On strongly regular graphs with parameters ($k, 0,2$) and their antipodal double covers

Nobuo Nakagawa

(Received April 10, 2000)

Abstract

Let Γ be a strongly regular graph with parameters $(k, \lambda, \mu)=\left(q^{2}+1,0,2\right)$ admitting $G\left(\cong P G L\left(2, q^{2}\right)\right)$ as one point stabilizer for odd prime power q. We show that if G stabilizes a vertex x of Γ and acts on $\Gamma_{2}(x)$ transitively, then $q=3$ holds and Γ is the Gewirtz graph. Moreover it is shown that an antipodal double cover whose diameter 4 of a strongly regular graph with parameters $(k, 0,2)$ is reconstructed from a symmetric association scheme of class 6 with parameters $p_{j, k}^{i}(0 \leq i, j, k \leq 6)$ in the Section 3.

Key words: antipodal cover of strongly regular graph, association scheme, finite transitive group.

1. Introduction

We are interested in the classification problems of distance regular graphs with $b_{2}=1$. Let Γ be a distance regular graph with $b_{2}=1$ and valency $k>2$. If the diameter $d(\Gamma)$ of Γ is larger more than 4 , then Γ is isomorphic to the dodecahedron ([3, p.182]). In [1], M. Araya, A. Hiraki and A. Jurišić showed that if $d(\Gamma)=4$, then Γ is an antipodal double cover of a strongly regular graph with parameters $(k, \lambda, \mu)=\left(n^{2}+1,0,2\right)$ for an integer n not divisible by 4 and if $d(\Gamma)=3$, then Γ is an antipodal cover of a complete graph. Obviously an antipodal cover of a complete graph is a distance regular graph with $b_{2}=1$ if it's diameter is 3 .

The classification problems of antipodal covers of complete graphs are very difficult. Because the existence of an antipodal distance regular ($n-$ 2)-fold cover of the complete graph K_{n} claims the existence of a projective plane of order $(n-1)$ for an odd positive integer n, moreover an antipodal distance regular $(n-1)$-fold cover of K_{n} is equivalent to the existence of a Moore graph with the diameter 2 and the valency n. ([6], [7])

The strongly regular graphs with parameters $(k, \lambda, \mu)=(5,0,2)$ and $(10,0,2)$ are known, the former one has an antipodal double cover with $d=4$, namely the Wells graph, the latter one (the Gewirtz graph) does not
have an antipodal double cover with $d=4$ ([3, p.372]). The existence or nonexistence of strongly regular graphs with $\left(n^{2}+1,0,2\right)$ for $n \geq 5$ are not known up to date. We have studied these graphs.

2. Strongly regular graphs with $\left(q^{2}+1,0,2\right)$ admitting $P G L\left(2, q^{2}\right)$ for $q=p^{e}$

In this section we prove the following theorem.
Theorem 2.1 Let Γ be a strongly regular graph with parameters $\left(q^{2}+\right.$ $1,0,2)$ and G be a group isomorophic to $P G L\left(2, q^{2}\right)$ for an odd prime power $q=p^{e}$. Suppose that G acts on Γ as G stabilizes a vertex ∞ of Γ and G is transitive on $\Gamma_{2}(\infty)$. Then $q=3$ and Γ is the Gewirtz graph.

We denote the set of vertices of a graph Γ by $V(\Gamma)$, the set $\{y \in V(\Gamma) \mid$ $d(x, y)=1\}$ by $\Gamma(x)$ and the set $\{y \in V(\Gamma) \mid d(x, y)=i\}$ by $\Gamma_{i}(x)$ for $x \in V(\Gamma)$ and $i \geq 2$.

Lemma 2.1 Let Γ be a strongly regular graph with parameters $\left(q^{2}+1,0,2\right)$ and ∞ be a vertex of Γ. Then the eigenvalues and their multiplicities of the induced subgraph $\Gamma_{2}(\infty)$ of Γ are the following.

θ	$q^{2}-1$	-2	$q-1$	$-q-1$
$m(\theta)$	1	q^{2}	$\frac{\left(q^{2}+1\right)\left(q^{2}+q-2\right)}{4}$	$\frac{\left(q^{2}+1\right)\left(q^{2}-q-2\right)}{4}$

Proof. Let A and A_{1} be adjacency matrices of Γ and $\Gamma_{2}(\infty)$ respectively. We note that the degrees of A and A_{1} are $2+q^{2}+\frac{q^{2}\left(q^{2}+1\right)}{2}$ and $\frac{q^{2}\left(q^{2}+1\right)}{2}$ respectively. Then A is written as

$$
A=\left(\begin{array}{ccc}
A_{1} & X & 0 \\
X^{t} & 0 & \mathbf{1} \\
0^{t} & \mathbf{1}^{t} & 0
\end{array}\right)
$$

where X is a $\frac{q^{2}\left(q^{2}+1\right)}{2} \times\left(q^{2}+1\right)$ submatix indicating the adjacency relation between vertices of $\Gamma_{2}(\infty)$ and $\Gamma_{1}(\infty)$, and 1 is the $\left(q^{2}+1\right) \times 1$ all 1 matrix. Let I_{n} be the unit matrix of degree n and $J_{n, m}$ be the $n \times m$ all 1 matrix. Since $A^{2}=\left(q^{2}+1\right) I_{n}+\lambda A+\mu\left(J_{n}-A-I_{n}\right)$ where $n=2+q^{2}+\frac{q^{2}\left(q^{2}+1\right)}{2}$,
$\lambda=0$ and $\mu=2$, we have $A^{2}=-2 A+\left(q^{2}-1\right) I_{n}+2 J_{n}$. Therefore

$$
\begin{equation*}
A_{1}^{2}+X X^{t}=-2 A_{1}+\left(q^{2}-1\right) I_{m}+2 J_{m}, \tag{2.1}
\end{equation*}
$$

where $m=\frac{q^{2}\left(q^{2}+1\right)}{2}$. Moreover since $A_{1} X=2 J_{m, \ell}-2 X$ where $\ell=q^{2}+1$, we have

$$
\begin{equation*}
A_{1} X X^{t} A_{1}=4 X X^{t}+4\left(q^{2}-3\right) J_{m} \tag{2.2}
\end{equation*}
$$

Hence from (2.1) and (2.2),

$$
\begin{align*}
& A_{1}^{4}+2 A_{1}^{3}-\left(q^{2}+3\right) A_{1}^{2}-8 A_{1}+4\left(q^{2}-1\right) I_{m} \\
& \quad=2\left(q^{4}-4 q^{2}+3\right) J_{m} . \tag{2.3}
\end{align*}
$$

We can calculate easily that $\{2,-2, q-1,-q-1\}$ are the roots of the equation $x^{4}+2 x^{3}-\left(q^{2}+3\right) x^{2}-8 x+4\left(q^{2}-1\right)=0$. Therefore the eigenvalues of A_{1} are these values and $q^{2}-1$ whose multiplicity 1 .

Let the multiplicities of the eigenvalues $2,-2, q-1$ and $-q-1$ be a, b, f and g respectively. Since the degree of A_{1} is $\frac{q^{2}\left(q^{2}+1\right)}{2}$, $\operatorname{trace}\left(A_{1}\right)=0$, $\operatorname{trace}\left(A_{1}^{2}\right)=\frac{q^{2}\left(q^{2}+1\right)\left(q^{2}-1\right)}{2}, \operatorname{trace}\left(A_{1}^{3}\right)=0$, we have $a=0, b=q^{2}, f=$ $\frac{\left(q^{2}+1\right)\left(q^{2}+q-2\right)}{4}, g=\frac{\left(q^{2}+1\right)\left(q^{2}-q-2\right)}{4}$ by solving the following linear equations.

$$
\left\{\begin{array}{l}
1+a+b+f+g=\frac{q^{2}\left(q^{2}+1\right)}{2} \\
q^{2}-1+2 a-2 b+(q-1) f+(-q-1) g=0 \\
\left(q^{2}-1\right)^{2}+4 a+4 b+\left(q^{2}-2 q+1\right) f+\left(q^{2}+2 q+1\right) g=\frac{q^{2}\left(q^{2}+1\right)\left(q^{2}-1\right)}{2} \\
\left(q^{2}-1\right)^{3}+8 a-8 b+\left(q^{3}-3 q^{2}+3 q-1\right) f+\left(-q^{3}-3 q^{2}-3 q-1\right) g=0
\end{array}\right.
$$

Let Γ be a strongly regular graph with parameters $\left(q^{2}+1,0,2\right)$ and G be a group isomorophic to $\operatorname{PGL}\left(2, q^{2}\right)$ for an odd prime power $q=p^{e}$. Suppose that G acts on Γ as G stabilizes a vertex ∞ of Γ and transitively on $\Gamma_{2}(\infty)$. We put

$$
z \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\bmod Z\left(G L\left(2, q^{2}\right)\right)\right) \quad \text { and } \quad H=C_{G}(z) .
$$

Then H is a dihedral group of order $2\left(q^{2}-1\right)$ and $|G: H|=\frac{q^{2}\left(q^{2}+1\right)}{2}$. Since there is a unique conjugacy class of involutions in G and any two subgroups
of index $\frac{q^{2}\left(q^{2}+1\right)}{2}$ are conjugate in G. Hence it holds that H is the stabilizer G_{v} of a vertex $v \in \Gamma_{2}(\infty)$. Throughout the section we fix this vertex v.

Let ω be a primitive element of the multiplicative group $G F\left(q^{2}\right)^{*}$. Put $D=\left\{\omega^{i} \left\lvert\, 1 \leq i \leq \frac{q^{2}-1}{2}\right.\right\}$. We may assume that $2^{-1} \in D$. We have $G F\left(q^{2}\right)=D \cup-D \cup\{0\}$. Set

$$
\begin{aligned}
& I \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\bmod Z\left(G L\left(2, q^{2}\right)\right)\right) \\
& x_{\alpha} \equiv\left(\begin{array}{ll}
1 & \alpha-2^{-1} \\
1 & \alpha+2^{-1}
\end{array}\right) \quad\left(\bmod Z\left(G L\left(2, q^{2}\right)\right)\right)
\end{aligned}
$$

where $\alpha \in D \cup\{0\}$. We can verify the following lemma.
Lemma 2.2 The set $\{I\} \cup\left\{x_{\alpha} \mid \alpha \in D \cup\{0\}\right\}$ is a complete representative of double cosets $H \backslash G / H$. Moreover it follows that $H x_{\alpha} H=$ $H x_{-\alpha} H, H x_{\alpha} H=H x_{\alpha}^{-1} H$ where $\alpha \in D \backslash\left\{2^{-1}\right\}$, and $\left|H x_{0} H: H\right|=$ $\frac{\left(q^{2}-1\right)}{2},\left|H x_{2^{-1}} H: H\right|=2\left(q^{2}-1\right)$ and $\left|H x_{\alpha} H: H\right|=\left(q^{2}-1\right)$ for any $\alpha \in D \backslash\left\{2^{-1}\right\}$.
G acts naturally on $G / H=\{H x \mid x \in G\}$. It is easily shown that $\left(G, V\left(\Gamma_{2}(\infty)\right)\right) \cong(G, G / H)$ as the permutation groups.

An orbital graph Γ_{α} of the permutation group $(H, G / H)$ with respect to an orbit $H x_{\alpha} H$ is defined as the following.

The set of vertices is G / H. A vertex $H x$ is adjacent to a vertex $H y$ if and only if $x y^{-1} \in H x_{\alpha} H$. Now we have the following lemma.

Lemma 2.3 The graph $\Gamma_{2}(\infty)$ is isomorphic to an orbital graph $\Gamma_{\alpha_{0}}$ for a suitable element $\alpha_{0} \in D \backslash\left\{2^{-1}\right\}$.

Proof. Take a vertex $w \in \Gamma_{2}(\infty)$ which is adjacent to v. There is an element $x \in G$ such that $w=v^{x}$ by our assumption. Pick up α_{0} such that $x \in H x_{\alpha_{0}} H$. Then a mapping f defined by $f\left(v^{y}\right)=H y(y \in G)$ gives an isomorphism from $\Gamma_{2}(\infty)$ onto $\Gamma_{\alpha_{0}}$.

Here we denote the adjacency matrix of the graph Γ_{α} by A_{α}. It is well known that the permutation character 1_{H}^{G} of $(G, G / H)$ has $\frac{q^{2}-5}{4}$ distinct irreducible characters of degree $q^{2}+1, \frac{q^{2}-1}{4}$ distinct irreducible characters of degree $q^{2}-1,2$ distinct irreducible characters of degree q^{2} and a trivial character as its irreducible constituent. G acts on $G / H \times G / H$ naturally. It is also known that $R_{\Delta}=\{(H x, H x) \mid x \in G\}$ and $R_{\alpha}=\left\{(H x, H y) \mid x y^{-1} \in\right.$
$\left.H x_{\alpha} H\right\}(\alpha \in D \cup\{0\})$ are orbits of the permutation group $(G, G / H \times G / H)$. Moreover $\mathcal{X}(G, G / H)=\left(G / H,\left\{R_{\alpha} \mid \alpha \in D \cup\{0, \Delta\}\right\}\right)$ is a symmetric association scheme as 1_{H}^{G} is multiplicity free. Then A_{α} is the adjacency matrix of the association scheme $\mathcal{X}(G, G / H)$ corresponding to the relation R_{α}.

The eigenvalues and their multiplicities of A_{α} are found from the first eigenmatrix of $\mathcal{X}(G, G / H)$. To describe this matrix we define a certain partition of elements of $G F\left(q^{2}\right)$ and a number of sums of the quadratic character values of the multiplicative group $G F\left(q^{2}\right)^{*}$.

We set as the following.

$$
\begin{aligned}
& \Lambda=\left\{\lambda \in G F\left(q^{2}\right) \mid \lambda \neq 0, \lambda \text { is a nonsquare, } \lambda-4 \text { is a nonsquare }\right\} \\
& \Theta=\left\{\theta \in G F\left(q^{2}\right) \mid \theta \neq 0,4, \theta \text { is a square, } \theta-4 \text { is a square }\right\} \\
& \Pi=\left\{\pi \in G F\left(q^{2}\right) \mid \pi \neq 0,4, \pi \text { is a square, } \pi-4 \text { is a nonsquare }\right\} \\
& \Xi=\left\{\xi \in G F\left(q^{2}\right) \mid \xi \neq 0, \xi \text { is a nonsquare, } \xi-4 \text { is a square }\right\}
\end{aligned}
$$

Then we obtain $|\Theta|=\frac{q^{2}-5}{4},|\Lambda|=|\Pi|=|\Xi|=\frac{q^{2}-1}{4}$ and $G F\left(q^{2}\right)=\{0,4\} \cup$ $\Theta \cup \Lambda \cup \Pi \cup \Xi$.

We set $\ell_{1}=\frac{q^{2}-1}{4}, \ell_{2}=\frac{q^{2}-5}{4}, \Lambda=\left\{\lambda_{i} \mid 1 \leq i \leq \ell_{1}\right\}, \Theta=\left\{\theta_{i} \mid 1 \leq i \leq\right.$ $\left.\ell_{2}\right\}, \Pi=\left\{\pi_{i} \mid 1 \leq i \leq \ell_{1}\right\}$, and $\Xi=\left\{\xi_{i} \mid 1 \leq i \leq \ell_{1}\right\}$.

Let δ be a primitive $\left(q^{2}+1\right)$-th root of $1, \varepsilon$ be a primitive $\left(q^{2}-1\right)$-th root of 1 and χ be the character of order 2 of $G F\left(q^{2}\right)^{*}$ with $\chi(0)=0$.

For $\alpha \in G F\left(q^{2}\right)$ and a positive integer m, we define $\mu_{0}(\alpha), \mu_{1}(m, \alpha)$, $\mu_{2}(m, \alpha)$ as follows.

$$
\begin{aligned}
& \mu_{0}(\alpha)= \chi(2 \alpha+2)+\chi(2 \alpha-2) \\
&+\sum_{i=1}^{\ell_{1}}\left(\chi\left(\lambda_{i}-2 \alpha-2\right)+\chi\left(\lambda_{i}+2 \alpha-2\right)\right) \\
&+\sum_{i=1}^{\ell_{2}}\left(\chi\left(\theta_{i}-2 \alpha-2\right)+\chi\left(\theta_{i}+2 \alpha-2\right)\right) \\
& \mu_{1}(m, \alpha)=2+\chi(2 \alpha-2)+\chi(2 \alpha+2) \\
&+\frac{1}{2} \sum_{i=1}^{\ell_{1}}\left(2-\chi\left(\lambda_{i}-2 \alpha-2\right)-\chi\left(\lambda_{i}+2 \alpha-2\right)\right)\left(\varepsilon^{(2 i-1) m}+\varepsilon^{-(2 i-1) m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{i=1}^{\ell_{2}}\left(2+\chi\left(\theta_{i}-2 \alpha-2\right)+\chi\left(\theta_{i}+2 \alpha-2\right)\right)\left(\varepsilon^{(2 i) m}+\varepsilon^{-(2 i) m}\right) \\
\mu_{2}(m, \alpha)= & -\chi(2 \alpha-2)-\chi(2 \alpha+2) \\
& -\frac{1}{2} \sum_{i=1}^{\ell_{1}}\left(2-\chi\left(\xi_{i}-2 \alpha-2\right)-\chi\left(\xi_{i}+2 \alpha-2\right)\right)\left(\delta^{(2 i-1) m}+\delta^{-(2 i-1) m}\right) \\
& -\frac{1}{2} \sum_{i=1}^{\ell_{1}}\left(2+\chi\left(\pi_{i}-2 \alpha-2\right)+\chi\left(\pi_{i}+2 \alpha-2\right)\right)\left(\delta^{(2 i) m}+\delta^{-(2 i) m}\right)
\end{aligned}
$$

Now we have the following lemma.
Lemma 2.4 The first eigenmatrix of the association scheme $\mathcal{X}(G, G / H)$ is the following. (Here $\alpha \in D \backslash\left\{2^{-1}\right\}$)

	R_{Δ}	$R_{2^{-1}}$	R_{0}	R_{α}
ρ_{1}	1	$2\left(q^{2}-1\right)$	$\frac{q^{2}-1}{2}$	$q^{2}-1$
$\rho_{q^{2}}^{(1)}$	1	$q^{2}-3$	-1	-2
$\rho_{q^{2}}^{(2)}$	1	-2	$\frac{\mu_{0}(0)}{2}$	$\mu_{0}(\alpha)$
$\rho_{q^{2}+1}^{(m)}$				
$1 \leq m \leq \frac{q^{2}-5}{2}(m:$ even $)$	1	-2	$\frac{\mu_{1}(m, 0)}{2}$	$\mu_{1}(m, \alpha)$
$\rho_{q^{2}-1}^{(m)}$				
$1 \leq m \leq \frac{q^{2}-3}{2}(m:$ odd $)$	1	-2	$\frac{\mu_{2}(m, 0)}{2}$	$\mu_{2}(m, \alpha)$

Proof. W.M. Kwok gave the first eigenmatrix of the association scheme corresponding to the permutation group $\left(O(3, q), O(3, q) / O^{+}(2, q)\right)$ in [5]. It follows that $O(3, q) \cong\{ \pm 1\} \times S O(3, q)$ and $S O(3, q) \cong P G L(2, q),(G, G / H)$ is isomorphic to $\left(O(3, q) /\{ \pm 1\}, O(3, q) /\left(\{ \pm 1\} \times O^{+}(2, q)\right)\right)$ as permutation groups. Therefore we can compute the first eigenmatrix of the association scheme $\mathcal{X}(G, G / H)$ as the table of the lemma by using the table in [5].
(cf. [5], p.48)
From Lemma 2.3, $\Gamma_{2}(\infty) \cong \Gamma_{\alpha_{0}}$. Concerning the element α_{0}, we have the following lemma.
Lemma 2.5 It follows that $\mu_{0}\left(\alpha_{0}\right)=q-1$ and $\mu_{2}\left(m, \alpha_{0}\right)=q-1$ for any odd number m such that $1 \leq m \leq \frac{q^{2}-3}{2}$.
Proof. We compare eigenvalues and their multiplicities in the table in Lemma 2.1 with those in the table of Lemma 2.4 for $\alpha=\alpha_{0}$. They coincide as a whole. Hence we have

$$
\frac{\left(q^{2}+1\right)\left(q^{2}+q-2\right)}{4}=s\left(q^{2}+1\right)+t\left(q^{2}-1\right)
$$

where s is the number of m such that $\mu_{1}\left(m, \alpha_{0}\right)=q-1$ and t is the number of m such that $\mu_{2}\left(m, \alpha_{0}\right)=q-1$ in the case $\mu_{0}\left(\alpha_{0}\right)=-q-1$ or

$$
\frac{\left(q^{2}+1\right)\left(q^{2}-q-2\right)}{4}=s\left(q^{2}+1\right)+t\left(q^{2}-1\right)
$$

where s is the number of m such that $\mu_{1}\left(m, \alpha_{0}\right)=-q-1$ and t is the number of m such that $\mu_{2}\left(m, \alpha_{0}\right)=-q-1$ in the case $\mu_{0}\left(\alpha_{0}\right)=q-1$.

Suppose that $\frac{\left(q^{2}+1\right)\left(q^{2}+q-2\right)}{4}=s\left(q^{2}+1\right)+t\left(q^{2}-1\right)$. Then for each odd prime divisor r of $q^{2}+1, r$ divides t because that the greatest common divisor of r and $q^{2}-1$ is 1 . Therefore $\frac{q^{2}+1}{2}$ divides t. However it is impossible if $t \neq 0$ as $t \leq \frac{q^{2}-1}{4}$. Hence $t=0$. Then $s=\frac{q^{2}+q-2}{4}$. It contradicts to the fact that $s \leq \frac{q^{2}-5}{4}$.

Suppose that $\frac{\left(q^{2}+1\right)\left(q^{2}-q-2\right)}{4}=s\left(q^{2}+1\right)+t\left(q^{2}-1\right)$. Then similarly we have $t=0$. Then $\mu_{0}\left(\alpha_{0}\right)=q-1$ and $\mu_{2}\left(m, \alpha_{0}\right)=q-1$ for any odd number m. The lemma is proved.

Lemma 2.6 Let ℓ and k be positive integers. Then the following equations hold.

$$
\begin{align*}
& \sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }}\left(\delta^{(2 \ell-1) m}+\delta^{-(2 \ell-1) m}\right)=1 \tag{2.4}\\
& \sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }}\left(\delta^{(2 k) m}+\delta^{-(2 k) m}\right)=-1 \tag{2.5}
\end{align*}
$$

Proof. Concerning the first equation, let d be the greatest common divisor
of $2 \ell-1$ and $q^{2}+1$. Put $s=\frac{q^{2}+1}{d}$ and $\eta=\delta^{(2 \ell-1)}$. We note that d is odd and s is even. Obviously η is a primitive s-th root of 1 . Hence $\eta^{\frac{s}{2}}=-1$. Then we have

$$
\begin{aligned}
& \sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }}\left(\delta^{(2 \ell-1) m}+\delta^{-(2 \ell-1) m}\right) \\
& =\left(\sum_{1 \leq i \leq s d-1, i: \text { odd }} \eta^{i}\right)-\eta^{\frac{s d}{2}} \\
& =\left(\eta+\eta^{s+1}+\cdots+\eta^{(d-1) s+1}\right)\left(1+\eta^{2}+\eta^{4}+\cdots+\eta^{s-2}\right)+1=1
\end{aligned}
$$

as $1+\eta^{2}+\eta^{4}+\cdots+\eta^{s-2}=0$.
Concerning the second equation, let d be the greatest common divisor of $2 k$ and $q^{2}+1$. Put $s=\frac{q^{2}+1}{d}$ and $\eta=\delta^{2 k}$. Then d is even and s is odd and η is a primitive s-th root of 1 . We have

$$
\begin{aligned}
& \sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }}\left(\delta^{(2 k) m}+\delta^{-(2 k) m}\right) \\
& =\left(\frac{d}{2}-1\right)\left(1+\eta+\eta^{2}+\cdots+\eta^{s-1}\right)+\left(\eta+\eta^{2}+\cdots+\eta^{s-1}\right)=-1
\end{aligned}
$$

as $1+\eta^{1}+\eta^{2}+\cdots+\eta^{s-1}=0$.
The following lemma can be easily verified from Lemma 2.6.
Lemma 2.7 It follows that

$$
\begin{aligned}
2\left(\sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: o d d}\right. & \left.\mu_{2}\left(m, \alpha_{0}\right)\right) \\
= & -\frac{\left(q^{2}-1\right)}{2}\left(\chi\left(2 \alpha_{0}+2\right)+\chi\left(2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{1}}\left(\chi\left(\xi_{i}-2 \alpha_{0}-2\right)+\chi\left(\xi_{i}+2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{1}}\left(\chi\left(\pi_{i}-2 \alpha_{0}-2\right)+\chi\left(\pi_{i}+2 \alpha_{0}-2\right)\right)
\end{aligned}
$$

Proof of Theorem 2.1. From the definition of $\mu_{0}\left(\alpha_{0}\right)$ and Lemma 2.7 we have

$$
\begin{aligned}
\mu_{0}\left(\alpha_{0}\right) & +2\left(\sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \mathrm{odd}} \mu_{2}\left(m, \alpha_{0}\right)\right) \\
= & -\frac{\left(q^{2}-3\right)}{2}\left(\chi\left(2 \alpha_{0}+2\right)+\chi\left(2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{1}}\left(\chi\left(\lambda_{i}-2 \alpha_{0}-2\right)+\chi\left(\lambda_{i}+2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{2}}\left(\chi\left(\theta_{i}-2 \alpha_{0}-2\right)+\chi\left(\theta_{i}+2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{1}}\left(\chi\left(\xi_{i}-2 \alpha_{0}-2\right)+\chi\left(\xi_{i}+2 \alpha_{0}-2\right)\right) \\
& +\sum_{i=1}^{\ell_{1}}\left(\chi\left(\pi_{i}-2 \alpha_{0}-2\right)+\chi\left(\pi_{i}+2 \alpha_{0}-2\right)\right) .
\end{aligned}
$$

However since $\sum_{y \in G F\left(q^{2}\right)} \chi(y)=0$ and $G F\left(q^{2}\right)=\{0,4\} \cup \Theta \cup \Lambda \cup \Pi \cup \Xi$, it follows that

$$
\begin{aligned}
\mu_{0}\left(\alpha_{0}\right)+ & 2\left(\sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }} \mu_{2}\left(m, \alpha_{0}\right)\right) \\
& =-\frac{\left(q^{2}+1\right)}{2}\left(\chi\left(2 \alpha_{0}+2\right)+\chi\left(2 \alpha_{0}-2\right)\right) .
\end{aligned}
$$

On the other hand from Lemma 2.5,

$$
\begin{aligned}
\mu_{0}\left(\alpha_{0}\right)+ & 2\left(\sum_{1 \leq m \leq \frac{q^{2}-1}{2}, m: \text { odd }} \mu_{2}\left(m, \alpha_{0}\right)\right) \\
& =(q-1)+2\left(\frac{q^{2}-1}{4}\right)(q-1)=\frac{q^{2}+1}{2}(q-1)
\end{aligned}
$$

Hence we obtain that $\left|\chi\left(2 \alpha_{0}+2\right)+\chi\left(2 \alpha_{0}-2\right)\right|=q-1$. Therefore $q \leq 3$.

Then $q=3$ and Γ is the Gewirtz graph. ([3, p.372]). Thus Theorem 2.1 is proved.

3. Reconstruction of the antipodal double cover Γ^{*} of a strongly regular graph with $\lambda=0$ and $\mu=2$

We give the definition of association schemes.
Let Y be a finite set. An symmetric association scheme with d class is a pair (Y, \mathcal{R}) such that
(i) $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ is a partition of $Y \times Y$;
(ii) $R_{0}=\{(x, x) \mid x \in Y\}$;
(iii) If $(x, y) \in R_{i}$, then $(y, x) \in R_{i}$ for all $i \in\{0,1, \ldots, d\}$;
(iv) There are numbers $p_{h, i}^{j}$ such that for any pair $(x, y) \in R_{j}$ the number of $z \in Y$ with $(x, z) \in R_{h}$ and $(z, y) \in R_{i}$ equal $p_{h, i}^{j}$.
The number $n_{j}=p_{j, j}^{0}$ of $z \in Y$ with $(x, z) \in R_{j}$ (which is independent on $x \in Y$) is called the valency of R_{j}, moreover for any fixed $j(1 \leq j \leq d-1)$ intersection numbers c_{j}, a_{j} and b_{j} is defined as $c_{j}=p_{j-1,1}^{j}, a_{j}=p_{j, 1}^{j}$ and $b_{j}=p_{j+1,1}^{j}$.

Now let Γ be a strongly regular graph with parameters $(k, 0,2)$. In this section we study about the structure of the second neighbourhood of Γ and antipodal double covers of them with $d=4$. E.R. van Dam and A. Munemasa proved the following theorem independently. ([4, pp.13-14], [8])

Theorem 3.1 Let Γ be a strongly regular graph with $\lambda=0, \mu=2$ of valency k with $k>5$. Then the second neighbourhood of Γ with respect to any vertex generates a 3 -class association scheme. Furthermore any scheme with the same parameters can be constructed in this way from a strongly regular graph with the same parameters as Γ.

Now we consider the antipodal double cover Γ^{*} with $d\left(\Gamma^{*}\right)=4$ of Γ. From now on we assume that $k>7$ through this section. The intersection array of Γ^{*} is the following.

$$
\iota\left(\Gamma^{*}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & k-1 & k \\
0 & 0 & k-2 & 0 & 0 \\
k & k-1 & 1 & 1 & 0
\end{array}\right)
$$

Put $\Omega=\{1,2, \ldots, k\}$. Let ∞^{+}be a vertex of Γ^{*} and ∞^{-}be the unique vertex in Γ^{*} such that $d\left(\infty^{+}, \infty^{-}\right)=4$. We set $\Gamma^{*}\left(\infty^{+}\right)=\left\{1^{+}, 2^{+}, \ldots, k^{+}\right\}$
and $\Gamma^{*}\left(\infty^{-}\right)=\left\{1^{-}, 2^{-}, \ldots, k^{-}\right\}$. Then we may assume that $d\left(i^{+}, i^{-}\right)=4$ for any $i \in \Omega$ without loss of generallity. We denote the set of vertices of the subgraph $\Gamma_{2}^{*}\left(\infty^{+}\right)$by X. For each $x \in X,\left|\Gamma^{*}\left(\infty^{+}\right) \cap \Gamma^{*}(x)\right|=1$ and $\left|\Gamma^{*}\left(\infty^{-}\right) \cap \Gamma^{*}(x)\right|=1$ as $c_{2}=b_{3}=1$. Set $\Gamma^{*}\left(\infty^{+}\right) \cap \Gamma^{*}(x)=\left\{i^{+}\right\}$and $\Gamma^{*}\left(\infty^{-}\right) \cap \Gamma^{*}(x)=\left\{j^{-}\right\}$. There exists a bijection φ from X onto $(\Omega \times$ $\Omega) \backslash\{(i, i) \mid i \in \Omega\}$ defined by $\varphi(x)=(i, j)$. Then we put $i=\varphi(x)_{1}$ and $j=\varphi(x)_{2}$. We denote a unique element of $\Gamma_{4}^{*}(x)$ by x^{\prime}, then $\varphi(x)_{1}=\varphi\left(x^{\prime}\right)_{2}$ and $\varphi(x)_{2}=\varphi\left(x^{\prime}\right)_{1}$. Moreover we set as follows.

$$
\begin{aligned}
A(x) & =\{y \in X \mid d(x, y)=1\}, \\
B(x) & =\left\{y \in X \mid \varphi(y)_{1}=\varphi(x)_{2} \text { or } \varphi(y)_{2}=\varphi(x)_{1}, y \neq x^{\prime}\right\} \\
A^{\prime}(x) & =\left\{y \in X \mid d\left(x^{\prime}, y\right)=1\right\}, \\
B^{\prime}(x) & =\left\{y \in X \mid \varphi(y)_{1}=\varphi(x)_{1} \text { or } \varphi(y)_{2}=\varphi(x)_{2}, x \neq y\right\} \\
C(x) & =X \backslash\left(A(x) \cup B(x) \cup A^{\prime}(x) \cup B^{\prime}(x) \cup\left\{x, x^{\prime}\right\}\right)
\end{aligned}
$$

We have the following theorem.
Theorem 3.2 We define relations on X as follows.

$$
\begin{array}{ll}
R_{0}=\{(x, x) \mid x \in X\}, & R_{1}=\{(x, y) \mid y \in A(x)\}, \\
R_{2}=\{(x, y) \mid y \in B(x)\}, & R_{3}=\{(x, y) \mid y \in C(x)\}, \\
R_{4}=\left\{(x, y) \mid y \in B^{\prime}(x)\right\}, & R_{5}=\left\{(x, y) \mid y \in A^{\prime}(x)\right\}, \\
R_{6}=\left\{\left(x, x^{\prime}\right) \mid x \in X\right\} &
\end{array}
$$

Then $\mathcal{X}=\left(X, R_{i}(0 \leq i \leq 6)\right)$ is a symmetric 6 -association scheme whose parameters are $p_{h, i}^{j}(0 \leq h, j, i \leq 6)$ where $\left(B_{h}\right)_{i, j}=p_{h, i}^{j}$ in the following matrices $B_{h}(h=0,1, \ldots, 6)$.

$$
B_{0}=I, B_{1}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
k-2 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 2 & 1 & 0 & 0 \\
0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\
0 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & k-2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right),
$$

$$
B_{2}=\left(\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 2 & 1 & 0 & 0 \\
2 k-4 & 2 & 1 & 2 & k-3 & 2 & 0 \\
0 & 2 k-10 & k-5 & 2 k-12 & k-5 & 2 k-10 & 0 \\
0 & 2 & k-3 & 2 & 1 & 2 & 2 k-4 \\
0 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$B_{3}=$
$\left(\begin{array}{ccccccc}0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\ 0 & 2 k-10 & k-5 & 2 k-12 & k-5 & 2 k-10 & 0 \\ (k-2)(k-5) & (k-5)(k-8) & (k-5)(k-6) & k^{2}-13 k+48 & (k-5)(k-6) & (k-5)(k-8) & (k-2)(k-5) \\ 0 & 2 k-10 & k-5 & 2 k-12 & k-5 & 2 k-10 & 0 \\ 0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$.

$$
\begin{aligned}
& \left(B_{4}\right)_{i, j}=\left(B_{2}\right)_{i,(6-j)}, \quad\left(B_{5}\right)_{i, j}=\left(B_{1}\right)_{i,(6-j)} \\
& \left(B_{6}\right)_{i, j}=\left(B_{0}\right)_{i,(6-j)} \quad \text { for } \quad 0 \leq i \leq 6,0 \leq j \leq 6
\end{aligned}
$$

The following theorem asserts that the inverse of the statement in Theorem 3.2 is also true.

Theorem 3.3 Let $\mathcal{X}=\left(X, R_{i}(0 \leq i \leq 6)\right)$ be a symmetric 6-association scheme with the same parameters as $p_{h, i}^{j}$ in Theorem 3.2. Then the antipodal double cover Γ^{*} with $d\left(\Gamma^{*}\right)=4$ of a strongly regular graph with parameters $(k, 0,2)$ can be constructed from \mathcal{X}. Moreover the graph $\left(X, R_{1}\right)$ is isomorphic to the second neighbourhood of Γ^{*} with respect to any vertex.

We now start with a short sketch of the proof. First, we consider the graph $\widetilde{\Gamma}=\left(X, R_{4}\right)$. It is shown that the parameters of this graph are those of the graph deleting the diagonal vertices of the $k \times k$-grid. We reconstruct the graph $\widehat{\Gamma}$ isomorphic to the $k \times k$-grid from $\widetilde{\Gamma}$ by adding a set of pairs of maximal cliques as new vertices to the vertices of $\widetilde{\Gamma}$. Lastly using the graph $\widehat{\Gamma}$, an extended graph Γ^{*} of the graph $\left(X, R_{1}\right)$ is constructed.

We use the following notation here. Let $\Gamma^{\prime}=\left(V\left(\Gamma^{\prime}\right), E\left(\Gamma^{\prime}\right)\right)$ be a finite connected graph and d^{\prime} be the metric of Γ^{\prime}. For two vertices x, y of Γ^{\prime} such that $d^{\prime}(x, y)=i$, we denote the cardinalities of the sets $\left\{z \in V\left(\Gamma^{\prime}\right) \mid\right.$
$\left.d^{\prime}(x, z)=i-1, d^{\prime}(z, y)=1\right\},\left\{z \in V\left(\Gamma^{\prime}\right) \mid d^{\prime}(x, z)=i+1, d^{\prime}(z, y)=1\right\}$ and $\left\{z \in V\left(\Gamma^{\prime}\right) \mid d^{\prime}(x, z)=i, d^{\prime}(z, y)=1\right\}$ by $c_{i}(x, y), b_{i}(x, y)$ and $a_{i}(x, y)$ respectively. Moreover we denote the valency of a vertex x by $k(x)$, and if Γ^{\prime} is regular we denote the valency of Γ^{\prime} by $k\left(\Gamma^{\prime}\right)$.

We state four lemmas to prove the theorem.
We note that $k_{0}=k_{6}=1, k_{1}=k_{5}=k-2, k_{2}=k_{4}=2 k-4$ and $k_{3}=(k-2)(k-5)$. Therefore we have $|X|=k(k-1)$. We note $p_{h, i}^{j}=$ $\left(B_{h}\right)_{i, j}=\left(B_{6-h}\right)_{i, 6-j}=p_{6-h, i}^{6-j}$ for $\forall j, h, i$. For any element $x \in X$ there exists a unique element $x^{\prime} \in X$ such that $\left(x, x^{\prime}\right) \in R_{6}$ as $p_{0,6}^{6}=1$. We consider a bijection ψ on X defined by $\psi(x)=x^{\prime}$ for any $x \in X$. It is clear that $\psi^{2}=i d_{X}$. We denote the metric of $\widetilde{\Gamma}$ by $\tilde{\rho}$.

Lemma 3.1 The graph $\widetilde{\Gamma}$ is a regular graph with the valency $2 k-4, d(\widetilde{\Gamma})=$ $3, a_{1}(\widetilde{\Gamma})=k-3, b_{1}(\widetilde{\Gamma})=k-2$ and $a_{2}(\widetilde{\Gamma})=2 k-6$. Suppose that $\tilde{\rho}(x, y)=2$. If $y \notin \widetilde{\Gamma}(\psi(x))$, then $c_{2}(x, y)=2$ and if $y \in \widetilde{\Gamma}(\psi(x))$, then $c_{2}(x, y)=1$. We have also $\widetilde{\Gamma}_{3}(x)=\{\psi(x)\}$ for any $x \in X$.

Proof. It is easily verified that $\widetilde{\Gamma}$ is a regular graph of the valency $2 k-4$ as $p_{4,4}^{0}=2 k-4$. Now $p_{4,4}^{i} \neq 0$ for $i \in\{1,2,3,4,5\}$. Therefore there is an element $z \in X$ such that $\tilde{\rho}(x, z)=1$ and $\tilde{\rho}(z, y)=1$ for elements x, y such that $(x, y) \in R_{i}(i=1,2,3,4$ or 5$)$. Moreover $\tilde{\rho}(x, \psi(x))=3$ holds. Therefore we have $d(\widetilde{\Gamma})=3$ and $\tilde{\rho}(x, y)=3$ holds if and only if $y=\psi(x)$.

Here we note that

$$
\begin{equation*}
(x, y) \in R_{4} \quad \text { if and only if } \quad(\psi(x), y) \in R_{2} \tag{3.1}
\end{equation*}
$$

as $p_{4, i}^{6}=0$ for $i \neq 2$ and $p_{2, i}^{6}=0$ for $i \neq 4$. Therefore we have

$$
\begin{equation*}
\tilde{\rho}(x, y)=1 \quad \text { if and only if } \tilde{\rho}(\psi(x), \psi(y))=1 \tag{3.2}
\end{equation*}
$$

We have $a_{1}(\widetilde{\Gamma})=k-3$ and $b_{1}(\widetilde{\Gamma})=k-2$ as $p_{4,4}^{4}=k-3$ and $\sum_{1 \leq i \leq 5(i \neq 4)} p_{i, 4}^{4}=$ $k-2$. Let x, y be elements in X such that $\tilde{\rho}(x, y)=2$ and $y \notin \widetilde{\Gamma}(\psi(x))$. Then $c_{2}(x, y)=2, a_{2}(x, y)=2 k-6$ and $b_{2}(x, y)=0$ as $p_{4,4}^{i}=2$ and $\sum_{1 \leq h \leq 5(h \neq 4)} p_{h, 4}^{i}=2 k-6$ for $i=1,3,5$ and from (3.1). Let x, y be elements in X such that $\tilde{\rho}(x, y)=2$ and $y \in \widetilde{\Gamma}(\psi(x))$. Then $(x, y) \in R_{2}$ from (3.1). Therefore we have $c_{2}(x, y)=1, b_{2}(x, y)=1$ and $a_{2}(x, y)=2 k-6$ as $p_{4,4}^{2}=$ $p_{6,4}^{2}=1$ and $\sum_{1 \leq h \leq 5(h \neq 4)} p_{h, 4}^{2}=2 k-6$. We also have $c_{3}(x, \psi(x))=2 k-4$ for any $x \in X$. This completes the proof of the lemma.

Lemma 3.2 Let x be an element of X. Then $\widetilde{\Gamma}(x)$ is a disjoint union of two cliques of the same cardinality $k-2$.
Proof. Let $x \in X$ and $y \in \widetilde{\Gamma}(x)$. Since $a_{1}(x, y)=k-3$ and $k(\widetilde{\Gamma})=2 k-4$, we may assume

$$
\widetilde{\Gamma}(x)=\left\{y, y_{1}, y_{2}, \ldots, y_{k-3}, z_{1}, z_{2}, \ldots, z_{k-2}\right\},\left\{y_{1}, y_{2}, \ldots, y_{k-3}\right\} \subset \widetilde{\Gamma}(y)
$$

and $\left\{z_{1}, z_{2}, \ldots, z_{k-2}\right\} \subset \widetilde{\Gamma}_{2}(y)$. Set $S=\left\{y, y_{1}, y_{2}, \ldots, y_{k-3}\right\}$ and $T=$ $\left\{z_{1}, z_{2}, \ldots, z_{k-2}\right\}$. Let z be any element of T. Since $c_{2}(y, z) \leq 2, \tilde{\rho}(x, y)=$ $\tilde{\rho}(x, z)=1$ and $S \cap \widetilde{\Gamma}(z) \subset \widetilde{\Gamma}(y) \cap \widetilde{\Gamma}(z)$, it follows that $|S \cap \widetilde{\Gamma}(z)| \leq 1$. Then we have $|T \cap \widetilde{\Gamma}(z)| \geq k-4$ since $a_{1}(x, z)=k-3$. However it follows that $k-3$ elements excluding z are contained in T. Therefore $\left|T \cap \widetilde{\Gamma}_{2}(z)\right| \leq 1$. Suppose that $T \cap \widetilde{\Gamma}_{2}(z) \neq \emptyset$. Then there exists an element $u \in T$ where $\tilde{\rho}(z, u)=2$. Therefore $T \backslash\{z, u\} \subset \widetilde{\Gamma}(z)$. Moreover $\left|T \cap \widetilde{\Gamma}_{2}(u)\right| \leq 1$ as same as $\left|T \cap \widetilde{\Gamma}_{2}(z)\right| \leq 1$. Hence we obtain $T \cap \widetilde{\Gamma}_{2}(u)=\{z\}$. Therefore it follows that x and every elements of T except z and u are contained in $\widetilde{\Gamma}(z) \cap \widetilde{\Gamma}(u)$. It implies $k-3 \leq 2$ since $c_{2}(z, u) \leq 2$. Thus $k \leq 5$, which contradicts our assumption. Hence we have $T \cap \widetilde{\Gamma}_{2}(z)=\emptyset$ and any element of T except z is adjacent to z. However since z is any element of T, T is a clique. Similarly S is a clique. Thus the lemma is proved.

We denote the set $S \cup\{x\}$ and $T \cup\{x\}$ by $C_{1}(x)$ and $C_{2}(x)$. We note that $\left|C_{1}(x)\right|=\left|C_{2}(x)\right|=k-1$. Obviously $C_{i}(x)$ is a maximal clique of $\widetilde{\Gamma}$ for $i=1,2$. Any maximal clique of $\widetilde{\Gamma}$ is equal to $C_{i}(x)$ for an element $x \in X$ and $i \in\{1,2\}$. We denote the set of maximal cliques of $\widetilde{\Gamma}$ by $M C(\widetilde{\Gamma})$. Put $\mathcal{D}=\{C \cup \psi(C) \mid C \in M C(\widetilde{\Gamma})\}$.

We note that $C \cap \psi(C)=\emptyset$ for any $C \in M C(\widetilde{\Gamma})$. For $i \in\{1,2\}$ we have $y \in C_{i}(x)$ if and only if $C_{i}(x)=C_{j}(y)$ for $j=1$ or 2 , as we see in the proof of Lemma 3.2. Hence we have $|M C(\widetilde{\Gamma})|=\frac{2|X|}{k-1}=2 k$ and $|\mathcal{D}|=k$. For $i \in\{1,2\}$ we have $\psi\left(C_{i}(x)\right)=C_{j}(\psi(x))$ for some j from (3.2). Hence we may assume $\psi\left(C_{i}(x)\right)=C_{i}(\psi(x))$ without loss of generality. We have the following lemma about \mathcal{D}.

Lemma 3.3 (1) Let x be any element of X. Then there exist exactly two elements of \mathcal{D} containing x.
(2) Let x, y be any elements of X such that $\tilde{\rho}(x, y)=1$. Then there exists exactly one element of \mathcal{D} containing x and y.
(3) Let x, y be any elements of X such that $\tilde{\rho}(x, y)=2$ and $y \in$
$\widetilde{\Gamma}(\psi(x))$. Then there exists exactly one element of \mathcal{D} containing x and y.
(4) Let D_{1} and D_{2} be distinct elements of \mathcal{D}. Then $\left|D_{1} \cap D_{2}\right|=2$.
(5) Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\widetilde{\Gamma}(x) \cap D|=2$.

Proof. (1), (2) and (3) are trivial from Lemma 3.2.
(4): Let D_{1} and D_{2} be distinct elements of \mathcal{D}. Then there are elements a and b of X such that $D_{1}=C_{1}(a) \cup \psi\left(C_{1}(a)\right)$ and $D_{2}=C_{1}(b) \cup \psi\left(C_{1}(b)\right)$. Now we will prove that $D_{1} \cap D_{2} \neq \emptyset$.

Firstly suppose that $\tilde{\rho}(a, b)=1$. If $a \in C_{1}(b)$, then $a \in C_{1}(a) \cap C_{1}(b)$. Therefore $D_{1} \cap D_{2} \neq \emptyset$. Similarly if $b \in C_{1}(a)$, then also $D_{1} \cap D_{2} \neq \emptyset$. Hence we may assume $a \in C_{2}(b)$ and $b \in C_{2}(a)$. Then $\tilde{\rho}(a, \psi(b))=2$ and $\tilde{\rho}(\psi(a), \psi(b))=1$. Therefore there is a unique element $u \in X$ which is adjacent to a and $\psi(b)$ from Lemma 3.1. If $u \in C_{1}(a) \cap C_{1}(\psi(b))$, then $D_{1} \cap$ $D_{2} \neq \emptyset$. Hence we may assume $u \in C_{2}(a)$ or $u \in C_{2}(\psi(b))$. If $u \in C_{2}(a)$, then u is adjacent to b. Therefore $\tilde{\rho}(b, \psi(b))=2$, a contradiction. Similarly if $u \in C_{2}(\psi(b))$, then $\tilde{\rho}(a, \psi(a))=2$, also a contradiction.

Secondly suppose that $\tilde{\rho}(a, b)=2$ and $\tilde{\rho}(a, \psi(b))=2$. Then there are exactly two elements $u, v \in X$ which are adjacent to both a and b and there are exactly two elements $u^{\prime}, v^{\prime} \in X$ which are adjacent to both a and $\psi(b)$ from Lemma 3.1. Then u is not adjacent to v and u^{\prime} is not adjacent to v^{\prime}. Therefore we may assume (i): $u \in C_{1}(a), v \in C_{2}(a), u \in C_{1}(b)$ and $v \in C_{2}(b)$ or (ii): $u \in C_{1}(a), v \in C_{2}(a), u \in C_{2}(b)$ and $v \in C_{1}(b)$. If the case (i) occurs, then we have $D_{1} \cap D_{2} \neq \emptyset$. Thus we may assume the case (ii). Similarly we may assume $u^{\prime} \in C_{1}(a), v^{\prime} \in C_{2}(a), u^{\prime} \in C_{2}(\psi(b))$ and $v^{\prime} \in C_{1}(\psi(b))$. Then u is adjacent to u^{\prime} and u is adjacent to $\psi\left(u^{\prime}\right)$. Therefore $\tilde{\rho}\left(u^{\prime}, \psi\left(u^{\prime}\right)\right)=2$. This is a contradiction. Thus it is proved that $D_{1} \cap D_{2} \neq \emptyset$.

Since $C_{1}(a) \neq C_{1}(b),\left|C_{1}(a) \cap C_{1}(b)\right| \leq 1$ from (2). However $C_{1}(a) \cap$ $C_{1}(b) \neq \emptyset$ and $C_{1}(a) \cap C_{1}(\psi(b)) \neq \emptyset$ are not compatible. Because if compatible, there is an element $u \in C_{1}(a) \cap C_{1}(b)$ and an element $v \in C_{1}(a) \cap$ $C_{1}(\psi(b))$. Then $\tilde{\rho}(u, \psi(u))=2$, a contradiction. Moreover $\psi\left(D_{i}\right)=D_{i}$ for $i=1,2$, and $D_{1} \cap D_{2}=\left(C_{1}(a) \cap C_{1}(b)\right) \cup\left(C_{1}(a) \cap C_{1}(\psi(b))\right) \cup\left(C_{1}(\psi(a)) \cap\right.$ $\left.C_{1}(b)\right) \cup\left(C_{1}(\psi(a)) \cap C_{1}(\psi(b))\right)$. Hence $\left|D_{1} \cap D_{2}\right|=2$. Thus (4) is proved.
(5): Let $D \in \mathcal{D}$ and $x \in X$ such that $x \notin D$. For any $j \in\{1,2\}$, $D \neq C_{j}(x) \cup \psi\left(C_{j}(x)\right)$ as $x \notin D$. Therefore $\left|D \cap\left(C_{j}(x) \cup \psi\left(C_{j}(x)\right)\right)\right|=2$ from (4). Moreover $\psi(D)=D$. Hence $\left|D \cap C_{j}(x)\right|=1$, which means that $|D \cap \widetilde{\Gamma}(x)|=2$. Thus (5) is proved.

We now define a graph $\widehat{\Gamma}$ on the set $X \cup \mathcal{D}$ as follows:
two elements of X are adjacent in $\widehat{\Gamma}$ if and only if they are adjacent in $\widetilde{\Gamma}, x \in X$ is adjacent to $D \in \mathcal{D}$ in $\widetilde{\Gamma}$ whenever $x \in D$, and no distinct two elements of \mathcal{D} are adjacent in $\widetilde{\Gamma}$.
The metric of the graph $\widehat{\Gamma}$ is denoted by $\hat{\rho}$.
Lemma 3.4 The graph $\widehat{\Gamma}$ is isomorphic to the Hamming graph $H(2, k)$
Proof. Let x be any element of X, then there exist exactly two elements of \mathcal{D} containing x and $\psi(x)$. Therefore $\hat{\rho}(x, \psi(x))=2$ by the definition above. Hence we have $d(\widehat{\Gamma})=2$.

For any $x \in X$, there exist exactly two elements of \mathcal{D} containing x from (1) of Lemma 3.3. Moreover, since $k(\widetilde{\Gamma})=2 k-4$, the valency of x in the graph $\widehat{\Gamma}$ is $2 k-2$. Moreover for any $D \in \mathcal{D}$, since D contains exactly $2(k-1)$ elements of X, the valency of D in $\widehat{\Gamma}$ is $2 k-2$. Thus $k(\widehat{\Gamma})=2 k-2$.

Let x, y be elements of X such that $\hat{\rho}(x, y)=1$. Then there exists exactly one element of \mathcal{D} containing x and y from (2) of Lemma 3.3. On the other hand exactly $k-3$ elements of X are adjacent to x and y as $a_{1}(\widetilde{\Gamma})=k-3$. Hence it follows $a_{1}(x, y)=k-2$ in $\widehat{\Gamma}$. Let $x \in X$ and $D \in \mathcal{D}$ be adjacent in $\widehat{\Gamma}$. Then $x \in D$. We have $|D \cap \widetilde{\Gamma}(x)|=k-2$. Hence it follows $a_{1}(x, D)=k-2$ in $\widehat{\Gamma}$. Thus $a_{1}(\widehat{\Gamma})=k-2$.

Let x, y be elements of X such that $\hat{\rho}(x, y)=2$. If $y=\psi(x)$, then obviously $c_{2}(x, y)=2$ in $\widehat{\Gamma}$ because there are exactly two elements of \mathcal{D} containing x and $\psi(x)$. If $y \in \widetilde{\Gamma}(\psi(x))$, then there exists exactly one element of \mathcal{D} containing x and y from (3) of Lemma 3.3.

Moreover there exists exactly one element of X which is adjacent to x and $\underset{\sim}{y}$ as $c_{2}(x, y)=1$ in $\widetilde{\Gamma}$ from Lemma 3.1. Therefore $c_{2}(x, y)=2$ in $\widehat{\Gamma}$. If $y \notin \widetilde{\Gamma}(\psi(x))$, then there is no element of \mathcal{D} containing x and y. However there exist exactly two elements of X which are adjacent to x and y as $c_{2}(x, y)=2$ in $\widetilde{\Gamma}$. Therefore $c_{2}(x, y)=2$ in $\widehat{\Gamma}$. Let D_{1}, D_{2} be distinct elements of \mathcal{D}. Then $\left|D_{1} \cap D_{2}\right|=2$ from (4) of Lemma 3.3. Therefore $c_{2}\left(D_{1}, D_{2}\right)=2$ in $\widehat{\Gamma}$. Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\widetilde{\Gamma}(x) \cap D|=2$ from (5) of Lemma 3.3. Therefore $c_{2}(D, x)=2$ in $\widehat{\Gamma}$. Hence $c_{2}(\widehat{\Gamma})=2$.

Thus the graph $\widehat{\Gamma}$ has the same parameters as those of the Hamming graph $H(2, k)$. (cf. [9]). This completes the proof of the lemma.

Proof of Theorem 3.3. From Lemma 3.4 there exists a bijection $\varphi: X \cup$
$\mathcal{D} \longmapsto \Omega \times \Omega$ such that $\varphi(\mathcal{D})=\{(i, i) \mid i \in \Omega\}$ and $(x, y) \in R_{4}$ if and only if $\varphi(x)_{1}=\varphi(y)_{1}$ or $\varphi(x)_{2}=\varphi(y)_{2}$ for any $x, y \in X(x \neq y)$.

We can now construct the antipodal double cover Γ^{*} of a strongly regular graph with parameters $(k, 0,2)$. Let Ω^{+}be the set $\left\{1^{+}, 2^{+}, \ldots, k^{+}\right\}$and Ω^{-}be the set $\left\{1^{-}, 2^{-}, \ldots, k^{-}\right\}$. The set of vertices of Γ^{*} is $V\left(\Gamma^{*}\right)=X \cup$ $\Omega^{+} \cup \Omega^{-} \cup\left\{\infty^{ \pm}\right\}$.

The adjacency of Γ^{*} is defined as the follows:
∞^{+}adjacent to i^{+}and ∞^{-}adjacent to i^{-}for any $i \in \Omega$,
for $x, y \in X, x$ and y are adjacent iff $(x, y) \in R_{1}$,
$x \in X$ and $i^{+} \in \Omega^{+}$are adjacent iff $\varphi(x)_{1}=i$,
$x \in X$ and $j^{-} \in \Omega^{-}$are adjacent iff $\varphi(x)_{2}=j$.
The metric of the graph Γ^{*} is denoted by ρ. Then we have the following statement.

$$
\begin{equation*}
\rho(x, y)=2 \quad \text { if } \quad(x, y) \in R_{4} \tag{3.3}
\end{equation*}
$$

We can verify that Γ^{*} is a distance regular graph whose intersection array is $(k, k-1,1,1 ; 1,1, k-1, k)$ in the sequel. For any $x \in\left\{\infty^{ \pm}\right\} \cup \Omega^{+} \cup$ Ω^{-}, it is clear that $k(x)=k$ from the definitions. For any $x \in X$, there are exactly $k-2$ elements of X which are adjacent to x as $p_{1,1}^{0}=k-2$. Moreover x is adjacent to only one element $\varphi(x)_{1}^{+}$in Ω^{+}and $\varphi(x)_{2}^{-}$in Ω^{-} respectively. Therefore $k(x)=k$. Thus $k\left(\Gamma^{*}\right)=k$.

We note that the bijection φ is a graph isomorphism from $\widehat{\Gamma}$ onto the Hamming graph $H(2, k)$ on $\Omega \times \Omega$ such that $\varphi(\mathcal{D})=\{(i, i) \mid i \in \Omega\}$. Moreover in the subgrph of $H(2, k)$ which is deleted the vertices $\{(i, i) \mid i \in \Omega\}$, there exists exactly one vertex at distance 3 from a vertex (i, j), namely (j, i). This implies the following statement.

$$
\begin{equation*}
\varphi(x)=(i, j) \quad \text { if and only if } \varphi(\psi(x))=(j, i) \tag{3.4}
\end{equation*}
$$

We have the following lemma.
Lemma 3.5 Let x, y be elements of X such that $\varphi(x)=(i, j)$ and $\varphi(y)=$ (ℓ, h). Then the following (1) and (2) hold.
(1) If $\rho(x, y)=1$, then $\{i, j\} \cap\{\ell, h\}=\emptyset$.
(2) If $t \notin\{i, j\}$, then there exists exactly one element $u \in X$ such that $\rho(x, u)=1$ and $\varphi(u)_{1}=t$ and exactly one element $v \in X$ such that $\rho(x, v)=1$ and $\varphi(v)_{2}=t$.

Proof. (1): Suppose that $\varphi(x)=(i, j), \varphi(y)=(\ell, h)$ and $\rho(x, y)=1$. Then $(x, y) \in R_{1}$. If $i=\ell$ or $j=h$, then $(x, y) \in R_{4}$. This is a contradiction. If $i=h$ or $j=\ell$, then $(x, \psi(y)) \in R_{4}$ from (3.4). Therefore $(x, y) \in R_{2}$ from (3.1), also a contradiction. Therefore $\{i, j\} \cap\{\ell, h\}=\emptyset$.
(2): Suppose that $\varphi(x)=(i, j)$ and $t \notin\{i, j\}$. If $\rho(x, a)=1$ and $\rho(x, b)=1$, then $\varphi(a)_{1} \neq \varphi(b)_{1}$ and $\varphi(a)_{2} \neq \varphi(b)_{2}$ as $p_{1,1}^{4}=0$. On the other hand $|\{z \in X \mid \rho(x, z)=1\}|=k-2$ as $p_{1,1}^{0}=k-2$. Hence from (1), $\Omega \backslash\{i, j\}=\left\{\varphi(z)_{1} \mid z \in X, \rho(x, z)=1\right\}$. It means that there exists exactly one $u \in X$ such that $\varphi(u)_{1}=t$. Similarly there exists exactly one $v \in X$ such that $\varphi(v)_{2}=t$. The lemma is proved.

Lemma 3.6 It follows that $c_{1}\left(\Gamma^{*}\right)=b_{3}\left(\Gamma^{*}\right), c_{2}\left(\Gamma^{*}\right)=b_{2}\left(\Gamma^{*}\right), c_{3}\left(\Gamma^{*}\right)=$ $b_{1}\left(\Gamma^{*}\right)$ and $c_{4}\left(\Gamma^{*}\right)=b_{0}\left(\Gamma^{*}\right)$. Moreover the diameter of Γ^{*} is 4 .

Proof. Since $p_{1,1}^{2} \neq 0, p_{1,1}^{3} \neq 0$ and $p_{1,1}^{5}=0$ we have

$$
\begin{array}{ll}
\rho(x, y)=2 & \text { if } \quad(x, y) \in R_{2} \cup R_{3} \\
\rho(x, y)>2 & \text { if }(x, y) \in R_{5} \tag{3.6}
\end{array}
$$

Fix any $x \in X$, we set as the following.

$$
\begin{aligned}
A(x) & =\left\{y \in X \mid(x, y) \in R_{1}\right\}, \\
B(x) & =\left\{y \in X \mid y \neq \psi(x), \varphi(y)_{1}=\varphi(x)_{2} \text { or } \varphi(y)_{2}=\varphi(x)_{1}\right\}, \\
B^{\prime}(x) & =\left\{y \in X \mid y \neq x, \varphi(y)_{1}=\varphi(x)_{1} \text { or } \varphi(y)_{2}=\varphi(x)_{2}\right\}, \\
A^{\prime}(x) & =\left\{y \in X \mid(x, y) \in R_{5}\right\} \text { and } \\
C(x) & =X \backslash\left(A(x) \cup B(x) \cup B^{\prime}(x) \cup A^{\prime}(x) \cup\{\psi(x)\}\right) .
\end{aligned}
$$

We note that $y \in B^{\prime}(x)$ if and only if $(x, y) \in R_{4}$ and $y \in B(x)$ if and only if $(x, y) \in R_{2}$ from (3.1) and (3.4). Hence it follows that $y \in C(x)$ if and only if $(x, y) \in R_{3}$.

Now since $p_{1,6}^{i}=p_{5,6}^{6-i}=0$ for $i \in\{0,1,2,3,4,6\}$, we obtain the following statement.

$$
\begin{equation*}
(x, y) \in R_{1} \quad \text { if and only if }(x, \psi(y)) \in R_{5} \tag{3.7}
\end{equation*}
$$

Suppose that $\varphi(x)=(i, j)$. Then we have $\Gamma^{*}(x)=A(x) \cup\left\{i^{+}, j^{-}\right\}$and $\Gamma_{2}^{*}(x)=B(x) \cup C(x) \cup B^{\prime}(x) \cup\left(\Omega^{+} \backslash\left\{i^{+}, j^{+}\right\}\right) \cup\left(\Omega^{-} \backslash\left\{i^{-}, j^{-}\right\}\right) \cup\left\{\infty^{ \pm}\right\}$ from (3.3), (3.5) and (2) of Lemma 3.5. Moreover $\Gamma_{2}^{*}(x) \cap \Gamma^{*}(y) \neq \emptyset$ for any $y \in A^{\prime}(x)$. Hence $\Gamma_{3}^{*}(x)=A^{\prime}(x) \cup\left\{i^{-}, j^{+}\right\}$from (3.6) and $p_{1,2}^{6}=p_{1,3}^{6}=$
$p_{1,4}^{6}=0$. We also have $\Gamma_{4}^{*}(x)=\{\psi(x)\}$.
For any $i \in \Omega, \Gamma^{*}\left(i^{+}\right)=\left\{x \in X \mid \varphi(x)_{1}=i\right\} \cup\left\{\infty^{+}\right\}, \Gamma_{2}^{*}\left(i^{+}\right)=\{x \in$ $X \mid \varphi(x)_{1} \neq i$ and $\left.\varphi(x)_{2} \neq i\right\} \cup\left(\Omega^{+} \backslash\left\{i^{+}\right\}\right) \cup\left(\Omega^{-} \backslash\left\{i^{-}\right\}\right)$as $p_{4,1}^{3} \neq 0$ and $p_{4,1}^{5} \neq 0$. Moreover $\Gamma_{3}^{*}\left(i^{+}\right)=\left\{x \in X \mid \varphi(x)_{2}=i\right\} \cup\left\{\infty^{-}\right\}$as $p_{1,1}^{2} \neq 0$ and $\Gamma_{4}^{*}\left(i^{+}\right)=\left\{i^{-}\right\}$. We obtain the similar results concerning $\Gamma_{t}^{*}\left(i^{-}\right)$for $t=1,2,3,4$. Therefore $d\left(\Gamma^{*}\right)=4$.

From the facts above and (3.1), (3.4) and (3.7), $\Gamma^{*}(x)=\Gamma_{3}^{*}(\psi(x))$, $\Gamma_{2}^{*}(x)=\Gamma_{2}^{*}(\psi(x))$ and $\Gamma_{3}^{*}(x)=\Gamma^{*}(\psi(x))$ for any $x \in X$. Therefore we have $c_{1}\left(\Gamma^{*}\right)=b_{3}\left(\Gamma^{*}\right), c_{2}\left(\Gamma^{*}\right)=b_{2}\left(\Gamma^{*}\right), c_{3}\left(\Gamma^{*}\right)=b_{1}\left(\Gamma^{*}\right)$ and $c_{4}\left(\Gamma^{*}\right)=b_{0}\left(\Gamma^{*}\right)$. The lemma is proved.

Theorem 3.3 follows from Lemma 3.6 if we prove that $b_{1}\left(\Gamma^{*}\right)=k-1$ and $b_{2}\left(\Gamma^{*}\right)=1$. There are no triangle whose vertices are all in X as $p_{1,1}^{1}=$ 0 . Suppose that $\rho(x, y)=1$ for $x, y \in X$. Then $\psi(x)_{1} \neq \psi(y)_{1}$ and $\psi(x)_{2} \neq$ $\psi(y)_{2}$ from (1) of Lemma 3.5. Thus there are no triangle containing x, y as the vertices. Hence $a_{1}\left(\Gamma^{*}\right)=0$, which implies $b_{1}\left(\Gamma^{*}\right)=k-1$.

Suppose that $\rho(x, y)=2$ for $x, y \in X$. Then $y \in B(x) \cup C(x) \cup B^{\prime}(x)$. If $y \in B(x) \cup C(x)$, then $c_{2}(x, y)=1$ as $p_{1,1}^{2}=p_{1,1}^{3}=1$. If $y \in B^{\prime}(x)$, then also $c_{2}(x, y)=1$ though $p_{1,1}^{4}=0$ since either $\varphi(x)_{1}=\varphi(y)_{1}$ or $\varphi(x)_{2}=\varphi(y)_{2}$. Suppose that $\rho\left(x, i^{+}\right)=2$ for $x \in X$. Then there is a unique element $u \in X$ such that $\rho(x, u)=1$ and $\rho\left(u, i^{+}\right)=1$ from (2) of Lemma 3.5. Therefore $c_{2}\left(x, i^{+}\right)=1$. Similarly $c_{2}\left(x, j^{-}\right)=1$ for x, j such that $\rho\left(x, j^{-}\right)=2$. Obviously $c_{2}\left(\infty^{+}, x\right)=1$ and $c_{2}\left(\infty^{-}, x\right)=1$ for any $x \in X, c_{2}\left(i^{+}, j^{+}\right)=$ $1, c_{2}\left(i^{-}, j^{-}\right)=1$ and $c_{2}\left(i^{+}, j^{-}\right)=1$ for any $i \neq j$. Hence $c_{2}\left(\Gamma^{*}\right)=1$, which implies $b_{2}\left(\Gamma^{*}\right)=1$ from Lemma 3.6. This completes the proof of Theorem 3.3.

Remark Let x be any vertex of Γ^{*}. Eigenvalues of the subgraph $\Gamma_{2}^{*}(x)$ are $k-2, \sqrt{k},-1+\sqrt{k-1}, 0,-2,-\sqrt{k}$ and $-1-\sqrt{k-1}$. Moreover their multiplicities are $1, \frac{(k-1)(k-2)}{4}, \frac{k(\sqrt{k-1}+2)(\sqrt{k-1}-1)}{4}, k-1, k-1, \frac{(k-1)(k-2)}{4}$ and $\frac{k(\sqrt{k-1}-2)(\sqrt{k-1}+1)}{4}$ respectively.
Acknowledgment The author thanks Prof. Akihiro Munemasa for his valuable discussions during the preparation of this article and thanks the referees for their helpful comments and suggestions.

References

[1] Araya M., Hiraki A. and Jurišić A., Distance-Regular Graphs with $b_{2}=1$ and Antipodal Covers. Europ. J. Combin. 18 (1997), 243-248.
[2] Bannai E. and Ito T., Algebraic Combinatorics I. Benjamin-Cummings, California, 1984.
[3] Brouwer A.E., Cohen A.M. and Neumaier A., Distance-Regular Graphs. SpringerVerlag, Berlin, Heidelberg, 1989.
[4] van Dam E.R., Three-class association schemes. Preprint.
[5] Kwok W.M., Character Table of a Controlling Association Scheme Defined by the General Orthogonal Group $O(3, q)$. Graphs. Combin. 7 (1991), 39-52.
[6] Gardiner A.D., Antipodal covering graphs. J. Combin. Theory Ser. B,16 (1974), 255-273.
[7] Godsil C.D., Covers of Complete Graphs. Advanced Studies in pure Mathematics 24, Kinokuniya, Tokyo, 1996.
[8] Munemasa A., Strongly regular graphs with parameters $(k, \lambda, \mu)=(k, 0,2)$. Private communication.
[9] Shrikhande S.S., The uniqueness of the L_{2} association scheme. Ann. Math. Statist. 30 (1959), 781-798.

Department of Mathematics
Faculty of Science and Technology
Kinki University
Higashi-Osaka, Osaka 577-8520
Japan
E-mail: nakagawa@math.kindai.ac.jp
Present address:
Department of Mathematics
Ohio State University
231 West 18th Avenue
Columbus Ohio 43210-1174
U. S. A.

