On strongly regular graphs with parameters (k, 0, 2) and their antipodal double covers

Nobuo NAKAGAWA

(Received April 10, 2000)

Abstract. Let Γ be a strongly regular graph with parameters $(k, \lambda, \mu) = (q^2 + 1, 0, 2)$ admitting $G(\cong PGL(2, q^2))$ as one point stabilizer for odd prime power q. We show that if G stabilizes a vertex x of Γ and acts on $\Gamma_2(x)$ transitively, then q = 3 holds and Γ is the Gewirtz graph. Moreover it is shown that an antipodal double cover whose diameter 4 of a strongly regular graph with parameters (k, 0, 2) is reconstructed from a symmetric association scheme of class 6 with parameters $p_{i,k}^i$ $(0 \le i, j, k \le 6)$ in the Section 3.

Key words: antipodal cover of strongly regular graph, association scheme, finite transitive group.

1. Introduction

We are interested in the classification problems of distance regular graphs with $b_2 = 1$. Let Γ be a distance regular graph with $b_2 = 1$ and valency k > 2. If the diameter $d(\Gamma)$ of Γ is larger more than 4, then Γ is isomorphic to the dodecahedron ([3, p.182]). In [1], M. Araya, A. Hiraki and A. Jurišić showed that if $d(\Gamma) = 4$, then Γ is an antipodal double cover of a strongly regular graph with parameters $(k, \lambda, \mu) = (n^2 + 1, 0, 2)$ for an integer *n* not divisible by 4 and if $d(\Gamma) = 3$, then Γ is an antipodal cover of a complete graph. Obviously an antipodal cover of a complete graph is a distance regular graph with $b_2 = 1$ if it's diameter is 3.

The classification problems of antipodal covers of complete graphs are very difficult. Because the existence of an antipodal distance regular (n - 2)-fold cover of the complete graph K_n claims the existence of a projective plane of order (n - 1) for an odd positive integer n, moreover an antipodal distance regular (n - 1)-fold cover of K_n is equivalent to the existence of a Moore graph with the diameter 2 and the valency n. ([6], [7])

The strongly regular graphs with parameters $(k, \lambda, \mu) = (5, 0, 2)$ and (10, 0, 2) are known, the former one has an antipodal double cover with d = 4, namely the Wells graph, the latter one (the Gewirtz graph) does not

¹⁹⁹¹ Mathematics Subject Classification: 05E30, 20B20.

N. Nakagawa

have an antipodal double cover with d = 4 ([3, p.372]). The existence or nonexistence of strongly regular graphs with $(n^2 + 1, 0, 2)$ for $n \ge 5$ are not known up to date. We have studied these graphs.

2. Strongly regular graphs with $(q^2 + 1, 0, 2)$ admitting $PGL(2, q^2)$ for $q = p^e$

In this section we prove the following theorem.

Theorem 2.1 Let Γ be a strongly regular graph with parameters $(q^2 + 1, 0, 2)$ and G be a group isomorphic to $PGL(2, q^2)$ for an odd prime power $q = p^e$. Suppose that G acts on Γ as G stabilizes a vertex ∞ of Γ and G is transitive on $\Gamma_2(\infty)$. Then q = 3 and Γ is the Gewirtz graph.

We denote the set of vertices of a graph Γ by $V(\Gamma)$, the set $\{y \in V(\Gamma) \mid d(x, y) = 1\}$ by $\Gamma(x)$ and the set $\{y \in V(\Gamma) \mid d(x, y) = i\}$ by $\Gamma_i(x)$ for $x \in V(\Gamma)$ and $i \geq 2$.

Lemma 2.1 Let Γ be a strongly regular graph with parameters $(q^2+1, 0, 2)$ and ∞ be a vertex of Γ . Then the eigenvalues and their multiplicities of the induced subgraph $\Gamma_2(\infty)$ of Γ are the following.

θ	$q^2 - 1$	-2	q-1	-q-1
m(heta)	1	q^2	$\frac{(q^2+1)(q^2+q-2)}{4}$	$\frac{(q^2+1)(q^2-q-2)}{4}$

Proof. Let A and A_1 be adjacency matrices of Γ and $\Gamma_2(\infty)$ respectively. We note that the degrees of A and A_1 are $2 + q^2 + \frac{q^2(q^2+1)}{2}$ and $\frac{q^2(q^2+1)}{2}$ respectively. Then A is written as

$$A = \left(\begin{array}{rrrr} A_1 & X & 0\\ X^t & 0 & \mathbf{1}\\ 0^t & \mathbf{1}^t & 0 \end{array}\right)$$

where X is a $\frac{q^2(q^2+1)}{2} \times (q^2+1)$ submatix indicating the adjacency relation between vertices of $\Gamma_2(\infty)$ and $\Gamma_1(\infty)$, and **1** is the $(q^2+1) \times 1$ all 1 matrix. Let I_n be the unit matrix of degree n and $J_{n,m}$ be the $n \times m$ all 1 matrix. Since $A^2 = (q^2+1)I_n + \lambda A + \mu(J_n - A - I_n)$ where $n = 2 + q^2 + \frac{q^2(q^2+1)}{2}$, $\lambda = 0$ and $\mu = 2$, we have $A^2 = -2A + (q^2 - 1)I_n + 2J_n$. Therefore

$$A_1^2 + XX^t = -2A_1 + (q^2 - 1)I_m + 2J_m, (2.1)$$

where $m = \frac{q^2(q^2+1)}{2}$. Moreover since $A_1 X = 2J_{m,\ell} - 2X$ where $\ell = q^2 + 1$, we have

$$A_1 X X^t A_1 = 4 X X^t + 4(q^2 - 3) J_m.$$
(2.2)

Hence from (2.1) and (2.2),

$$A_1^4 + 2A_1^3 - (q^2 + 3)A_1^2 - 8A_1 + 4(q^2 - 1)I_m$$

= 2(q^4 - 4q^2 + 3)J_m. (2.3)

We can calculate easily that $\{2, -2, q - 1, -q - 1\}$ are the roots of the equation $x^4 + 2x^3 - (q^2 + 3)x^2 - 8x + 4(q^2 - 1) = 0$. Therefore the eigenvalues of A_1 are these values and $q^2 - 1$ whose multiplicity 1.

Let the multiplicities of the eigenvalues 2, -2, q-1 and -q-1 be a, b, f and g respectively. Since the degree of A_1 is $\frac{q^2(q^2+1)}{2}$, $trace(A_1) = 0$, $trace(A_1^2) = \frac{q^2(q^2+1)(q^2-1)}{2}$, $trace(A_1^3) = 0$, we have $a = 0, b = q^2, f = \frac{(q^2+1)(q^2+q-2)}{4}$, $g = \frac{(q^2+1)(q^2-q-2)}{4}$ by solving the following linear equations.

$$\begin{cases} 1+a+b+f+g = \frac{q^2(q^2+1)}{2} \\ q^2-1+2a-2b+(q-1)f+(-q-1)g = 0 \\ (q^2-1)^2+4a+4b+(q^2-2q+1)f+(q^2+2q+1)g = \frac{q^2(q^2+1)(q^2-1)}{2} \\ (q^2-1)^3+8a-8b+(q^3-3q^2+3q-1)f+(-q^3-3q^2-3q-1)g = 0. \end{cases}$$

Let Γ be a strongly regular graph with parameters $(q^2 + 1, 0, 2)$ and G be a group isomorphic to $PGL(2, q^2)$ for an odd prime power $q = p^e$. Suppose that G acts on Γ as G stabilizes a vertex ∞ of Γ and transitively on $\Gamma_2(\infty)$. We put

$$z \equiv \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight) \pmod{Z(GL(2,q^2))} ext{ and } H = C_G(z).$$

Then H is a dihedral group of order $2(q^2 - 1)$ and $|G:H| = \frac{q^2(q^2+1)}{2}$. Since there is a unique conjugacy class of involutions in G and any two subgroups

of index $\frac{q^2(q^2+1)}{2}$ are conjugate in G. Hence it holds that H is the stabilizer G_v of a vertex $v \in \Gamma_2(\infty)$. Throughout the section we fix this vertex v.

Let ω be a primitive element of the multiplicative group $GF(q^2)^*$. Put $D = \{\omega^i \mid 1 \leq i \leq \frac{q^2-1}{2}\}$. We may assume that $2^{-1} \in D$. We have $GF(q^2) = D \cup -D \cup \{0\}$. Set

$$I \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{Z(GL(2,q^2))},$$
$$x_{\alpha} \equiv \begin{pmatrix} 1 & \alpha - 2^{-1} \\ 1 & \alpha + 2^{-1} \end{pmatrix} \pmod{Z(GL(2,q^2))},$$

where $\alpha \in D \cup \{0\}$. We can verify the following lemma.

Lemma 2.2 The set $\{I\} \cup \{x_{\alpha} \mid \alpha \in D \cup \{0\}\}$ is a complete representative of double cosets $H \setminus G/H$. Moreover it follows that $Hx_{\alpha}H =$ $Hx_{-\alpha}H$, $Hx_{\alpha}H = Hx_{\alpha}^{-1}H$ where $\alpha \in D \setminus \{2^{-1}\}$, and $|Hx_0H : H| =$ $\frac{(q^2-1)}{2}$, $|Hx_{2^{-1}}H : H| = 2(q^2-1)$ and $|Hx_{\alpha}H : H| = (q^2-1)$ for any $\alpha \in D \setminus \{2^{-1}\}$.

G acts naturally on $G/H = \{Hx \mid x \in G\}$. It is easily shown that $(G, V(\Gamma_2(\infty))) \cong (G, G/H)$ as the permutation groups.

An orbital graph Γ_{α} of the permutation group (H, G/H) with respect to an orbit $Hx_{\alpha}H$ is defined as the following.

The set of vertices is G/H. A vertex Hx is adjacent to a vertex Hy if and only if $xy^{-1} \in Hx_{\alpha}H$. Now we have the following lemma.

Lemma 2.3 The graph $\Gamma_2(\infty)$ is isomorphic to an orbital graph Γ_{α_0} for a suitable element $\alpha_0 \in D \setminus \{2^{-1}\}$.

Proof. Take a vertex $w \in \Gamma_2(\infty)$ which is adjacent to v. There is an element $x \in G$ such that $w = v^x$ by our assumption. Pick up α_0 such that $x \in Hx_{\alpha_0}H$. Then a mapping f defined by $f(v^y) = Hy$ $(y \in G)$ gives an isomorphism from $\Gamma_2(\infty)$ onto Γ_{α_0} .

Here we denote the adjacency matrix of the graph Γ_{α} by A_{α} . It is well known that the permutation character 1_{H}^{G} of (G, G/H) has $\frac{q^{2}-5}{4}$ distinct irreducible characters of degree $q^{2} + 1$, $\frac{q^{2}-1}{4}$ distinct irreducible characters of degree $q^{2} - 1$, 2 distinct irreducible characters of degree q^{2} and a trivial character as its irreducible constituent. G acts on $G/H \times G/H$ naturally. It is also known that $R_{\Delta} = \{(Hx, Hx) \mid x \in G\}$ and $R_{\alpha} = \{(Hx, Hy) \mid xy^{-1} \in$ $Hx_{\alpha}H$ ($\alpha \in D \cup \{0\}$) are orbits of the permutation group $(G, G/H \times G/H)$. Moreover $\mathcal{X}(G, G/H) = (G/H, \{R_{\alpha} \mid \alpha \in D \cup \{0, \Delta\}\})$ is a symmetric association scheme as 1_{H}^{G} is multiplicity free. Then A_{α} is the adjacency matrix of the association scheme $\mathcal{X}(G, G/H)$ corresponding to the relation R_{α} .

The eigenvalues and their multiplicities of A_{α} are found from the first eigenmatrix of $\mathcal{X}(G, G/H)$. To describe this matrix we define a certain partition of elements of $GF(q^2)$ and a number of sums of the quadratic character values of the multiplicative group $GF(q^2)^*$.

We set as the following.

$$\Lambda = \{\lambda \in GF(q^2) \mid \lambda \neq 0, \ \lambda \text{ is a nonsquare, } \lambda - 4 \text{ is a nonsquare} \}$$

$$\Theta = \{\theta \in GF(q^2) \mid \theta \neq 0, 4, \ \theta \text{ is a square, } \theta - 4 \text{ is a square} \}$$

$$\Pi = \{\pi \in GF(q^2) \mid \pi \neq 0, 4, \ \pi \text{ is a square, } \pi - 4 \text{ is a nonsquare} \}$$

$$\Xi = \{\xi \in GF(q^2) \mid \xi \neq 0, \ \xi \text{ is a nonsquare, } \xi - 4 \text{ is a square} \}$$

Then we obtain $|\Theta| = \frac{q^2-5}{4}$, $|\Lambda| = |\Pi| = |\Xi| = \frac{q^2-1}{4}$ and $GF(q^2) = \{0, 4\} \cup \Theta \cup \Lambda \cup \Pi \cup \Xi$.

We set $\ell_1 = \frac{q^2 - 1}{4}$, $\ell_2 = \frac{q^2 - 5}{4}$, $\Lambda = \{\lambda_i \mid 1 \le i \le \ell_1\}$, $\Theta = \{\theta_i \mid 1 \le i \le \ell_2\}$, $\Pi = \{\pi_i \mid 1 \le i \le \ell_1\}$, and $\Xi = \{\xi_i \mid 1 \le i \le \ell_1\}$.

Let δ be a primitive $(q^2 + 1)$ -th root of 1, ε be a primitive $(q^2 - 1)$ -th root of 1 and χ be the character of order 2 of $GF(q^2)^*$ with $\chi(0) = 0$.

For $\alpha \in GF(q^2)$ and a positive integer m, we define $\mu_0(\alpha)$, $\mu_1(m, \alpha)$, $\mu_2(m, \alpha)$ as follows.

$$\mu_{0}(\alpha) = \chi(2\alpha + 2) + \chi(2\alpha - 2) + \sum_{i=1}^{\ell_{1}} (\chi(\lambda_{i} - 2\alpha - 2) + \chi(\lambda_{i} + 2\alpha - 2)) + \sum_{i=1}^{\ell_{2}} (\chi(\theta_{i} - 2\alpha - 2) + \chi(\theta_{i} + 2\alpha - 2))$$

$$\mu_1(m,\alpha) = 2 + \chi(2\alpha - 2) + \chi(2\alpha + 2) + \frac{1}{2} \sum_{i=1}^{\ell_1} (2 - \chi(\lambda_i - 2\alpha - 2) - \chi(\lambda_i + 2\alpha - 2)) (\varepsilon^{(2i-1)m} + \varepsilon^{-(2i-1)m})$$

$$+\frac{1}{2}\sum_{i=1}^{\ell_2} \left(2 + \chi(\theta_i - 2\alpha - 2) + \chi(\theta_i + 2\alpha - 2)\right) \left(\varepsilon^{(2i)m} + \varepsilon^{-(2i)m}\right)$$

$$\begin{split} \mu_2(m,\alpha) &= -\chi(2\alpha-2) - \chi(2\alpha+2) \\ &- \frac{1}{2} \sum_{i=1}^{\ell_1} \left(2 - \chi(\xi_i - 2\alpha - 2) - \chi(\xi_i + 2\alpha - 2) \right) \left(\delta^{(2i-1)m} + \delta^{-(2i-1)m} \right) \\ &- \frac{1}{2} \sum_{i=1}^{\ell_1} \left(2 + \chi(\pi_i - 2\alpha - 2) + \chi(\pi_i + 2\alpha - 2) \right) \left(\delta^{(2i)m} + \delta^{-(2i)m} \right) \end{split}$$

Now we have the following lemma.

Lemma 2.4 The first eigenmatrix of the association scheme $\mathcal{X}(G, G/H)$ is the following. (Here $\alpha \in D \setminus \{2^{-1}\}$)

	R_{Δ}	$R_{2^{-1}}$	R_0	R_{lpha}
$ ho_1$	1	$2(q^2 - 1)$	$\frac{q^2-1}{2}$	$q^2 - 1$
$ ho_{q^2}^{(1)}$	1	q^2-3	-1	-2
$ ho_{q^2}^{(2)}$	1	-2	$\frac{\mu_0(0)}{2}$	$\mu_0(lpha)$
$ \begin{bmatrix} \rho_{q^{2}+1}^{(m)} \\ 1 \le m \le \frac{q^{2}-5}{2} (m : \text{even}) \end{bmatrix} $	1	-2	$\frac{\mu_1(m,0)}{2}$	$\mu_1(m,lpha)$
$ \begin{bmatrix} \rho_{q^2-1}^{(m)} \\ 1 \le m \le \frac{q^2-3}{2} \ (m: \text{odd}) \end{bmatrix} $	1	-2	$\frac{\mu_2(m,0)}{2}$	$\mu_2(m,lpha)$

Proof. W.M. Kwok gave the first eigenmatrix of the association scheme corresponding to the permutation group $(O(3,q), O(3,q)/O^+(2,q))$ in [5]. It follows that $O(3,q) \cong \{\pm 1\} \times SO(3,q)$ and $SO(3,q) \cong PGL(2,q), (G,G/H)$ is isomorphic to $(O(3,q)/\{\pm 1\}, O(3,q)/(\{\pm 1\} \times O^+(2,q)))$ as permutation groups. Therefore we can compute the first eigenmatrix of the association scheme $\mathcal{X}(G,G/H)$ as the table of the lemma by using the table in [5].

(cf. [5], p.48)

From Lemma 2.3, $\Gamma_2(\infty) \cong \Gamma_{\alpha_0}$. Concerning the element α_0 , we have the following lemma.

Lemma 2.5 It follows that $\mu_0(\alpha_0) = q - 1$ and $\mu_2(m, \alpha_0) = q - 1$ for any odd number m such that $1 \le m \le \frac{q^2 - 3}{2}$.

Proof. We compare eigenvalues and their multiplicities in the table in Lemma 2.1 with those in the table of Lemma 2.4 for $\alpha = \alpha_0$. They coincide as a whole. Hence we have

$$\frac{(q^2+1)(q^2+q-2)}{4} = s(q^2+1) + t(q^2-1)$$

where s is the number of m such that $\mu_1(m, \alpha_0) = q - 1$ and t is the number of m such that $\mu_2(m, \alpha_0) = q - 1$ in the case $\mu_0(\alpha_0) = -q - 1$ or

$$\frac{(q^2+1)(q^2-q-2)}{4} = s(q^2+1) + t(q^2-1)$$

where s is the number of m such that $\mu_1(m, \alpha_0) = -q - 1$ and t is the number of m such that $\mu_2(m, \alpha_0) = -q - 1$ in the case $\mu_0(\alpha_0) = q - 1$.

Suppose that $\frac{(q^2+1)(q^2+q-2)}{4} = s(q^2+1) + t(q^2-1)$. Then for each odd prime divisor r of q^2+1 , r divides t because that the greatest common divisor of r and q^2-1 is 1. Therefore $\frac{q^2+1}{2}$ divides t. However it is impossible if $t \neq 0$ as $t \leq \frac{q^2-1}{4}$. Hence t = 0. Then $s = \frac{q^2+q-2}{4}$. It contradicts to the fact that $s \leq \frac{q^2-5}{4}$.

Suppose that $\frac{(q^2+1)(q^2-q-2)}{4} = s(q^2+1) + t(q^2-1)$. Then similarly we have t = 0. Then $\mu_0(\alpha_0) = q-1$ and $\mu_2(m, \alpha_0) = q-1$ for any odd number m. The lemma is proved.

Lemma 2.6 Let ℓ and k be positive integers. Then the following equations hold.

$$\sum_{\substack{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}}} (\delta^{(2\ell - 1)m} + \delta^{-(2\ell - 1)m}) = 1$$
(2.4)

$$\sum_{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}} (\delta^{(2k)m} + \delta^{-(2k)m}) = -1$$
(2.5)

Proof. Concerning the first equation, let d be the greatest common divisor

of $2\ell - 1$ and $q^2 + 1$. Put $s = \frac{q^2 + 1}{d}$ and $\eta = \delta^{(2\ell - 1)}$. We note that d is odd and s is even. Obviously η is a primitive s-th root of 1. Hence $\eta^{\frac{s}{2}} = -1$. Then we have

$$\sum_{\substack{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}}} (\delta^{(2\ell - 1)m} + \delta^{-(2\ell - 1)m})$$
$$= \left(\sum_{\substack{1 \le i \le sd - 1, i: \text{odd}}} \eta^i\right) - \eta^{\frac{sd}{2}}$$
$$= (\eta + \eta^{s+1} + \dots + \eta^{(d-1)s+1})(1 + \eta^2 + \eta^4 + \dots + \eta^{s-2}) + 1 = 1$$

as $1 + \eta^2 + \eta^4 + \dots + \eta^{s-2} = 0.$

Concerning the second equation, let d be the greatest common divisor of 2k and $q^2 + 1$. Put $s = \frac{q^2+1}{d}$ and $\eta = \delta^{2k}$. Then d is even and s is odd and η is a primitive s-th root of 1. We have

$$\sum_{\substack{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}}} (\delta^{(2k)m} + \delta^{-(2k)m})$$

= $\left(\frac{d}{2} - 1\right)(1 + \eta + \eta^2 + \dots + \eta^{s-1}) + (\eta + \eta^2 + \dots + \eta^{s-1}) = -1$
+ $\eta^2 + \dots + \eta^{s-1} = 0.$

as $1 + \eta^1 + \eta^2 + \dots + \eta^{s-1} = 0$.

The following lemma can be easily verified from Lemma 2.6.

Lemma 2.7 It follows that

$$2\left(\sum_{1\leq m\leq \frac{q^2-1}{2}, m: \text{odd}} \mu_2(m, \alpha_0)\right)$$

= $-\frac{(q^2-1)}{2} (\chi(2\alpha_0+2) + \chi(2\alpha_0-2))$
+ $\sum_{i=1}^{\ell_1} (\chi(\xi_i - 2\alpha_0 - 2) + \chi(\xi_i + 2\alpha_0 - 2))$
+ $\sum_{i=1}^{\ell_1} (\chi(\pi_i - 2\alpha_0 - 2) + \chi(\pi_i + 2\alpha_0 - 2)).$

Proof of Theorem 2.1. From the definition of $\mu_0(\alpha_0)$ and Lemma 2.7 we have

$$\begin{split} \mu_0(\alpha_0) &+ 2 \left(\sum_{1 \le m \le \frac{q^2 - 1}{2}, \, m: \text{odd}} \mu_2(m, \alpha_0) \right) \\ &= -\frac{(q^2 - 3)}{2} \left(\chi(2\alpha_0 + 2) + \chi(2\alpha_0 - 2)) \right) \\ &+ \sum_{i=1}^{\ell_1} \left(\chi(\lambda_i - 2\alpha_0 - 2) + \chi(\lambda_i + 2\alpha_0 - 2)) \right) \\ &+ \sum_{i=1}^{\ell_2} \left(\chi(\theta_i - 2\alpha_0 - 2) + \chi(\theta_i + 2\alpha_0 - 2)) \right) \\ &+ \sum_{i=1}^{\ell_1} \left(\chi(\xi_i - 2\alpha_0 - 2) + \chi(\xi_i + 2\alpha_0 - 2)) \right) \\ &+ \sum_{i=1}^{\ell_1} \left(\chi(\pi_i - 2\alpha_0 - 2) + \chi(\pi_i + 2\alpha_0 - 2)) \right) \end{split}$$

However since $\sum_{y \in GF(q^2)} \chi(y) = 0$ and $GF(q^2) = \{0, 4\} \cup \Theta \cup \Lambda \cup \Pi \cup \Xi$, it follows that

$$\mu_0(\alpha_0) + 2 \left(\sum_{\substack{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}}} \mu_2(m, \alpha_0) \right)$$
$$= -\frac{(q^2 + 1)}{2} \left(\chi(2\alpha_0 + 2) + \chi(2\alpha_0 - 2) \right)$$

On the other hand from Lemma 2.5,

$$\mu_0(\alpha_0) + 2\left(\sum_{1 \le m \le \frac{q^2 - 1}{2}, m: \text{odd}} \mu_2(m, \alpha_0)\right)$$
$$= (q - 1) + 2\left(\frac{q^2 - 1}{4}\right)(q - 1) = \frac{q^2 + 1}{2}(q - 1).$$

Hence we obtain that $|\chi(2\alpha_0+2)+\chi(2\alpha_0-2)|=q-1$. Therefore $q\leq 3$.

Then q = 3 and Γ is the Gewirtz graph. ([3, p.372]). Thus Theorem 2.1 is proved.

3. Reconstruction of the antipodal double cover Γ^* of a strongly regular graph with $\lambda = 0$ and $\mu = 2$

We give the definition of association schemes.

Let Y be a finite set. An symmetric association scheme with d class is a pair (Y, \mathcal{R}) such that

(i) $\mathcal{R} = \{R_0, R_1, \dots, R_d\}$ is a partition of $Y \times Y$;

(ii) $R_0 = \{(x, x) \mid x \in Y\};$

(iii) If $(x, y) \in R_i$, then $(y, x) \in R_i$ for all $i \in \{0, 1, ..., d\}$;

(iv) There are numbers $p_{h,i}^j$ such that for any pair $(x, y) \in R_j$ the number of $z \in Y$ with $(x, z) \in R_h$ and $(z, y) \in R_i$ equal $p_{h,i}^j$.

The number $n_j = p_{j,j}^0$ of $z \in Y$ with $(x, z) \in R_j$ (which is independent on $x \in Y$) is called the valency of R_j , moreover for any fixed j $(1 \le j \le d-1)$ intersection numbers c_j , a_j and b_j is defined as $c_j = p_{j-1,1}^j$, $a_j = p_{j,1}^j$ and $b_j = p_{j+1,1}^j$.

Now let Γ be a strongly regular graph with parameters (k, 0, 2). In this section we study about the structure of the second neighbourhood of Γ and antipodal double covers of them with d = 4. E.R. van Dam and A. Munemasa proved the following theorem independently. ([4, pp.13–14], [8])

Theorem 3.1 Let Γ be a strongly regular graph with $\lambda = 0$, $\mu = 2$ of valency k with k > 5. Then the second neighbourhood of Γ with respect to any vertex generates a 3-class association scheme. Furthermore any scheme with the same parameters can be constructed in this way from a strongly regular graph with the same parameters as Γ .

Now we consider the antipodal double cover Γ^* with $d(\Gamma^*) = 4$ of Γ . From now on we assume that k > 7 through this section. The intersection array of Γ^* is the following.

$$\iota(\Gamma^*) = \begin{pmatrix} 0 & 1 & 1 & k-1 & k \\ 0 & 0 & k-2 & 0 & 0 \\ k & k-1 & 1 & 1 & 0 \end{pmatrix}$$

Put $\Omega = \{1, 2, ..., k\}$. Let ∞^+ be a vertex of Γ^* and ∞^- be the unique vertex in Γ^* such that $d(\infty^+, \infty^-) = 4$. We set $\Gamma^*(\infty^+) = \{1^+, 2^+, ..., k^+\}$

and $\Gamma^*(\infty^-) = \{1^-, 2^-, \dots, k^-\}$. Then we may assume that $d(i^+, i^-) = 4$ for any $i \in \Omega$ without loss of generallity. We denote the set of vertices of the subgraph $\Gamma_2^*(\infty^+)$ by X. For each $x \in X$, $|\Gamma^*(\infty^+) \cap \Gamma^*(x)| = 1$ and $|\Gamma^*(\infty^-) \cap \Gamma^*(x)| = 1$ as $c_2 = b_3 = 1$. Set $\Gamma^*(\infty^+) \cap \Gamma^*(x) = \{i^+\}$ and $\Gamma^*(\infty^-) \cap \Gamma^*(x) = \{j^-\}$. There exists a bijection φ from X onto $(\Omega \times \Omega) \setminus \{(i,i) \mid i \in \Omega\}$ defined by $\varphi(x) = (i,j)$. Then we put $i = \varphi(x)_1$ and $j = \varphi(x)_2$. We denote a unique element of $\Gamma_4^*(x)$ by x', then $\varphi(x)_1 = \varphi(x')_2$ and $\varphi(x)_2 = \varphi(x')_1$. Moreover we set as follows.

$$A(x) = \{ y \in X \mid d(x, y) = 1 \},\$$

$$B(x) = \{ y \in X \mid \varphi(y)_1 = \varphi(x)_2 \text{ or } \varphi(y)_2 = \varphi(x)_1, \ y \neq x' \}$$

$$A'(x) = \{ y \in X \mid d(x', y) = 1 \},\$$

$$B'(x) = \{ y \in X \mid \varphi(y)_1 = \varphi(x)_1 \text{ or } \varphi(y)_2 = \varphi(x)_2, \ x \neq y \}$$

$$C(x) = X \setminus (A(x) \cup B(x) \cup A'(x) \cup B'(x) \cup \{x, x'\})$$

We have the following theorem.

Theorem 3.2 We define relations on X as follows.

$$R_{0} = \{(x, x) \mid x \in X\}, \qquad R_{1} = \{(x, y) \mid y \in A(x)\}, \\R_{2} = \{(x, y) \mid y \in B(x)\}, \qquad R_{3} = \{(x, y) \mid y \in C(x)\}, \\R_{4} = \{(x, y) \mid y \in B'(x)\}, \qquad R_{5} = \{(x, y) \mid y \in A'(x)\}, \\R_{6} = \{(x, x') \mid x \in X\}$$

Then $\mathcal{X} = (X, R_i (0 \le i \le 6))$ is a symmetric 6-association scheme whose parameters are $p_{h,i}^j (0 \le h, j, i \le 6)$ where $(B_h)_{i,j} = p_{h,i}^j$ in the following matrices $B_h (h = 0, 1, ..., 6)$.

$$B_0 = I, \ B_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ k-2 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\ 0 & 0 & 1 & 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & k-2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$

$$B_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 2k - 4 & 2 & 1 & 2 & k - 3 & 2 & 0 \\ 0 & 2k - 10 & k - 5 & 2k - 12 & k - 5 & 2k - 10 & 0 \\ 0 & 2 & k - 3 & 2 & 1 & 2 & 2k - 4 \\ 0 & 0 & 1 & 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix},$$

$$B_{3} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\ 0 & 2k-10 & k-5 & 2k-12 & k-5 & 2k-10 & 0 \\ (k-2)(k-5) & (k-5)(k-8) & (k-5)(k-6) & k^{2}-13k+48 & (k-5)(k-6) & (k-5)(k-8) & (k-2)(k-5) \\ 0 & 2k-10 & k-5 & 2k-12 & k-5 & 2k-10 & 0 \\ 0 & k-5 & k-5 & k-8 & k-5 & k-5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

$$(B_4)_{i,j} = (B_2)_{i,(6-j)}, \quad (B_5)_{i,j} = (B_1)_{i,(6-j)}, (B_6)_{i,j} = (B_0)_{i,(6-j)} \quad for \ \ 0 \le i \le 6, \ \ 0 \le j \le 6.$$

The following theorem asserts that the inverse of the statement in Theorem 3.2 is also true.

Theorem 3.3 Let $\mathcal{X} = (X, R_i (0 \le i \le 6))$ be a symmetric 6-association scheme with the same parameters as $p_{h,i}^j$ in Theorem 3.2. Then the antipodal double cover Γ^* with $d(\Gamma^*) = 4$ of a strongly regular graph with parameters (k, 0, 2) can be constructed from \mathcal{X} . Moreover the graph (X, R_1) is isomorphic to the second neighbourhood of Γ^* with respect to any vertex.

We now start with a short sketch of the proof. First, we consider the graph $\tilde{\Gamma} = (X, R_4)$. It is shown that the parameters of this graph are those of the graph deleting the diagonal vertices of the $k \times k$ -grid. We reconstruct the graph $\hat{\Gamma}$ isomorphic to the $k \times k$ -grid from $\tilde{\Gamma}$ by adding a set of pairs of maximal cliques as new vertices to the vertices of $\tilde{\Gamma}$. Lastly using the graph $\hat{\Gamma}$, an extended graph Γ^* of the graph (X, R_1) is constructed.

We use the following notation here. Let $\Gamma' = (V(\Gamma'), E(\Gamma'))$ be a finite connected graph and d' be the metric of Γ' . For two vertices x, y of Γ' such that d'(x, y) = i, we denote the cardinalities of the sets $\{z \in V(\Gamma') \mid$ d'(x,z) = i - 1, d'(z,y) = 1, $\{z \in V(\Gamma') \mid d'(x,z) = i + 1, d'(z,y) = 1\}$ and $\{z \in V(\Gamma') \mid d'(x,z) = i, d'(z,y) = 1\}$ by $c_i(x,y), b_i(x,y)$ and $a_i(x,y)$ respectively. Moreover we denote the valency of a vertex x by k(x), and if Γ' is regular we denote the valency of Γ' by $k(\Gamma')$.

We state four lemmas to prove the theorem.

We note that $k_0 = k_6 = 1$, $k_1 = k_5 = k - 2$, $k_2 = k_4 = 2k - 4$ and $k_3 = (k-2)(k-5)$. Therefore we have |X| = k(k-1). We note $p_{h,i}^j = (B_h)_{i,j} = (B_{6-h})_{i,6-j} = p_{6-h,i}^{6-j}$ for $\forall j, h, i$. For any element $x \in X$ there exists a unique element $x' \in X$ such that $(x, x') \in R_6$ as $p_{0,6}^6 = 1$. We consider a bijection ψ on X defined by $\psi(x) = x'$ for any $x \in X$. It is clear that $\psi^2 = id_X$. We denote the metric of $\widetilde{\Gamma}$ by $\widetilde{\rho}$.

Lemma 3.1 The graph $\widetilde{\Gamma}$ is a regular graph with the valency 2k-4, $d(\widetilde{\Gamma}) = 3$, $a_1(\widetilde{\Gamma}) = k-3$, $b_1(\widetilde{\Gamma}) = k-2$ and $a_2(\widetilde{\Gamma}) = 2k-6$. Suppose that $\widetilde{\rho}(x, y) = 2$. If $y \notin \widetilde{\Gamma}(\psi(x))$, then $c_2(x, y) = 2$ and if $y \in \widetilde{\Gamma}(\psi(x))$, then $c_2(x, y) = 1$. We have also $\widetilde{\Gamma}_3(x) = \{\psi(x)\}$ for any $x \in X$.

Proof. It is easily verified that $\tilde{\Gamma}$ is a regular graph of the valency 2k - 4 as $p_{4,4}^0 = 2k - 4$. Now $p_{4,4}^i \neq 0$ for $i \in \{1, 2, 3, 4, 5\}$. Therefore there is an element $z \in X$ such that $\tilde{\rho}(x, z) = 1$ and $\tilde{\rho}(z, y) = 1$ for elements x, y such that $(x, y) \in R_i$ (i = 1, 2, 3, 4 or 5). Moreover $\tilde{\rho}(x, \psi(x)) = 3$ holds. Therefore we have $d(\tilde{\Gamma}) = 3$ and $\tilde{\rho}(x, y) = 3$ holds if and only if $y = \psi(x)$.

Here we note that

$$(x,y) \in R_4$$
 if and only if $(\psi(x),y) \in R_2$ (3.1)

as $p_{4,i}^6 = 0$ for $i \neq 2$ and $p_{2,i}^6 = 0$ for $i \neq 4$. Therefore we have

$$\tilde{\rho}(x,y) = 1$$
 if and only if $\tilde{\rho}(\psi(x),\psi(y)) = 1.$ (3.2)

We have $a_1(\widetilde{\Gamma}) = k-3$ and $b_1(\widetilde{\Gamma}) = k-2$ as $p_{4,4}^4 = k-3$ and $\sum_{1 \le i \le 5(i \ne 4)} p_{i,4}^4 = k-2$. Let x, y be elements in X such that $\widetilde{\rho}(x, y) = 2$ and $y \notin \widetilde{\Gamma}(\psi(x))$. Then $c_2(x, y) = 2$, $a_2(x, y) = 2k - 6$ and $b_2(x, y) = 0$ as $p_{4,4}^i = 2$ and $\sum_{1 \le h \le 5(h \ne 4)} p_{h,4}^i = 2k-6$ for i = 1, 3, 5 and from (3.1). Let x, y be elements in X such that $\widetilde{\rho}(x, y) = 2$ and $y \in \widetilde{\Gamma}(\psi(x))$. Then $(x, y) \in R_2$ from (3.1). Therefore we have $c_2(x, y) = 1$, $b_2(x, y) = 1$ and $a_2(x, y) = 2k - 6$ as $p_{4,4}^2 = p_{6,4}^2 = 1$ and $\sum_{1 \le h \le 5(h \ne 4)} p_{h,4}^2 = 2k - 6$. We also have $c_3(x, \psi(x)) = 2k - 4$ for any $x \in X$. This completes the proof of the lemma. **Lemma 3.2** Let x be an element of X. Then $\widetilde{\Gamma}(x)$ is a disjoint union of two cliques of the same cardinality k-2.

Proof. Let $x \in X$ and $y \in \widetilde{\Gamma}(x)$. Since $a_1(x, y) = k - 3$ and $k(\widetilde{\Gamma}) = 2k - 4$, we may assume

$$\widetilde{\Gamma}(x) = \{y, y_1, y_2, \dots, y_{k-3}, z_1, z_2, \dots, z_{k-2}\}, \ \{y_1, y_2, \dots, y_{k-3}\} \subset \widetilde{\Gamma}(y)$$

and $\{z_1, z_2, \ldots, z_{k-2}\} \subset \widetilde{\Gamma}_2(y)$. Set $S = \{y, y_1, y_2, \ldots, y_{k-3}\}$ and $T = \{z_1, z_2, \ldots, z_{k-2}\}$. Let z be any element of T. Since $c_2(y, z) \leq 2$, $\tilde{\rho}(x, y) = \tilde{\rho}(x, z) = 1$ and $S \cap \widetilde{\Gamma}(z) \subset \widetilde{\Gamma}(y) \cap \widetilde{\Gamma}(z)$, it follows that $|S \cap \widetilde{\Gamma}(z)| \leq 1$. Then we have $|T \cap \widetilde{\Gamma}(z)| \geq k - 4$ since $a_1(x, z) = k - 3$. However it follows that k - 3 elements excluding z are contained in T. Therefore $|T \cap \widetilde{\Gamma}_2(z)| \leq 1$. Suppose that $T \cap \widetilde{\Gamma}_2(z) \neq \emptyset$. Then there exists an element $u \in T$ where $\tilde{\rho}(z, u) = 2$. Therefore $T \setminus \{z, u\} \subset \widetilde{\Gamma}(z)$. Moreover $|T \cap \widetilde{\Gamma}_2(u)| \leq 1$ as same as $|T \cap \widetilde{\Gamma}_2(z)| \leq 1$. Hence we obtain $T \cap \widetilde{\Gamma}_2(u) = \{z\}$. Therefore it follows that x and every elements of T except z and u are contained in $\widetilde{\Gamma}(z) \cap \widetilde{\Gamma}(u)$. It implies $k - 3 \leq 2$ since $c_2(z, u) \leq 2$. Thus $k \leq 5$, which contradicts our assumption. Hence we have $T \cap \widetilde{\Gamma}_2(z) = \emptyset$ and any element of T except z is adjacent to z. However since z is any element of T, T is a clique. Similarly S is a clique. Thus the lemma is proved.

We denote the set $S \cup \{x\}$ and $T \cup \{x\}$ by $C_1(x)$ and $C_2(x)$. We note that $|C_1(x)| = |C_2(x)| = k - 1$. Obviously $C_i(x)$ is a maximal clique of $\widetilde{\Gamma}$ for i = 1, 2. Any maximal clique of $\widetilde{\Gamma}$ is equal to $C_i(x)$ for an element $x \in X$ and $i \in \{1, 2\}$. We denote the set of maximal cliques of $\widetilde{\Gamma}$ by $MC(\widetilde{\Gamma})$. Put $\mathcal{D} = \{C \cup \psi(C) \mid C \in MC(\widetilde{\Gamma})\}.$

We note that $C \cap \psi(C) = \emptyset$ for any $C \in MC(\widetilde{\Gamma})$. For $i \in \{1,2\}$ we have $y \in C_i(x)$ if and only if $C_i(x) = C_j(y)$ for j = 1 or 2, as we see in the proof of Lemma 3.2. Hence we have $|MC(\widetilde{\Gamma})| = \frac{2|X|}{k-1} = 2k$ and $|\mathcal{D}| = k$. For $i \in \{1,2\}$ we have $\psi(C_i(x)) = C_j(\psi(x))$ for some j from (3.2). Hence we may assume $\psi(C_i(x)) = C_i(\psi(x))$ without loss of generality. We have the following lemma about \mathcal{D} .

Lemma 3.3 (1) Let x be any element of X. Then there exist exactly two elements of \mathcal{D} containing x.

(2) Let x, y be any elements of X such that $\tilde{\rho}(x, y) = 1$. Then there exists exactly one element of \mathcal{D} containing x and y.

(3) Let x, y be any elements of X such that $\tilde{\rho}(x,y) = 2$ and $y \in$

 $\Gamma(\psi(x))$. Then there exists exactly one element of \mathcal{D} containing x and y.

(4) Let D_1 and D_2 be distinct elements of \mathcal{D} . Then $|D_1 \cap D_2| = 2$.

(5) Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\widetilde{\Gamma}(x) \cap D| = 2$.

Proof. (1), (2) and (3) are trivial from Lemma 3.2.

(4): Let D_1 and D_2 be distinct elements of \mathcal{D} . Then there are elements a and b of X such that $D_1 = C_1(a) \cup \psi(C_1(a))$ and $D_2 = C_1(b) \cup \psi(C_1(b))$. Now we will prove that $D_1 \cap D_2 \neq \emptyset$.

Firstly suppose that $\tilde{\rho}(a, b) = 1$. If $a \in C_1(b)$, then $a \in C_1(a) \cap C_1(b)$. Therefore $D_1 \cap D_2 \neq \emptyset$. Similarly if $b \in C_1(a)$, then also $D_1 \cap D_2 \neq \emptyset$. Hence we may assume $a \in C_2(b)$ and $b \in C_2(a)$. Then $\tilde{\rho}(a, \psi(b)) = 2$ and $\tilde{\rho}(\psi(a), \psi(b)) = 1$. Therefore there is a unique element $u \in X$ which is adjacent to a and $\psi(b)$ from Lemma 3.1. If $u \in C_1(a) \cap C_1(\psi(b))$, then $D_1 \cap D_2 \neq \emptyset$. Hence we may assume $u \in C_2(a)$ or $u \in C_2(\psi(b))$. If $u \in C_2(a)$, then u is adjacent to b. Therefore $\tilde{\rho}(b, \psi(b)) = 2$, a contradiction. Similarly if $u \in C_2(\psi(b))$, then $\tilde{\rho}(a, \psi(a)) = 2$, also a contradiction.

Secondly suppose that $\tilde{\rho}(a, b) = 2$ and $\tilde{\rho}(a, \psi(b)) = 2$. Then there are exactly two elements $u, v \in X$ which are adjacent to both a and b and there are exactly two elements $u', v' \in X$ which are adjacent to both a and $\psi(b)$ from Lemma 3.1. Then u is not adjacent to v and u' is not adjacent to v'. Therefore we may assume (i): $u \in C_1(a), v \in C_2(a), u \in C_1(b)$ and $v \in C_2(b)$ or (ii): $u \in C_1(a), v \in C_2(a), u \in C_2(b)$ and $v \in C_1(b)$. If the case (i) occurs, then we have $D_1 \cap D_2 \neq \emptyset$. Thus we may assume the case (ii). Similarly we may assume $u' \in C_1(a), v' \in C_2(a), u' \in C_2(\psi(b))$ and $v' \in C_1(\psi(b))$. Then u is adjacent to u' and u is adjacent to $\psi(u')$. Therefore $\tilde{\rho}(u', \psi(u')) = 2$. This is a contradiction. Thus it is proved that $D_1 \cap D_2 \neq \emptyset$.

Since $C_1(a) \neq C_1(b)$, $|C_1(a) \cap C_1(b)| \leq 1$ from (2). However $C_1(a) \cap C_1(b) \neq \emptyset$ and $C_1(a) \cap C_1(\psi(b)) \neq \emptyset$ are not compatible. Because if compatible, there is an element $u \in C_1(a) \cap C_1(b)$ and an element $v \in C_1(a) \cap C_1(\psi(b))$. Then $\tilde{\rho}(u, \psi(u)) = 2$, a contradiction. Moreover $\psi(D_i) = D_i$ for i = 1, 2, and $D_1 \cap D_2 = (C_1(a) \cap C_1(b)) \cup (C_1(a) \cap C_1(\psi(b))) \cup (C_1(\psi(a)) \cap C_1(\psi(b)))$. Hence $|D_1 \cap D_2| = 2$. Thus (4) is proved.

(5): Let $D \in \mathcal{D}$ and $x \in X$ such that $x \notin D$. For any $j \in \{1, 2\}$, $D \neq C_j(x) \cup \psi(C_j(x))$ as $x \notin D$. Therefore $|D \cap (C_j(x) \cup \psi(C_j(x)))| = 2$ from (4). Moreover $\psi(D) = D$. Hence $|D \cap C_j(x)| = 1$, which means that $|D \cap \widetilde{\Gamma}(x)| = 2$. Thus (5) is proved.

We now define a graph $\widehat{\Gamma}$ on the set $X \cup \mathcal{D}$ as follows:

two elements of X are adjacent in $\widehat{\Gamma}$ if and only if they are adjacent in $\widetilde{\Gamma}$, $x \in X$ is adjacent to $D \in \mathcal{D}$ in $\widetilde{\Gamma}$ whenever $x \in D$, and no distinct two elements of \mathcal{D} are adjacent in $\widetilde{\Gamma}$.

The metric of the graph $\widehat{\Gamma}$ is denoted by $\hat{\rho}$.

Lemma 3.4 The graph $\widehat{\Gamma}$ is isomorphic to the Hamming graph H(2, k)

Proof. Let x be any element of X, then there exist exactly two elements of \mathcal{D} containing x and $\psi(x)$. Therefore $\hat{\rho}(x, \psi(x)) = 2$ by the definition above. Hence we have $d(\widehat{\Gamma}) = 2$.

For any $x \in X$, there exist exactly two elements of \mathcal{D} containing x from (1) of Lemma 3.3. Moreover, since $k(\widetilde{\Gamma}) = 2k - 4$, the valency of x in the graph $\widehat{\Gamma}$ is 2k-2. Moreover for any $D \in \mathcal{D}$, since D contains exactly 2(k-1) elements of X, the valency of D in $\widehat{\Gamma}$ is 2k-2. Thus $k(\widehat{\Gamma}) = 2k-2$.

Let x, y be elements of X such that $\hat{\rho}(x, y) = 1$. Then there exists exactly one element of \mathcal{D} containing x and y from (2) of Lemma 3.3. On the other hand exactly k - 3 elements of X are adjacent to x and y as $a_1(\widetilde{\Gamma}) = k - 3$. Hence it follows $a_1(x, y) = k - 2$ in $\widehat{\Gamma}$. Let $x \in X$ and $D \in \mathcal{D}$ be adjacent in $\widehat{\Gamma}$. Then $x \in D$. We have $|D \cap \widetilde{\Gamma}(x)| = k - 2$. Hence it follows $a_1(x, D) = k - 2$ in $\widehat{\Gamma}$. Thus $a_1(\widehat{\Gamma}) = k - 2$.

Let x, y be elements of X such that $\hat{\rho}(x, y) = 2$. If $y = \psi(x)$, then obviously $c_2(x, y) = 2$ in $\widehat{\Gamma}$ because there are exactly two elements of \mathcal{D} containing x and $\psi(x)$. If $y \in \widetilde{\Gamma}(\psi(x))$, then there exists exactly one element of \mathcal{D} containing x and y from (3) of Lemma 3.3.

Moreover there exists exactly one element of X which is adjacent to x and y as $c_2(x, y) = 1$ in $\widetilde{\Gamma}$ from Lemma 3.1. Therefore $c_2(x, y) = 2$ in $\widehat{\Gamma}$. If $y \notin \widetilde{\Gamma}(\psi(x))$, then there is no element of \mathcal{D} containing x and y. However there exist exactly two elements of X which are adjacent to x and y as $c_2(x, y) = 2$ in $\widetilde{\Gamma}$. Therefore $c_2(x, y) = 2$ in $\widehat{\Gamma}$. Let D_1 , D_2 be distinct elements of \mathcal{D} . Then $|D_1 \cap D_2| = 2$ from (4) of Lemma 3.3. Therefore $c_2(D_1, D_2) = 2$ in $\widehat{\Gamma}$. Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\widetilde{\Gamma}(x) \cap D| = 2$ from (5) of Lemma 3.3. Therefore $c_2(D, x) = 2$ in $\widehat{\Gamma}$. Hence $c_2(\widehat{\Gamma}) = 2$.

Thus the graph $\widehat{\Gamma}$ has the same parameters as those of the Hamming graph H(2, k). (cf. [9]). This completes the proof of the lemma.

Proof of Theorem 3.3. From Lemma 3.4 there exists a bijection φ : $X \cup$

 $\mathcal{D} \mapsto \Omega \times \Omega$ such that $\varphi(\mathcal{D}) = \{(i,i) \mid i \in \Omega\}$ and $(x,y) \in R_4$ if and only if $\varphi(x)_1 = \varphi(y)_1$ or $\varphi(x)_2 = \varphi(y)_2$ for any $x, y \in X$ $(x \neq y)$.

We can now construct the antipodal double cover Γ^* of a strongly regular graph with parameters (k, 0, 2). Let Ω^+ be the set $\{1^+, 2^+, \ldots, k^+\}$ and Ω^- be the set $\{1^-, 2^-, \ldots, k^-\}$. The set of vertices of Γ^* is $V(\Gamma^*) = X \cup$ $\Omega^+ \cup \Omega^- \cup \{\infty^{\pm}\}$.

The adjacency of Γ^* is defined as the follows:

 ∞^+ adjacent to i^+ and ∞^- adjacent to i^- for any $i \in \Omega$, for $x, y \in X$, x and y are adjacent iff $(x, y) \in R_1$, $x \in X$ and $i^+ \in \Omega^+$ are adjacent iff $\varphi(x)_1 = i$, $x \in X$ and $j^- \in \Omega^-$ are adjacent iff $\varphi(x)_2 = j$.

The metric of the graph Γ^* is denoted by ρ . Then we have the following statement.

$$\rho(x,y) = 2 \quad \text{if} \ (x,y) \in R_4$$
(3.3)

We can verify that Γ^* is a distance regular graph whose intersection array is (k, k-1, 1, 1; 1, 1, k-1, k) in the sequel. For any $x \in \{\infty^{\pm}\} \cup \Omega^+ \cup \Omega^-$, it is clear that k(x) = k from the definitions. For any $x \in X$, there are exactly k-2 elements of X which are adjacent to x as $p_{1,1}^0 = k-2$. Moreover x is adjacent to only one element $\varphi(x)_1^+$ in Ω^+ and $\varphi(x)_2^-$ in $\Omega^$ respectively. Therefore k(x) = k. Thus $k(\Gamma^*) = k$.

We note that the bijection φ is a graph isomorphism from $\widehat{\Gamma}$ onto the Hamming graph H(2,k) on $\Omega \times \Omega$ such that $\varphi(\mathcal{D}) = \{(i,i) \mid i \in \Omega\}$. Moreover in the subgrph of H(2,k) which is deleted the vertices $\{(i,i) \mid i \in \Omega\}$, there exists exactly one vertex at distance 3 from a vertex (i,j), namely (j,i). This implies the following statement.

$$\varphi(x) = (i, j)$$
 if and only if $\varphi(\psi(x)) = (j, i)$ (3.4)

We have the following lemma.

Lemma 3.5 Let x, y be elements of X such that $\varphi(x) = (i, j)$ and $\varphi(y) = (\ell, h)$. Then the following (1) and (2) hold.

(1) If $\rho(x, y) = 1$, then $\{i, j\} \cap \{\ell, h\} = \emptyset$.

(2) If $t \notin \{i, j\}$, then there exists exactly one element $u \in X$ such that $\rho(x, u) = 1$ and $\varphi(u)_1 = t$ and exactly one element $v \in X$ such that $\rho(x, v) = 1$ and $\varphi(v)_2 = t$.

N. Nakagawa

Proof. (1): Suppose that $\varphi(x) = (i, j), \ \varphi(y) = (\ell, h)$ and $\rho(x, y) = 1$. Then $(x, y) \in R_1$. If $i = \ell$ or j = h, then $(x, y) \in R_4$. This is a contradiction. If i = h or $j = \ell$, then $(x, \psi(y)) \in R_4$ from (3.4). Therefore $(x, y) \in R_2$ from (3.1), also a contradiction. Therefore $\{i, j\} \cap \{\ell, h\} = \emptyset$.

(2): Suppose that $\varphi(x) = (i, j)$ and $t \notin \{i, j\}$. If $\rho(x, a) = 1$ and $\rho(x, b) = 1$, then $\varphi(a)_1 \neq \varphi(b)_1$ and $\varphi(a)_2 \neq \varphi(b)_2$ as $p_{1,1}^4 = 0$. On the other hand $|\{z \in X \mid \rho(x, z) = 1\}| = k - 2$ as $p_{1,1}^0 = k - 2$. Hence from (1), $\Omega \setminus \{i, j\} = \{\varphi(z)_1 \mid z \in X, \ \rho(x, z) = 1\}$. It means that there exists exactly one $u \in X$ such that $\varphi(u)_1 = t$. Similarly there exists exactly one $v \in X$ such that $\varphi(v)_2 = t$. The lemma is proved.

Lemma 3.6 It follows that $c_1(\Gamma^*) = b_3(\Gamma^*)$, $c_2(\Gamma^*) = b_2(\Gamma^*)$, $c_3(\Gamma^*) = b_1(\Gamma^*)$ and $c_4(\Gamma^*) = b_0(\Gamma^*)$. Moreover the diameter of Γ^* is 4.

Proof. Since $p_{1,1}^2 \neq 0, \, p_{1,1}^3 \neq 0$ and $p_{1,1}^5 = 0$ we have

$$\rho(x,y) = 2 \quad \text{if} \ (x,y) \in R_2 \cup R_3$$
(3.5)

$$\rho(x,y) > 2 \quad \text{if} \quad (x,y) \in R_5 \tag{3.6}$$

Fix any $x \in X$, we set as the following.

$$\begin{aligned} A(x) &= \{ y \in X \mid (x, y) \in R_1 \}, \\ B(x) &= \{ y \in X \mid y \neq \psi(x), \ \varphi(y)_1 = \varphi(x)_2 \text{ or } \varphi(y)_2 = \varphi(x)_1 \}, \\ B'(x) &= \{ y \in X \mid y \neq x, \ \varphi(y)_1 = \varphi(x)_1 \text{ or } \varphi(y)_2 = \varphi(x)_2 \}, \\ A'(x) &= \{ y \in X \mid (x, y) \in R_5 \} \text{ and} \\ C(x) &= X \setminus (A(x) \cup B(x) \cup B'(x) \cup A'(x) \cup \{\psi(x)\}). \end{aligned}$$

We note that $y \in B'(x)$ if and only if $(x, y) \in R_4$ and $y \in B(x)$ if and only if $(x, y) \in R_2$ from (3.1) and (3.4). Hence it follows that $y \in C(x)$ if and only if $(x, y) \in R_3$.

Now since $p_{1,6}^i = p_{5,6}^{6-i} = 0$ for $i \in \{0, 1, 2, 3, 4, 6\}$, we obtain the following statement.

$$(x,y) \in R_1$$
 if and only if $(x,\psi(y)) \in R_5$ (3.7)

Suppose that $\varphi(x) = (i, j)$. Then we have $\Gamma^*(x) = A(x) \cup \{i^+, j^-\}$ and $\Gamma_2^*(x) = B(x) \cup C(x) \cup B'(x) \cup (\Omega^+ \setminus \{i^+, j^+\}) \cup (\Omega^- \setminus \{i^-, j^-\}) \cup \{\infty^{\pm}\}$ from (3.3), (3.5) and (2) of Lemma 3.5. Moreover $\Gamma_2^*(x) \cap \Gamma^*(y) \neq \emptyset$ for any $y \in A'(x)$. Hence $\Gamma_3^*(x) = A'(x) \cup \{i^-, j^+\}$ from (3.6) and $p_{1,2}^6 = p_{1,3}^6 = p_{1,3}^6$

 $p_{1,4}^6 = 0$. We also have $\Gamma_4^*(x) = \{\psi(x)\}.$

For any $i \in \Omega$, $\Gamma^*(i^+) = \{x \in X \mid \varphi(x)_1 = i\} \cup \{\infty^+\}$, $\Gamma_2^*(i^+) = \{x \in X \mid \varphi(x)_1 \neq i \text{ and } \varphi(x)_2 \neq i\} \cup (\Omega^+ \setminus \{i^+\}) \cup (\Omega^- \setminus \{i^-\}) \text{ as } p_{4,1}^3 \neq 0 \text{ and } p_{4,1}^5 \neq 0$. Moreover $\Gamma_3^*(i^+) = \{x \in X \mid \varphi(x)_2 = i\} \cup \{\infty^-\} \text{ as } p_{1,1}^2 \neq 0$ and $\Gamma_4^*(i^+) = \{i^-\}$. We obtain the similar results concerning $\Gamma_t^*(i^-)$ for t = 1, 2, 3, 4. Therefore $d(\Gamma^*) = 4$.

From the facts above and (3.1), (3.4) and (3.7), $\Gamma^*(x) = \Gamma^*_3(\psi(x))$, $\Gamma^*_2(x) = \Gamma^*_2(\psi(x))$ and $\Gamma^*_3(x) = \Gamma^*(\psi(x))$ for any $x \in X$. Therefore we have $c_1(\Gamma^*) = b_3(\Gamma^*), c_2(\Gamma^*) = b_2(\Gamma^*), c_3(\Gamma^*) = b_1(\Gamma^*)$ and $c_4(\Gamma^*) = b_0(\Gamma^*)$. The lemma is proved.

Theorem 3.3 follows from Lemma 3.6 if we prove that $b_1(\Gamma^*) = k - 1$ and $b_2(\Gamma^*) = 1$. There are no triangle whose vertices are all in X as $p_{1,1}^1 = 0$. Suppose that $\rho(x, y) = 1$ for $x, y \in X$. Then $\psi(x)_1 \neq \psi(y)_1$ and $\psi(x)_2 \neq \psi(y)_2$ from (1) of Lemma 3.5. Thus there are no triangle containing x, y as the vertices. Hence $a_1(\Gamma^*) = 0$, which implies $b_1(\Gamma^*) = k - 1$.

Suppose that $\rho(x, y) = 2$ for $x, y \in X$. Then $y \in B(x) \cup C(x) \cup B'(x)$. If $y \in B(x) \cup C(x)$, then $c_2(x, y) = 1$ as $p_{1,1}^2 = p_{1,1}^3 = 1$. If $y \in B'(x)$, then also $c_2(x, y) = 1$ though $p_{1,1}^4 = 0$ since either $\varphi(x)_1 = \varphi(y)_1$ or $\varphi(x)_2 = \varphi(y)_2$. Suppose that $\rho(x, i^+) = 2$ for $x \in X$. Then there is a unique element $u \in X$ such that $\rho(x, u) = 1$ and $\rho(u, i^+) = 1$ from (2) of Lemma 3.5. Therefore $c_2(x, i^+) = 1$. Similarly $c_2(x, j^-) = 1$ for x, j such that $\rho(x, j^-) = 2$. Obviously $c_2(\infty^+, x) = 1$ and $c_2(\infty^-, x) = 1$ for any $x \in X$, $c_2(i^+, j^+) = 1$, $c_2(i^-, j^-) = 1$ and $c_2(i^+, j^-) = 1$ for any $i \neq j$. Hence $c_2(\Gamma^*) = 1$, which implies $b_2(\Gamma^*) = 1$ from Lemma 3.6. This completes the proof of Theorem 3.3.

Remark Let x be any vertex of Γ^* . Eigenvalues of the subgraph $\Gamma_2^*(x)$ are k-2, \sqrt{k} , $-1 + \sqrt{k-1}$, $0, -2, -\sqrt{k}$ and $-1 - \sqrt{k-1}$. Moreover their multiplicities are 1, $\frac{(k-1)(k-2)}{4}$, $\frac{k(\sqrt{k-1}+2)(\sqrt{k-1}-1)}{4}$, k-1, k-1, $\frac{(k-1)(k-2)}{4}$ and $\frac{k(\sqrt{k-1}-2)(\sqrt{k-1}+1)}{4}$ respectively.

Acknowledgment The author thanks Prof. Akihiro Munemasa for his valuable discussions during the preparation of this article and thanks the referees for their helpful comments and suggestions.

N. Nakagawa

References

- [1] Araya M., Hiraki A. and Jurišić A., Distance-Regular Graphs with $b_2 = 1$ and Antipodal Covers. Europ. J. Combin. 18 (1997), 243-248.
- [2] Bannai E. and Ito T., Algebraic Combinatorics I. Benjamin-Cummings, California, 1984.
- [3] Brouwer A.E., Cohen A.M. and Neumaier A., *Distance-Regular Graphs*. Springer-Verlag, Berlin, Heidelberg, 1989.
- [4] van Dam E.R., Three-class association schemes. Preprint.
- [5] Kwok W.M., Character Table of a Controlling Association Scheme Defined by the General Orthogonal Group O(3, q). Graphs. Combin. 7 (1991), 39-52.
- [6] Gardiner A.D., Antipodal covering graphs. J. Combin. Theory Ser. B,16 (1974), 255-273.
- [7] Godsil C.D., Covers of Complete Graphs. Advanced Studies in pure Mathematics 24, Kinokuniya, Tokyo, 1996.
- [8] Munemasa A., Strongly regular graphs with parameters $(k, \lambda, \mu) = (k, 0, 2)$. Private communication.
- [9] Shrikhande S.S., The uniqueness of the L_2 association scheme. Ann. Math. Statist. **30** (1959), 781–798.

Department of Mathematics Faculty of Science and Technology Kinki University Higashi-Osaka, Osaka 577-8520 Japan E-mail: nakagawa@math.kindai.ac.jp

Present address: Department of Mathematics Ohio State University 231 West 18th Avenue Columbus Ohio 43210-1174 U. S. A.