{\Phi}^{2} for some C>0 and if the
perturbation \psi is chosen small enough in the C^{1} -topology, we also have
r^{w}=O(\exp-1/C’h^{1/s}) : H_{\Phi_{\mu}}arrow L_{\Phi_{\mu}}^{2} , with some C’>0 . So:

(ABu|v)_{\mu}=(\hat{\chi}_{0}^{w}u|v)_{\mu}+O(\exp-1/C’h^{1/s})||u||_{\mu}||v||_{\mu} , u , v\in H_{\Phi_{\mu}}

(4.4)

Then, we estimate (\chi_{0}" u|v)_{\mu} , with Propositions 3.1 and 4.1. We get:

(ABu|v)_{\mu}= \int\hat{\chi}0(x, \xi_{\mu}(x))u\overline{v}e^{-2\Phi_{\mu}(x)/h}L(dx)+O(h)||u||_{\mu}||v||_{\mu}

(4.5)

We would like to set “
\chi_{1}(x)=\chi 0(x, \xi_{\mu}(x))

” but this cannot be done since
we shall require \chi_{1}(x)\geq 0 . So we need another estimate. Let \chi_{4}\in

C_{0}^{\infty}(C^{n}; R^{+}) be supported in supp \psi . As in [Sj2, Th. 1.3] and Proposi-
tion 4.1 we have:

( \chi_{4}Bu|Bv)_{\mu}=\int|b(x, \xi_{\mu}(x) , h)|^{2}u(x, h)\overline{v(x,h)}\chi_{4}(x)e^{-2\Phi_{\mu}(x)/h}L(dx)

+O(h)||u||_{\mu}||v||_{\mu} , h –0(4.6)

So let \chi_{1}(x)=\chi 0(x, \xi(x)) and \chi_{5}(x)=\chi 0(x, \xi_{\mu}(x))-\chi_{0}(x, \xi(x)) . As follows
from Theorem a.3 , \chi_{5}(x) is supported in a small neighborhood of supp \nabla\chi_{0}

modulo a function which is O(\exp-1/Ch^{1/s}) uniformly in C^{n} . So if \chi_{4} is
conveniently chosen with support in a small neighborhood of supp \nabla\chi_{0} , we
have:
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(\chi_{5}u|v)_{\mu}=(\chi_{5}\chi_{4}u|v)_{\mu}+O(\exp-1/C’h^{1/s})||u||_{\mu}||v||_{\mu} , u , v\in H_{\Phi_{\mu}}

(4.7)

Using that |b(x, \xi_{\mu}(x) , h)|^{2}\geq c>0 on supp \chi_{4} (where c>0 can be chosen
independent of h), we deduce from (4.6) and (4.7):

( \chi_{5}u|u)_{\mu}\leq\frac{1}{c}||\chi_{5}||_{\infty}(\chi_{4}Bu|Bu)_{\mu}+O(h)||u||_{\mu}^{2} , u\in H_{\Phi_{\mu}} (4.8)

Formulae (4.3), (4.5) and (4.8) are basic estimates for Theorem 0.1.

5. Proof of Theorem 0.1

We shall be working from now on with the Schr\"odinger operator P_{0}=

-h^{2}\triangle+V although our arguments could apply to a more general situation.

a) Distorsion and global escape function

We return for a while to the real phase-space variables (y, \eta)\in R^{2n} .
The symbol of P_{0} (for the standard or Weyl quantization) is p_{0}(y, \eta)=\eta^{2}+

V(y) . First we recall from [GeMa] how to construct a global escape function
G(y, \eta) , under the non-trapping hypothesis K(I)=\emptyset , I=[E_{0}-\epsilon_{0}, E_{0}-\epsilon_{0}]

(see (0.5)).
Recall from (0.3) that V is dilation analytic outside a compact set K_{0}\subset

R^{n} . Then by Cauchy’s inequalities, there exists R>0 such that H_{p0}(y\eta)=

2\eta-2y\nabla V(y)\geq E_{0} on \Sigma_{I}=\{(y, \eta)|p_{0}(y, \eta)\in I\} for |y|\geq R . Thus, y\eta is
an escape function for |y|\geq R and we may assume K_{0}\subset B(0, R) . Now let
g(y)\in G_{0}^{s}(R^{n}) be supported in a neighborhood of B(0, R) , equal to 1 on
B(0, R) and satisfying 0\leq g(y)\leq 1 . We set

f(y, \eta)=-\int_{0}^{\infty}g(\pi_{y}(\exp tH_{p0}(y, \eta))dt

where \pi_{y} : T^{*}R^{n} – R^{n} denotes the natural projection. Because V is non
trapping near energy E_{0} , the integrand is compactly supported for (y, \eta)\in

\Sigma_{I} , f\in G^{s}(\Sigma_{I}) is bounded, and moreover H_{p0}f=g . Let now \chi_{2}\in G_{0}^{s}(R^{n})

be equal to 1 on supp 9 and C_{2}>0 a constant to be chosen. We set G(y, \eta)=

C_{2}\chi_{2}(y)f(y, \eta)+y\eta , and compute H_{p0}G=C_{2}g+C_{2}fH_{p0}\chi_{2}+H_{p0}(y\eta) .
Choosing C_{2}>0 large enough, and then taking supp \chi_{2} sufficiently large,
we have H_{p0}G(y, \eta)\geq C_{0} on \Sigma_{I} for some C_{0}>0 . Moreover, G(y, \eta)-y\eta\in

S(0, s) .
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Now, for |y|\geq R , we can construct an analytic distorsion for P_{0} in
configuration variables as in [SjZ] as follows.

Take polar coordinates y=r\omega , with (r, \omega)\in R^{+}\cross S^{n-1} and for 0\leq

\theta\leq\theta_{0} , define a family of G^{s} functions f_{\theta} :] 0, +\infty ] - C such that f_{\theta}(r)=r

for r<R<R’ and f_{\theta}(r)=e^{i\theta}r for r>R’ . The distorsions are defined by:
U_{\theta}u(r\omega)=(f_{\theta}’(r))^{n/2}u(f_{\theta}(r)\omega) so that the distorted hamiltonian takes the
form P_{\theta}=U_{\theta}P_{0}U_{\theta}^{-1} . This is a differential operator of the form (1.17) for
d=2 , and we can check

\exists\overline{a}_{\alpha}(x)\in G^{s} , |\alpha|\leq 2 , such that a_{\alpha}(y, h)-\overline{a}_{\alpha}(y)=O(h)

uniformly for y\in R^{n} , 0<h<h_{0} . (5.1)

We call \overline{p}_{\theta}(y, \eta)=\sum_{|\alpha|\leq 2}\overline{a}_{\alpha}(y)\eta^{\alpha} the “principal symbol” of P_{\theta}(y, hD_{y}, h) .
The resonances of P_{0} are actually the discrete eigenvalues of P_{\theta} when

\theta>0 (it is wellknown that they are independent of the distorsion, see e.g.
[HeMa] ) .

Everything will essentially depend on the principal symbol of P_{\theta} only.
If (r^{*}, \omega^{*}) stand for the dual variables of (r, \omega) in polar coordinates, this
principal symbol is given by:

p_{\theta}(r, \omega, r^{*}, \omega^{*})=(f_{\theta}’(r))^{-2}r^{*2}+(f_{\theta}(r))^{-2}\omega^{*2}+V((f_{\theta}(r)\omega)

Then it can be easily shown that we can choose f_{\theta} such that
Im p_{\theta}(r, \omega, r^{*}, \omega^{*})\leq 0 on a neighborhood of Re p_{\theta}(r, \omega, r^{*}, \omega^{*})=E_{0} , the
inequality being strict for r sufficiently large, e.g. r\geq R .

Operator P_{\theta} is elliptic outside a compact neighborhood K_{1} of \Sigma_{I}\cap\{r\leq

R\} , i.e. its principal symbol verifies |p_{\theta}(y, \eta)|\geq C\langle\eta\rangle^{2} for (y, \eta) outside K_{1} .
Because of (5.1), this holds also for the full symbol, either for the classical,
or the Weyl quantization.

Let \chi_{0}\in G_{0}^{s}(R^{2n}) be equal to 1 on a small neighborhood of K_{1} , and
\chi_{6}\in G_{0}^{s}(R^{2n}) be equal to 1 in a neighborhood of supp \chi_{0} . We let \delta>0 be
very small but independent of h . If G=\delta\chi_{6}G , then

H_{p\theta}\overline{G}(y, \eta)=H_{p0}\overline{G}(y, \eta)\geq\delta’>0 on supp \chi_{0} . (5.2)

We take an almost analytic extension of P_{\theta} as in Corollary a.4 and make
the FBI transformation T We denote by B_{\theta}(x, hD_{x}, h) the Weyl operator
corresponding to P_{\theta}(y, hD_{y}, h) . All what we have said extends trivially to
the complex phase space, after applying \kappa_{T} , so we use generally the same
notations for objects belonging either to T^{*}R^{n} or \Lambda_{\Phi} .
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Put \psi=\overline{G}\circ\kappa_{T}^{-1} As usual, we identify \Lambda_{\Phi} with C^{n} , so that \psi(x, \xi(x))=

\delta(\chi_{6}G)\circ\kappa_{T}^{-1}(x, \xi(x)) can be viewed as a function of x alone. Let \overline{b}_{\theta}(x, \xi(x))

be the principal symbol of b_{\theta}(x, \xi(x) , h) as in (5.1). By a Taylor expansion,
we have:

{\rm Im}\overline{b}_{\theta}(x, \xi_{\mu}(x))={\rm Im}\overline{b}_{\theta}(x, \xi(x))-2\mu Re [d_{\xi} \overline{b}_{\theta}(x, \xi(x))\frac{\partial\psi}{\partial x}(x)]+O(\mu^{2})

(5.3)

uniformly for x\in C^{n} (so the 2 first terms on the RHS of (5.3) are evaluated
on the “real” domain), and with \chi_{1}(x)=\chi_{0}(x, \xi(x)) :

2\chi_{1}(x) Re [d_{\xi} \overline{b}_{\theta}(x, \xi(x))\frac{\partial\psi}{\partial x}(x)]=\chi_{1}(x)(H_{p0}\overline{G})\circ\kappa_{T}^{-1}(x, \xi(x)) (5.4)

By the discussion above, we have: \chi_{1}(x){\rm Im}\overline{b}_{\theta}(x, \xi(x))\leq 0 when \chi_{1} is
supported by some sufficiently narrow neighborhood of p0(y, \eta)=E_{0} that
we call again K_{1} . Then (5.3) gives:

\chi_{1}(x)({\rm Im}\overline{b}_{\theta}(x, \xi_{\mu}(x))- Im E) \leq\chi_{1}(x) ( -\mu\delta’- Im E+O(\mu^{2}) ) (5.5)

for E in a small complex neighborhood of E_{0} . In (5.5) of course,
\chi_{1}(x){\rm Im}\overline{b}_{\theta}(x, \xi_{\mu}(x)) does not depend on \theta since distorsion is turned on
for |x|\geq R and supp \chi_{1}\subset\{|x|\leq R\} . Now we are ready to conclude with
the energy estimates of Sect. 4.

b) End of the proof

We prove an a priori estimate for an eigenfunction associated to E . Let
u_{\theta}\in L^{2}(R^{n}) be such that (P_{\theta}-E)u_{\theta}=0 , and u=Tu_{\theta}\in H_{\Phi_{\mu}} be the
corresponding eigenfunction for B_{\theta} , that is (B_{\theta}-E)u=0 . We normalize u
in such a way that ||u||_{\mu}=1 . Let A be a parametrix of B_{\theta}-E outside K_{1} as
above. Because of (5.1), we can replace in (4.3) the full symbol b(x, \xi_{\mu}(x), h)

of B by its principal symbol \overline{b}(x, \xi_{\mu}(x)) . By (4.5):

(\hat{\chi}o(x, \xi_{\mu}(x))u|u)_{\mu}=O(h)||u||_{\mu}^{2}

On the other hand (4.8) and (5.5) give respectively:

(\chi_{5}(x)u|u)_{\mu}=O(h)||u||_{\mu}^{2}

and:

( \mu\delta’+ Im E+O(\mu^{2}) ) (\chi_{1}(x)u|u)_{\mu}=O(h)||u||_{\mu}^{2}
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These estimates, together with the identity

(\chi_{1}(x)u|u)_{\mu}+(\chi_{5}(x)u|u)_{\mu}+(\hat{\chi}0(x, \xi_{\mu}(x))u|u)_{\mu}=||u||_{\mu}^{2}=1

clearly show that Im E\leq-\delta_{1}\mu , as h is sufficiently small, for some \delta_{1}>0 ,
which brings the proof to an end. \square

Appendix

We prove existence of almost analytic extensions for G^{s} functions. Al-
though such results are of course wellknown among specialists, it might be
useful to give self-contained proofs.

a) The l-d case

The most complete result holds in one variable and will not apply to
our problem, we just give it for the sake of completeness. We follow the
Borel argument of L. Carleson.

Theorem a.l [Ca] Given A>0 , let G_{A}^{s}(R) be the set of u\in C^{\infty}(R)

such that \exists C>0 with:

\sup_{x\in R}|\partial_{x}^{\alpha}u(x)|\leq CA^{\alpha}\alpha!^{s} , \alpha\in N

endowed with its natural topology. Then for any A>0 , there exists B>
0 and a continuous almost analytic extension operator G_{A}^{s}(R)arrow G_{B}^{s}(C) ,
u\mapsto\overline{u} such that:

|\overline{\partial}_{z}\overline{u}(z)|\leq C exp( -| Im z|^{-1/(s-1)}/C), C>0 .

Proof. We make the general argument of [Ca] more explicit in this case.
Introduce the weight function

W( \tau)=\sup_{\nu\in N}\frac{|\tau|^{\nu}}{(\nu!)^{s}} , \tau\in R\backslash 0 , W(0)=1

We have W(\tau)\geq 1 , and |\tau|^{n}=o(W(\tau)) , |\tau|arrow\infty , any n ; we may choose
instead W(\tau)=\exp(a|\tau|^{1/s}) , a>0 , or W( \tau)=\sum_{\iota/\in N}\frac{|\tau|^{\nu}}{(\iota’!)^{s}} . Since G^{s} is non-
quasianalytic, Denjoy-Carleman theorem [Ma] tells us that \int_{R}[mathring]_{\frac{1gW(\tau)}{1+\tau^{2}}}d\tau<

+\infty . We set w(\tau)=W(\tau)^{-1} . Let Q(\tau) be a polynomial such that
\int_{R}|Q(\tau)|^{2}w(\tau)d\tau\leq 1 . Then, by a simple argument from harmonic anal-
ysis using the maximum principle [Ca], there is a numerical constant K_{0} ,
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independant of Q , such that:

|Q^{(\nu)}(0)|\leq K_{0}\nu!M_{1/}^{-1} (a.1)

where:

M_{\nu}= \sup_{r>0} exp (( \nu+\frac{1}{2}) log r-\mu(r))

\mu(r)=\frac{1}{2\pi}\int_{R}\frac{r}{r^{2}+\tau^{2}} log W(\tau)d\tau

We can easily show:

K_{1}= \lim_{\nuarrow+}\inf_{\infty}(\frac{M_{\nu}}{(\nu!)^{s}})^{1/I/}>0 (a.2)

Now we look for an almost analytic extension operator between some
weighted L^{2}-spaces. For j\in N , consider the sets:

E_{j}=\{f : R\cross R – C measurable :

||f||_{j}= \sup_{x\in R}(\int_{R}|\partial_{x}^{J}f(\tau, x)|^{2}w(\tau)d\tau)^{1/2}<\infty\}

For a given sequence \lambda=(\lambda_{I/})_{I/\in N} of positive numbers, we consider also the
sets of sequences of functions:

S_{j}(\lambda)=\{s=(s_{\nu})_{\iota/\in N} , s_{\nu} : Rarrow C ,

|s|_{j}= \sup_{x\in R}(\sum_{I/\geq 0}|\partial_{x}^{j}s_{\nu}(x)|^{2}\lambda_{\nu}^{-2})^{1/2}<\infty\}

For any N , the sets E^{N}= \bigcap_{j=0}^{N}E_{j} and S^{N}( \lambda)=\bigcap_{j=0}^{N}S_{j}(\lambda) are Banach
spaces, and we can form the inductive limit as Narrow\infty .

Let u\in G_{A}^{s}(R) . Since the extension \overline{u}\in G^{s}(C) should verify \overline{\partial}_{z}\overline{u}(z)=

O ( | Im z|^{\infty} ), we obviously have, in the sense of formal power series:

\overline{u}(z)=\sum_{n\geq 0}\frac{u^{(n)}(x)}{n!}(iy)^{n} . z=x+iy . (a.3)

We then look for \overline{u}(z) in the form:

\overline{u}(z)=\int_{R}e^{iby\tau}f(\tau, x)w(\tau)d\tau (a.4)
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where b>0 and f \in\bigcap_{N}E^{N} , are the unknowns. Identifying the derivatives
at y=0, we find u^{(n)}(x)=b^{n} \int_{R}\tau^{n}f(\tau, x)w(\tau)d\tau . Let s_{n}(x)=u^{(n)}(x)b^{-n} .
Since u\in G_{A}^{s}(R) , we have |s_{n}(x)| \leq C(\frac{A}{b})^{n}(n!)^{s} for some C>0 ; we choose

\lambda_{n}=(\frac{2^{s+1/2}A}{b})^{n}(n!)^{s}- (a.5)

We consider the following moment problem: find an operator L : s\mapsto f

which is continuous S^{N}(\lambda) – E^{N} , any N , (as well for the inductive limit
topology), and such that: s_{n}(x)= \int_{R}\tau^{n}f(\tau, x)w(\tau)d\tau . Following [Ca], we
let P_{n}(\tau) be a complete orthonormal family of polynomials with respect
to the weight w(\tau) , P_{n}( \tau)=\sum_{\nu=0}^{n}\alpha_{\nu,n}\tau^{\nu} . and decompose f(\tau, x) on this
basis as f( \tau, x)=\sum_{n>0}b_{n}(x)P_{n}(\tau) . We find b_{n}(x)= \sum_{\nu=0}^{n}\alpha_{\nu,n}s_{\nu}(x) , and
by Parseval identity, | \overline{|}f||_{0}^{2}=\sup_{x\in R}\sum_{n\geq 0}|b_{n}(x)|^{2} . Applying (a.1) to the
sequence Q_{N,\nu}( \tau)=\sum_{n=0}^{N}a_{n},{}_{\nu n}P(\tau) , a_{n,\nu}=( \sum_{k=0}^{N}|P_{k}^{(\nu)}(0)|^{2})^{-1/2}P_{n}^{(\nu)}(0) ,
we let Narrow \infty and find: \sum_{n\geq 0}|\alpha_{\nu,n}|^{2} \leq K_{0}^{2}M_{\nu}^{-2} , and so ||f||_{0} \leq

K_{0}|s|_{0}( \sum_{\nu\geq 0}(\frac{\lambda_{\nu}}{M_{\nu}})^{2})^{1/2} , where K_{0} as in (a.1) and \lambda_{\nu} as in (a.5). Estimate
(a.2) then shows that K_{2}=( \sum_{\nu\geq 0}(\frac{\lambda_{\mathcal{U}}}{M_{\nu}})^{2})^{1/2}<\infty if b> \frac{2^{s+1/2}A}{K_{1}} , so we
have determined a continuous operator L : S_{0}(\lambda) – E_{0} , s\mapsto f . Reasoning
similarly for the derivatives, we find that L:S^{N}(\lambda) – E^{N} , any N , with

||f||_{j}\leq K_{0}K_{2}|s|_{j} (a.6)

We then observe that

|s|_{j}\leq CA^{j}2^{sj+1/2}(j!)^{s} . (a.7)

By Cauchy-Schwarz inequality,

| \partial_{x}^{j}\partial_{y}^{k}\overline{u}(x+iy)|\leq b^{k}(\int_{R}|\partial_{x}^{j}f(\tau, x)|^{2}w(\tau)d\tau)^{1/2}(\int_{R}\tau^{2k}w(\tau)d\tau)^{1/2}

The last integral is estimated by K_{3}^{k+1}(k!)^{s} , where K_{3}>0 is a numeri-
cal constant, while (a.6) and (a.7) show that the first integral can be es-
timated by CK_{0}K_{2}A^{j}2^{sj+1/2}(j!)^{s} . So we get \overline{u}(z)\in G_{B}^{s}(C) , with B=
\sup(bK_{3},2^{s}A) . There remains to show the estimate on \overline{\partial}_{z}\overline{u}(z) . Since by
construction \overline{\partial}_{z}\overline{u}(z) vanishes of infinite order on R, Taylor formula shows:’

\overline{\partial}_{z}\overline{u}(z)=\frac{1}{(k-1)!}\int_{0}^{1}\langle D^{k}\overline{\partial}_{z}\overline{u}(x+ity), (iy)^{k}\rangle(1-t)^{k-1}dt (a.8)
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Using \overline{\partial}_{z}\overline{u}\in G_{B}^{s}(C) , we choose k of the same order of magnitude as |y|^{\frac{-1}{s-1}} ,
and we get the Theorem with a constant C>0 depending on u . \square

b) The general case

The very elegant proof of [Ca] relies on properties of harmonic func-
tions in the upper-half plane, which we were not able to extend to several
variables. Maybe one could try to use Poisson integrals and maximum prin-
ciples in tubes ([H\"oI, Sect. 9], [Ko], . . .), or Dynkin’s method ([ChaCho], . .).
Borrowing an idea presumably due to J. Mather (as was reported to us by
J. Sj\"ostrand), we prove instead a weaker result, since we loose (arbitrarily
small) Gevrey smoothness, and the extension is not given by a continuous
linear operator. But all what we really need is the right decay on \overline{\partial}\overline{u} near
the real axis. Our first result applies to compactly supported functions
G_{0}^{s}(R^{n}) .

Proposition a.2 Let u\in G_{0}^{s}(R^{n}) . Then for all s’>s , there exists an
extension \overline{u}\in G^{s’}(C^{n}) , such that \overline{u}(z)=u(z) for real z and for some C>
0 :

N_{s’}(\overline{\partial}_{z}\overline{u}, T)(z)\leq C exp( -| Im z|^{-1/(s-1)}/C), z\in C^{n}

when T\succ 0 is small enough. (Notations here are those of Sect. 1, where we
have omitted the variable h).

Proof. Let \delta=s’-s , r>1 , and \psi\in G_{0}^{1+\delta}(R^{n}) be equal to 1 in B(0,1)
and vanishing outside B(0, r) . For instance, we can take \psi(y)=\overline{\psi}(y_{1})\otimes

. . \otimes\overline{\psi}(y_{n}) , y=(y_{1}, \ldots, y_{n})\in R^{n} . For \xi\in R^{n} , z\in C^{n} and C’>0 to be
chosen later, depending on u , we set \chi(z, \xi)=\psi ( C’\langle\xi\rangle^{(s-1)/s} Im z). Define:

\overline{u}(z)=(2\pi)^{-n}\int e^{iz\xi}\hat{u}(\xi)\chi(z, \xi)d\xi (a.9)

where
\wedge

. denotes Fourier transform. This defines an extension \overline{u}(z)\in

C^{\infty}(C^{n}) of u , because \chi is compactly supported in \xi when Im z\neq 0 . There
remains to show that \overline{u}\in G^{s’}(C^{n}) and so we compute:

N_{s’}( \overline{u}, T)(z)=\sum_{\alpha,\beta\in N^{n}}|D^{\alpha}\overline{\partial}^{\beta}\overline{u}(z)|T^{(\alpha,\beta)}/(\alpha!)^{s’}(\beta!)^{s’}
(a.9)

We have:
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D^{\alpha} \overline{\partial}^{\beta}\overline{u}(z)=(2\pi)^{-n},\sum_{\alpha\leq\alpha}

(\begin{array}{l}\alpha\alpha,\end{array}) \int e^{iz\xi}\xi^{\alpha-\alpha’}\hat{u}(\xi)D^{\alpha’}\overline{\partial}^{\beta}\chi(z, \xi)d\xi

(a.ll)

where D=-i\partial_{z} and \overline{\partial}=\overline{\partial}_{z} denote respectively the holomorphic and anti-
holomorphic derivatives. As \psi\in G_{0}^{1+\delta}(R^{n}) we get the uniform estimates:

|D^{\alpha’}\overline{\partial}^{\beta}\chi(z, \xi)|\leq C_{1}\alpha’+\beta|+1(|\alpha’+\beta)!(1+\delta)\langle\xi\rangle^{(s-1)|\alpha’+\beta|/S}

for some C_{1}>0 . On the other hand, we know that |\hat{u}(\xi)|\leq C_{0}\exp-\langle\xi\rangle^{1/s}/

C_{0} for some C_{0}>0 depending on u . If we write:

|\xi^{\alpha-\alpha’}\hat{u}(\xi)|\leq C_{0}\langle\xi\rangle^{(s-1)|\alpha-\alpha’|/s} exp (-\langle\xi\rangle^{1/s}/2C_{0})

\cross\langle\xi\rangle^{|\alpha-\alpha’|/s} exp (-\langle\xi\rangle^{1/s}/2C_{0})

use the inequalities

\langle\xi\rangle^{|\alpha-\alpha’|/s} exp (-\langle\xi\rangle^{1/s}/2C_{0})\leq|\alpha-\alpha’|^{|\alpha-\alpha’|}(2C_{0}/e)^{|\alpha-\alpha’|} (a.ll)

and (|\alpha-\alpha’|)^{|\alpha-\alpha’|}\leq C^{|\alpha-\alpha’|+1}|\alpha-\alpha’|! we see that the right hand side of
(a.ll) can be estimated by

\int\exp ( -\xi Im z-\langle\xi\rangle^{1/s}/2C_{0} ) \langle\xi\rangle^{(s-1)|\alpha+\beta|/s}

\cross C_{2}^{|\alpha+\beta|+1},\sum_{\alpha\leq\alpha}

(\begin{array}{l}\alpha\alpha,\end{array}) |\alpha-\alpha’|!(\alpha’+\beta)!(1+\delta)\chi_{\alpha’,\beta,z}(\xi)d\xi (a.13)

where \chi\alpha’,\beta,z is the characteristic function of supp D^{\alpha’}\overline{\partial}^{\beta}\chi(z, \cdot) and C_{2}>0

a constant depending on u . Now we use again (a.12) which gives:

exp (-\langle\xi\rangle^{1/s}/4C_{0})\langle\xi\rangle^{(s-1)|\alpha+\beta|/s}\leq C_{3}^{|\alpha+\beta|+1}|\alpha+\beta|^{(s-1)|\alpha+\beta|}

On the other hand, one can check that:

(C_{2}C_{3})^{|\alpha+\beta|+1}| \alpha+\beta|^{(s-1)|\alpha+\beta|},\sum_{\alpha\leq\alpha}

(\begin{array}{l}\alpha\alpha,\end{array}) |\alpha-\alpha’|!(\alpha’+\beta)!(1+\delta)

\leq C_{4}^{|\alpha+\beta|+1}|\alpha+\beta|^{(s-1)|\alpha+\beta|}(\alpha!)^{1+\delta}(\beta!)^{1+\delta}

\leq C_{5}^{|\alpha+\beta|+1}(\alpha!)^{s+\delta}(\beta!)^{s+\delta}=C_{5}^{|\alpha+\beta|+1}(\alpha!)^{s’}(\beta!)^{s’} (a.11)

where C_{5}>0 depends on u , \psi , s and the dimension n only. We distinguish
between the cases \beta\neq 0 and \beta=0 . For \beta\neq 0 , we need to estimate the
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integral:

\int\exp ( -\xi Im z-\langle\xi\rangle^{1/s}/4C_{0} ) d\xi

over a shell:

(C’| {\rm Im} z_{j}|)^{-s/(s-1)}\leq\langle\xi\rangle\leq(C’| {\rm Im} z_{j}|/r)^{-s/(s-1)} (a.16)

for some j\in\{1, . , n\} . Choosing C’>rC_{0} , we see easily that this integral
is bounded by C_{6} exp( -| Im z|^{-1/(s-1)}/C_{6} ). So (a.ll) to (a.14) give for \beta\neq

0 :

|D^{\alpha}\overline{\partial}^{\beta}\overline{u}(z)|\leq C_{7}C_{5}^{|\alpha+\beta|+1}(\alpha!)^{s’}(\beta!)^{s’} exp( -| Im z|^{-1/(s-1)}/C_{6} )

(a.16)

For \beta=0 , \chi_{\alpha’,0,z} is supported in a shell (a.15) when \alpha’\neq 0 , or in the whole
ball \langle\xi\rangle\leq\sup_{j} (C’| {\rm Im} z_{j}|/r)^{-s/(s-1)} when \alpha’=0 . In the first case we get
the same estimate as (a.16) with \beta=0 , \alpha=\alpha’- For \alpha’=0 , choosing
C’>4C_{0} we get

| \int e^{iz\xi}\hat{u}(\xi)\xi^{\alpha}\chi(z, \xi)d\xi|\leq C_{8}^{|\alpha|+1}|\alpha|^{s|\alpha|}

and the Proposition easily follows. \square

Next we show that \overline{u} can be chosen to be compactly supported if this
is the case of u .

Theorem a.3 Let u\in G_{0}^{s}(R^{n}) . Then for all s’>s , there exists an
extension \overline{u}\in G_{0}^{s’} ( C^{n}\cap\{| Im z|<c\} ), c>0 small enough, such that \overline{u}(z)=

u(z) for real z and for some C>0 :

N_{s’}(\overline{\partial}\overline{u}, T)(z)\leq C exp( -| Im z|^{-1/(s-1)}/C), z\in C^{n} . | Im z|<c

when T\succ 0 is small enough.

Proof We implement the previous construction with a Paley-Wiener type
argument. So let again \delta=s’-s , and \psi\in G_{0}^{1+\delta}(C^{n}) be equal to 1 in
the polydisc \overline{B}(0,1\underline{)}=\{z=(z_{1}, \ldots, z_{n})\in C^{n} : |z_{1}|<1, . . ’ |\underline{z}_{n}|<1\} and
vanishing outside B(0,2) . For instance, we can take \psi(y)=\psi(y_{1})\otimes\cdot\cdot\otimes

\overline{\psi}(y_{n}) , y=(y_{1} , ,_{y_{n})}\in C^{n} , and \overline{\psi}\in G_{0}^{1+\delta}(C) rotation invariant. For
\zeta\in C^{n} , z\in C^{n} and C’>0 to be chosen later, depending on u , we set
\chi(z, ()=\psi(C’\langle(\rangle^{(s-1)/s} Im z ), where \langle\zeta\rangle^{(s-1)/s} denotes an analytic branch
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of \exp(\frac{s-1}{2s}\log(1+(_{1}^{2}+\cdot +\zeta_{n}^{2})) near a point ( \in C^{n} such that 1+\zeta_{1}^{2}+

+\zeta_{n}^{2}\neq 0 . Assume that supp u\subset B(x_{0}, r) , and let Y\in G_{0}^{s}(C^{n}) be equal
to 1 near B(x_{0}, r) . By translation, we can assume x_{0}=0 . We define as
above:

\overline{u}(z)=(2\pi)^{-n}Y(z)\int e^{iz\xi}\hat{u}(\xi)\chi(z, \xi)d\xi (a.19)

By Proposition a.2 , this defines an extension \overline{u}(z)\in G^{s’}(C^{n}) , i.e. \overline{u}(z)=

u(z) , z\in R^{n} , with compact support. There remains to show that \overline{\partial}\overline{u}

has the right decrease near the real domain, and so we need estimate
\int e^{iz\xi}\hat{u}(\xi)\chi(z, \xi)d\xi over supp\overline{\partial}Y Set z=x+iy , and \rho=|y|^{\frac{1}{s-1}} If |x|>r
we shift the integral into the complex domain. For t\in[0,1] , consider the
contours

\Gamma_{t}(z)=\{\zeta_{t}=\xi+itC_{0\rho}^{-1_{\frac{x}{|x|^{2}}}}=_{def}\gamma_{z}(t, \xi) , \xi\in R^{n}\}

where C_{0}>0 will be chosen suitably. By Stokes’ formula, using that \^u is
holomorphic,

\int e^{iz\xi}\hat{u}(\xi)\chi(z, \xi)d\xi

= \int_{\Gamma_{1}(z)}e^{iz\zeta}\hat{u}(\zeta)\chi(z, \zeta)d\zeta+\int_{[0,1]\cross R^{n}}e^{iz\zeta_{t}}\hat{u}(\zeta_{t})\gamma_{z}^{*}(d\omega) (a.19)

where \omega=\chi(z, \zeta)d(. First we estimate u’(z)= \int_{\Gamma_{1}(z)}e^{iz\zeta}\hat{u}(\zeta)\chi(z, \zeta)d(, and
notice that if u\in G_{0}^{s}(R^{n}) is supported in B(0, r) , then \^u an entire function
in C^{n} and:

|\hat{u}(\zeta)|\leq C exp (-(1+|\zeta|)^{1/s}/C)\exp(r|\eta|) , ( =\xi+i\eta (a.19)

Using this estimate, we find, possibly changing C :

|e^{iz\zeta}\hat{u}(\zeta)|\leq C exp (-C_{0\rho}^{-1}(1- \frac{r}{|x|}))

exp (-(1+|\xi|+C_{0\rho}^{-1}|x|^{-1})^{1/s}/C) exp(-y\xi)

(a.20)

If |\xi|\leq\rho^{-1} , and r<|x|<2r , then we may replace \exp(-(1+|\xi|+

C_{0}\rho^{-1}|x|^{-1})^{1/s}/C) by \exp(-\rho^{-1/s}/C) (with another constant C) on the
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right hand side of (a.20) and if |y|>0 is small enough, then

exp (-(1+|\xi|+C_{0\rho}^{-1}|x|^{-1})^{1/s}/C) exp(-y\xi)

=O(\exp(-\rho^{-1/s}/C)\leq 1 ,

and

|e^{iz\zeta} \hat{u}(\zeta)|\leq C\exp-(C_{0\rho}^{-1}(1-\frac{r}{|x|}))

This quantity is bounded uniformly by

exp (-|{\rm Im} z|^{-1/(s-1)}/C_{1}) , z\in supp\overline{\partial}_{z}Y, 2r\geq|x|\geq r’>r .
(a.21)

If |\xi|\geq\rho^{-1} , and r<|x|<2r , but |\xi|\leq\rho^{-s}/C_{2} , C_{2}>0 large enough, then
we may replace exp (-(1+|\xi|+C_{0}\rho^{-1}|x|^{-1})^{1/s}/C) by exp (-|\xi|^{1/s}/C) (with
a new constant C) on the right hand side of (a.20), and we get the same
conclusion as in (a.21). Now we can choose C’>0 large enough (see the
proof of Proposition a.2), so that (z, \zeta)\not\in supp\chi for |\xi|\geq\rho^{-s}/C_{2} . From
these estimates, and integrating over \xi , it follows that:

|u’(z)|\leq C_{1} exp ( -| Im z|^{-1/(s-1)}/C_{1} ),
z\in supp\overline{\partial}_{z}Y, 2r\geq|x|\geq r’>r . (a.22)

Now we consider the remainder term in (a.18), and compute

u’(z)= \int_{[0,1]\cross R^{n}}e^{iz\zeta_{t}}\hat{u}(\zeta_{t})\gamma_{z}^{*}(d\omega)

We have:

\gamma_{z}^{*}(d\omega)=C’\sum_{j,k=1}^{n}\overline{\partial}_{z_{k}}\psi ( C’\langle\zeta_{t}\rangle^{\frac{s-1}{s}} Im z) Im z_{k}(\overline{\partial}_{\zeta_{j}}\langle\overline{\zeta}_{t}\rangle^{\frac{s-1}{s}})J_{j}(z, \xi, t)d\xi\wedge dt

(a.23)

where J_{j}(z, \xi, t)=O(1) is a jacobian. Replacing \zeta by \zeta_{t} , we get as in (a.20)

|e^{iz\zeta_{t}}\hat{u}(\zeta_{t})|\leq C exp (-tC_{0\rho}^{-1}(1- \frac{r}{|x|}))

exp (-(1+|\xi|+tC_{0\rho}^{-1}|x|^{-1})^{1/s}/C) exp(-y\xi)

(a.24)

and we need to check that, on supp \gamma_{z}^{*}(d\omega) , this can be estimated by
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exp ( -| Im z|^{-1/(s-1)}/C_{1} ) for some C_{1}>0 . Using the rotation invariance of
\overline{\psi} , we can bound \overline{\partial}_{z_{k}}\psi ( C’\langle\zeta_{t}\rangle^{\frac{s-1}{s}} Im z) in (a.23), by the absolute value of:

\overline{\partial}_{|z_{k}|}\overline{\psi}(C’\langle(_{t}\rangle^{\frac{s-1}{s}} Im z_{k} )

=\overline{\partial}_{|z_{k}|}\overline{\psi}(C’ exp ( \frac{s-1}{4s} log ((1+| \xi|^{2}-(t\rho^{-1})^{2}\frac{C_{0}^{2}}{|x|^{2}})^{2}

+4(t \rho^{-1})^{2}(\frac{C_{0}x\xi}{|x|^{2}})^{2})) Im z_{k}) (a.25)

The intuition is supported by the following fact: when t=0, (a.24) and
(a.25) show that we can choose C’>0 so large that, for some C_{1}>0

|e^{iz\zeta_{t}}\hat{u}(\zeta_{t})\overline{\partial}_{|z_{k}|}\overline{\psi} ( C’\langle\zeta_{t}\rangle^{\frac{s-1}{s}} Im z_{k} ) |

\leq C_{1} exp (-|{\rm Im} z|^{-1/(s-1)}/C_{1}) , t=0 ,

and, by what we just said, this holds again for t=1 . So as above, we
discuss according to the range of values of \xi . When |\xi|\leq C_{3}t\rho^{-1} , where
C_{3}>0 to be fixed, we have

exp (-(1+|\xi|+tC_{0\rho}^{-1}|x|^{-1})^{1/s}/C) exp(-y\xi)

=O(\exp(-(t\rho^{-1})^{1/s}/C))\leq 1 .

When t\rho^{-1}\leq 1 , the exponential in (a.25) is bounded, so
\overline{\partial}_{z_{k}}\psi ( C’\langle\zeta_{t}\rangle^{(s-1)/s} Im z) =0 for all k when Im z is small enough, so we may
assume t\rho^{-1}\geq 1 and \langle\xi\rangle\leq C_{3}t\rho^{-1} . If we choose C_{0}>0 large enough

(depending on C_{3} ), then (1+| \xi|^{2}-(t\rho^{-1})^{2}\frac{c_{0}^{2}}{|x|^{2}})^{2}+4(t\rho^{-1})^{2}(\frac{C_{0}x\xi}{|x|^{2}})^{2} is com-

parable to (t \rho^{-1}\frac{c_{0}}{|x|})^{4} , and we may replace the RHS of (a.25) by

\overline{\partial}_{|z_{k}|}\overline{\psi}(C’(t\rho^{-1}\frac{C_{0}}{|x|})^{(s-1)/s} Im z_{k})

Assume this is non zero for some k . Then, using supp \overline{\psi}\subset\{1\leq|y|\leq 2\} ,
we get

c(x)\leq(t\rho^{-1})^{(s-1)/s}|{\rm Im} z_{k}|\leq 2c(x)

where for r<|x|<2r , c(x)=( \frac{|x|}{c_{0}})^{(s-1)/s}/C’ is comparable to 1. It is easy
to see that this does not hold for y small enough. So the contribution to
u’(z) of |\xi|\leq C_{3}t\rho^{-1} is zero.
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Let now \langle\xi\rangle\geq C_{3}t\rho^{-1} . If we choose C_{3}>0 large enough, then
exp (-(1+|\xi|+tC_{0}\rho^{-1}|x|^{-1})^{1/s}/C) is comparable to exp (-\langle\xi\rangle^{1/s}/C) (pos-
sibly changing C a little). On the other hand, the argument of the log in
(a.25) is also comparable to \langle\xi\rangle^{4} , and we may replace the RHS of (a.25) by

\overline{\partial}_{|z_{k}|}\overline{\psi} ( C’\langle\xi\rangle^{(s-1)/s} Im z_{k} )

Assume this is non zero for some k . Then, it is easy to see that choosing
C’ large enough, we have, for some C>0

|e^{iz\zeta_{t}}\hat{u}(\zeta_{t})|\leq C\exp(-|y|^{-1/(s-1)}/C) .

So far we proved the right estimate on (a.25) everywhere. It is easy to see
that we still have a sufficient decrease in \langle\xi\rangle at infinity to ensure convergence
of the integral defining u’(z) , and

|u’(z)|\leq C_{1} exp ( -| Im z|^{-1/(s-1)}/C_{1} ),
z\in supp\overline{\partial}_{z}Y, 2r\geq|x|\geq r’>r . (a.26)

Now, differentiating (a.17) , estimates (a.22) and (a.26) give

|\overline{\partial}\overline{u}(z)|\leq C_{1} exp ( -| Im z|^{-1/(s-1)}/C_{1} ), z\in C^{n} , | Im z|<c

To get the estimate on N_{s’}(\overline{\partial}\overline{u}, T)(z) it suffices to apply (a.ll) where we
have replaced \chi(z, \xi) by Y(z)\chi(z, \xi) , and then by Stokes’ formula split each
integral

v_{\alpha,\alpha’,\beta}(z)= \int e^{iz\xi}\xi^{\alpha-\alpha’}\hat{u}(\xi)D^{\alpha’}\overline{\partial}^{\beta}Y(z)\chi(z, \xi)d\xi

into v_{\alpha,\alpha,\beta}’,(z) and v_{\alpha,\alpha,\beta}’,(z) as in 18). We estimate these terms as above,
which amounts to add the factor \xi^{\alpha-\alpha’} in the integrals, and then mimic the
combinatorics of Proposition a.2 . So the theorem is proved. \square

The extension of Theorem a.3 to general G^{s} functions then goes as
follows. Let A>0 and u\in G_{A}^{s}(R^{n}) (where we have extended trivially to
the multidimensional case the definition given in Theorem a.1 ). Consider
a partition of unity \sum_{g\in Z^{n}}X_{g}=1 on R^{n} , where X_{g}(x)=X(x-g) and
0\leq X\in G_{0}^{s}(R^{n}) is supported in a small neighborhood of the cube K=
\{x\in R^{n} : |x_{j}|\leq 1/2, j=1 \cdot n\} (see [H\"oI, Thm 1.4.6]). For each g ,
let also Y_{g}(z)=Y(z-g) , where Y\in G_{0}^{s}(C^{n}) is chosen as in the proof of
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Theorem a.3 , equal to 1 near K . We set:

\overline{u}(z)=(2\pi)^{-n}\sum_{g\in Z^{n}}Y_{g}(z)\int e^{iz\xi}\overline{X_{g}u}(\xi)\chi(z, \xi)d\xi (a.27)

Because of the cut-0ff Y_{g} , the sum is locally finite. Because u\in G_{A}^{s}(R^{n}) ,
the estimate (a.19) with X_{g}u instead of u is uniform with respect to g\in Z^{n} .
So Theorem a.3 gives the

Corollary a.4 Let u\in G_{A}^{s}(R^{n}) . Then for all s’>s , there exists B>0 ,
an extension \overline{u}\in G_{B}^{s’} ( C^{n}\cap\{| Im z|<c\} ), c>0 small enough, such that
\overline{u}(z)=u(z) for real z and for some C>0 :

N_{s’}(\overline{\partial}\overline{u}, T)(z)\leq C exp( -| Im z|^{-1/(s-1)}/C), z\in C^{n} , | Im z|<c

when T\succ 0 is small enough.
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