
Hokkaido Mathematical Journal Vol. 30 (2001) p. 431-450

On strongly regular graphs with parameters
(k, 0, 2) and their antipodal double covers
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Abstract. Let \Gamma be a strongly regular graph with parameters (k, \lambda, \mu)=(q^{2}+1,0,2)

admitting G(\cong PGL(2, q)2) as one point stabilizer for odd prime power q . We show that
if G stabilizes a vertex x of \Gamma and acts on \Gamma_{2}(x) transitively, then q=3 holds and \Gamma is
the Gewirtz graph. Moreover it is shown that an antipodal double cover whose diameter
4 of a strongly regular graph with parameters (k, 0, 2) is reconstructed from a symmetric
association scheme of class 6 with parameters p_{j.k}^{i}(0\leq i, j, k\leq 6) in the Section 3.

Key words: antipodal cover of strongly regular graph, association scheme, finite transitive
group.

1. Introduction

We are interested in the classification problems of distance regular
graphs with b_{2}=1 . Let \Gamma be a distance regular graph with b_{2}=1 and
valency k>2 . If the diameter d(\Gamma) of \Gamma is larger more than 4, then \Gamma is
isomorphic to the dodecahedron ([3, p.182]). In [1], M. Araya, A. Hiraki
and A. Juri\check{s}i\acute{c} showed that if d(\Gamma)=4 , then \Gamma is an antipodal double cover
of a strongly regular graph with parameters (k, \lambda, \mu)=(n^{2}+1,0,2) for an
integer n not divisible by 4 and if d(\Gamma)=3 , then \Gamma is an antipodal cover of
a complete graph. Obviously an antipodal cover of a complete graph is a
distance regular graph with b_{2}=1 if it’s diameter is 3.

The classification problems of antipodal covers of complete graphs are
very difficult. Because the existence of an antipodal distance regular (n-
2)-fold cover of the complete graph K_{n} claims the existence of a projective
plane of order (n-1) for an odd positive integer n , moreover an antipodal
distance regular (n-1)-fold cover of K_{n} is equivalent to the existence of a
Moore graph with the diameter 2 and the valency n . ( [6], [7] )

The strongly regular graphs with parameters (k, \lambda, \mu)=(5,0, 2) and
(10, 0, 2) are known, the former one has an antipodal double cover with
d=4, namely the Wells graph, the latter one (the Gewirtz graph) does not
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have an antipodal double cover with d=4 ([3, p.372]). The existence or
nonexistence of strongly regular graphs with (n^{2}+1,0,2) for n\geq 5 are not
known up to date. We have studied these graphs.

2. Strongly regular graphs with (q^{2}+1,0,2) admitting
PGL(2, q^{2}) for q=p^{e}

In this section we prove the following theorem.

Theorem 2.1 Let \Gamma be a strongly regular graph with parameters (q^{2}+

1,0,2) and G be a group isomorophic to PGL(2, q^{2}) for an odd prime power
q=p^{e} . Suppose that G acts on \Gamma as G stabilizes a vertex \infty of \Gamma and G is
transitive on \Gamma_{2}(\infty) . Then q=3 and \Gamma is the Gewirtz graph.

We denote the set of vertices of a graph \Gamma by V(\Gamma) , the set \{y\in V(\Gamma)|

d(x, y)=1\} by \Gamma(x) and the set \{y\in V(\Gamma)|d(x, y)=i\} by \Gamma_{i}(x) for
x\in V(\Gamma) and i\geq 2 .

Lemma 2.1 Let \Gamma be a strongly regular graph with parameters (q^{2}+1,0,2)

and \infty be a vertex of \Gamma Then the eigenvalues and their multiplicities of
the induced subgraph \Gamma_{2}(\infty) of \Gamma are the following.

Proof Let A and A_{1} be adjacency matrices of \Gamma and \Gamma_{2}(\infty) respectively.
We note that the degrees of A and A_{1} are 2+q^{2}+ \frac{q^{2}(q^{2}+1)}{2} and \frac{q^{2}(q^{2}+1)}{2}

respectively. Then A is written as

A=(\begin{array}{lll}A_{1} X 0X^{t} 0 10^{t} 1^{t} 0\end{array})

where X is a \frac{q^{2}(q^{2}+1)}{2}\cross(q^{2}+1) submatix indicating the adjacency relation
between vertices of \Gamma_{2}(\infty) and \Gamma_{1}(\infty) , and 1 is the (q^{2}+1)\cross 1 all 1 matrix.
Let I_{n} be the unit matrix of degree n and J_{n,m} be the n\cross m all 1 matrix.
Since A^{2}=(q^{2}+1)I_{n}+\lambda A+\mu(J_{n}-A-I_{n}) where n=2+q^{2}+ \frac{q^{2}(q^{2}+1)}{2} ,
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\lambda=0 and \mu=2 , we have A^{2}=-2A+(q^{2}-1)I_{n}+2J_{n} . Therefore

A_{1}^{2}+XX^{t}=-2A_{1}+(q^{2}-1)I_{m}+2J_{m} , (2.1)

where m= \frac{q^{2}(q^{2}+1)}{2} . Moreover since A_{1}X=2J_{m,\ell}-2X where \ell=q^{2}+1 ,
we have

A_{1}XX^{t}A_{1}=4XX^{t}+4(q^{2}-3)J_{m} . (2.2)

Hence from (2.1) and (2.2),

A_{1}^{4}+2A_{1}^{3}-(q^{2}+3)A_{1}^{2}-8A_{1}+4(q^{2}-1)I_{m}

=2(q^{42}-4q+3)J_{m} . (2.3)

We can calculate easily that \{2, -2, q-1, -q - 1\} are the roots of the
equation x^{4}+2x^{3}-(q^{2}+3)x^{2}-8x+4(q^{2}-1)=0 . Therefore the eigenvalues
of A_{1} are these values and q^{2}-1 whose multiplicity 1.

Let the multiplicities of the eigenvalues 2, -2, q-1 and -q-1 be a ,
b , f and g respectively. Since the degree of A_{1} is \frac{q^{2}(q^{2}+1)}{2} , trace(A_{1})=0 ,
trace(A_{1}^{2})= \frac{q^{2}(q^{2}+1)(q^{2}-1)}{2} , trace(A_{1}^{3}.)=0 , we have a=0, b=q^{2} , f=
\frac{(q^{2}+1)(q^{2}+q-2)}{4} , .q = \frac{(q^{2}+1)(q^{2}-q-2)}{4} by soiving the following linear equations.

\{\begin{array}{l}1+a+b+f+g=\frac{q^{2}(q^{2}+1)}{2}q^{2}-1+2a-2b+(q-1)f+(-q-1).q=0(q^{2}-1)^{2}+4a+4b+(q^{2}-2q+1)f+(q^{2}+2q+1)q=\frac{q^{2}(q^{2}+1)(q^{2}-1)}{2}(q^{2}-1)^{3}+8a-8b+(q^{3}-3q^{2}+3q-1)f+(-q^{32}-3q-3q-1)g=0.\end{array}

\square

Let \Gamma be a strongly regular graph with parameters (q^{2}+1,0,2) and
G be a group isomorophic to PGL(2, q^{2}) for an odd prime power q=p^{e} .
Suppose that G acts on \Gamma as G stabilizes a vertex \infty of \Gamma and transitively
on \Gamma_{2}(\infty) . We put

z\equiv(\begin{array}{ll}1 00 -1\end{array}) (mod Z (GL(2, q^{2} ))) and H=C_{G}(z) .

Then H is a dihedral group of order 2 (q^{2}-1) and |G : H|= \frac{q^{2}(q^{2}+1)}{2} . Since
there is a unique conjugacy class of involutions in G and any two subgroups
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of index \frac{q^{2}(q^{2}+1)}{2} are conjugate in G. Hence it holds that H is the stabilizer
G_{v} of a vertex v\in\Gamma_{2}(\infty) . Throughout the section we fix this vertex v .

Let \omega be a primitive element of the multiplicative group GF(q^{2})^{*} . Put
D= \{\omega^{i}|1\leq i\leq\frac{q^{2}-1}{2}\} . We may assume that 2^{-1}\in D . We have
GF(q^{2})=D\cup-D\cup\{0\} . Set

I\equiv(\begin{array}{ll}l 00 1\end{array}) (mod Z(GL(2, q^{2} ))),

x_{\alpha}\equiv(\begin{array}{lll}1 \alpha -2^{-1}1 \alpha +2^{-1}\end{array}) (mod Z(GL(2, q^{2} ))),

where \alpha\in D\cup\{0\} . We can verify the following lemma.

Lemma 2.2 The set \{ I\}\cup\{x_{\alpha}|\alpha\in D\cup\{0\}\} is a complete repre-
sentative of double cosets H\backslash G/H . Moreover it follows that Hx_{\alpha}H=

Hx_{-\alpha}H , Hx_{\alpha}H=Hx_{\alpha}^{-1}H where \alpha\in D\backslash \{2^{-1}\} , and |Hx_{0}H : H|=
\frac{(q^{2}-1)}{2} , |Hx_{2^{-1}}H : H|=2(q^{2} – 1 ) and |Hx_{\alpha}H : H|=(q^{2} –1 ) for any
\alpha\in D\backslash \{2^{-1}\} .

G acts naturally on G/H=\{Hx|x\in G\} . It is easily shown that
(G, V(\Gamma_{2}(\infty)))\cong(G, G/H) as the permutation groups.

An orbital graph \Gamma_{\alpha} of the permutation group (H, G/H) with respect
to an orbit Hx_{\alpha}H is defined as the following.

The set of vertices is G/H . A vertex Hx is adjacent to a vertex Hy if
and only if xy^{-1}\in Hx_{\alpha}H . Now we have the following lemma.

Lemma 2.3 The graph \Gamma_{2}(\infty) is isomorphic to an orbital graph \Gamma_{\alpha_{0}} for
a suitable element \alpha_{0}\in D\backslash \{2^{-1}\} .

Proof Take a vertex w\in\Gamma_{2}(\infty) which is adjacent to v . There is an
element x\in G such that w=v^{x} by our assumption. Pick up \alpha_{0} such that
x\in Hx_{\alpha_{0}}H . Then a mapping f defined by f(v^{y})=Hy(y\in G) gives an
isomorphism from \Gamma_{2}(\infty) onto \Gamma_{\alpha 0} . \square

Here we denote the adjacency matrix of the graph \Gamma_{\alpha} by A_{\alpha} . It is well
known that the permutation character 1_{H}^{G} of (G, G/H) has \frac{q^{2}-5}{4} distinct
irreducible characters of degree q^{2}+1 , \frac{q^{2}-1}{4} distinct irreducible characters
of degree q^{2}-1 , 2 distinct irreducible characters of degree q^{2} and a trivial
character as its irreducible constituent. G acts on G/H\cross G/H naturally. It
is also known that R_{\triangle}=\{(Hx, Hx)|x\in G\} and R_{\alpha}=\{(Hx, Hy)|xy^{-1}\in
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Hx_{\alpha}H\}(\alpha\in D\cup\{0\}) are orbits of the permutation group (G, G/H\cross G/H) .
Moreover \mathcal{X}(G, G/H)=(G/H, \{R_{\alpha}|\alpha\in D\cup\{0, \triangle\}\}) is a symmetric
association scheme as 1_{H}^{G} is multiplicity free. Then A_{\alpha} is the adjacency
matrix of the association scheme \mathcal{X}(G, G/H) corresponding to the relation
R_{\alpha} .

The eigenvalues and their multiplicities of A_{\alpha} are found from the first
eigenmatrix of \mathcal{X}(G, G/H) . To describe this matrix we define a certain
partition of elements of GF(q^{2}) and a number of sums of the quadratic
character values of the multiplicative group GF(q^{2})^{*} .

We set as the following.

\Lambda= { \lambda\in GF(q^{2})|\lambda\neq 0 , \lambda is a nonsquare, \lambda-4 is a nonsquare}
\Theta= { \theta\in GF(q^{2})|\theta\neq 0,4 , \theta is a square, \theta-4 is a square}
\Pi= { \pi\in GF(q^{2})|\pi\neq 0,4 , \pi is a square, \pi-4 is a nonsquare}
—= { \xi\in GF(q^{2})|\xi\neq 0 , \xi is a nonsquare, \xi-4 is a square}

Then we obtain | \Theta|=\frac{q^{2}-5}{4} , | \Lambda|=|\Pi|=|_{\cup}^{-}-|=\frac{q^{2}-1}{4} and GF(q^{2})=\{0,4\}\cup

\Theta\cup\Lambda\cup\Pi\cup--- .
We set \ell_{1}=\frac{q^{2}-1}{4} , \ell_{2}=\frac{q^{2}-5}{4} , \Lambda=\{\lambda_{i}|1\leq i\leq\ell_{1}\} , \Theta=\{\theta_{i}|1\leq i\leq

\ell_{2}\} , \Pi=\{\pi_{i}|1\leq i\leq\ell_{1}\} , and —=\{\xi_{i}|1\leq i\leq\ell_{1}\} .
Let \delta be a primitive (q^{2}+1) -th root of 1, \epsilon be a primitive (q^{2}-1)-th

root of 1 and \chi be the character of order 2 of GF(q^{2})^{*} with \chi(0)=0 .
For \alpha\in GF(q^{2}) and a positive integer m, we define \mu_{0}(\alpha) , \mu_{1}(m, \alpha) ,

\mu_{2}(m, \alpha) as follows.

\mu_{0}(\alpha)=\chi(2\alpha+2)+\chi(2\alpha-2)

+ \sum_{i=1}^{\ell_{1}}(\chi(\lambda_{i}-2\alpha-2)+\chi(\lambda_{i}+2\alpha-2))

+ \sum_{i=1}^{\ell_{2}}(\chi(\theta_{i}-2\alpha-2)+\chi(\theta_{i}+2\alpha-2))

\mu_{1}(m, \alpha)=2+\chi(2\alpha-2)+\chi(2\alpha+2)

+ \frac{1}{2}\sum_{i=1}^{\ell_{1}}(2-\chi(\lambda_{i}-2\alpha-2)-\chi(\lambda_{i}+2\alpha-2))(\epsilon^{(2i-1)m}+\epsilon^{-(2i-1)m})
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+ \frac{1}{2}\sum_{i=1}^{\ell_{2}}(2+\chi(\theta_{i}-2\alpha-2)+\chi(\theta_{i}+2\alpha-2))(\epsilon^{(2i)m}+\epsilon^{-(2i)m})

\mu_{2}(m, \alpha)=-\chi(2\alpha-2)-\chi(2\alpha+2)

- \frac{1}{2}\sum_{i=1}^{\ell_{1}}(2-\chi(\xi_{i}-2\alpha-2)-\chi(\xi_{i}+2\alpha-2))(\delta^{(2i-1)m}+\delta^{-(2i-1)m})

- \frac{1}{2}\sum_{i=1}^{\ell_{1}}(2+\chi(\pi_{i}-2\alpha-2)+\chi(\pi_{i}+2\alpha-2))(\delta^{(2i)m}+\delta^{-(2i)m})

Now we have the following lemma.

Lemma 2.4 The first eigenmatrix of the association scheme \mathcal{X}(G, G/H)

is the following. (Here \alpha\in D\backslash \{2^{-1}\} )

R_{\triangle} R_{2^{-1}} R_{0} R_{\alpha}

\rho_{1} 1 2 (q^{2}-1) \frac{q^{2}-1}{2} q^{2}-1

(1)
\rho_{q^{2}} 1 q^{2}-3 -1 -2

(2)
\rho_{q^{2}} 1 -2 \frac{\mu_{0}(0)}{2} \mu 0(\alpha)

(m)
\rho_{q^{2}+1}

1 \leq m\leq\frac{q^{2}-}{2}Q^{\ulcorner} (m : even)
1 -2

\underline{\mu_{1}}(m, 0)

\mu_{1} (m, \alpha)
\overline{2}

(m)
\rho_{q^{2}-1}

‘ y. 0 \rceil -0
\underline{l^{A}2}(m, 0)

,.\wedge/-\wedge r)

1 \leq m\leq\frac{q^{-}-0}{2} (m : odd)
\perp

–A
\overline{2}

\mu_{A}
.

\backslash \prime\prime b, \prime X/

Proof W.M . Kwok gave the first eigenmatrix of the association scheme
corresponding to the permutation group (O(3, q) , O(3, q)/O^{+}(2, q)) in [5]. It
follows that O(3, q)\cong\{\pm 1\}\cross SO(3, q) and SO(3, q)\cong PGL(2, q) , (G, G/H)
is isomorphic to (O(3, q)/\{\pm 1\} , O(3, q)/(\{\pm 1\}\cross O^{+}(2, q))) as permutation
groups. Therefore we can compute the first eigenmatrix of the association
scheme \mathcal{X}(G, G/H) as the table of the lemma by using the table in [5].
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(cf. [5], p.48) \square

From Lemma 2.3, \Gamma_{2}(\infty)\cong\Gamma_{\alpha_{0}} . Concerning the element \alpha_{0} , we have
the following lemma.

Lemma 2.5 It follows that \mu_{0}(\alpha_{0})=q-1 and \mu_{2}(m, \alpha_{0})=q-1 for any
odd number m such that 1 \leq m\leq\frac{q^{2}-3}{2} .

Proof. We compare eigenvalues and their multiplicities in the table in
Lemma 2.1 with those in the table of Lemma 2.4 for \alpha=\alpha_{0} . They c0-

incide as a whole. Hence we have

\frac{(q^{2}+1)(q^{2}+q-2)}{4}=s(q^{2}+1)+t(q^{2}-1)

where s is the number of m such that \mu_{1}(m, \alpha_{0})=q-1 and t is the number
of m such that \mu_{2}(m, \alpha_{0})=q-1 in the case \mu_{0}(\alpha_{0})=-q-1 or

\frac{(q^{2}+1)(q^{2}-q-2)}{4}=s(q^{2}+1)+t,(q^{2}-1)

where s is the number of m such that \mu_{1}(m, \alpha_{0})=-q-1 and t is the
number of m such that \mu_{2}(m, \alpha_{0})=-q-1 in the case \mu_{0}(\alpha_{0})=q-1 .

Suppose that \frac{(q^{2}+1)(q^{2}+q-2)}{4}=s(q^{2}+1)+t(q^{2} –1 ) . Then for each
odd prime divisor r of q^{2}+1 , r divides t because that the greatest common
divisor of r and q^{2}-1 is 1. Therefore \frac{q^{2}+1}{2} divides t . However it is impossible

factthats\leq\frac{q^{2}\frac{q^{2}-1}{-54}}{4}ift\neq 0ast\leq

.

\cdot Hence t=0. Then s= \frac{q^{2}+q-2}{4} . It contradicts to the

Suppose that \frac{(q^{2}+1)(q^{2}-q-2)}{4}=s(q^{2}+1)+t(q^{2}-1) . Then similarly we
have t=0. Then \mu_{0}(\alpha_{0})=q-1 and \mu_{2}(m, \alpha_{0})=q-1 for any odd number
m. The lemma is proved. \square

Lemma 2.6 Let \ell and k be positive integers. Then the following equations
hold.

1 \leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd(\delta^{(2\ell-1)m}+\delta^{-(2\ell-1)m})=1

(2.4)

1 \leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd(\delta^{(2k)m}+\delta^{-(2k)m})=-1

(2.5)

Proof. Concerning the first equation, let d be the greatest common divisor
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of 2\ell-1 and q^{2}+1 . Put s= \frac{q^{2}+1}{d} and \eta=\delta^{(2\ell-1)} . We note that d is odd
and s is even. Obviously \eta is a primitive s-th root of 1. Hence \eta^{\frac{s}{2}}=-1 .
Then we have

1 \leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd(\delta^{(2\ell-1)m}+\delta^{-(2\ell-1)m})

=( \sum_{1\leq i\leq sd-1,i:odd}\eta^{i})-\eta^{\frac{sd}{2}}

= (\eta+\eta^{s+1}+\cdot +\eta^{(d-1)s+1})(1+\eta^{2}+\eta^{4}+ \cdot. +\eta^{s-2})+1=1

as 1+\eta^{2}+\eta^{4}+ +\eta^{s-2}=0 .
Concerning the second equation, let d be the greatest common divisor

of 2k and q^{2}+1 . Put s= \frac{q^{2}+1}{d} and \eta=\delta^{2k} . Then d is even and s is odd
and \eta is a primitive s-th root of 1. We have

1 \leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd(\delta^{(2k)m}+\delta^{-(2k)m})

=( \frac{d}{2}-1)(1+\eta+\eta^{2}+ +\eta^{s-1})+(\eta+\eta^{2}+ \cdot 1+\eta^{s-1})=-1

as 1+\eta^{1}+\eta^{2}+\cdot\cdot+\eta^{s-1}=0 . \square

The following lemma can be easily verified from Lemma 2.6.

Lemma 2.7 It follows that

2 (\begin{array}{llll}\Sigma \mu_{2}(m,\alpha_{0})1\leq m\leq\frac{q^{2}-1}{2} ’ m\cdot.odd \end{array})

=- \frac{(q^{2}-1)}{2}(\chi(2\alpha_{0}+2)+\chi(2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{1}}(\chi(\xi_{i}-2\alpha_{0}-2)+\chi(\xi_{i}+2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{1}}(\chi(\pi_{i}-2\alpha_{0}-2)+\chi(\pi_{i}+2\alpha_{0}-2)) .
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Proof of Theorem 2.1. From the definition of \mu_{0}(\alpha_{0}) and Lemma 2.7 we
have

\mu 0(\alpha_{0})+2(_{1\leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd}\mu_{2}(m, \alpha_{0}))

=- \frac{(q^{2}-3)}{2}(\chi(2\alpha_{0}+2)+\chi(2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{1}}(\chi(\lambda_{i}-2\alpha_{0}-2)+\chi(\lambda_{i}+2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{2}}(\chi(\theta_{i}-2\alpha_{0}-2)+\chi(\theta_{i}+2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{1}}(\chi(\xi_{i}-2\alpha_{0}-2)+\chi(\xi_{i}+2\alpha_{0}-2))

+ \sum_{i=1}^{\ell_{1}}(\chi(\pi_{i}-2\alpha_{0}-2)+\chi(\pi_{i}+2\alpha_{0}-2)) .

However since \sum_{y\in GF(q^{2})}\chi(y)=0 and GF(q^{2})= \{0,4\}\cup\Theta\cup\Lambda\cup\Pi\bigcup_{-}^{-}- , it
follows that

\mu 0(\alpha_{0})+2(_{1\leq m\leq\frac{\sum_{q^{2}-1}}{2},m:odd}\mu_{2}(m, \alpha_{0}))

=- \frac{(q^{2}+1)}{2}(\chi(2\alpha_{0}+2)+\chi(2\alpha_{0}-2))

On the other hand from Lemma 2.5,

\mu_{0}(\alpha_{0})+2 (\begin{array}{lll}\Sigma \mu_{2}(m,\alpha_{0})1\leq m\leq\frac{q^{2}-1}{2}, m\cdot.odd \end{array})

=(q-1)+2( \frac{q^{2}-1}{4})(q-1)=\frac{q^{2}+1}{2}(q-1) .

Hence we obtain that |\chi(2\alpha_{0}+2)+\chi(2\alpha_{0}-2)|=q-1 . Therefore q\leq 3 .
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Then q=3 and \Gamma is the Gewirtz graph. ([3, p.372]). Thus Theorem 2.1 is
proved. \square

3. Reconstruction of the antipodal double cover \Gamma^{*} of a strongly
regular graph with \lambda=0 and \mu=2

tVe give the definition of association schemes.
Let Y be a finite set. An symmetric association scheme with d class is

a pair (Y, \mathcal{R}) such that
(i) \mathcal{R}=\{R_{0}, R_{1}, . , R_{d}\} is a partition of Y\cross Y ;
(ii) R_{0}=\{(x, x)|x\in Y\} ;
(iii) If (x, y)\in R_{i} , then (y, x)\in R_{i} for all i\in\{0,1, . , d\} ;
(iv) There are numbers p_{h,i}^{J} such that for any pair (x, y)\in R_{j} the number

of z\in Y with (x, z)\in R_{h} and (z, y)\in R_{i} equal p_{h,i}^{j} .
The number n_{j}=p_{j,j}^{0} of z\in Y with (x, z)\in R_{j} (which is independent

on x\in Y ) is called the valency of R_{j} , moreover for any fixed j(1\leq j\leq d-1)

intersection numbers c_{j} , a_{j} and b_{j} is defined as c_{j}=p_{j-1,1}^{J} , a_{j}=p_{j,1}^{J} and
b_{j}=p_{j+1,1}^{J} .

Now let \Gamma be a strongly regular graph with parameters (k, 0,2) . In
this section we study about the structure of the second neighbourhood of
\Gamma and antipodal double covers of them with d=4. E.R. van Dam and A.
Munemasa proved the following theorem independently. ([4, pp.13-14], [8])

Theorem 3.1 Let \Gamma be a strongly regular graph with \lambda=0 , \mu=2 of
valency k with k>5 . Then the second neighbourhood of \Gamma with respect to
any vertex generates a 3-class association scheme. Furthermore any scheme
with the same parameters can be constructed in this way from a strongly
regular graph with the same parameters as \Gamma

Now we consider the antipodal double cover \Gamma^{*} with d(\Gamma^{*})=4 of \Gamma

From now on we assume that k>7 through this section. The intersection
array of \Gamma^{*} is the following.

\iota(\Gamma^{*})=(\begin{array}{llllllll}0 1 1 k -1 k0 0 k -2 0 0k k -l 1 1 0\end{array})

Put \Omega=\{1,2, . , k\} . Let \infty^{+} be a vertex of \Gamma^{*} and \infty- be the unique
vertex in \Gamma^{*} such that d(\infty\infty)+,-=4 . We set \Gamma^{*}(\infty^{+})=\{1^{+}, 2^{+}, \ldots, k^{+}\}
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and \Gamma^{*}(\infty-)=\{1^{-}, 2^{- },\ldots, k^{-}\} . Then we may assume that d(i^{+}, i^{-})=4

for any i\in\Omega without loss of generallity. We denote the set of vertices of
the subgraph \Gamma_{2}^{*}(\infty^{+}) by X . For each x\in X . |\Gamma^{*}(\infty^{+})\cap\Gamma^{*}(x)|=1 anel
|\Gamma^{*}(\infty-)\cap\Gamma^{*}(x)|=1 as c_{2}=b_{3}=1 . Set \Gamma^{*}(\infty^{+})\cap\Gamma^{*}(x)=\{i^{+}\} and
\Gamma^{*}(\infty-)\cap\Gamma^{*}(x)=\{j^{-}\} . There exists a bijection \varphi from X onto (\Omega\cross

\Omega)\backslash \{(i, i)|i\in\Omega\} defined by \varphi(x)=(i, j) . Then we put i=\varphi(x)_{1} and
j=\varphi(x)_{2} . We denote a unique element of \Gamma_{4}^{*}(x) by x’ , then \varphi(x)_{1}=\varphi(x’)_{2}

and \varphi(x)_{2}=\varphi(x’)_{1} . Moreover we set as follows.

A(x)=\{y\in X|d(x, y)=1\} ,

B(x)= { y\in X|\varphi(y)_{1}=\varphi(x)_{2} or \varphi(y)_{2}=\varphi(x)_{1} , y\neq x’ }
A’(x)=\{y\in X|d(x’, y)=1\} ,

B’(x)= { y\in X|\varphi(y)_{1}=\varphi(x)_{1} or \varphi(y)_{2}=\varphi(x)_{2} , x\neq y }
C(x)=X\backslash (A(x)\cup B(x)\cup A’(x)\cup B’(x)\cup\{x, x’\})

We have the following theorem.

Theorem 3.2 We define relations on X as follows.
R_{0}=\{(x, x)|x\in X\} , R_{1}=\{(x, y)|y\in A(x)\} ,

R_{2}=\{(x, y)|y\in B(x)\} , R_{3}=\{(x, y)|y\in C(x)\} ,

R_{4}=\{(x, y)|y\in B’(x)\} , R_{5}=\{(x, y)|y\in A’(x)\} ,

R_{6}=\{(x, x’)|x\in X\}

Then \mathcal{X}=(X, R_{i}(0\leq i\leq 6)) is a symmetric 6-associalion scheme whose
parameters are p_{h,i}^{J}(0\leq h, j, i\leq 6) where (B_{h})_{i,j}=p_{h,i}^{J} in the following
matrices B_{h}(h=0,1, . , 6) .

B_{0}=I , B_{1}= 0 k-5 k-5 k-8 k-5 k-5\backslash /k\frac{0}{0}2000 020001 001011 022101 000111 000201 k \frac{00000}{0}2] ,
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/ 0 0 1
0 2 1

2k-4 2 1
B_{2}= 0 2k-10 k-5

0 2 k-3
0 0 1

\backslash

0 0 0

2k-12 k-5 2k-10022022 k-301111 022200 2k-4)000000 ,

B_{3}=

(_{0}^{0}(k-2)(k-5)0000(k-5)(k-8)2k-102k-10k-5k-500(k-5)(k-6)k-5k-5k-5k-500k^{2}-13k+482k-122k-12k-8k-811(k-5)(k-6)k-5k-5k-5k-500(k-5)(k-8)2k-102k-10k-5k-500(k-2)(k-5))000000

(B_{4})_{i,j}=(B_{2})_{i,(6-j)} , (B_{5})_{i,j}=(B_{1})_{i,(6-j)} ,

(B_{6})_{i,j}=(B_{0})_{i,(6-j)} for 0\leq i\leq 6,0\leq j\leq 6 .

The following theorem asserts that the inverse of the statement in
Theorem 3.2 is also true.

Theorem 3.3 Let \mathcal{X}=(X, R_{i}(0\leq\prime i\leq 6)) be a symmetric 6-ass0ciati0n
scheme with the same parameters as p_{h,i}^{J} in Theorem 3.2. Then the an-
tipodal double cover \Gamma^{*} with d(\Gamma^{*})=4 of a strongly regular graph with
parameters (k, 0,2) can be constructed from \mathcal{X} Moreover the graph (X, R_{1})

is isomorphic to the second neighbourhood of \Gamma^{*} with respect to any vertex.

We now start with a short sketch of the proof. First, we consider the
graph \overline{\Gamma}=(X, R_{4}) . It is shown that the parameters of this graph are those
of the graph deleting the diagonal vertices of the k\cross k-grid. We reconstruct
the graph \hat{\Gamma} isomorphic to the k\cross k-grid from \overline{\Gamma}by- adding a set of pairs of
maximal cliques as new vertices to the vertices of \Gamma Lastly using the graph
\hat{\Gamma} , an extended graph \Gamma^{*} of the graph (X, R_{1}) is constructed.

We use the following notation here. Let \Gamma’=(V(\Gamma’), E(\Gamma’)) be a finite
connected graph and d’ be the metric of \Gamma’ For two vertices x , y of \Gamma’

such that d’(x, y)=i , we denote the cardinalities of the sets \{z\in V(\Gamma’)|
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d’(x, z)=i-1 , d’(z, y)=1\} , \{z\in V(\Gamma’)|d’(x, z)=i+1, d’(z, y)=1\}

and \{z\in V(\Gamma’)|d’(x, z)=i, d’(z, y)=1\} by c_{i}(x, y) , b_{i}(x, y) and a_{i}(x, y)

respectively. Moreover we denote the valency of a vertex x by k(x) , and if
\Gamma’ is regular we denote the valency of \Gamma’ by k(\Gamma’) .

We state four lemmas to prove the theorem.
We note that k_{0}=k_{6}=1 , k_{1}=k_{5}=k-2 , k_{2}=k_{4}=2k-4 and

k_{3}=(k-2)(k-5) . Therefore we have |X|=k(k-1) . We note p_{h,i}^{?}=

(B_{h})_{i,j}=(B_{6-h})_{i,6-j}=p_{6-h,i}^{6-j} for \forall j , h , i . For any element x\in X there
exists a unique element x’\in X such that (x, x’)\in R_{6} as p_{0,6}^{6}=1 . We
consider a bijection \psi on X defined by \psi\underline{(}x ) =x’ for any x\in X . It is clear
that \psi^{2}=id_{X} . We denote the metric of \Gamma by \tilde{\rho} .

Lemma 3.1 The \underline{g}raph\overline{\Gamma} is a regula\underline{r}_{e}qraph with the valency 2k-4 , d(\overline{\Gamma})=

3 , a_{1}(\overline{\Gamma})_{-}=k-3 , b_{1}(\Gamma)=k-2 and a_{2}(\Gamma)=2k-6 . Suppose that \tilde{\rho}(x, y)=2 .
If y\not\in\Gamma(\psi(x)) , then c_{2}(x, y)=2 and if y\in\overline{\Gamma}(\psi(x)) , then c_{2}(x, y)=1 .
We have also \Gamma_{3}(x)=\{\psi(x)\} for any x\in X

Proof. It is easily verified that \overline{\Gamma} is a regular graph of the valency 2k-4
as p_{4,4}^{0}=2k-4 . Now p_{4,4}^{i}\neq 0 for i\in\{1,2,3,4,5\} . Therefore there is
an element z\in X such that \tilde{\rho}(x, z)=1 and \tilde{\rho}(z, y)=1 for elements x , y
such that (x, y)\in R_{i} (- i=1,2,3,4 or 5). Moreover \tilde{\rho}(x, \psi(x))=3 holds.
Therefore we have d(\Gamma)=3 and \tilde{\rho}(x, y)=3 holds if and only if y=\psi(x) .

Here we note that

(x, y)\in R_{4} if and only if (\psi(x), y)\in R_{2} (3.1)

as p_{4,i}^{6}=0 for i\neq 2 and p_{2,i}^{6}=0 for i\neq 4 . Therefore we have

\tilde{\rho}(x, y)=1 if and only if \tilde{\rho}(\psi(x), \psi(y))=1 . (3.2)

We have a_{1}(\overline{\Gamma})=k-3 and b_{1}(\overline{\Gamma})=k-2 as p_{4,4}^{4}=k-3 and \sum_{1\leq i\leq 5(i\underline{\neq 4})}p_{i,4}^{4}=

k-2 . Let x , y be elements in X such that \tilde{\rho}(x, y)=2 and y\not\in\Gamma(\psi(x)) .
Then c_{2}(x, y)=2 , a_{2}(x, y)=2k –6 and b_{2}(x, y)=0 as p_{4,4}^{i}=2 and
\sum_{1\leq h\leq 5(h\neq 4)}p_{h,4}^{i}=2k-6 for i=1,3,5 and from (3.1). Let x , y be elements
in X such that \tilde{\rho}(x, y)=2 and y\in\overline{\Gamma}(\psi(x)) . Then (x, y)\in R_{2} from (3.1).
Therefore we have c_{2}(x, y)=1 , b_{2}(x, y)=1 and a_{2}(x, y)=2k-6 as p_{4,4}^{2}=

p_{6,4}^{2}=1 and \sum_{1\leq h\leq 5(h\neq 4)}p_{h,4}^{2}=2k-6 . We also have c_{3}(x, \psi(x))=2k-4

for any x\in X . This completes the proof of the lemma. \square
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Lemma 3.2 Let x be an element of X Then \overline{\Gamma}(x) is a disjoint union of
two cliques of the same cardinality k-2 .

Proof Let x\in X and y\in\overline{\Gamma}(x) . Since a_{1}(x, y)=k-3 and k(\overline{\Gamma})=2k-4 ,
we may assume

\overline{\Gamma}(x)=\{y, y_{1}, y_{2}, \ldots, y_{k-3}, z_{1}, z_{2}, \ldots, z_{k-2}\} , \{y_{1} ,y_{2} , ,_{y_{k-3}\}}\subset\overline{\Gamma}(y)

and \{z_{1}, z_{2}, \ldots, z_{k-2}\}\subset\overline{\Gamma}_{2}(y) . Set S=\{y, y_{1}, y_{2}, . , y_{k-3}\} and T=
\{z_{1}, z_{2}, \ldots, z_{k-2}\} . Let z be any element of T Since c_{2}(y, z\underline{)}\leq 2,\tilde{\rho}(x, y)=

\tilde{\rho}(x, z)=1 and S\cap\overline{\Gamma}(z)\subset\overline{\Gamma}(y)\cap\overline{\Gamma}(z) , it follows that |S\cap\Gamma(z)|\leq 1 . Then
we have |T\cap\overline{\Gamma}(z)|\geq k-4 since a_{1}(x, z)=k-3 . However it follows that
k-3 elements excluding z are contained in T Therefore |T\cap\overline{\Gamma}_{2}(z)|\leq 1 .
Suppose that T\cap\overline{\Gamma}_{2}(z)\neq\emptyset . Then there exists an element u\in T where
\tilde{\rho}(z, u)=2 . Therefore T\backslash \{z, u\}\subset\overline{\Gamma}(z) . Moreover |T\cap\overline{\Gamma}_{2}(u)|\leq 1 as sa me
as |T\cap\overline{\Gamma}_{2}(z)|\leq 1 . Hence we obtain T\cap\overline{\Gamma}_{2}(u)=\{z\} . Therefore it follows
that x and every elements of T except z and u are contained in \overline{\Gamma}(z)\cap\overline{\Gamma}(u) .
It implies k-3\leq 2 since c_{2}(z,\underline{u)}\leq 2 . Thus k\leq 5 , which contradicts our
assumption. Hence we have T\cap\Gamma_{2}(z)=\emptyset and any element of T except z is
adjacent to z . However since z is any element of T. T is a clique. Similarly
S is a clique. Thus the lemma is proved. \square

We denote the set S\cup\{x\} and T\cup\{x\} by C_{1}(x) and C_{2}(x) . We note
that |C_{1}(x)|=|C_{2}(x)|=k-1 . Obviously C_{i}(x) is a maximal clique of \overline{\Gamma} for
i=1,2 . Any maximal clique of \overline{\Gamma} is equal to C_{i}(x) for an element x\in X

and i\in\{1,2\} . We denote the set of maximal cliques of \overline{\Gamma} by MC(\overline{\Gamma}) . Put
D=\{C\cup\psi(C)|C\in MC(\overline{\Gamma})\} .

We note that C\cap\psi(C)=\emptyset for any C\in MC(\overline{\Gamma}) . For i\in\{1,2\} we
have y\in C_{i}(x) if and only if C_{i}(x)=C_{j}(y) for j=1 or 2, as we see in the
proof of Lemma 3.2. Hence we have |MC( \overline{\Gamma})|=\frac{2|X|}{k-1}=2k and |D|=k . For
i\in\{1,2\} we have \psi(C_{i}(x))=C_{j}(\psi(x)) for some j from (3.2). Hence we
may assume \psi(C_{i}(x))=C_{i}(\psi(x)) without loss of generality. We have the
following lemma about V.

Lemma 3.3 (1) Let x be any element of X. Then there exist exactly
two elements of D containing x .

(2) Let x , y be any elements of X such that \tilde{\rho}(x, y)=1 . Then there
exists exactly one element of D containing x and y .

(3) Let x , y be any elements of X such that \tilde{\rho}(x, y)=2 and y\in
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\overline{\Gamma}(\psi(x)) . Then there exists exactly one element of D containing x and y .
(4) Let D_{1} and D_{2} be distinct elements of D. Then |D_{1}\cap D_{2}|=2 .
(5) Let D be an element of D and x be an element of X such that

x\not\in D . Then |\overline{\Gamma}(x)\cap D|=2 .

Proof. (1), (2) and (3) are trivial from Lemma 3.2.
(4): Let D_{1} and D_{2} be distinct elements of D . Then there are elements

a and b of X such that D_{1}=C_{1}(a)\cup\psi(C_{1}(a)) and D_{2}=C_{1}(b)\cup\psi(C_{1}(b)) .
Now we will prove that D_{1}\cap D_{2}\neq\emptyset .

Firstly suppose that \tilde{\rho}(a, b)=1 . If a\in C_{1}(b) , then a\in C_{1}(a)\cap C_{1}(b) .
Therefore D_{1}\cap D_{2}\neq\emptyset . Similarly if b\in C_{1}(a) , then also D_{1}\cap D_{2}\neq\emptyset .
Hence we may assume a\in C_{2}(b) and b\in C_{2}(a) . Then \tilde{\rho}(a, \psi(b))=2 and
\tilde{\rho}(\psi(a), \psi(b))=1 . Therefore there is a unique element u\in X which is
adjacent to a and \psi(b) from Lemma 3.1. If u\in C_{1}(a)\cap C_{1}(\psi(b)) , then D_{1}\cap

D_{2}\neq\emptyset . Hence we may assume u\in C_{2}(a) or u\in C_{2}(\psi(b)) . If u\in C_{2}(a) ,
then u is adjacent to b . Therefore \tilde{\rho}(b, \psi(b))=2 , a contradiction. Similarly
if u\in C_{2}(\psi(b)) , then \tilde{\rho}(a, \psi(a))=2 , also a contradiction.

Secondly suppose that \tilde{\rho}(a, b)=2 and \tilde{\rho}(a, \psi(b))=2 . Then there are
exactly two elements u , v\in X which are adjacent to both a and b and there
are exactly two elements u’ , v’\in X which are adjacent to both a and \psi(b)

from Lemma 3.1. Then u is not adjacent to v and u’ is not adjacent to v’ .
Therefore we may assume (i): u\in C_{1}(a) , v\in C_{2}(a) , u\in C_{1}(b) and v\in C_{2}(b)

or (ii): u\in C_{1}(a) , v\in C_{2}(a) , u\in C_{2}(b) and v\in C_{1}(b) . If the case (i) occurs,
then we have D_{1}\cap D_{2}\neq\emptyset . Thus we may assume the case (ii). Similarly we
may assume u’\in C_{1}(a) , v’\in C_{2}(a) , u’\in C_{2}(\psi(b)) and v’\in C_{1}(\psi(b)) . Then
u is adjacent to u’ and u is adjacent to \psi(u’) . Therefore \tilde{\rho}(u’, \psi(u’))=2 .
This is a contradiction. Thus it is proved that D_{1}\cap D_{2}\neq\emptyset .

Since C_{1}(a)\neq C_{1}(b) , |C_{1}(a)\cap C_{1}(b)|\leq 1 from (2). However C_{1}(a)\cap

C_{1}(b)\neq\emptyset and C_{1}(a)\cap C_{1}(\psi(b))\neq\emptyset are not compatible. Because if com-
patible, there is an element u\in C_{1}(a)\cap C_{1}(b) and an element v\in C_{1}(a)\cap

C_{1}(\psi(b)) . Then \tilde{\rho}(u, \psi(u))=2 , a contradiction. Moreover \psi(D_{i})=D_{i} for
i=1,2 , and D_{1}\cap D_{2}=(C_{1}(c\iota)\cap C_{1}(b))\cup(C_{1}(a)\cap C_{1}(\psi(b)))\cup(C_{1}(\psi(a))\cap

C_{1}(b))\cup(C_{1}(\psi(a))\cap C_{1}(\psi(b))) . Hence |D_{1}\cap D_{2}|=2 . Thus (4) is proved.
(5): Let D\in D and x\in X sucll that x\not\in D . For any j\in\{1,2\} ,

D\neq C_{j}(x)\cup\psi(C_{j}(x)) as x\not\in D . Therefore |D\cap(C_{j}(x)\cup\psi(C_{j}(x)))|=2

from \underline{(}4 ). Moreover \psi(D)=D . Hence |D\cap C_{j}(x)|=1 , which means that
|D\cap\Gamma(x)|=2 . Thus (5) is proved. \square
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We now define a graph \hat{\Gamma} on the set X\cup D as follows:

two elements of X are adjacent in \hat{\Gamma} if and onl\underline{y} if they are
adjacent in \overline{\Gamma} , x\in X is adjacent to D\in D in \Gamma whenever
x\in D , and no distinct two elements of D are adjacent in \overline{\Gamma}

The metric of the graph \hat{\Gamma} is denoted by \hat{\rho} .

Lemma 3.4 The graph \hat{\Gamma} is isomorphic to the Hamming graph H(2, k)

Proof. Let x be any element of X , then there exist exactly two elements of
D containing x and \psi(x) . Therefore \hat{\rho}(x, \psi(x))=2 by the definition above.
Hence we have d(\hat{\Gamma})=2 .

For any x\in X , there exist exactly\underline{t}wo elements of D containing x from
(1) of Lemma 3.3. Moreover, since k(\Gamma)=2k-4 , the valency of x in the
graph \hat{\Gamma} is 2k-2 . Moreover for any D\in D , since D contains exactly 2(k-1)
elements of X , the valency of D in \hat{\Gamma} is 2k-2 . Thus k(\hat{\Gamma})=2k-2 .

Let x , y be elements of X such that \hat{\rho}(x, y)=1 . Then there exists
exactly one element of D containing x and y from (2) of Lemma 3.3. On
the other hand exactly k-3 elements of X are adjacent to x and y as
a_{1}(\overline{\Gamma})=k-3 . Hence it follows a_{1}(x, y)=k-2 in \hat{\Gamma} Let x\in X and D\in D

be adjacent in \hat{\Gamma} Then x\in D . We have |D\cap\overline{\Gamma}(x)|=k-2 . Hence it follows
a_{1}(x, D)=k-2 in \hat{\Gamma} Thus a_{1}(\hat{\Gamma})=k-2 .

Let x , y be elements of X such that \hat{\rho}(x, y)=2 . If y=\psi(x) , then
obviously c_{2}(x, y)=2 in \hat{\Gamma} because there are exactly two elements of D
containing x and \psi(x) . If y\in\overline{\Gamma}(\psi(x)) , then there exists exactly one element
of D containing x and y from (3) of Lemma 3.3.

Moreover there exists exactly one element of X which is adjacent to x
and \underline{y} as c_{2}(x, y)=1 in \overline{\Gamma} from Lemma 3.1. Therefore c_{2}(x, y)=2 in \hat{\Gamma} If
y\not\in\Gamma(\psi(x)) , then there is no element of D containing x and y . However
there exist exac\underline{tl}y two elements of X which are adjacent to x and y as
c_{2}(x, y)=2 in \Gamma Therefore c_{2}(x, y)=2 in \hat{\Gamma} Let D_{1} , D_{2} be distinct
elements of D . Then |D_{1}\cap D_{2}|=2 from (4) of Lemma 3.3. Therefore
c_{2}(D_{1}, D_{2})=2 in \hat{\Gamma} Let D be an element of D and x be an element of X
such that x\not\in D . Then |\overline{\Gamma}(x)\cap D|=2 from (5) of Lemma 3.3. Therefore
c_{2}(D, x)=2 in \hat{\Gamma} Hence c_{2}(\hat{\Gamma})=2 .

Thus the graph \hat{\Gamma} has the same parameters as those of the Hamming
graph H(2, k) . (cf. [9]). This completes the proof of the lemma. \square

Proof of Theorem 3.3. From Lemma 3.4 there exists a bijection \varphi:X\cup
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D\mapsto\Omega\cross\Omega such that \varphi(D)=\{(i, i)|i\in\Omega\} and (x, y)\in R_{4} if and only
if \varphi(x)_{1}=\varphi(y)_{1} or \varphi(x)_{2}=\varphi(y)_{2} for any x , y\in X(x\neq y) .

We can now construct the antipodal double cover \Gamma^{*} of a strongly regu-
lar graph with parameters (k, 0,2) . Let \Omega^{+} be the set \{1^{+}, 2^{+}, \ldots , k^{+}\} and
\Omega^{-} be the set \{1^{-}, 2^{-}, \ldots, k^{-}\} . The set of vertices of \Gamma^{*} is V(\Gamma^{*})=X\cup

\Omega^{+}\cup\Omega^{-}\cup\{\infty^{\pm}\} .
The adjacency of \Gamma^{*} is defined as the follows:

\infty^{+} adjacent to i^{+} and \infty- adjacent to i^{-} for any i\in\Omega ,
for x , y\in X , x and y are adjacent iff (x, y)\in R_{1} ,
x\in X and i^{+}\in\Omega^{+} are adjacent iff \varphi(x)_{1}=i ,
x\in X and j^{-}\in\Omega^{-} are adjacent iff \varphi(x)_{2}=j .

The metric of the graph \Gamma^{*} is denoted by \rho . Then we have the following
statement.

\rho(x, y)=2 if (x, y)\in R_{4} (3.3)

We can verify that \Gamma^{*} is a distance regular graph whose intersection
array is (k, k-1,1,1;1,1, k-1, k) in the sequel. For any x\in\{\infty^{\pm}\}\cup\Omega^{+}\cup

\Omega^{-} , it is clear that k(x)=k from the definitions. For any x\in X , there
are exactly k-2 elements of X which are adjacent to x as p_{1,1}^{0}=k-2 .
Moreover x is adjacent to only one element \varphi(x)_{1}^{+} in \Omega^{+} and \varphi(x)_{2}^{-} in \Omega^{-}

respectively. Therefore k(x)=k . Thus k(\Gamma^{*})=k .
We note that the bijection \varphi is a graph isomorphism from \hat{\Gamma} onto the

Hamming graph H(2, k) on \Omega\cross\Omega such that \varphi(D)=\{(i, i)|i\in\Omega\} . More-
over in the subgrph of H(2, k) which is deleted the vertices \{(i, i)|i\in\Omega\} ,
there exists exactly one vertex at distance 3 from a vertex (i, j) , namely
(j, i) . This implies the following statement.

\varphi(x)=(i, j) if and only if \varphi(\psi(x))=(j, i) (3.4)

We have the following lemma.

Lemma 3.5 Let x , y be elements of X such that \varphi(x)=(i, j) and \varphi(y)=

(\ell, h) . Then the following (1) and (2) hold.
(1) If \rho(x, y)=1 , then \{i,j\}\cap\{\ell, h\}=\emptyset .
(2) If t \not\in\{i, j\} , then there exists exactly one element u\in X such

that \rho(x, u)=1 and \varphi(u)_{1}=t and exactly one element v\in X such that
\rho(x, v)=1 and \varphi(v)_{2}=t .
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Proof. (1): Suppose that \varphi(x)=(i, j) , \varphi(y)=(\ell, h) and \rho(x, y)=1 .
Then (x, y)\in R_{1} . If i=\ell or j=h, then (x, y)\in R_{4} . This is a contradiction.
If i=h or j=\ell , then (x, \psi(y))\in R_{4} from (3.4). Therefore (x, y)\in R_{2}

fro m (3.1) , also a contradiction. Therefore \{i, j\}\cap\{\ell, h\}=\emptyset .
(2): Suppose that \varphi(x)=(i, j) and t\not\in\{i, j\} . If \rho(x, a)=1 and

\rho(x, b)=1 , then \varphi(a)_{1}\neq\varphi(b)_{1} and \varphi(a)_{2}\neq\varphi(b)_{2} as p_{1,1}^{4}=0 . On the
other hand |\{z\in X|\rho(x, z)=1\}|=k-2 as p_{1,1}^{0}=k-2 . Hence from (1),
\Omega\backslash \{i, j\}=\{\varphi(z)_{1}|z\in X, \rho(x, z)=1\} . It means that there exists exactly
one u\in X such that \varphi(u)_{1}=t . Similarly there exists exactly one v\in X

such that \varphi(v)_{2}=t . The lemma is proved. \square

Lemma 3.6 It follows that c_{1}(\Gamma^{*})=b_{3}(\Gamma^{*}) , c_{2}(\Gamma^{*})=b_{2}(\Gamma^{*}) , c_{3}(\Gamma^{*})=

b_{1}(\Gamma^{*}) and c_{4}(\Gamma^{*})=b_{0}(\Gamma^{*}) . Moreover the diameter of \Gamma^{*} is 4.

Proof. Since p_{1,1}^{2}\neq 0 , p_{1,1}^{3}\neq 0 and p_{1,1}^{5}=0 we have

\rho(x, y)=2 if (x, y)\in R_{2}\cup R_{3} (3.5)

\rho(x, y)>2 if (x, y)\in R_{5} (3.6)

Fix any x\in X , we set as the following.

A(x)=\{y\in X|(x, y)\in R_{1}\} ,

B(x)= {y\in X|y\neq\psi(x) , \varphi(y)_{1}=\varphi(x)_{2} or \varphi(y)_{2}=\varphi(x)_{1} },
B’(x)= {y\in X|y\neq x , \varphi(y)_{1}=\varphi(x)_{1} or \varphi(y)_{2}=\varphi(x)_{2} },
A’(x)=\{y\in X|(x, y)\in R_{5}\} and
C(x)=X\backslash (A(x)\cup B(x)\cup B’(x)\cup A’(x)\cup\{\psi(x)\}) .

We note that y\in B’(x) if and only if (x, y)\in R_{4} and y\in B(x) if and
only if (x, y)\in R_{2} from (3.1) and (3.4). Hence it follows that y\in C(x) if
and only if (x, y)\in R_{3} .

Now since p_{1,6}^{i}=p_{5,6}^{6-i}=0 for i\in\{0,1,2,3,4,6\} , we obtain the following
statement.

(x, y)\in R_{1} if and only if (x, \psi(y))\in R_{5} (3.7)

Suppose that \varphi(x)=(i, j’) . Then we have \Gamma^{*}(x)=A(x)\cup\{i^{+}, j^{-}\} and
\Gamma_{2}^{*}(x)=B(x)\cup C(x)\cup B’(x)\cup(\Omega^{+}\backslash \{i^{+},j^{+}\})\cup(\Omega^{-}\backslash \{i^{-},j^{-}\})\cup\{\infty^{\pm}\}

from (3.3), (3.5) and (2) of Lemma 3.5. Moreover \Gamma_{2}^{*}(x)\cap\Gamma^{*}(y)\neq\emptyset for
any y\in A’(x) . Hence \Gamma_{3}^{*}(x)=A’(x)\cup\{i^{-}, j^{+}\}fro\ln(3.6) and p_{1,2}^{6}=p_{1,3}^{6}=
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p_{1,4}^{6}=0 . We also have \Gamma_{4}^{*}(x)=\{\psi(x)\} .
For any i\in\Omega , \Gamma^{*}(i^{+})=\{x\in X|\varphi(x)_{1}=i\}\cup\{\infty^{+}\} , \Gamma_{2}^{*}(i^{+})=\{x\in

X|\varphi(x)_{1}\neq i and \varphi(x)_{2}\neq i\}\cup(\Omega^{+}\backslash \{i^{+}\})\cup(\Omega^{-}\backslash \{i^{-}\}) as p_{4,1}^{3}\neq 0 and
p_{4,1}^{5}\neq 0 . Moreover \Gamma_{3}^{*}(i^{+})=\{x\in X|\varphi(x)_{2}=i\}\cup\{\infty-\} as p_{1,1}^{2}\neq 0

and \Gamma_{4}^{*}(i^{+})=\{i^{-}\} . We obtain the similar results concerning \Gamma_{t}^{*}(i^{-}) for
t=1,2,3,4 . Therefore d(\Gamma^{*})=4 .

From the facts above and (3.1), (3.4) and (3.7), \Gamma^{*}(x)=\Gamma_{3}^{*}(\psi(x)) ,
\Gamma_{2}^{*}(x)=\Gamma_{2}^{*}(\psi(x)) and \Gamma_{3}^{*}(x)=\Gamma^{*}(\psi(x)) for any x\in X . Therefore we have
c_{1}(\Gamma^{*})=b_{3}(\Gamma^{*}) , c_{2}(\Gamma^{*})=b_{2}(\Gamma^{*}) , c_{3}(\Gamma^{*})=b_{1}(\Gamma^{*}) and c_{4}(\Gamma^{*})=b_{0}(\Gamma^{*}) . The
lemma is proved. \square

Theorem 3.3 follows from Lemma 3.6 if we prove that b_{1}(\Gamma^{*})=k-1

and b_{2}(\Gamma^{*})=1 . There are no triangle whose vertices are all in X as p_{1,1}^{1}=

0 . Suppose that \rho(x, y)=1 for x , y\in X . Then \psi(x)_{1}\neq\psi(y)_{1} and \psi(x)_{2}\neq

\psi(y)_{2} from (1) of Lemma 3.5. Thus there are no triangle containing x , y as
the vertices. Hence a_{1}(\Gamma^{*})=0 , which implies b_{1}(\Gamma^{*})=k-1 .

Suppose that \rho(x, y)=2 for x , y\in X . Then y\in B(x)\cup C(x)\cup B’(x) . If
y\in B(x)\cup C(x) , then c_{2}(x, y)=1 as p_{1,1}^{2}=p_{1,1}^{3}=1 . If y\in B’(x) , then also
c_{2}(x, y)=1 though p_{1,1}^{4}=0 since either \varphi(x)_{1}=\varphi(y)_{1} or \varphi(x)_{2}=\varphi(y)_{2} .

Suppose that \rho(x, i^{+})=2 for x\in X Then there is a unique element u\in X

such that \rho(x, u)=1 and \rho(u, i^{+})=1 from (2) of Lemma 3.5. Therefore
c_{2}(x, i^{+})=1 . Similarly c_{2}(x, j^{-})=1 for x , j such that \rho(x, j^{-})=2 .

Obviously c_{2}(\infty^{+}, x)=1 and c_{2}(\infty-, x)=1 for any x\in X , c_{2}(i^{+}, j^{+})=

1 , c_{2}(i^{-}, j^{-})=1 and c_{2}(i^{+}, j^{-})=1 for any i\neq j . Hence c_{2}(\Gamma^{*})=1 ,

which implies b_{2}(\Gamma^{*})=1 from Lemma 3.6. This completes the proof of
Theorem 3.3. \square

Remark Let x be any vertex of \Gamma^{*} . Eigenvalues of the subgraph \Gamma_{2}^{*}(x)

are k-2 , \sqrt{k} , -1+\sqrt{k-1},0 , -2, -\sqrt{k} and -1-\sqrt{k-1} . Moreover their

multiplicities are 1, \frac{(k-1)(k-2)}{4} , \frac{k(\sqrt{k-1}+2)(\sqrt{k-1}-1)}{4} , k-1 , k-1 , \frac{(k-1)(k-2)}{4}

and \frac{k(\sqrt{k-1}-2)(\sqrt{k-1}+1)}{4} respectively.
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