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On conformal transformations in tangent bundles

Kazunari YAMAUCHI
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Abstract. Let M be a complete, simply connected Riemannian manifold with positive
constant scalar curvature, and TM its tangent bundle with the complete lift metric.
Assume that TM admits an essential infinitesimal conformal transformation, then M is
isometric to the standard sphere.

Key words: infinitesimal conformal transformation, infinitesimal projective transforma-
tion, Lie derivation.

1. Introduction

In the present paper everything will be always discussed in the C'®
category, and Riemannian manifolds will be assumed to be connected and
dimension > 1. Let M be a Riemannian manifold, and let ¢ be a trans-
formation of M. Then ¢ is called a projective transformation of M, if it
preserves the geodesics, where each geodesic should be confounded with a
subset of M by neglecting its affine parameter. Furtheremore ¢ is called
an affine transformation, if it preserves the Riemannian connection. We
then remark that a affine transformation may be characterized as a pro-
jective transformation which preserves the affine parameter together with
the geodesics. Let V be a vector field on M, and let us consider the local
one-parameter group {¢;} of local transformations of M generated by V.
Then V is called an infinitesimal projective transformation on M, if each
¢¢ is a local projective transformation of M. Clearly an affine transfor-
mation is a projective transformation, the converse is not true in general.
Indeed consider the n-dimensional real projective space P™(R) with the
standard Riemannian metric, which is the standard projectively flat Rie-
mannian manifold, and is a space of positive constant curvature. As is well
known, P"(R) admits a non-affine infinitesimal projective transformation.
As a converse problem, we know the following.
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Problem Let M be a complete, simply connected Riemannian manifold
with positive constant scalar curvature. Assume that M admits a non-affine
projective transformation, then is it isometric to the standard sphere?

We know there are many affirmative answers for this problem under
some additional conditions. For examples:

Theorem A ([4]) Let M be a compact, simply connected Riemannian
manifold with constant scalar curvature. Assume that M admits a non-
affine infinitesimal projective transformation, then it is isometric to the
standard sphere.

Theorem B ([3], [5]) Let M be a complete, simply connected Rieman-
nian manifold with harmonic curvature. Assume that M admits a non-
affine projective transformation, then it is isometric to the standard sphere.

Let T(M) be a tangent bundle over M with the complete lift metric g
and X a vector field in T'(M). Then X is called an infinitesimal conformal
transformation in T (M), if there exists a scalar function p in T(M) such
that £xg = 2pg, where £x denotes the Lie derivation with respect to X,
and further it is called essential if p depends on (y*) essentially, where (z*,3?)
the induced coordinates in T'(M).

The purpose of the present paper is to investigate some relations be-
tween the infinitesimal conformal transformations in 7(M) and the infinites-
imal projective transformations on M, and to prove the following theorem.

Theorem Let M be a complete, simply connected Riemannian manifold
with positive constant scalar curvature and T'(M) its tangent bundle with the
complete lift metric. Assume that T(M) admits an essential infinitesimal
conformal transformation X, then we have

(1) X induces an infinitesimal projective transformation on M, and
furthermore M is isometric to the standard sphere;

(2) The Weyl’s conformal curvature tensor of T(M) vanishes, that
is, T(M) is conformally flat.

This fact seems to support the evidence that the problem has an affir-
mative answer.

Let (S™;A) be a standard sphere of radius ﬁ and A the Laplacian

acting on (S™; A). The first eigenvalue of A is n) and the eigenfunction f
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satisfies the differential equation V;f;4+ Afg;; = 0. The gradientf defines
an infinitesimal conformal transformation on S™. Conversely, we have the
following Obata’s theorem.

Theorem C ([1]) Let M be a complete Riemannian manifold. In order
that M admits a non-constant scalar function f on M satisfying

Vifi +Afgi; =0,

for some positive constant X, it is necessary and sufficient that M 1is iso-
metric to the standard sphere of radius %

Next, the second eigenvalue of A is 2(n + 1)\ and the eigenfunction f
satisfies the differential equation V;V;fr + A(2figjkx + figki + frgi;) = 0.
The gradient f defines an infinitesimal projective transformation on S™.
Conversely, we have the following Tanno’s theorem.

Theorem D ([2]) Let M be a complete, simply connected Riemannian
manifold. In order that M admits a non-constant scalar function f on M
satisfying

ViV;fe + M2figjk + figri + frgij) =0, (*)

for some positive constant A, it is necessary and sufficient that M is iso-
metric to the standard sphere of radius ﬁ

For the study of projective transformation groups, the differential equa-
tion (*) plays an important role. Indeed, A and [Theorem| B were
proved by using (*), and it will be used in the proof of Theorem!

2. Preliminaries

Let I‘ihj be the coefficients of the Riemannian connection of M, then
y“Fahj can be regarded as coefficients of a non-linear connection of
T (M), where (z,y") are the induced coordinates in T(M). The indices
a,b,c,...,h,i,7,..., run over the range {1,2,...,n} and the indices
a,b,¢...,h,4,4,..., run over the range {1,2,...,n}. The summation con-
vention will be used in relation to this system of indices. By using y“Fahj,
we can define a local basis {Xp, X3} of T(M) as follows:

0 0

(¢ m 6
X =g Y hgym 2 TR
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which is called the adapted frame of T'(M). We denote {dz", 3"} the dual
basis of the adapted frame. By the straightforward caluculations, we have
the following lemma.

Lemma 1 The Lie brackets of the adapted frame of T(M) satisfy the
following:

[XuXJ] = yaKji;nXma (1)
[Xi, X5] = I'}" X, (2)
[Xz_" Xj] = O, (3)

where K ;™ denote the components of the curvature tensor of M.

Let X be a vector field in T(M) and (v",v") the components of X with
respect to the adapted frame. The components v" and vP are said to be
the horizontal components and the vertical components of X, respectively.
Let £x be the Lie derivation with respect to X. By using Lemma 1, we
can easily prove the following lemma for the Lie derivatives of the adapted
frame and the dual basis.

Lemma 2 The Lie derivatives of the adapted frame and the dual basis are
given as follows:

£xXn = =Xp(W"™) Xm = {y V" Eop + 0T} + Xn(0™)} Xy (1)

£x Xy = —Xz(v"™) X + {v°T}", — X5(v™)} X, (2)
£xdz" = X (v")dz™ + Xm(W™)oy™, (3)
£x0y" = {y v K, * +°T 1+ Xm('uﬁ)}d:cm

— (0T, — Xim(0™) }oy™. (4)

3. Infinitesimal conformal transformations in T'(M)

Let g = gijdz'dz’ be a Riemannian metric of M. The complete lift
metric g of T(M) is defined by g = 2g;;dz'6y’. By means of (3) and (4) of
[Lemma 2, we have the following lemma.

Lemma 3 The Lie derivative of G is given as follows:
£x9 = 2gim{y v* K, ;™ + 'UEI‘G"} + X;(v™)}da'da?
+2{v°0aij + g Xi (V™) = Gim (v*T; 7 — X5(v™) }da* 8y
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+ 29m; X;(v™) 8y 8y

Let X be an infinitesimal conformal transformation in T'(M) with the
complete lift metric g, that is, there exists a scalar function p in T'(M) such

that £xg = 2pg. Then, from Lemma 3, we have the following lemma.

Lemma 4 Let X be an infinitesimal conformal transformation in T (M)
with the complete lift metric. We have the following equations:

gim{yrvaKajrm + val—‘a"} + Xj (Um)}

+ gjm{yrvaKairm + Uaranzl' + Xl(vm>} =0, (1)
v*8agij + gmiXi (V™) — gim{v°T;", — X:(v™)} = 2pg:5, (2)
gij;(Um) + gmiXy(Um) =0. (3)

Applying X to (3) of Lemma 4, we get
Imi XgX;(v™)

- —gmiXEXj(Um) = —gminXE(’Um) = gkaszT(’Um) = gkaz—-Xj(’Um)
= —gmj X; Xz (v™) = —gmj Xz X;(v"™), from which, X£X;(v™) =0.
This shows that the horizontal components (v?) of X can be written in the
form v* = y*A] + B", where A® and B" are depend only on variables
(). The coordinate transformation rule implies that A * and B" are the
components of a certain (1,1) tensor field A and of a certain contravariant

vector field B on M, respectively. Substituting v® = y*A* + B" into (3) of
Lemma 4, we get A;; + Aj; = 0, where A;j = gm;jA,™. Thus we have

Lemma 5 The horizontal components (v*) of X are written in the fol-
lowing form:

v =y AN + B, (1)

where A" and B are the components of a certain (1,1) tensor field A
and of a certain contravariant vector field B on M, respectively. And the
components A satisfy the following:

Az'j + Aji =0, (2)
where A;j = gm; A;™.

Substituting (1) of into (2) of Lemma 4, we have
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(Y™ A" + B%)0agij + gmj(y" 0:A,™ + 0 B™) — gmyy'T,° AT
~ Gim (yrAra + Ba)an(ll + giij(vm) = 2pgija
it follows that
£Bgij - V;B; + eriArj + gimXJ—-(vm) = 2pgij, (3.1)

where we put B; = g,,B?, and £pg;j, V;jB; and V;A,; denote the com-
ponents of the Lie derivative of g with respect to B and of the covariant
derivatives of B and A, respectively. Applying X7 to [3.1), we get

ViAkj + gimX'EXj(v-m—) = QXE(p)gij. (32)
Interchanging k and j in and using (2) of Lemma 5, we obtain
9im X5 X5(v™) = Xz(p)gij + X;5(p)gik- (3.3)

The equations and imply V;Agj = Xz(p)gi — X5(p)gik- Putting
Vo A,® = (n — 1)p;, we get Xi(p) = px. Thus we have

Lemma 6 The components A;; satisfy:

Vil = ©rgij — ©jgik, (1)
and the scalar function p is written in the following form:

p=y"¢r+1, (2)
where 1 is a certain function on M.

Substituting (1) and (2) of into 3.1), we have

Lemma 7 The vertical components (’UE) of X are written in the following
form:

o = gy + y" (260 — ¢"™V,,B,) + CP,

where C* are the components of a certain contravariant vector field C on
M.

By virtue of (1) of Lemma 5, Lemma 7 and (1) of Lemma. 4, we obtain
—(ViCj + V;Ci)
+y"{ViV;B, 4+ Kgijr B* + V;V; B, + Kqojir B* — 29 9ir — 2¢igjr }
+ yTyS{KajisAra + Kaz’jsAra - gisijor - gjsvi‘Pr} =0.
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Thus we have
Lemma 8 The following equations hold:

ViV;B" + K ;" B® = §p; + 60p, (1)
where we put ¥; = V;;

V.C; +V;C; =0, (2)

where we put C; = g;oC?®, and V;C; denote the components of the covariant
derivative of C.

KajisA," + Kajir A" + Kaijs A 4+ Kaijr A
= gisvj(Pr + girijOs + gjsvi(;or + gjrvigo& (3)

where we put Kgjis = gsmKajim, and V;p, denote the components of the

covariant derivative of ¢ = p;dz.

4. Lemmas
Transvecting (3) of by ¢°" and using (2) of Lemma 3, we have
Vip; +V;p; = 0. (4.1)
Applying Ricci identity for (1) of Lemma 6, we obtain

KajisAra + gjivs%or - gjsvz"Pr = KarisAja + grivs(Pj - grsvi‘Pj-
(4.2)

Here, we put Yjisr = KqjisA,* + 95:Vsor — gjsVipr. Then the first Bianchi
identity implies

}/}isr + Y;sjr + Ys‘jir = 0. (43)
By means of and (3) of Lemma §, we get
insr + Y;jrs + inrs + }fijsr =0. (44)

By the definition of Yj;, and (4.2), Yjisr is symmetric in the indices j and
r, and skew symmetric in the indices ¢ and s. Thus, from [4.3), we have
Yjisr = Yijsr — Ysjir. Substituting this equation into [(4.4), we obtain

0= (Y;jsr - Ysjir) + }/;jrs + (Yijrs - Y;"jis) + Y'ijsr
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Yijsr + Yijrs - Y:sjir)
)/ijsr + Yz’jrs + Y;"ijs)

from which
Yijsr = —Yjirs = —Ysirj = Yerij,
it follows that
Yiisr = Yerji = —Ysjri = —Yrisj = —Yjisr, hence Y = 0.
Thus we have
Lemma 9 The following equation holds:
KajisA* + 9jiVspr — gisVipr = 0.

Operating ¢°™V,,, ¢V, and ¢"™V,, to the equation of Lemma 9,
and using (1) of Lemma 6 and [(4.1), we have

Vjvigor = (VaRji — VjRai)ATa — Kajircpa + Rji(p,« — gjingOa, (4.5)
(viRsa - vsRia)Ara =0, (46)
AabVaijis = (n - 1)I(ajz'vs‘;oa - gjiRsaSOa + gstiaﬂpa, (4-7)

where we put ¢? = g%¢; and A% = g“iAib, and Rj;, VoRj; and V,Kjpjis

denote the components of the Ricci tensor of M and of the covariant deriva-

tives of the Ricci tensor and of the curvature tensor of M, respectively.
Transvecting the equation of by ¢°", and using (2) of

and [4.1), we get

Ko A% = Vi (4.8)
Operating V, to the equation and using (1) of Lemma 6, we have
AP, Koy = Karjit® + VoV (4.9)

By virtue of (4.9), the second Bianchi identity and the Ricci identity, we
obtain

Aabvaijir = AabvaKm'jb = “(eriajb + viKarjb)Aab
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= Aaberaijb _ AabviKarjb
= arijipa - Kairjcpa + Vrvigoj - vivrCPj
= (Kar'ij + Kaijr + Kaj'r'i)(,oa - O

Hence, by [4.7), we have
Lemma 10 The following equation holds:
(n — 1) Kqjisp® = gjiRsap® — gjsRiatp”.
Transvecting the equation of by ¢’¢, we have

RusA% = —(n—1)Vspr. (4.10)
Operating V; to the equation (4.10) and using (1) of Lemma 6, we have
(n—=1)V;Vepr = —A,"V;Res — Rjsor + gjr Rasp®. (4.11)

Transvecting the equation by ¢’* and using [4.1), we obtain

Lemma 11 The following equation holds:
1
-éAr“VaS — nGrep® = 0,

where S denotes the scalar curvature of M and Grq = Ryq — %gm.
From (4.10) and (4.1), we have
Ras A% + Ry AS = 0. (4.12)
Operating V; to the equation and using (1) of Lemma 6, we obtain
AViRe — 9jsGarp® + Gjsr
= —(ASViRra — gjrGasp® + Gjrps)- (4.13)

Here, we put Yjsr = A,*V;Rsq — 9jsGarp® + Gjspr, then from and
(4.13), Yjsr is symmetric in the indices j and s, and skew symmetic in the
indices s and r. Thus we have Y;s, = ~Yjrs = —Yrjs = Yo = Yo =
—Yjr = —Yjsr, hence, Yjs = 0. Therefore we have

Lemma 12 The following equation holds:

Araijsa - gstar(Pa + st(Pr = 0.



368 K. Yamauchi

Substituting the equation of into and combining
Lemma 10, we obtain

Lemma 13 The following equation holds:
Vjvz'(Pr = _KajirQPa-

5. Proof of Theorem

Let M be a complete, simply connected Riemannian manifold with
positive constant scalar curvature and T(M) its tangent bundle with the
complete lift metric, and assume that T'(M) admits an essential infinitesimal
conformal transformation X.

Proof of (1) in [Theoreml. 1t is well known that a vector field P = p" 52 on
M is an infinitesimal projective transformation if and only if the components
p" satisfy the following equation:

where u; denote the components of a certain gradient vector field on M.

Thus from (1) of Lemma 8, the induced vector field B on M is an infinites-
imal projective transformation on M. O

Next we prove that M is isometric to the standard sphere. Since the
scalar curvature S of M is constant, implies

Gro® = 0. (5.1)
Transvecting the equation by ¢°, and using and {(5.1), we get
Ara(pa = fry (52)

where we put f = n(ggl)%(ps and V. f = f..
Operating V; to the equation and using (1) of Lemma 6, we obtain

28 4
Vifr = @roj — mgjrf + A"V pa, (5.3)
hence, by virtue of (1) of Lemma 6, we get

28

S
ViVfr = ¢iVipr — mgjrfl T a1

girfj + A,V V@,
(5.4)
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Combining Lemma 10, Lemma 13 and [5.1), we have
S
VleSOa = m(gla% - QljSOa), (5-5)

thus by [5.2), we obtain

. s S
Ar VlVJ‘Pa = n(n — 1)Ar190j - n(n _ l)gl]fr- (5'6)

Substituting into (5.4) and using (2) of Lemma 5, we get
Vivjfr + (2fig5r + figir + fr5)

5

(n—1)

S

= (Ve - mf“lr)%- (57)

Hence, by means of (4.10), we have

S 1 a
ViV;fr + n(Tl—)@flgjr + figir + fraij) = mGarAl Pj-

(5.8)
Here, we put Y;j = GorA;%pj, then by (5.8), (2) of and (4.12),

Y is symmetric in the indices r and j, and skew symmetric in the indices
r and [. Hence we have Y,;; = 0, it follows that

S
V\Vifr+ —m—

WVikr ¥ n(n—1)
Therefore if f is non-constant then by [Theorem| D, M is isometic to the

standard sphere. Next we assume f is constant. Since X is essential, f is
non-zero constant. From we have

(2flgjr + fjglr + frgjl) =0.

A g, = 0. (5.9)
From we obtain
S
rPs = —"’“—Ars- 10
Vi m F— (5.10)

Substituting into the equation of [Lemma 9, we get

KajisAra + (gjiAsr - gjsAir) = 0. (5.11)

_5
n(n — 1)
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Operating V; to the equation (5.11), and using (1) of Lemma 6, Lemma 10
and (5.1), we have

S
AV Kqjis + {Kljis - m(glsgji - gjsgzi)}% =0. (5.12)
Transevecting the equation (5.12) by ¢" and using [(5.9), we obtain

S
Kljis = m(glsgji - gjsgli)-

This shows M is a space of positive constant curvature, that is, M is iso-
metric to the standard sphere.

Proof of (2) in [Theoreml Let V be the Riemannian connection of T(M)
and FBAC the coefficients of V, that is,

= =m =m = =m =m
VxX; =T i X + T X, Vi, X5 =15 Xpm + T X,
Vi Xi =T Xmn + 15 Xm, Vx X5 =T;7Xm + 11 Xem,
where the indices A, B, C run over the range {1,...,n,1,...,n}, it follows
Vx,dah = —T % dzm — T2 5y™, Vx,oyh = T, de™ — T 5y™,
sz_,dxh = —fn}; -dx™ — .fm}l S0y™, széyh = —f,: sdx™ — fmh S0y™.
Then we have

Lemma 14 ([6]) The connection coefficients fBAC of V with the com-
plete lift metric satisfy the following:

— h — % — —
—h —h —h T
(5) T;,;=TI% (6) T;5=0, (1) T;5=0, (8) T;5=0.

The curvature tensor K of T(M) is defined by
K(X,Y)Z =VxVyZ-VyVxZ - —V—[X,Y]Z'
From and [Lemma 14, by the straightforward calculations, we have
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Lemma 15 The curvature tensor of T(M) are given as follows:

F(Xiv X)Xk = Kijkam + ya{viKajkm — ViK™ } Xem, (1)
K(Xi, X;) X5 = K;;,™ X, (2)
K(X;, X)Xy = K;j,™ X, (3)
K(X;, X)Xz =0, (4)
K(X; X5) X, =0, (5)
K(X; X5) Xz =0. (6)

Let g 45 be the components of the complete lift metric and K agcp the
components of K, that is, K apcp = §(K(Xa,XB)Xc,Xp). The scalar
curvature S of T(M) is defined by S = g4PgB K 4pcp, where g42 denote
the components of the inverse matrix of (g45). The tangent bundle T'(M)
is said to be conformally flat if the components of the curvature tensor of
T (M) are given as follows:

1

Kapcp = m(gADRBC —gppRac +GpcRap — GacRBD)

S -~ - — —
B 2(2n — 1)(n — 1) (9apgBc — 9BpIac),

where Rpc denote the components of the Ricci tensor of T(M). It is well
known that the scalar curvature S of T'(M) with the complete lift metric
vanishes, ([7]). Thus, T(M) with the complete lift metric is conformally flat
if the components of the curvature tensor of T'(M) are given

_ 1 o o I
Kapcp = m(gADRBC —9ppRac +pcRap — GacRBD).
(5.13)
Since M is a space of constant curvature, from [Lemma 15, we have
— S
K(X;, X;) X, = m((simgjk - 5jmgik)Xma (1)
74 S m m
K(X;, X)Xz = m(@' gik — 6, gik) X, (2)
— S
K(X; X)Xy = —— (6, gjk — 6, 9ik) X7, (3)

n(n —1)
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K(X; X;) X5 =0, (4)
K(X; X5) X, =0, (5)
K(X;, X5) Xz =0. (6)
Using these equations, we can show that (5.13) holds. This completes the
proof of [Theorem|.
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