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Global existence for a class of cubic nonlinear Schr\"odinger
equations in one space dimension
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Abstract. In this paper, we prove the global existence of a small solution to the Cauchy
problem for the nonlinear Schr\"odinger equation with a class of cubic nonlinearities in one
space dimension. Moreover, we also consider the asymptotic behavior in large time of
the solution. Our results says that two cubic nonlinearities given in this paper can be
considered as nonlinearities of higher degree (more precisely, of degree 5).
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1. Introduction and results

We consider the Cauchy problem for the nonlinear Schr\"odinger equation
in one space dimension

iu_{t}+ \frac{1}{2}u_{xx}=F(u,\overline{u}, u_{x},\overline{u}_{x}) , (1.1)

u(0, x)=u_{0}(x) . (1.2)

Here u is a complex-valued function of (t, x)\in R\cross R and F is a smooth
function on a neighborhood of the origin such that for some integer p\geq 2

F(u,\overline{u}, q,\overline{q})=O(|u|^{p}+|q|^{p}) near the origin. (1.3)

It is known that if, in addition, F satisfies

{\rm Re} \frac{\partial F}{\partial q}(u,\overline{u}, q,\overline{q})\equiv 0 , (1.4)

then the usual energy method yields the local existence. If we do not assume
(1.4) on F , we meet with a difficulty s0-called loss of derivatives. When
the nonlinearity F does not neccesarily satisfy (1.4) the local existence has
also been established this decade (see [7] and [9]). Concerning the global
existence of solutions, Klainerman-Ponce [10] and Shatah [12] showed that
if F satisfies (1.3) with p\geq 4 and (1.4), then (1.1)-(1.2) possesses a unique
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global solution provided that the intial data u_{0} is small in a certain Sobolev
space. If the nonlinearity is of lower degree ( i.e . quadratic or cubic), it seems
difficult to prove the global existence in general. This situation is explained
as follows. We consider small amplitude solutions u here. Then we may
expect that they behave like free solutions, which implies ||u(t)||_{L^{2}}=O(1)

and ||u(t)||_{L^{\infty}}=O(t^{-1/2}) as t – \infty . Therefore the nonlinearity F of degree
p is expected to behave like ||F(t)||_{L^{2}}=O(t^{-(p-1)/2}) . It is known that the
integrability in time of ||F(t)||_{L^{2}} is almost equivalent to the global existence
of solutions, and thus it is natural that there should exist global solutions
of the nonlinear Schr\"odinger equation with a nonlinearity of degree 4 or
higher (note that -(p-1)/2<-1\Leftrightarrow p>3 ). On the other hand, when the
nonlinearity is quadratic or cubic (p=2 or 3), ||F(t)||_{L^{2}} is not integrable
in time so that the global existence of solutions seems hard to prove.

In spite of this, there are not a few papers on the global existence when
the nonlinearity is cubic or quadratic. In particular, in the case where the
nonlinearity F is cubic and gauge invariant, that is, F satisfies

F(\omega u,\overline{\omega u}, \omega q,\overline{\omega q})=\omega F(u,\overline{u}, q,\overline{q}) (1.5)

for any \omega\in C(|\omega|=1) , u , q\in C , much has been studied. For F=\lambda|u|^{2}u or
F=i\lambda\partial_{x}(|u|^{2}u) with some \lambda\in R\backslash \{0\} , the global existence is well known.
Furthermore, for these nonlinearities, the asymptotic behavior of solutions is
studied and the existence of modified scattering states is proved by Hayashi
and Naumkin [4], [5]. They also established the asymptotic formula for
large time. Katayama and Tsutsumi [8] showed that if F satisfies (1.5) and
“null gauge condition of order 3” (a typical example which satisfies these
conditions is F=\partial_{x}(|u|^{2})(\lambda u+\mu u_{x}) with \lambda , \mu\in C ) then (1.1)-(1.2) has a
unique global solution for small initial data u_{0} and the usual scattering state
exists. Recently, Hayashi and Naumkin [6] considered nonlinear Schr\"odinger
equations with a derivative cubic nonlinearity which does not satisfy (1.5)
and proved the existence of usual or modified scattering states as well as the
global existence of solutions for small initial data. However, it still remains
open what kind of cubic nonlinearities assures the global existence of solu-
tions with a free profile in large time for small initial data. In the present
paper, we are interested in finding out some other nonlinearity F than those
considered before such that (1.1)-(1.2) has a unique global solution which
is asymptotically free. We prove the global existence of a solution to the
Cauchy problem (1.1)-(1.2) in the usual Sobolev spaces for small initial
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data and the existence of scattering states in a usual sense if F=cuu_{x}^{2}

or F=c\overline{u}\overline{u}_{x}^{2} with c\in C . To treat these critical cubic nonlinearities we
use the techniques which transform them into harmless ones. These were
developed by Shatah [13], Cohn [1], [2] and Ozawa [11] for quadratic non-
linearity. While they discussed quadratic nonlinear Schr\"odinger equations
in [1], [2] and [11] (quadratic nonlinear Klein-Gordon equations in [13]), a
class of cubic nonlinear Schr\"odinger equations will be treated in the present
paper. So, it should be emphasized that the transformation in the present
paper will be more complicated than those for quadratic nonlinearities.

Before stating our results we give several notations.

Notation Let [a] denote the largest integer less than or equal to a . Let \hat{f}

and \mathcal{F}f denote the Fourier transform of f with respect to the space variable:

\hat{f}(\xi)=(\mathcal{F}f)(\xi)=\frac{1}{(2\pi)^{\frac{r\iota}{2}}}\int_{R^{n}}f(x)e^{-ix\cdot\xi}dx .

For 1\leq p\leq\infty and nonnegative integers m , we put

L^{p}=L^{p}(R):=\{f\in S’(R)|||f||_{L^{p}}<\infty\} .

W^{m,p}=W^{m,p}( R):=\{f\in S’(R)|||f||_{W^{m,p}}:=\sum_{k=0}^{m}||\partial_{x}^{k}u||_{L^{p}}<\infty\} ,

where

||f||_{L^{p}}=\{\begin{array}{l}(\int_{R}|f(x)|^{p}dx)\frac{1}{p},ess.\sup|f(x)|,x\in R\end{array} p=\infty 1\leq p<\infty

We also use the notation H^{m}:=W^{m,2} for L^{2}-type Sobolev spaces. Let
C^{k}(I;B) denote the space of functions continuous with their derivatives up
to k from a time interval I\subset R to a Banach space B , and let C(I;B):=
C^{0}(I;B) . Let U(t)=e^{\frac{it}{2}\partial_{x}^{2}} be the evolution operator associated with the
free Schr\"odinger equation.

Our main results are the following. The first theorem gives a cubic non-
linear Schr\"odinger equation which is convertible into the free Schr\"odinger
equation.
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Theorem 1 Let m be an integer with m\geq 1 and let F=cuu_{x}^{2} where c
is a complex constant. We put

\varphi(u)=\varphi(u;c)=\sum_{k=0}^{\infty}\frac{(-c)^{k}}{(2k+1)k!}u^{2k+1} (= \int_{0}^{u}e^{-cz^{2}}dz)

Then there exists \epsilon_{0}>0 such that for any u_{0}\in H^{m} with ||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon_{0}

the Cauchy problem (1.1)-(1.2) has a unique global solution u\in C(R;H^{m})\cap

C^{1}(R;H^{m-2}) . Moreover, the solution u is given explicitly by u(t)=
\varphi^{-1}(U(t)\varphi(u_{0})) . If in addition u_{0}\in L^{1} , then

||u(t)||_{L^{\infty}}=O(|t|^{-\frac{1}{2}}) as t - \pm\infty (1.6)

and there exists a unique \phi\in H^{m}\cap L^{1} such that

||u(t)-U(t)\phi||_{FJ^{rn}}=O(|t|^{-1}) as t - \pm\infty . (1.7)

Furthermore, \phi is given explicitly by \phi=\varphi(u_{0}) .

Remark (i) The assumption ||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon_{0} is fulfilled if ||u_{0}||_{H^{1}} is
su fBciently small, since

|| \mathcal{F}\varphi(u_{0})||_{L^{1}}=||\sum_{k=0}^{\infty}\frac{(-c)^{k}}{(2k+1)k!}\mathcal{F}(u_{0}^{2k+1})||_{L^{1}}

\leq\sqrt{2\pi}\sum_{k^{\wedge}=0}^{\infty}\frac{|c|^{k}}{(2k+1)k!}(\frac{1}{\sqrt{2\pi}}||\overline{u_{0}}||_{L^{1}})^{2k+1}

and ||\overline{u_{0}}||_{L^{1}}\leq||(1+\xi^{2})^{1/2}\overline{u_{0}}||_{L^{2}}||(1+\xi^{2})^{-1/2}||_{L^{2}}=\sqrt{\pi}||u_{0}||_{H^{1}} .
(ii) For \epsilon_{0} in Theorem 1, we can take the radius of convergence of the

Taylor expansion at the origin of the inverse function of \varphi .
(iii) It is \varphi given in Theorem 1 which converts a solution of the original

cubic nonlinear Schr\"odinger equation into a solution of the free Schr\"odinger
equation (see Lemma 2.3 in Section 2).

By modifying the proof of Theorem 1 slightly, we can also prove the
following theorem for the nonlinear Schr\"odinger equation with more general
nonlinearity.
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Theorem 1’ Let m be an integer with m\geq 1 and let F=f(u)u_{x}^{2} where
f(u) is a holomorphic function on a neighborhood of the origin. We put

\varphi(u)=\int_{0}^{u}e^{-\int_{0}^{z}2f(w)dw}dz .

Then there exist \epsilon_{0} , \epsilon_{1}>0 such that for any u_{0}\in H^{m} with ||\mathcal{F}\varphi(u_{0})||_{I_{\lrcorner}^{1}}<

\epsilon_{0} and ||u_{0}||_{L^{\infty}}<\epsilon_{1} , the Cauchy problem (1.1)-(1.2) has a unique global
solution u\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) . Moreover, the solution u is given
explicitly by u(t)=\varphi^{-1}(U(t)\varphi(u_{0})) . If in addition u_{0}\in L^{1} , then

||u(t)||_{L}\infty=O(|t|^{-\frac{1}{2}}) as tarrow\pm\infty

and there exists a unique \phi\in H^{m}\cap L^{1} such that

||u(t)-U(t)\phi||_{H^{m}}=O(|t|^{-\frac{1}{2}}) as t - \pm\infty .

Furthermore, \phi is given explicitly by \phi=\varphi(u_{0}) .

We next state the theorem concerning a cubic nonlinear Schr\"odinger
equation to which the normal form argument by Shatah [13] is applicable.

Theorem 2 Let m be an integer with m\geq 4 and let F=c\overline{u}\overline{u}_{x}^{2} where c is
a complex constant. Then there exists \epsilon_{0}>0 such that for any u_{0}\in H^{m}\cap

W^{[(m+5)/2],1} with \max\{||u_{0}||_{H^{m}}, ||u_{0}||_{W^{[(m+5)/2],1}}\}<\epsilon_{0} the Cauchy problem
(1.1)-(1.2) has a unique global solution u satisfying

u\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) ,

and

||u(t)||_{H^{m}}=O(1) , ||u(t)||_{W^{[(m+1)/2],\infty}}=O(|t|^{-\frac{1}{2}}) as tarrow\pm\infty .
(1.8)

Moreover, there exist a unique \phi_{+}\in H^{m} and a unique \phi_{-}\in H^{m} such that

||u(t)-U(t)\phi_{+}||_{H^{m}}=O(|t|^{-1}) as tarrow+\infty ,

||u(t)-U(t)\phi_{-}||_{H^{m}}=O(|t|^{-1}) as t - -\infty . (1.8)

We state here an outline of proofs of Theorems 1 and 2 and how to
organize this paper.

In Section 2, we give a proof of Theorem 1. Since the nonlinearity F=
cuu_{\tau}^{2}. is cubic, we cannot directly derive sufficient a priori estimates to prove
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a global existence result. The reason why we can prove the global existence
of solutions (and in addition, existence of the scattering operator) neverth-
less is that a favorable transformation exists. In the first half of Section 2,
we prove that \varphi given in Theorem 1 converts a solution of the original non-
linear Schr\"odinger equation into a solution of the free Schr\"odinger equation.
In addition, we show that the transformation \varphi is invertible under a cer-
tain smallness condition. In the second half, we prove that the function
obtained from a solution of the free Schr\"odinger equation via the inverse
transformation \varphi^{-1} solves the original nonlinear Schr\"odinger equation and
behaves asymptotically like a free solution. We remark that this technique
was used in [11] to prove the global existence and the asymptotic behavior
of solutions to the nonlinear Schr\"odinger equation with F=cu_{x}^{2} .

In Section 3, we give a proof of Theorem 2. The crucial part of proof
is to establish a priori estimates of the solution to (1.1)-(1.2). The global
existence result is obtained by combining a local existence theory and a
priori estimates. Since the nonlinearity F=c\overline{u}\overline{u}_{x}^{2} satisfies (1.4), the local
existence is an immediate consequence of the usual energy method. But we
cannot derive sufficient time decay estimates to prove the global existence
directly from the original equation since F is cubic. In order to obtain
good a priori estimates, we use the argument of normal forms introduced by
Shatah (see [1], [2], [13]). In the first half of Section 3, we prove the existence
of a transformation to convert the cubic nonlinearity into the one of higher
degree and also prove some lemmas saying that the obtained transformation
is regular in the space where we consider the Cauchy problem. The results
on Fourier multipliers due to Coifman and Meyer ([3]) play important roles
when we verify the regularity of the transformation. After that, we establish
a priori estimates via the transformed equation implying global existence of
s mall solutions. This completes the proof of Theorem 3.

2. Proof of Theorem 1

In this section, we prove Theorem 1 concerning the global existence of
a solution to the Cauchy problem (1.1)-(1.2) with F=cuu_{x}^{2} .

2.1. Transformation of the unknown and its regularity
To prove Theorem 1, we will make use of the following complex function
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\varphi(u)=\varphi(u;c):=\sum_{k=0}^{\infty}\frac{(-c)^{k}}{(2k+1)k!}u^{2k+1} (= \int_{0}^{u}e^{-cz^{2}}dz)

For r>0 , we put B_{r}=\{z\in C||z|<r\} .
We begin with the following lemma.

Lemma 2.1 (a) \varphi is an entire function on the whole complex plane.
(b) There exist a constant \epsilon>0 and a holomorphic function \psi : B_{\in}arrow

\varphi^{-1}(B_{\epsilon}) such that \varphi\circ\psi=id_{B_{\epsilon}} , \psi\circ\varphi=id_{\varphi^{-1}(B_{\epsilon})} and \varphi^{-1}(B_{\in}) is bounded.

Proof, (a) The fact that

\lim_{karrow\infty}\sqrt[k]{\frac{|c|^{k}}{(2k+1)k!}}=0

leads to (a).
(b) We put D_{1}=\{z\in C|\Re\varphi’(z)>0\} . Then D_{1} is open and includes

0 since \Re\varphi’(0)=1>0 . We can take a bounded convex open domain D_{2}

such that 0\in D_{2}\subset D_{1} . In fact, for a sufficiently small r>0 , we have
B_{r}\subset D_{1} since D_{1} is open and 0\in D_{1} . The fact that 0\in D_{2} and \varphi(0)=0

implies 0\in\varphi(D_{2}) . Since \Re\varphi’>0 on a convex domain D_{2} , \varphi is a one-t0-0ne
function on D_{2} . Therefore \varphi : D_{2}arrow\varphi(D_{2}) is a bijection. Since 0\in\varphi(D_{2})

and \varphi(D_{2}) is open, there exists \epsilon>0 such that B_{\in}\subset\varphi(D_{2}) . \varphi^{-1}(B_{\epsilon})\subset D_{2}

implies that \varphi : \varphi^{-1}(B_{\epsilon}) – B_{\in} is a bijection, from which the existence of
the inverse function \psi : B_{\epsilon}arrow\varphi^{-1}(B_{\epsilon}) of \varphi follows. Since \varphi is holomorphic
on \varphi^{-1}(B_{\in}) , \psi is holomorphic on B_{\in} . \square

The following lemma implies the regularity of \varphi as a transformation on
H^{m} .

Lemma 2.2 Let m be an integer with m\geq 1 . For any u_{0}\in H^{m} , \varphi(uo)\in

H^{m} .

Proo/. Recall that H^{m}\subset L^{\infty} since m\geq 1 .
We consider the series \sum_{j=0}^{\infty}\frac{(-c)^{j}}{(2j+1)j!}u_{0}^{2j+1} The series is estimated in

the L^{2} norm by

\sum_{j=0}^{\infty}\frac{|c|^{j}}{(2j+1)j!}||u_{0}^{2j+1}||_{L^{2}}\leq\sum_{j=0}^{\infty}\frac{|c|^{j}}{(2j+1)j!}||u_{0}||_{L^{\infty}}^{2j}||u_{0}||_{L^{2}}
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\leq\sum_{j=0}^{\infty}\frac{|c|^{j}}{(2j+1)j!}(C||u_{0}||_{H^{1}})^{2j+1}

so that the series converges absolutely in L^{2} and \varphi(u_{0})\in L^{2} . By the chain
rule with respect to the distributional derivatives,

\partial_{x}\varphi(u_{0})=\varphi’(u_{0})\partial_{x}u_{0}=e^{-cu_{0}^{2}}\partial_{x}u_{0}\in L^{2} .

since ||e^{-cu_{0}^{2}}||_{I},\infty\leq e^{|c|||u_{0}||_{L}^{2}}\infty\leq e^{|c|(C||u_{0}||_{H^{1}})^{2}} and \partial_{x}u_{0}\in L^{2} . Similarly, for
any k with 2\leq k\leq m , we have \partial_{x}^{k}\varphi(u_{0})\in L^{2} from the identity

\partial_{X}^{k}\varphi(u_{0})=e^{-cu_{0}^{2}}\{
\partial_{X}^{k}u_{0}+\sum k

\sum C( k , l , { k_{j}\} ) \prod 2l-1\partial_{X}^{k_{j}}uo)(

l=2k_{1}+\cdots+k_{2l-1}=k j=1
1nax\{k_{j}\}\leq k-1

Here e^{-cu_{0}^{2}}\in L^{\infty} , \partial_{x}^{k}u_{0}\in L^{2} and every term in the summation is in L^{2} ,
since the H\"older inequality and the GagliardO-Nirenberg inequality give

|| \prod_{j=1}^{2l-1}\partial_{x^{j}}^{k}u_{0}||_{I^{2}},\leq\prod_{j=1}^{2l-1}||\partial_{x^{j}}^{k^{\alpha}}u_{0}||_{L^{2k/k_{j}}}

\leq\prod_{j=1}^{2l-1}C||\partial_{x}^{m}u_{0}||_{L^{2}}^{\overline{1-2m}\overline{k}}

1-2kjk||u_{0}||_{L}^{1-\frac{1-2k}{1-2m}\frac{k}{k}L}\infty\leq C||u_{0}||_{H^{m}}^{2l-1}

.

This comletes the proof. \square

The following lemma shows that \varphi transforms a solution of the Cauchy
problem (1.1)-(1.2) with F=cuu_{x}^{2} into a solution of the linear Schr\"odinger
equation.

Lemma 2.3 Let m be an integer with m\geq 1 . Let u_{0}\in H^{m} and let
u\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) satisfy (1.1)-(1.2) with F=cuu_{x}^{2} . Then
\varphi(u(\cdot))\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) and

\varphi(u(t))=U(t)\varphi(u_{0}) . (2.1)

Proof. Let v=\varphi(u) and let v_{k}= \sum_{j=0}^{k}\frac{(-c)^{j}}{(2j+1)j!}u^{2j+1} . We have

||v_{k}(t)-v_{l}(t)||_{L^{2}} \leq\sum_{j=l+1}^{k}\frac{|c|^{j}}{(2j+1)j!}||u(t)^{2j+1}||_{L^{2}}
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\leq\sum_{j=l+1}^{k}\frac{|c|^{j}}{(2j+1)j!}(C||u(t)||_{H^{1}})^{2j+1}arrow 0

as k , l- \infty ,

where the convergence is uniform on every compact set of R, since ||u(\cdot)||_{H^{1}}

is locally bounded on R. This implies v\in C(R;L^{2}) .
From the chain rule, we have for any t\in R , \partial_{x}v=e^{-cu^{2}}\partial_{x}u\in L^{2} , and

therefore \partial_{x}v\in C(R;L^{2}) since u\in C(R;H^{1}\cap L^{\infty}) . Thus \partial_{x}^{2}v\in C(R;H^{-1}) .
Another application of the chain rule gives

\partial_{x}^{2}v=e^{-cu^{2}}(u_{xx}-2cuu_{x}^{2}) , (2.2)

where u_{xx} , uu_{x}^{2}\in C(R;H^{-1}) since ||uu_{x}^{2}||_{H^{-1}}\leq C||u||_{L^{\infty}}||u_{x}||_{L^{2}}^{2} . Here we
remark that the last inequality follows from

||fg||_{H^{-1}}\leq C||f||_{L^{2}}||g||_{L^{2}}

which is proved by the (H^{1}, H^{-1}) duality and the embedding H^{1}\subset L^{\infty} .
We next prove that v\in C^{1}(R;H^{-1}) and

\partial_{t}v=\varphi’(u)\partial_{t}u=e^{-cu^{2}}u_{t} . (2.3)

Some calculations give

h^{-1}(v(t+h)-v(t))-\varphi’(u(t))u_{t}(t)

= \int_{0}^{1}\varphi’(\lambda u(t+h)+(1-\lambda)u(t))d\lambda

h^{-1}(u(t+h)-u(t))-\varphi’(u(t))u_{t}(t)

= \{\int_{0}^{1}(\varphi’(\lambda u(t+h)+(1-\lambda)u(t))-1)d\lambda+1\}

\{h^{-1}(u(t+h)-u(t))-u_{t}(t)\}

+ \int_{0}^{1}\int_{0}^{1}\varphi’(\lambda\mu u(t+h)+(1-\lambda\mu)u(t))\lambda d\mu d\lambda

(u(t+h)-u(t))u_{t}(t) (2.4)

so that we have

||h^{-1}(v(t+h)-v(t))-\varphi’(u(t))u_{t}(t)||_{H^{-1}}

\leq(C\sup_{\lambda\in[0,1]}||\varphi’(\lambda u(t+h)+(1-\lambda)u(t))||_{H^{1}}+1)
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||h^{-1}(u(t+h)-u(t))-u_{t}(t)||_{H^{-1}}

+C sup ||\varphi’(\lambda u(t+h)+(1-\lambda)u(t))||_{H^{1}}||u(t+h)-u(t)||_{H^{1}}

\lambda\in[0,1]

||u_{t}(t)||_{H^{-1}} -0 as harrow 0 ,

where we have used ||fgh||_{H^{-1}}\leq C||f||_{H^{1}}||g||_{H^{1}}||h||_{H^{-1}} to estimate the sec-
ond term in the right hand side of the last equality of (2.4). We have thus
proved that (2.3) holds in H^{-1} . The continuity in t of the right hand side
of (2.3) follows similarly from the inequality ||fg||_{H^{-1}}\leq C||f||_{H^{1}}||g||_{H^{-1}} .

tVe have proved v\in C(R;H^{1})\cap C^{1}(R;H^{-1}) and moreover, i\partial_{t}v+

\frac{1}{2}\partial_{x}^{2}v=0 by (1.1) with F=cuu_{x}^{2} , (2.2) and (2.3). Accordingly we
have v(t)=U(t)v(0) , which is exactly (2.1). Le mma 2.2 and (2.1) im-
ply \varphi(u(\cdot))\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) . \square

2.2. Proof of Theorem 1
We denote by \epsilon the constant obtained in Lemma 2.1 (b). Let \epsilon_{0}=

\sqrt{2\pi}\epsilon .
First, we prove that under the assumption ||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon_{0} , the func-

tion

u(t)=\varphi^{-1}(U(t)\varphi(u_{0})) (2.5)

provides a solution of the Cauchy problem (1.1)-(1.2) with F=cuu_{x}^{2} and
is in C(R;H^{m})\cap C^{1}(R;H^{m-2}) .

From Lemma 2.1, we have the expansion

\varphi^{-1}(z)=\sum_{j=0}^{\infty}a_{j}z^{j}

with the radius of convergence larger than or equal to \epsilon . We easily see that
a_{0}=0 , a_{1}=1 , a_{2}=0 , a_{3}=c/3 since \varphi(0)=0 , \varphi’(0)=1 , \varphi’(0)=0 ,
\varphi’(0)=-2c .

By the assumption ||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon_{0}=\sqrt{2\pi}\epsilon , we have

\sup_{t\in R}||U(t)\varphi(u_{0})||_{L^{\infty}}=\sup_{t\in R}||\mathcal{F}^{-1}e^{-it|\cdot|^{2}}\mathcal{F}\varphi(u_{0})||_{L^{\infty}}

\leq\frac{1}{\sqrt{2\pi}}||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon . (2.6)

We consider the series
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U(t) \varphi(u_{0})+\sum_{j=3}^{\infty}a_{j}(U(t)\varphi(u_{0}))^{j} . (2.7)

By (2.6) and the unitarity of U(t) in L^{2} , the series (2.7) converges absolutely
in L^{2} and its L^{2} norm is estimated by

|| \varphi(u_{0})||_{L^{2}}(1+\sum_{j=3}^{\infty}|a_{j}|(\frac{1}{\sqrt{2\pi}}||\mathcal{F}\varphi(u_{0})||_{L^{1}})^{j-1}) .

This proves that u defined in (2.5) makes sense and is in C(R;L^{2}) . By the
chain rule, we have for any t\in R

\partial_{x}u(t)=\frac{d\varphi-1}{dz}(U(t)\varphi(u_{0}))U(t)\partial_{x}\varphi(u_{0}) (2.8)

so that \partial_{x}u(\cdot)\in C(R;L^{2}) since U(t)\partial_{x}\varphi(u_{0})\in L^{2} by Lemma 2.2 and

\frac{d\varphi^{-1}}{dz}(U(t)\varphi(u_{0}))=[\varphi’(\varphi^{-1}(U(t)\varphi(u_{0})))]^{-1}

=e^{c\{\varphi^{-1}(U(t)\varphi(u_{0}))\}^{2}}\in C(R;L^{\infty}) ,

which follows from (2.6), the boundedness of \varphi^{-1}(U(t)\varphi(u_{0})) and
U(t)\varphi(u_{0})\in C(R;H^{1}\cap L^{\infty}) . Similarly, for any k with 2\leq k\leq m , we
have

\partial_{x}^{k}u=\frac{\partial_{x}^{k}w}{\varphi’(\varphi^{-1}(w))}+\sum_{l=2}^{k}\sum_{m_{1}+\cdots+m_{l}=k}\sum_{n_{1}+\cdots+n_{l-1}=2l-2}C(k, l, \{m_{j}\}, \{n_{j}\})

\min\{m_{j}\}\geq 1 \min\{n_{j}\}\geq 1

\frac{\prod_{j=1}^{l-1}\varphi^{(n_{j})}(\varphi^{-1}(w))}{\varphi’(\varphi^{-1}(w))^{2l-1}}\prod_{j=1}^{l}\partial_{x}^{m_{j}}w (2.9)

and \partial_{x}^{k}u\in C(R;L^{2}) since \partial_{x}^{k}w , \prod_{j=1}^{l}\partial_{x}^{m_{j}}w\in C(R;L^{2}) and

\frac{\prod_{j=1}^{l-1}\varphi^{(n_{j})}(\varphi^{-1}(w))}{\varphi’(\varphi^{-1}(w))^{2l-1}}\in C(R;L^{\infty})

by (2.6), where w(t)=U(t)\varphi(u_{0}) . In a way similar to the proof of (2.3),
we obtain

\partial_{t}u=\frac{\partial_{t}w}{\varphi’(\varphi^{-1}(w))}=\frac{\frac{i}{2}\partial_{x}^{2}w}{\varphi’(\varphi^{-1}(w))} (2.10)
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and \partial_{t}u\in C(R;H^{-1}) . As in the derivation of (2.9) from (2.8), the formula
(2.10) yields \partial_{t}u\in C(R;H^{m-2}) . This proves u\in C(R;H^{m})\cap C^{1}(R;H^{m-2}) ,
which implies uu_{x}^{2}\in C(R;H^{m-2}) . A simple calculation shows

\partial_{x}^{2}u=\frac{\partial_{x}^{2}w}{\varphi’(\varphi^{-1}(w))}-,\frac{\varphi’(\varphi^{-1}(w))}{\varphi(\varphi^{-1}(w))^{3}}(\partial_{x}w)^{2}=-2i\partial_{t}u+2cuu_{x}^{2} ,

which is exactly (1.1) with F=cuu_{x}^{2} . This completes the proof of the
existence of a global solution to (1.1)-(1.2) with F=cuu_{x}^{2} .

We next prove the uniqueness of the solution. Assume that u and v are
solutions to (1.1)-(1.2) with F=cuu_{x}^{2} . Then we have by Lemma 2.3

\varphi(u(t))=\varphi(v(t))=U(t)\varphi(u_{0}) . (2.11)

By assumption on the initial data, it follows from (2.6) that ||\varphi(u(t))||_{L^{\infty}}=

||\varphi(v(t))||_{L}\infty=||U(t)\varphi(u_{0})||_{L}\infty<\epsilon , which, combined with Lemma 2.1 (b)
and (2.11), leads to u(t)=v(t) .

We proceed to the decay estimate (1.6) of the solution. Note that for
m\geq 1 , \phi:=\varphi(u_{0})\in H^{m}\cap L^{1} if u_{0}\in H^{m}\cap L^{1} . Estimating (2.7) in the
L^{\infty} norm and using the standard L^{\infty}-decay estimate of the fundamental
solution, we obtain

||u(t)||_{L^{\infty}} \leq||U(t)\phi||_{L^{\infty}}+\sum_{j=3}^{\infty}|a_{j}|||(U(t)\phi)^{j}||_{L^{\infty}}

\leq\frac{||\phi||_{L^{1}}}{(2\pi|t|)^{1/2}}(1+\sum_{j=3}^{\infty}|a_{j}|(\frac{||\mathcal{F}\phi||_{L^{1}}}{\sqrt{2\pi}})^{j-1}) .

Here the last summation converges since ||\mathcal{F}\phi||_{L^{1}}/\sqrt{2\pi}<\epsilon .
We finally prove (1.7). In the same way as above, we obtain

||u(t)-U(t) \phi||_{L^{2}}\leq\sum_{j=3}^{\infty}|a_{j}|||(U(t)\phi)^{j}||_{L^{2}}

\leq\frac{||\phi||_{L^{1}}^{2}||\phi||_{L^{2}}}{2\pi|t|}\sum_{j=3}^{\infty}|a_{j}|(\frac{||\mathcal{F}\phi||_{L^{1}}}{\sqrt{2\pi}})^{j-3}

For any k with 1\leq k\leq m , a somewhat complicated calculation gives

|| \partial_{x}^{k}(u(t)-U(t)\phi)||_{L^{2}}\leq\frac{C(||\mathcal{F}\phi||_{L^{1}})}{|t|}||\phi||_{L^{1}}^{2}||\phi||_{H^{k}} ,
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which proves (1.7), that is, the existence of a free profile in H^{m} . The
uniqueness of the free profile follows from (1.7) and the unitarity of U(t) on
H^{m} .

3. Proof of Theorem 2

In this section, we prove Theorem 2 concerning the global existence of
a solution to the Cauchy problem (1.1)-(1.2) with F=c\overline{u}\overline{u}_{x}^{2} .

3.1. Ransformation of the unknown and its regularity
In the first half of this subsection, we obatin the transformation which

converts the cubic nonlinearity into the one of higher degree. Following
Shatah [13], we introduce a new unknown function v :

v=u+IC(\overline{u},\overline{u},\overline{u}) , (3.1)

where K is thought of as a distribution and the representaion of the cubic
term is given by

K(f, g, h)(x)= \int_{R^{3}}K(x-y, x-z, x-w)f(y)g(z)h(w)dydzdw .

(3.2)

After some calculations, we obtain

K(f, g, h)(x)

=(2 \pi)^{3/2}\int_{R^{3}}.\hat{K}(p, q, r)\hat{f}(p)_{L}\hat{q}(q)\hat{h}(r)e^{ix(p+q+r)}dpdqdr , (3.3)

i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v

=c\overline{u}\overline{u}_{x}^{2}+[(\partial_{y}^{2}+\partial_{z}^{2}+\partial_{w}^{2}+\partial_{y}\partial_{z}+\partial_{z}\partial_{w}+\partial_{w}\partial_{y})K](\overline{u},\overline{u},\overline{u})

-K(\overline{c}uu_{x}^{2},\overline{u},\overline{u})-K(\overline{u},\overline{c}uu_{x}^{2},\overline{u})-K(\overline{u},\overline{u},\overline{c}uu_{x}^{2}) . (3.4)

All cubic terms in (3.4) cancel out, when we take K as follows:

\hat{K}(p, q, r)=-\frac{c}{3}\frac{pq+qr+rp}{p^{2}+q^{2}+r^{2}+pq+qr+rp} .
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Then the function v defined by the transformation (3.1) satisfies

i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v=\frac{|c|^{2}}{3}(\Omega(uu_{x}^{2},\overline{u},\overline{u})+\Omega(\overline{u}, uu_{x}^{2},\overline{u})+\Omega(\overline{u},\overline{u}, uu_{x}^{2})) ,

(3.5)

where we put \Omega=-\frac{3}{c}K . We remark that the nonlinear term in the right
hand side of (3.5) is of degree five, which is of higher degree than the original
nonlinearity F=c\overline{u}\overline{u}_{x}^{2} .

The following lemma due to Coifman and Meyer is needed when we
prove the regularity of \Omega .

Lemma 3.1 Let

\Lambda(f, g, h)(x)=\int_{R^{3}}\lambda(p, q, r)\hat{f}(p)\hat{g}(q)\hat{h}(r)e^{ix(p+q+r)}dpdqdr ,

and let

|\partial_{p}^{j}\partial_{q}^{k}\partial_{r}^{l}\lambda(p, q, r)|\leq C_{j,k,l}(|p|+|q|+|r|)^{-(j+k+l)} (3.6)

for all nonnegative integers j , k , l such that 0\leq j+k+l\leq 1 . Then

||\Lambda(f, g, h)||_{L^{p}}\leq C_{p_{1},p_{2},p_{3}}||f||_{L^{p_{1}}}||g||_{L^{p_{2}}}||h||_{L^{p_{3}}}

where

\frac{1}{p}=\sum_{j=1}^{3}\frac{1}{p_{j}} , 1<p_{j}\leq\infty (j=1,2) and 1<p_{3}<\infty .

For the proof, see [3].

The following estimate for K(\cdot, \cdot, \cdot) defined by (3.2) follows immediately
from (3.3) and Lemma 3.1. We will make use of this estimate to prove the
a priori energy estimate later.

Lemma 3.2 Let p, p_{j}(j=1,2,3) satisfy \frac{1}{p}=\sum_{j=1}^{3}\frac{1}{p_{j}} , 1<p_{j}\leq\infty(j=

1 , 2) and 1<p_{3}<\infty . If \hat{K} is a Coifman-Meyer kernel (that is, \lambda=\hat{K}

satisfies (3.6) ) , then

||K(f, g, h)||_{L^{p}}\leq C_{p_{1},p_{2},p3}||f||_{L^{p_{1}}}||g||_{L^{p_{2}}}||h||_{L^{p_{3}}} .

The following lemma gives several formulas which are useful to simplify
the representation of nonlinear terms.
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Lemma 3.3 (a) \Omega(f, g, h)=\Omega(f, h, g)=\Omega(g, f, h) .
(b) \partial_{x}\Omega(f, g, g)=M(f, g, g_{x}) , where \overline{M} is a Coifman-Meyer kemel.

Proof, (a) \hat{\Omega}(p, q, r)=\hat{\Omega}(p, r, q)=\hat{\Omega}(q,p, r) and so the representation
(3.3) imply (a).

(b) Let \overline{M}=(2p^{2}+3pq+2qr+2rp)/D , where D=p^{2}+q^{2}+r^{2}+

pq+qr+rp.
We have by (a)

\partial_{x}\Omega(f, g, g)=\Omega(f_{x}, g, g)+\Omega(f, g_{x}, g)+\Omega(f, g, g_{x})

=\Omega(f_{x}, g, g)+2\Omega(f, g, g_{x}) . (3.7)

The representation (3.3) and properties of the Fourier transform imply

\Omega(f_{x}, g, g)

=(2 \pi)^{3/2}\int_{R^{3}}\hat{\Omega}(p, q, r)ip\hat{f}(p)\hat{g}(q)\hat{g}(r)e^{ix(p+q+r)}dpdqdr

=(2 \pi)^{3/2}\int_{R^{3}}\frac{1}{D}\{(p^{2}+\frac{1}{2}pq)ir+(p^{2}+\frac{1}{2}pr)iq\}

\hat{f}(p)\hat{g}(q)\hat{g}(r)e^{ix(p+q+r)}dpdqdr

=(2 \pi)^{3/2}\int_{R^{3}}\frac{1}{D}(2p^{2}+pq)\hat{f}(p)\hat{g}(q)ir\hat{g}(r)e^{ix(p+q+r)}dpdq dr. (3.8)

Therefore we have by (3.7) and (3.8)

\partial_{x}\Omega(f, g, g)=(2\pi)^{3/2}\int_{R^{3}}\{\frac{1}{D}(2p^{2}+pq)+2\hat{\Omega}(p, q, r)\}

\hat{f}(p)\hat{g}(q)ir\hat{g}(r)e^{ix(p+q+r)}dpdqdr

=M(f, g, g_{x}) .

A simple calculation shows that \overline{M} is a Coifman-Meyer kernel. \square

In the following lemma, we collect the inequalities which we will use to
estimate nonlinear terms when we derive a priori estimates.

Lemma 3.4 The estimates (a) and (b) hold for m\geq 1 , and the others
hold for m\geq 0 .

(a) ||\Omega(f,g,g)||_{H^{m}}

\leq C(||f||_{H^{m-1}}||g||_{W^{[(m+1)/2],\infty}}^{2}+||f||_{W^{[(m-1)/2],\infty}}||g||_{H^{m}}||g||_{W[(m+1)/2],\infty)} ,
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(b) ||\Omega(f,g,g)||_{W^{m,1}}

\leq C(||f||_{H^{m-1}}||g||_{H^{m}}||g||_{W^{[(m-1)/3]+1,\infty}}+||f||_{W^{[(m-1)/3],\infty}}||g||_{H^{m)}}^{2} ,

(c) ||\Omega(f,f,f)||_{H^{m}}\leq C||f||_{H^{m}}||f||_{W^{[m/2],\infty}}^{2} ,

(d) ||fg||_{H^{m}}\leq C(||f||_{H^{m}}||g||_{W^{[m/2],\infty}}+||f||_{W^{[m/2],\infty}}||g||_{H^{m)}} ,

(e) ||fg||_{W^{m,1}}\leq C||f||_{H^{m}}||g||_{H^{m}} ,

(f) ||fg||_{W^{m,\infty}}\leq C||f||_{W^{m,\infty}}||g||_{W^{m,\infty}} .

Proof. We first prove (a). Since \hat{\Omega} is a Coifman-Meyer kernel, we have by
Lemma 3.2

||\Omega(f, g, g)||_{L^{2}}\leq C||f||_{L^{2}}||g||_{L^{\infty}}^{2} . (3.9)

Let 1\leq k\leq m . From Lemma 3.3 (b) and the chain rule, it follows that

\partial_{x}^{k}\Omega(f, g, g)=\partial_{x}^{k-1}M(f, g, g_{x})

= \sum_{k_{1}+k_{2}+k_{3}=k-1}\frac{(k-1)!}{k_{1}!k_{2}!k_{3}!}M(\partial_{x^{1}}^{k}f, \partial_{x^{2}}^{k}g, \partial_{x^{3}}^{k+1}g) .

We estimate this in the L^{2} norm to obtain

||\partial_{x}^{k}\Omega(f, g, g)||_{L^{2}}

\leq C\sum_{k_{1}+k_{2}+k_{3}=k-1}||M(\partial_{x^{1}}^{k}f, \partial_{x^{2}}^{k}g, \partial_{x^{3}}^{k+1}g)||_{L^{2}}

\leq C(||f||_{H^{k-1}}||g||_{W^{[(k+1)/2],\infty}}^{2}+||f||_{W^{[(k-1)/2],\infty}}||g||_{H^{k}}||g||_{W^{[(k+1)/2],\infty)}} ,

(3.10)

where we have applied Lemma 3.2 to M and have used the fact that at
most one of k_{1} , k_{2} and k_{3} will be greater than (k-1)/2 . Summing (3.9)
and (3.10) with 1\leq k\leq m , we obtain (a).

We can prove (b), (c) in the same way, so we omit their proof.
(d), (e) and (f) follow from the H\"older inequality and the same argument

as in the proof of (a). \square

3.2. Proof of Theorem 2
In this subsection, we describe the proof of Theorem 2. The proof con-

sists of the local existence theorem and a priori energy and decay estimates
of solutions.
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For m\geq 7 and T>0 , we define

||u||_{m,T}= \sup_{t\in[0,T]}(||u(t)||_{H^{m}}+(1+t)^{\frac{1}{2}}||u(t)||_{W^{[\frac{m+1}{2}],\infty}}) .

Step 1. Local Existence
We start with stating the following lemma concerning the local existence

of a solution to (1.1)-(1.2) with F=c\overline{u}\overline{u}_{x}^{2} .

Lemma 3.5 Let m\geq 4 and let u_{0}\in Hm . Then there exists T>0 such
that the Cauchy problem (1.1)-(1.2) with F=c\overline{u}\overline{u}_{x}^{2} has a unique solution
in C([0, T], H^{m})\cap C^{1}([0, T], H^{m-2}) .

For the proof, see, e.g., [1].

Step 2. A priori energy estimate
In this step, we prove the following lemma concerning the a priori energy

estimate of solutions.

Lemma 3.6 Let m\geq 4 and let n_{0}\in H^{m} . Assume that the initial value
problem (1.1)-(1.2) with F=c\overline{u}\overline{u}_{x}^{2} has a solution u\in C([0, T];H^{m})\cap

C^{1}([0, T];H^{m-2}) . Then the following inequality holds for any t\in[0, T] :

||u(t)||_{H^{m}}\leq C(||u_{0}||_{H^{m}}+||u_{0}||_{H^{m}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5}) ,

where C is independent of T and u_{0} .

Proof. We first evaluate the solution v of (3.5) before estimating u .
By Lemma 3.3 (a), (3.5) can be rewritten as follows:

i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v=|c|^{2}\Omega(uu_{x}^{2},\overline{u},\overline{u}) . (3.11)

This yields the following inequality for any nonnegative integer k ,

\frac{d}{dt}||\partial_{x}^{k}v(t)||_{L^{2}}\leq|c|^{2}||\partial_{x}^{k}\Omega(uu_{x}^{2},\overline{u},\overline{u})(t)||_{L^{2}} ,

so that we have

\frac{d}{dt}||v(t)||_{H^{m}}\leq C||\Omega(uu_{x}^{2},\overline{u},\overline{u})(t)||_{H^{n\iota}} . (3.12)

This, combined with Lemma 3.4 (a) and (d), leads to
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\frac{d}{dt}||v(t)||_{H^{m}}\leq C(||uu_{x}^{2}||_{H^{m-1}}||u||_{W^{[(m+1)/2],\infty}}^{2}

+||uu_{x}^{2}||_{W^{[(m-1)/2],\infty}}||u||_{H^{m}}||u||_{W^{[(m+1)/2],\infty}})

\leq C||u(t)||_{H^{m}}||u(t)||_{W^{[(m+1)/2],\infty}}^{4} .

Thus we have for any t\in[0, T]

||v(t)||_{H^{m}} \leq||v(0)||_{H^{m}}+C\int_{0}^{t}||u(\tau)||_{H^{m}}||u(\tau)||_{W^{[(m+1)/2],\infty}}^{4}d\tau

\leq||v(0)||_{H^{m}}+C||u||_{m,T}^{5}\int_{0}^{t}\frac{d\tau}{(1+\tau)^{2}}

\leq||v(0)||_{H^{m}}+C||u||_{m,T}^{5} . (3.13)

We next estimate u . From (3.1) and Lemma 3.4 (a), we have for any t\in

[0, T]

||u(t)||_{H^{m}} \leq||v(t)||_{H^{m}}+\frac{c}{3}||\Omega(\overline{u},\overline{u},\overline{u})(t)||_{H^{m}}

\leq||v(t)||_{H^{m}}+C||u(t)||_{H^{m}}||u(t)||_{W^{[(m+1)/2],\infty}}^{2}

\leq||v(t)||_{H^{m}}+C||u||_{m,T}^{3} , (3.14)

and

||v(0)||_{H^{m}} \leq||u(0)||_{H^{m}}+\frac{c}{3}||\Omega(\overline{u},\overline{u},\overline{u})(0)||_{H^{m}}

\leq||u_{0}||_{H^{m}}+C||u_{0}||_{H^{m}}^{3} , (3.15)

where we have used the Sobolev embedding H^{m}\subset W^{[(m+1)/2],\infty} since m\geq

[(m+1)/2]+1 by m\geq 4 . Combining (3.13), (3.14) and (3.15), we obtain
the desired inequality. \square

Step 3. A priori decay estimate
In this step, we prove the following lemma concerning the a priori decay

estimate of solutions.

Lemma 3.7 Let m\geq 4 and let u_{0}\in H^{m}\cap W^{[(m+5)/2],1} . Assume that the
Cauchy problem (1.1)-(1.2) with F=c\overline{u}\overline{u}_{x}^{2} has a solution u\in C([0, T];H^{m}) .
Then the following inequality holds for any t\in[0, T] :

(1+t)^{1/2}||u(t)||_{W^{[(m+1)/2],\infty}}

\leq C(||u_{0}||_{W^{[(m+1)/2]+2,1}}+||u_{0}||_{H^{m}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5}) ,
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where C is independent of T and u_{0} .

Proof. We first estimate the decay of v . From (3.11) and Duhamel’s prin-
ciple, we have

v(t)=U(t)v(0)-i|c|^{2} \int_{0}^{t}U(t-\tau)\Omega(uu_{x}^{2},\overline{u},\overline{u})(\tau)d\tau .

By the standard L^{\infty}-decay estimate of the fundamental solution,

||v(t)||_{W^{[(m+1)/2],\infty}} \leq\frac{C||v(0)||_{W^{[(m+1)/2]+2,1}}}{(1+t)^{1/2}}

+C \int_{0}^{t}\frac{||\Omega(uu_{x}^{2},\overline{u},\overline{u})(\tau)||_{W^{[(m+1)/2]+2,1}}}{(1+t-\tau)^{1/2}}d\tau .

(3.16)

By Lemma 3.4 (b), (d) and (f),

||\Omega(uu_{x}^{2},\overline{u},\overline{u})||_{W^{[(m+1)/2]+2,1}}

\leq C||u||_{H[(m+1)/2]+2}^{2}||u||_{W[([(m+1)/2]+1)/2]+1,\infty}

\leq C||u||_{H^{m}}^{2}||u||_{W^{[(m+1)/2],\infty}}^{3} , (3.17)

where at the last inequality we have used the fact that [(m+1)/2]+2\leq
m and [([(m+1)/2]+1)/2]+1\leq[(m+1)/2] for m\backslash \geq 4 . From (3.1),
Lemma 3.4 (b) and the Sobolev embedding, it follows that

||v(0)||_{W^{[(m+1)/2]+2,1}}\leq||u_{0}||_{W^{[(m+1)/2]+2,1}}+C||u_{0}||_{H^{m}}^{3} . (3.18)

We have by (3.1), the Sobolev embedding and Lemma 3.4 (c)

||u(t)||_{W^{[(m+1)/2],\infty}}

\leq||v(t)||_{W^{[(m+1)/2],\infty}}+C||K(\overline{u},\overline{u},\overline{u})(t)||_{H^{[(m+1)/2]+1}}

\leq||v(t)||_{W^{[(m+1)/2],\infty}}+C||u(t)||_{H^{[(m+1)/2]+1}}||u(t)||_{W[([(m+1)/2]+1)/2],\infty}^{2}

\leq||v(t)||_{W^{[(m+1)/2],\infty}}+C||u(t)||_{H^{m}}||u(t)||_{W^{[(m+1)/2],\infty}}^{2} , (3.19)

where we have used [(m+1)/2]+1\leq m and [([(m+1)/2]+1)/2]+1\leq
[(m+1)/2] for m\geq 4 . We combine (3.16)-(3.19) to obtain

||u(t)||_{W^{[(m+1)/2],\infty}}

\leq\frac{1}{(1+t)^{1/2}}(||u_{0}||_{W^{[(m+1)/2]+2,1}}+C||u_{0}||_{H^{m}}^{3})
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+C||u(t)||_{H^{m}}||u(t)||_{W^{[(rn+1)/2],\infty}}^{2}

+C \int_{0}^{t}\frac{1}{(1+t-\tau)^{1/2}}||u(\tau)||_{H^{m}}^{2}||u(\tau)||_{W^{[(m+1)/2],\infty}}^{3}d\tau

\leq\frac{C}{(1+t)^{1/2}}(||u_{0}||_{W^{[(m+1)/2]+2,1}}+||u_{0}||_{H^{m}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5})

for any t\in[0, T] , where we have used

\int_{0}^{t}\frac{1}{(1+t-\tau)^{1/2}(1+\tau)^{3/2}}d\tau=\frac{2t}{(2+t)(1+t)^{1/2}}\leq\frac{2}{(1+t)^{1/2}}

for t\geq 0 . That is the desired inequality. \square

Step 4. Conclusion of proof
We are now in a position to prove Theorem 2.

Lemmas 3.6 and 3.7 i_{1}np1y that if there exists a solution
u\in C([0, T], H^{m})\cap C^{1}([0, T], H^{m-2}) , then

||u||_{m},\tau\leq C(||u_{0}||_{H^{m}}+||u_{0}||_{W^{[(m+1)/2]+2,1}}

+||u_{0}||_{H^{m}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5}) . (3.20)

We put \epsilon=\max\{||u_{0}||_{H^{m}}, ||u_{0}||_{W[(m+1)/2]+2,1}\} ,

T^{*}= \sup\{T>0| u\in C([0,T]\cdot,H^{m})\cap C^{1}([0,T]\cdot,H^{m-2})F=c_{x}^{\frac{}{u}\frac{}{u}2}hasaso1utionTheCauchyprob1em(l.1)-(1.2)with\}

and

T_{*}= \sup\{T\in[0, T^{*})|||u||_{m},\tau\leq 4C\epsilon\} ,

where C is the constant appearing in (3.20). Assume that T^{*}<\infty . By
(3.20), we have for T\in[0, T_{*})

||u||_{m,T}\leq C(3\epsilon+(4C\epsilon)^{3}+(4C\epsilon)^{5})=C\epsilon(3+64C^{3}\epsilon^{2}+1024C^{5}\epsilon^{4})

if \epsilon\leq 1 . If, in addition, \epsilon\leq\sqrt{\frac{1}{128C^{3}+2048C^{5}}} , then ||u||_{m,T} \leq\frac{7}{2}C\epsilon for any T\in

[0, T_{*}) , which implies ||u||_{m,T_{*}} \leq\frac{7}{2}C\epsilon<4C\epsilon by continuity in t of u . This
shows by the definition of T_{*} that T_{*}=T^{*} and ||u(T^{*})||_{H^{m}}<4C\epsilon . The last
inequality combined with Lemma 3.5 (local existence) asserts that for some
T’>T^{*} the solution u exists on [0, T’] and belongs to C([0, T’];H^{m})\cap
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C^{1}([0, T’], H^{m-2}) , which contradicts the definition of T^{*}- We_{J} have thus
proved that T^{*}=\infty if

\epsilon\leq\epsilon_{0}:=\min\{1 , \sqrt\frac{1}{128C^{3}+2048C^{5}}\} .

which completes the proof of the global existence of a solution. The argu-
ment above also proves (1.8).

We finally prove (1.9), that is, the existence of the free profile.
Now that we have (3.20), the following inequalities are essentially proved

in the argument above:

|| \Omega(uu_{x}^{2},\overline{u},\overline{u})(\tau)||_{H^{m}}\leq\frac{C}{(1+\tau)^{2}} , (3.21)

|| \Omega(\overline{u},\overline{u},\overline{u})(\tau)||_{H^{m}}\leq\frac{C}{1+\tau} . (3.22)

It follows from (3.11) that

U(-t’)v(t’)-U(-t)v(t)=-i|c|^{2} \int_{t}^{t’}U(-\tau)\Omega(uu_{x}^{2},\overline{u},\overline{u})(\tau)d\tau ,

which, combined with the unitarity of U(t) in H^{m} and (3.21), implies

||U(-t’)v(t’)-U(-t)v(t)||_{H^{m}}

\leq|c|^{2}\int_{t}^{t’}||\Omega(uu_{x}^{2},\overline{u},\overline{u})(\tau)||_{H^{m}}d\tau

\leq C(\frac{1}{1+t}-\frac{1}{1+t},) -arrow 0 as t , t’ -arrow\infty . (3.21)

By the completeness of H^{m} , there exists \lim_{tarrow\infty}U(-t)v(t)\in H^{m} . Putting
\phi_{+}=\lim_{tarrow\infty}U(-t)v(t) and letting t’ - \infty in (3.23), we obtain

||v(t)-U(t) \phi_{+}||_{H^{m}}\leq\frac{C}{1+t} , (3.24)

where we have used the unitarity of U(t) in H^{m} again. From (3.1) and
(3.22), it follows that

||u(t)-v(t)||_{H^{\tau n}}=|| \Omega(\overline{u},\overline{u},\overline{u})(t)||_{H^{nl}}\leq\frac{C}{1+t} . (3.25)
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Thus we have by (3.24) and (3.25)

||u(t)-U(t)\phi_{+}||_{H^{m}}

\leq||u(t)-v(t)||_{H^{m}}+||v(t)-U(t)\phi_{+}||_{H^{m}}\leq\frac{C}{1+t} ,

which implies (1.9). We can prove the existence of a solution on (-\infty, 0]

and of \phi_{-}\in H^{m} similarly as above. \square
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