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Point-extinction and geometric expansion of solutions
to a crystalline motion*
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Abstract. We consider the asymptotic behavior of solutions to a generalized crystalline
motion which describes evolution of plane curves driven by nonsmooth interfacial energy.
Our main results say that solution polygonal curves expand to infinity or shrink to a single
point depending on the size of initial data and the sign of the driving force term. In the
expanding case, we show that any rescaled solution polygon converges to the boundary
of the Wulff shape for the driving force term and hence if the driving force term is a
constant, then any solution polygon approaches to an expanding regular polygon even if
the motion is anisotropic. We also give lower and upper bounds of the extinction time for
the shrinking case. In the appendix, we shall explain the notion of a discrete curvature
and crystalline curvature from a numerical point of view.

Key words: crystalline motion, crystalline curvature, discrete curvature, motion by curva-
ture, curve-shortening, point-extinction, geometric expansion, the Wulff shape, estimates
of blow-up time, entropy estimate, comparison principle, isoperimetric ratio.

1. Introduction and main results

1.1. The aim of this paper
Let P_{0} be a convex closed polygon in the plane R^{2} with the angle

between two adjacent sides of P_{0} being \pi-\triangle\theta , where \triangle\theta:=2\pi/n and n
is the number of sides of the polygon. We consider the evolution problem
of finding a family of polygons P = \bigcup_{0\leq t<T}(P_{t}\cross\{t\}) satisfying

\{\begin{array}{l}\frac{d}{dt}x_{j}(t)=v_{j}(t)n_{j},P\cap\{t=0\}=P_{0},\end{array}

0\leq j<n , 0<t<T ,
(l.la)

where the vector n_{j} is the inward normal of the jth side of the polygon
P_{t} and the vector x_{j}(t) denotes the point of intersection between the line
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containing the jth side of the polygon P_{t} and the line spanned by n_{j} . The
function v_{j} is the inward normal velocity of the jth side which will be
specified later. Throughout this paper the interval [0, T) , with T\in(0, \infty] ,
will be understood to be the maximal time interval of existence for each
solution polygon. We note that the angle between two adjacent sides of \mathcal{P}_{t}

always equals \pi-\triangle\theta as long as the solution polygons exist.
In this paper we consider a generalized crystalline motion of the form

v_{j}(t)=a(n_{j})\kappa_{j}(t)-b(n_{j}) , 0\leq j<n , (l.lb)

where a>0 and b are smooth functions defined on S^{1} and \kappa_{j} is the crys-
talline curvature:

\kappa_{j}
(b)= \frac{2\tan(\triangle\theta/2)}{d_{j}(l)} , 0\leq j<n . (l.lc)

Here d_{j}(t) is the length of the jth side of polygon P_{t} .
We introduce the set

N_{\star} := { n_{j}=-^{t} (cos \theta_{j} , sin \theta_{j} ) |\theta_{j}=j\triangle\theta , \triangle\theta=2\pi/n , 0\leq j<n}.

This N_{\star} is the set of orientations that appear on the Wulff shape (see below)
being an regular n polygon (n-gon in short). A convex polygon P is called
N_{\star} admissible polygon if the normal vector of each side of \mathcal{P} is the element
of N_{\star} . We can then translate Problem (1.1) into the problem of finding an
N_{\star}-admissible polygon evolved by the crystalline flow (l.lb) with (l.lc).
On a general admissibility, we touch upon later.

The aim of this paper is to study the asymptotic behavior of solutions
to Problem (1.1). Our main results say that solution polygons shrink to a
single point or expand to infinity depending on the size of initial data P_{0}

and the sign of driving force term b. See Section 1.4. Roughly speaking,
if the initial polygon P_{0} is sufficiently small, then a solution polygon P_{t}

shrinks to a single point in a finite time and if P_{0} is sufficiently large, then
a rescaled solution polygon P_{t}/t approaches to the boundary of the Wulff
shape \mathcal{W}_{b} as t tends to infinity. We also give lower and upper bounds of the
extinction time for the shrinking case. In the appendix, we shall explain the
notion of a discrete curvature and crystalline curvature from a numerical
point of view.
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1.2. Background
Problem (1.1) is a typical model equation for crystal growth in the

plane. In this context the solution polygon represents the boundary curve
between two different materials. Such a boundary curve is called the inter-
face or free boundary. The motion of interfaces or free boundaries fascinates
many researchers in the fields of applied mathematics, material sciences,
physics, biology and so on. The notion of interfacial energy plays an impor-
tant role in those contexts. As we shall show below, the gradient flow of a
total interfacial energy provides a curvature-dependent motion.

Now let us explain how one derives Problem (1.1) in the context of
curvature-dependent motion of curves. Let \Gamma_{t} be a closed curve parame-
f ixed by \theta , the angle between the outward normal of \Gamma_{t} and the fixed axis.
Let f be an interfacial energy defined on \Gamma_{t} . If the interfacial energy f=
f(n) is positively homogeneous of degree one, then the gradient flow of
total interfacial energy with respect to the L^{2}-metric provides the weighted
curvature flow v=\omega:=(f(\theta)+f’(\theta))\kappa . Here we set f(\theta)=f(n(\theta)) and
\kappa=\kappa(\theta, t) is the curvature of \Gamma_{t} . See Elliott [E] and Appendix A.

We note that f+f’ is the inverse of the curvature of the boundary
of the Wulff shape \mathcal{W}_{f} : a region enclosed by a solution to the problem of
finding a closed embedded plane curve \Gamma that minimizes the total interfacial
energy \int_{\Gamma}fds at fixed enclosed area in the plane. It is not difficult to see
that the solution is uniquely determined and the Wulff shape is described
by

\mathcal{W}_{f}= { x\in R^{2}|\langle x, -n(\theta)\rangle\leq f(\theta) for all \theta\in R}.

See, e.g., Gurtin [Gul] about properties of the Wulff shape.
If the Wulff shape \mathcal{W}_{f} is a polygon, we call f the crystalline energy (see

Angenent-Gurtin [AGu] ) . Let f be a crystalline energy with \mathcal{W}_{f} being an
n-gon and n(\theta_{j}) being the normal of the jth side, called facet, of \partial \mathcal{W}_{f} . We
can then define the finite set

N :=\{n(\theta_{j})|0\leq\theta_{0}<\theta_{1}< <\theta_{n-1}<2\pi\} .

For such an energy, Taylor [T2] and Angenent-Gurtin [AGu] restrict the
curve \Gamma_{t} to the class of N admissible piecewise linear curves \mathcal{P}_{t} , in which
(1) each normal vector is the element of N and (2) normal vectors of two
adjacent sides of P_{t} are the adjacent in N (see, e.g., Giga-Gurtin [GGu]).
Note that we do not need the condition (2) if P_{t} is convex (see the definition
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of N_{\star}-admissible above). The evolution equation of P_{t} is then reduced to
the ordinary differential equations v_{j}(t)=\omega_{j}(t) . This evolution law is
called the crystalline motion or crystalline flow. The function v_{j} is the
velocity of the jth side and \omega_{j} is the jth crystalline curvature defined by
\omega_{j}(t)=\chi_{j}l(n_{j})/d_{j}(t) . Here l(n_{j}) is the length of the side of \partial \mathcal{W}_{f} that has
orientation n_{j}\in N . \chi_{j} is the transition number which has the constant
value +1 , -1 or 0 depending on whether the polygon is strictly convex,
strictly concave or neither near the jth side of P_{t} , d_{j} is the length of the
jth side of P_{t} . In fact, the jth crystalline curvature can be decomposed as
follows (see Appendix C):

\omega_{j}(t)=(f+\triangle_{\theta}f)_{j}\kappa_{j}(t) , \kappa_{j}(t)=\chi_{j}\frac{\gamma_{j}}{d_{j}(t)} .

Here \gamma_{j}:=\tan(\triangle\theta_{j+1}/2)+\tan(\triangle\theta_{j}/2) and \triangle_{\theta} is a kind of difference oper-
ator defined by

( \triangle_{\theta}(\cdot))_{j}:=\frac{(D_{+}(\cdot))_{j}-(D_{+}(\cdot))_{j-1}}{\gamma_{j}} , ( D_{+}(\cdot))_{j}:=\frac{(\cdot)_{j+1}-(\cdot)_{j}}{\sin\triangle\theta_{j+1}}

(1.2)

with \triangle\theta_{j}=\theta_{j}-\theta_{j-1} . We call \kappa_{j} the “discrete curvature,” which is an
approximation of the real curvature \kappa(\theta_{j}) if n is sufficiently large (see Ap-
pendix B). We note that the discrete curvature and the crystalline curvature
are equivalent when the Wulff shape is a regular polygon.

Remark 1.1 In this paper we consider the asymptotic behavior of an N_{\star}-

admissible convex n-gon. Although N_{\star} is a special case of N, the set N_{\star} is
better than N from a numerical point of view. See Remark 1.8 below and
Appendix B.

1.3. Generalized crystalline motion and its application
Angenent-Gurtin [AGu] proposed a generalized crystalline motion:

\beta(n_{j})v_{j}(t)=\omega_{j}(t)-U, (1.3)

where \beta(n_{j}) is the kinetic modulus, U is the constant bulk energy. In-
dependently, Taylor [T2] derived the planar crystalline motion under the
assumption: \beta=const , \cross f^{-1} and U\equiv 0 . For the further detail and back-
ground of a crystalline flow and a weighted curvature flow, see the papers
[A1T , RT , Tl, T4], the papers including a survey [T3, TCH, GirK2 , GG4,
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Gu2] and the book [Gul]. Recently, the three dimensional crystalline flow
is analyzed in [GGuM, BNP, Yu]. In [Ry], a Stefan-type problem which
has the crystalline interfacial energy is studied. In [IIU], they apply the
crystalline motion for the shrinking spiral problem. A numerical simula-
tion is proposed for a curvature-dependent motion with a crystalline type
anisotropy in [GP]. Structure and existence of stationary finger of tw0-
dimensional solidification for crystalline energy are investigated in [A1]. See
also the very recent work [GG6, GG7].

It is clear that any circle shrinks to a point self-similarly under the
isotropic flow v=\kappa . In general, we call a solution curve which does not
change shape a self-similar solution. We can easily check that the boundary
of the Wulff shape is a self-similar solution of the weighted curvature flow
v=f\omega=f(f+f’)\kappa . In [GL], they show the existence of the self-similar
solution to the anisotropic flow v=a(\theta)\kappa and obtain the uniqueness under a
symmetry assumption. The assumption on a(\cdot) is relaxed to just boundness
in [DGM]. Stancu [SI, S2, S3] shows the existence and uniqueness, under a
symmetric assumption, of self-similar solution to the crystalline flow v_{j}=

a(\theta_{j})\kappa_{j} .

Remark 1.2 Let P_{t} be a convex N-admissible polygon with a crystalline
energy f . We consider the crystalline motion v_{j}=f_{j}(\omega_{j}-U) . Then we
can find a self-similar solution P_{t}=\lambda(t)\partial \mathcal{W}_{f} with P_{0}=\lambda_{0}\partial \mathcal{W}_{f} . Here \lambda is
the solution of

\frac{d}{dt}\lambda(t)=-\frac{1}{\lambda(t)}+U, \lambda(0)=\lambda_{0} .

When U=0, it is easy to obtain the exact solution \lambda(t)=\sqrt{\lambda_{0}^{2}-2t} . In
general, we have the followings:
-If U\leq 0 , then the polygon shrinks to a single point;

-If U>0 and \lambda_{0}<U^{-1} , then the polygon shrinks to a single point;

-If U>0 and \lambda_{0}>U^{-1} , then the polygon expands into infinity.

Angenent-Gurtin [AGu] extend Remark 1.2 to the following three cases
for the evolution equation (1.3) of an N-admissible piecewise linear curve.
Let T>0 be a duration of solution polygon of equation (1.3), \mathcal{L}(t) the
length and A(t) the enclosed area. Here and hereafter, we use the term
“duration” for the maximal existence time of solution polygons.
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-If U\leq 0 , then A(t)arrow 0 as tarrow T<\infty ;

-If U>0 and \mathcal{L}(0) is small enough, then A(t)arrow 0 as tarrow T<\infty ;

-If U>0 and A(0) is large enough, then A(t)arrow\infty as t - T=
\infty . Even so, isoperimetric ratio remains bounded: lim \sup_{tarrow\infty}\mathcal{L}(t)^{2}/

(4\pi A(t))<\infty . Moreover, they conjec rure that (see section 11 in
[AGu] ) , as tarrow\infty ,

a solution polygon is asymptotic to the Wulff shape for \beta^{-1} .
(1.4)

1.4. Main results
Our goal in this paper is to extend Remark 1.2 and the above results

of [AGu] for the motion of convex N_{\star}-admissible n-gons with general a>0
and b . We assume one of the following:

(A1) b\leq 0 is a constant.

(A1)’ b\leq 0 is not constant and

\min_{0\leq j<n}\kappa_{j}(0)>\frac{\max_{0\leq j<n}b(n_{j})-\min_{0\leq j<n}b(n_{j})}{\min_{0\leq j<n}a(n_{j})} .

(A2) b>0 and \min_{0\leq j<n}\kappa_{j}(0)\geq\frac{2\max_{0\leq j<n}b(n_{j})}{\min_{0\leq j<n}a(n_{j})} .

(A3) b>0 satisfies (\triangle_{\theta}b(n)+b(n))_{j}>\eta for a fixed \eta>0 ,

(\triangle_{\theta}a(n)+a(n))_{j}\geq 0 and

0 \leq j<nmax\kappa_{j}(0)\leq\frac{\min_{0\leq j<n}(\triangle_{\theta}b(n)+b(n))_{j}-\eta}{\max_{0\leq j<n}(\triangle_{\theta}a(n)+a(n))_{j}} .

Assumptions (A1)’ and (A2) mean that the initial polygon \mathcal{P}_{0} is sufficiently
small and (A3) means that P_{0} is sufficiently large. Note that for (A1)’ if
b\leq 0 is not constant, then \min_{0\leq j<n}b(n_{j})<0 and for (A3) there exists b

satisfying (\triangle_{\theta}b+b)_{j}>\eta since 2 \tan(\triangle\theta/2)(\triangle_{\theta}b+b)_{j} is the length of the
jth side of \partial \mathcal{W}_{b} (see Appendix C).

Our main results are the following.

Theorem A (point-extinction) Let n\geq 4 . Assume (A1) or (A1)’ Let
P_{t} be a solution polygon of Problem (1.1) with a duration T_{\star} . Then any
solution polygon P_{t} shrinks to a single point as t arrow T_{\star} and it holds that
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T_{\star} \leq\frac{1}{2\min_{0\leq j<n}a(n_{j})}(\frac{\mathcal{L}(0)}{2n\tan(\triangle\theta/2)})^{2}

No side of the polygon vanishes before t reaches T_{\star} . Here \mathcal{L}(0) is the length
of P_{0} .

Theorem B (point-extinction) Let n\geq 4 . Assume (A2). Let P_{t} be a

solution polygon of Problem (1.1) with a duration T_{\star} . Then any solution
polygon P_{t} shrinks to a single point as tarrow T_{\star} . Moreover

T_{\star} \leq\min\{T_{1}, T_{2}, T_{3}\} , where T_{1}= \frac{(\mathcal{L}(0)/2n\tan(\triangle\theta/2))^{2}}{\min_{0\leq j<n}a(n_{j})} ,

T_{2}= \frac{\mathcal{L}(0)}{2\tan(\triangle\theta/2)\sum_{0\leq j<n}b(n_{j})} , T_{3}=T_{2}-\nu+\sqrt{(\nu-T_{2})^{2}+\nu T_{1}} ,

and \nu=n^{2}(\sum_{0\leq j<n}b(n_{j})\sum_{0\leq j<7\iota}b(n_{j})/a(n_{j}))^{-1} . No side of the polygon
vanishes before t reaches T_{\star} .

Remark 1.3 We call T_{\star} the “extinction time” or the “blow-up time” (see
Section 2.4).

Remark 1.4 If b\equiv 0 , then the point-extinction holds and the solution is
asymptotic self-similar (see [S3]). Let A(t) be the area of region enclosed
by P_{t} . We can easily check dA(t)/dt =-2 \tan(\triangle\theta/2)\sum_{0\leq j<n}a(n_{j}) , hence
we have

T_{\star}=T_{\star\star}= \frac{A(0)}{2\tan(\triangle\theta/2)\sum_{0\leq j<n}a(n_{j})}

since point-extinction holds.

For a convex N_{\star}-admissible polygon \mathcal{P}_{t} , we define the isoperimetric
ratio by

I(t)=\frac{\mathcal{L}(t)^{2}}{4n\tan(\triangle\theta/2)A(t)} . (1.5)

It is not difficult to see that the inequality I(t)\geq 1 holds. The equality
I(t)=1 holds if and only if the polygon \mathcal{P}_{t} is a regular polygon. See [Y],
especially Section 3.

Theorem C (geometric expansion) Let n\geq 4 . Assume (A3). Let P_{t} be
a solution polygon of Problem (1.1). Then the length \mathcal{L}(t) and the enclosed
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area A(t) of the polygon \mathcal{P}_{t} diverge to infifinity as t tends to infifinity. Every
side of the polygon is fifinite if t is fifinite. Moreover, a rescaled solution poly-
gon P_{t}/t converges lo the boundary of the Wulff shape \mathcal{W}_{b} in the Hausdorff
metric as tarrow\infty and the limit of the isoperimetric ratio I(t) is given as

\lim_{tarrow\infty}I(t)=\frac{(\sum_{0\leq j<n}b(n_{j}))^{2}}{n\sum_{0\leq j<n}b(n_{j})(\triangle_{\theta}b(n)+b(n))_{j}}

.

Consequently, if b(n_{j}) is a positive constant, then any solution polygon P_{t}

expands to infifinity approaching an expanding regular polygon in the Haus-
dorff metric as tarrow\infty .

We note that related two results: 1. For (1.3), Giga-Gurtin [GGu]
proves a similar result to Theorem C without the convergence of the isoperi-
metric ratio. They establish the comparison principle for admissible piece-
wise linear curves and from which they show the asymptotic shape of the
solution curves. 2. In the case where the interfacial energy f is smooth,
Ishii-Pires-Souganidis [IPS] shows that the boundary of a “large” bounded
domain in R^{N} converges to \partial \mathcal{W}_{b} for the evolution equation v=a(n)H_{f}-
b(n) , where H_{f} is a weighted mean curvature. Their proof is based on the
level set method for a smooth f . Recently, Giga-Giga [GG6] establishes the
level set method for a not necessarily smooth f including crystalline. Thus,
as pointed out by Giga [G], the result [IPS] is extended for such an energy
f in particular for the equation (l.lb).

Remark 1.5 Theorem C gives an answer to the conjecture (1.4) and also
asserts that if b\equiv const. , then the asymptotic shape is an expanding regular
polygon even if a(n_{j}) is “not” constant, i.e. the motion is anisotropic. We
note that the result does not depend on \eta in Assumption (A3).

Theorem D (lower bound of the blow-up time) Assume b\not\equiv 0 . Under
the same assumption of Theorem A, the blow-up time T_{\star} is estimated as
follows:

T_{\star} \geq\frac{\max_{0\leq j<n}a(n_{j})}{8(\min_{0\leq j<n}b(n_{j}))^{2}}(1-\sqrt 1-\frac{8\min_{0\leq j<n}b(n_{j})A(0)}{\max_{0\leq j<n}a(n_{j})\mathcal{L}(0)})^{2}

Here A(0) is the area of the region enclosed by P_{0} .
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Remark 1.6 Let P_{0} be a regular polygon. Suppose a\equiv 1 and b\equiv

const. <0 . We denote the upper bound in Theorem A by T_{u} and the
lower bound in Theorem D by T_{\ell} . If we set b=\mu\kappa(0)(\kappa_{j}(0)\equiv\kappa(0)) , then
we have \mu<0 and \lim_{\muarrow 0-}T_{\ell}=T_{u}=\kappa(0)^{-2}/2=T_{\star\star} .

Theorem E (lower bound of the blow-up time) Under the same assump-
tion of Theorem B , the blow-up time T_{\star} is estimated as follows:

T_{\star} \geq\frac{\mathcal{L}(0)}{8\tan(\triangle\theta/2)\sum_{0\leq j<n}b(n_{j})}

( \sqrt 1+\frac{32\tan(\triangle\theta/2)\sum_{0\leq j<n}b(n_{j})A(0)^{2}}{\max_{0\leq j<n}a(n_{j})\mathcal{L}(0)^{3}}-1)\tau

Remark 1.7 Let \mathcal{P}_{0} be a regular polygon. Suppose a\equiv 1 , b\equiv const . >0
and the Assumption (A2) holds. If we set b=\mu\kappa(0)(\kappa_{j}(0)\equiv\kappa(0)) , then
we have \mu\leq 1/2 . We denote the lower bound in Theorem D by T_{\ell} . It holds
that T_{2}>T_{1}>T_{3}>T_{\ell} and that \lim_{\muarrow 0+}T_{\ell}=\lim_{\muarrow 0+}T_{3}=\kappa(0)^{-2}/2=

T_{\star\star} .

Remark 1.8 (approximation) Many authors have recently studied an ap-
proximation of curvature-dependent motions by using crystalline motions.
In both [GirKl] and [FG], the convergence results are shown for graph-like
curves. In [EGS], the properties of a solution in the sense of [FG] are inves-
tigated and several numerical examples are presented in order to visualize
their results. The new notion of solutions to a fully nonlinear equation in-
cluding crystalline motion is introduced and analyzed in [GG1, GG2 , GG4].
Its notion is in the realm of viscosity solution theory and so is based on
comparison principle which is an extension of [GGu]. The convergence re-
slllts are discussed in [GG3, GG5] for the solutions in its notion. See also
[GG6].

Let the Wulff shape be an N_{\star}-admissible polygon. Gir\tilde{a}0 [Gir] showed
that the crystalline motion v_{j}=\omega_{j} approximates the weighted curvature
flow v=\omega if the curve is closed and convex. This result was extended by
[UY1] for the motion by a power of curvature v=\kappa^{\alpha}(\alpha>0) . Moreover,
they constructed a crystalline algorithm to the equation v=|\kappa|^{\alpha-1}\kappa for
nonconvex curves in [UY2]. Implicit crystalline algorithm is treated in [UY3]
for an area-preserving motion by curvature v=\kappa-2\eta\pi/\mathcal{L}(\eta\geq 1 is a
winding number of curve). In [IS], the authors show the approximation of
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the curve-shortening equation v=\kappa by the crystalline motion v_{j}=\kappa_{j} via
the level set method. Recently, their results are extended by [GG6, GG7]
for general curvature flow equation. See the survey [E] for more general
information about an approximation of curvature-dependent motion.

The organization of this paper is as follows: in Section 2, we give several
fundamental properties of solutions to Problem (1.1). In Section 3, we
present a point-extinction property of solutions via entropy estimates and
prove Theorems A and B. In Section 4, we prove Theorem C by the super-
and subsolution method or the comparison principle. By using Schwarz
inequality twice, we give a lower bound of the extinction time and the proof
of Theorems D and E in Section 5. In Appendix A , we give a brief summary
on the gradient flow for a total interfacial energy. In Appendices B and C ,
we explain the notion of the discrete curvature and the crystalline curvature,
respectively.

I would like to thank the referee for her or his comments and sugges-
tions.

2. Properties of solutions to Problem (1.1)

In this section we first give an equivalent formulation of Problem (1.1).
Secondly, we present comparison principle and evolution of the length and
the area. Finally, we show a finite time blow-up of solution.

Throughout this paper we use the notation \sum_{j}u_{j} , u_{\max} , u_{\min} and \dot{u}(t)

for \sum_{0\leq j<n}u_{j} , \max_{0\leq j<n}u_{j} , \min_{0\leq j<n}u_{j} and du(t)/dt, respectively. Here-
after we denote a_{j}:=a(n_{j}) and b_{j}:=b(n_{j}) for simplicity and assume n\geq

4 . We note again \theta_{j}=j\triangle\theta .

2.1. A formulation equivalent to Problem (1.1)
Let P_{t} be a solution of Problem (1.1). The jth vertex B_{j}(t) of P_{t} is

given as the following:

B_{j}(t)=\langlex_{j-1}(t)-x_{j}(t) , t_{j}+n_{j} cot \triangle\theta\rangle t_{j}+x_{j}(t) ,

=B_{0}(t)+ \sum_{0\leq m<j}d_{m}(t)t_{m}
, 1\leq j\leq n , 0\leq t<T (2.1)

with B_{0}(t)\equiv B_{n}(t) , where t_{j}= (- sin \theta_{j} , cos \theta_{j} ) is the tangent vector,
since the position vector x_{j} is on the line containing the jth side (n.b. x_{j} is
not necessarily on the jth side) and \langle\cdot, \cdot\rangle is the usual inner product. Then
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the time evolution of the length of the jth side d_{j}(t) is given as the following
(cf. Figure 1OC in [AGu]):

\frac{d}{dt}d_{j}(t)=\frac{d}{dt}|B_{j+1}(t)-B_{j}(t)|=-2\tan\frac{\triangle\theta}{2}(\triangle_{\theta}v+v)_{j} . (2.2)

Here the operator \triangle_{\theta} is defined by

( \triangle_{\theta}(\cdot))_{j}:=\frac{(\cdot)_{j+1}-2(\cdot)_{j}+(\cdot)_{j-1}}{2(1-\cos\triangle\theta)} ,

which is a kind of central difference operator (this is a special version of
(2.2) ) . Then we obtain a discretized version of the equation (2.20) in the
book [Gul]:

\frac{d}{dt}\kappa_{j}(t)=\kappa_{j}^{2}(\triangle_{\theta}v+v)_{j} , 0\leq j<n , 0\leq t<T

Therefore we can restate Problem (1.1) as follows.

Problem 1 Let n\geq 4 . Find a function v(t)=(v_{0}, v_{1}, . . ’ v_{n-1})\in

[C[0, T)\cap C^{1}(0, T)]^{n} and a duration T\in(0, \infty] satisfying

\frac{d}{dt}v_{j}(t)=a_{j}^{-1}(v_{j}+b_{j})^{2}(\triangle_{\theta}v+v)_{j} , 0\leq j<n , 0<t<T .
(2.3a)

v_{j}(0)=a_{j}\kappa_{j}(0)-b_{j} , 0\leq j<n , (2.3b)

v_{-1}(t)=v_{n-1}(t) , v_{n}(t)=v_{0}(t) , 0\leq t<T., (2.3c)

where \kappa_{j}(0) is the jth initial crystalline curvature of P_{0} .

Remark 2.1 (equivalence) Problem (1.1) and Problem 1 are equivalent
except the indefiniteness of position of the polygon. Indeed, suppose v is a
solution of Problem 1, then we have

\frac{1}{2\tan(\triangle\theta/2)}\frac{d}{dt}\sum_{j}\frac{2a_{j}\tan(\triangle\theta/2)}{v_{j}(t)+b_{j}}t_{j}

=- \sum_{j}(\triangle_{\theta}v+v)_{j}t_{j}=-\sum_{j}(\triangle_{\theta}t+t)_{j}v_{j}=0
.

Here we have used the relation of summation by parts:

\sum_{j}f_{j}(\triangle_{\theta}g)_{j}=-\sum_{j}(D_{+}f)_{j}(D_{+}g)_{j}=\sum_{j}g_{j}(\triangle_{\theta}f)_{j}
, (2.4)
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and the relation (\triangle_{\theta}t)_{j}=-t_{j} . Here and hereafter, we define the forward
difference such as

( D_{+}f)_{j}:=\frac{f_{j+1}-f_{j}}{2\sin(\triangle\theta/2)} .

Hence by equation (2.1), we can construct a closed convex n-gon whose
length of the jth side is 2a_{j}\tan(\triangle\theta/2)/(v_{j}(t)+b_{j})=:d_{j}(t) and the jth
normal vector is n_{j} , as long as v is a solution of Problem 1. This n-gon is
the very solution polygon of Problem (1.1).

2.2. Comparison principle
The following comparison principle plays an important role in this

paper.

Lemma 2.2 Fix T>0 . Let (p_{j}(t))_{0\leq j<n}>0 and (q_{j}(t))_{0\leq j<n} be defifined
on t\in[0, T] . If u=(u_{j}(t))_{0\leq j<n}\in[C[0, T]\cap C^{1}(0, T)]^{n} is a solution of

\{\begin{array}{l}\frac{d}{dt}u_{j}\geq p_{j}(\triangle_{\theta}u)_{j}+q_{j}u_{j}, 0\leq j<n, 0<t<T,u_{-1}(t)=u_{n-1}(t), u_{n}(t)=u_{0}(t), 0\leq t\leq T.u_{j}(0)\geq 0, 0\leq j<n_{\prime},\end{array}

then u_{j}(t)\geq 0 holds for 0\leq j<n and 0\leq t\leq T

See, e.g., [Y] for the proof of this lemma.
As an application of the above lemma, we obtain the next:

Lemma 2.3 For a solution v of Problem 1 and fifixed T\in(0, T_{\star}) , we have
the followings.
(1) For a constant c\geq 0 , if v_{j}(0)\geq c , then v_{j}(t)\geq c for all t\in[0, T] .
(2) For a constant c\leq 0 , if v_{j}(0)\leq c , then v_{j}(t)\leq c for all t\in[0, T] .
(3) If v_{j}^{u} is a supersolution of Problem 1, i.e . a solution of

?\dot{J}_{j}^{u}\geq a_{j}^{-1}(v_{j}^{u}+b_{j})^{2}(\triangle_{\theta}v_{j}^{u}+v_{j}^{u})_{j} , 0\leq j<n , 0<t<T,

with v_{j}^{u}(0)\geq v_{j}(0) and periodic boundary condition (2.3c), then v_{j}^{u}(t)\geq

v_{j}(t) holds for all 0\leq t\leq T and 0\leq j<n .
(4) If v_{j}^{l} is a subsolution of Problem 1, i.e . a solution of

\dot{v}_{j}^{l}\leq a_{j}^{-1}(v_{j}^{l}+b_{j})^{2}(\triangle_{\theta}v_{j}^{l}+v_{j}^{l})_{j} , 0\leq j<n , 0<t<T,

with v_{j}^{l}(0)\leq v_{j}(0) and periodic boundary condition (2.3c), then v_{j}^{l}(t)\leq
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v_{j}(t) holds for all 0\leq t\leq T and 0\leq j<n .

Proof. For each proposition, put (1) u_{j}=v_{j}-c;(2)u_{j}=c-v_{j} ; (3) u_{j}=

v_{j}^{u}-v_{j} ; (4) u_{j}=v_{j}-v_{j}^{l} ; and apply Lemma 2.2. \square

2.3. The length and the area
The (total) length of the polygon is

\mathcal{L}(t):=\sum_{j}d_{j}=2\tan\frac{\triangle\theta}{2}\sum_{j}\kappa_{j}^{-1}=2\tan\frac{\triangle\theta}{2}\sum_{j}\frac{a_{j}}{v_{j}+b_{j}} , (2.5)

and the rate of change of \mathcal{L}(t) can be computed by

\dot{\mathcal{L}}(t)=-2\tan\frac{\triangle\theta}{2}\sum_{j}v_{j}(t) . (2.6)

If v_{j}(0).\geq 0 (resp., ”\leq 0”), then v_{j}(t)\geq 0 (resp., ”\leq 0”) by Lemma 2.3
and so \mathcal{L}(t)\leq 0 (resp., ”\geq 0”), i.e. the motion of solution polygons is a
discretized curve-shortening (resp., curve-lengthening). The area enclosed
by the polygon is

A(t):=- \frac{1}{2}\sum_{j}\langle x_{j}(t), n_{j}\rangle d_{j}(t) , (2.7)

and the rate of change of A(t) can be computed by

\mathcal{A}(t)=-2\tan\frac{\triangle\theta}{2}\sum_{j}\frac{a_{j}v_{j}}{v_{j}+b_{j}} .

Here we have used equations (2.2) and (2.4), definition \langle\dot{x}_{j}, n_{j}\rangle=v_{j} and
geometric relation d_{j}=-2\tan(\triangle\theta/2)(\triangle_{\theta}\langle x, n\rangle+\langle x, n\rangle)_{j} .

2.4. Finite time blow-up
In this subsection, we give a partial proof of Theorems A and B , namely

the statement concerning finite time blow-up.

Lemma 2.4 (finite time blow-up) Suppose v is a solution of Problem 1.
Under the same assumption of Theorem A, there exists a fifinite time T_{\star}>

0 such that the maximum of \{\kappa_{j}=(v_{j}+b_{j})/a_{j}\} blows up to infifinity as
t \nearrow T_{\star} :

T_{\star} \leq\frac{1}{2\min_{0\leq j<n}a(n_{j})}(\frac{\mathcal{L}(0)}{2n\tan(\triangle\theta/2)})^{2}
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Proof. Since n^{2}=( \sum_{j}1)^{2}=(\sum_{j}\kappa_{j}^{1/2}\kappa_{j}^{-1/2},)^{2} , Schwarz inequality and the
assumption b\leq 0 yields

(2n \tan\frac{\triangle\theta}{2})^{2}\leq-\frac{1}{2a_{\min}}\frac{d}{dt}\mathcal{L}(t)^{2}+2\tan\frac{\triangle\theta}{2}\mathcal{L}(t)\sum_{j}\frac{b_{j}}{a_{j}} (2.8)

\leq-\frac{1}{2a_{\min}}\frac{d}{dt}\mathcal{L}(t)^{2} .

By the general argument for ordinary differential equation, a solution
v of Problem 1 exists uniquely and locally in time. Put T_{\star}>0 such as
maximal existing time. Take 0<t<T_{\star} . Integration of the above inequality
over (0, t) yields

\mathcal{L}(t)\leq\sqrt{\mathcal{L}(0)^{2}-2a_{\min}(2n\tan\frac{\triangle\theta}{2})^{2}t} .

Since \mathcal{L}(t)\geq 2n\tan(\triangle\theta/2)/\kappa_{\max} , we have

\kappa_{\max}\geq 2n\tan\frac{\triangle\theta}{2}(\mathcal{L}(0)^{2}-2a_{\min}(2n\tan\frac{\triangle\theta}{2})^{2}t)-1/2

and the assertion is concluded. \square

Lemma 2.5 (finite time blow-up) Suppose v is a solution of Problem 1.
Under the same assumption of Theorem B , there exists a fifinite time T_{\star}>

0 such that the maximum of \{\kappa_{j}=(v_{j}+b_{j})/a_{j}\} blows up to infifinity as
t\nearrow T_{\star} :

T_{\star} \leq\min\{T_{1}, T_{2}, T_{3}\} .

Here T_{1} , T_{2} and T_{3} have been defifined in Theorem B.

Proof. The Assumption (A2) implies v_{j}(0)\geq b_{\max} . Then Lemma 2.3 pr0-
vides v_{j}(t)\geq b_{\max}\geq b_{j} . Hence, we get T_{1} by a similar proof of Lemma 2.4.

Integration of - \mathcal{L}(t)=2\tan(\triangle\theta/2)\sum_{j}v_{j}\geq 2\tan(\triangle\theta/2)\sum_{j}b_{j} over
(0, t) yields

\mathcal{L}(t)\leq \mathcal{L}(0)-2\tan\frac{\triangle\theta}{2}\sum_{j}b_{j}t , (2.9)

and then we obtain T_{2} .
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Substitute the inequality (2.9) to (2.8), integrate it over (0, t) and solve
it. Then we get t\leq T_{3} . \square

3. Point-extinction (proof of Theorems A and B)

Before we give the proof of Theorems A and B , we present the following
theorem.

Theorem 3.1 Assume (A1) or (A1)’ or (A2). If the area A(t) is bounded
away from zero, then a solution v of Problem 1 is uniformly bounded for
t\in[0, T_{\star}) , where the blow-up time T_{\star} attains A(T_{\star})=0 .

Remark 3.2 This theorem does not claim that the polygon shrinks to a
single point.

We use the analogue of several estimates by Gage-Hamilton [GH] for
the curvature and by Gir\tilde{a}0 [Gir] for the weighted curvature. For reader’s
convenience, we do not omit the proofs except completely the same one.

Lemma 3.3 There exists a constant C_{1}=C_{1}(v(0), \triangle\theta)\geq 0 such that

2 \tan\frac{\triangle\theta}{2}\sum_{0\leq j<n}(D_{+}v)_{j}^{2}\leq 2\tan\frac{\triangle\theta}{2}\sum_{0\leq j<n}v_{j}^{2}+C_{1} .

Proof It can be shown that the next estimate:

2 \tan\frac{\triangle\theta}{2}\frac{d}{dt}\sum_{j}(v^{2}-(D_{+}v)^{2})_{j}

=4 \tan\frac{\triangle\theta}{2}\sum_{j}a_{j}^{-1}(v_{j}+b_{j})^{2}(\triangle_{\theta}v+v)_{j}^{2}\geq 0 .

By the integration of this inequality over (0, t) and putting

C_{1} \geq\max\{-2\tan\frac{\triangle\theta}{2}\sum_{j}(v(0)^{2}-(D_{+}v(0))^{2})_{j} , 0\} ,

we get the assertion. \square

One can easily get: \sum_{j=1}^{[n/2]} sin \theta_{j}\leq 2\cot(\triangle\theta/2) , where [n/2] is n/2 for
n even and (n-1)/2 for n odd, since the left-hand side equals to \cot(\triangle\theta/2)

for n even and (1+\sec(\triangle\theta/2))\cot(\triangle\theta/2)/2 for n odd.
We introduce the median normal velocity which is a similar to the
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median curvature in [GH] and the median discrete weighted curvature in
[Gir].

Definition 3.4 (median normal velocity)
v_{*}(t):= \max_{0\leq j<n}\min_{j+1\leq i\leq j+[n/2]}v_{i}(t) .

Lemma 3.5 Assume (A1) or (A1)’ or (A2). Fix t\in[0, T_{\star}) . If A(t) is
bounded away from zero, then v_{*}(t) is bounded.

Proof We note that if we assume (A1)’ . then we have v_{\min}(0)+b_{\min}>0 ,
from which and the lower bound v_{*}(t)\geq v_{\min}(0) by Lemma 2.3, it follows
that v_{*}+b_{\min} is positive for all t\geq 0 and, under the assumption (A1) or
(A2), it is always positive.

Now let j_{0} be a value of j which attains the maximum of v . A polygon
lies between parallel lines whose distance is less than

\sum_{j=jo+1}^{j_{0}+[n/2]}\sin(\theta_{j}-\theta_{j_{0}})d_{j}=2\tan\frac{\triangle\theta}{2}\sum_{j=1}^{[n/2]}\frac{a_{j+j_{0}}\sin\theta_{j}}{v_{j+jo}+b_{j+jo}}

\leq\frac{2\tan(\triangle\theta/2)a_{\max}}{v_{*}+b_{\min}}\sum_{j=1}^{[n/2]} sin \theta_{j}\leq v_{*}+b_{\min}4a_{\max}

The diameter is bounded by \mathcal{L}/2 and the area is bounded by the width
times the diameter:

A(t) \leq\frac{2a_{\max}\mathcal{L}(t)}{v_{*}(t)+b_{\min}} .

Hence v_{*}(t)\leq 2a_{\max}\mathcal{L}(0)/A(t)-b_{\min} .
The assertion is proved in a similar way if we assume (A1) or (A2).

\square

Definition 3.6 Let the entropy be:

\mathcal{E}(t):=2\tan\frac{\triangle\theta}{2}\sum_{0\leq j<n}(a_{j} log \kappa_{j}(t)+\frac{b_{j}}{\kappa_{j}(t)})

Lemma 3.7 Assume (A1) or (A1)’ or (A2). Fix t\in[0, T_{\star}) . It there
exists a constant C_{*}>0 such that v_{*}(\tau)\leq C_{*} for 0\leq\tau\leq t , then \mathcal{E}(t) is
bounded.
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Proof. By using the summation by parts (2.4), one has

\dot{\mathcal{E}}(t)=2\tan\frac{\triangle\theta}{2}\sum_{j}(v^{2}-(D_{+}v)^{2})_{j} .

We use the same estimates as in the proof of Gir\tilde{a}0 [Gir] (Section 2, Fourth)
and have the next estimate:

2 \tan\frac{\triangle\theta}{2}\sum_{j}(v^{2}-(D_{+}v)^{2})_{j}\leq 2n\tan\frac{\triangle\theta}{2}v_{*}^{2}-2v_{*}\dot{\mathcal{L}}(t) .

Hence, \mathcal{E}(t)\leq \mathcal{E}(0)+2n\tan(\triangle\theta/2)C_{*}^{2}T_{\star}+2C_{*}\mathcal{L}(0) holds. \square

Lemma 3.8 Assume (A1) or (A1)’ or (A2). If \mathcal{E}(t) is bounded, then for
any \delta>0 there exists a constant C_{2}> \max\{1, a_{\max}\}-b_{\min} if b\leq 0 and
C_{2}>a_{\max} if b>0 such that v_{j}(t)\leq C_{2} except for \theta_{j} in intervals of length
less than \delta for t\in[0, T_{\star}) .

Proof. If v_{j}\geq C_{2} for m values of j and m\triangle\theta\geq\delta , then

\mathcal{E}(t)\geq 2\tan\frac{\triangle\theta}{2}(ma_{\min}\log\frac{C_{2}+b_{\min}}{a_{\max}}

-a_{\max}(n-m)| \log\frac{2\tan(\triangle\theta/2)}{\mathcal{L}(0)}|)+B

\geq\frac{2}{\triangle\theta}\tan\frac{\triangle\theta}{2}(\delta a_{\min}\log\frac{C_{2}+b_{\min}}{a_{\max}}

-a_{\max}(2 \pi-\delta)|\log\frac{2\tan(\triangle\theta/2)}{\mathcal{L}(0)}|)+B

where B=b_{\min}\mathcal{L}(0) when b\leq 0 and

\mathcal{E}(t)\geq 2\tan\frac{\triangle\theta}{2}(ma_{\min}\log\frac{C_{2}}{a_{\max}}-(n-m)a_{\max}|\log\frac{2\tan(\triangle\theta/2)}{\mathcal{L}(0)}|)

\geq\frac{2}{\triangle\theta}\tan\frac{\triangle\theta}{2}(\delta a_{\min}\log\frac{C_{2}}{a_{\max}}-(2\pi-\delta)a_{\max}|\log\frac{2\tan(\triangle\theta/2)}{\mathcal{L}(0)}|)

when b>0 . This gives a contradiction when C_{2} is large. \square

Lemma 3.9 Assume (A1) or (A1)’ or (A2). For t\in[0, T_{\star}) , if v_{j}(t)\leq C_{2}

/or some constant C_{2}>>1 except for \theta_{j} in intervals of length less than \delta

and \delta>0 is small enough, then v_{\max}(t) is bounded.
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Proof. As in the proof of Gir\tilde{a}0 [Gir] (Section 2, Sixth), we have the next
estimate:

v_{j}=v_{i}+ \sum_{i\leq m<j}(v_{m+1}-v_{m})

\leq C_{2}+(\sum_{i\leq m<j}\frac{2(1-\cos\triangle\theta)}{2\tan(\triangle\theta/2)})^{1/2}(2\tan\frac{\triangle\theta}{2}\sum_{i\leq m<j}(D_{+}v)_{m}^{2})^{1/2}

\leq C_{2}+ (j-i) \sin\triangle\theta(2\tan\frac{\triangle\theta}{2}\sum_{0\leq m<n}v_{m}^{2}+C_{1})^{1/2}

\leq C_{2}+\sqrt{\delta}(2n\tan\frac{\triangle\theta}{2}v_{\max}^{2}+C_{1})^{1/2}

\leq C_{2}+\sqrt{\delta}(\sqrt{2\sqrt{2}\pi}v_{\max}+\sqrt{C_{1}})

since v_{j}\leq C_{2} and \theta_{i}-\theta_{j}\leq\delta . Here we have used Lemma 3.3.
Hence (1-\sqrt{2\sqrt{2}\pi\delta})v_{\max}\leq C_{2}+\sqrt{C_{1}\delta} holds and we get v_{\max}\leq(C_{2}+

\sqrt{C_{1}\delta})/(1-\sqrt{2\sqrt{2}\pi\delta}) for small \delta . \square

Proof of Theorem 3.1. Suppose that a side of P_{t} disappears for t<T_{\star}

where T_{\star} attains A(T_{\star})=0 . Put t_{0} as the first time that happens (n.b.
t_{0}>0 is clear). Then A(t)>0 for 0\leq t\leq t_{0} and the estimates above imply
that \sup_{0\leq t\leq t_{0}}v_{\max}(t) is bounded, so d_{\min}(t_{0})>0 . This is a contradiction.
Hence the assertion holds. \square

We are now ready to present of the proof of Theorems A and B.

Proof of Theorem A and B. By Theorem 3.1, we have A(T_{\star})=0 . If n is
odd, then \mathcal{L}(T_{\star})=0 since the angle between two adjacent sides of polygon
is always \pi-\triangle\theta and we have no two sides which are parallel to each other.
Suppose that n is even. Then the jth side and the (j+n/2)th side are
parallel. Let w_{j} be the distance between the jth and the (j+n/2)th side
and we have

w_{m}= \sum_{j=m+1}^{m+n/2}\sin(\theta_{j}-\theta_{m})d_{j}=\sum_{j=1}^{n/2} sin \theta_{j}d_{j+m} , or

w_{m}=- \sum_{j=n/2+1}^{n}\sin\theta_{j}d_{j+m} .
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Therefore,

2w_{m}= \sum_{j}|
sin \theta_{j}|d_{j+m}=2\tan\frac{\triangle\theta}{2}\sum_{j}| sin \theta_{j}|\frac{a_{j+m}}{v_{j+m}+b_{j+m}} .

Then we have

\dot{w}_{m}=-\tan\frac{\triangle\theta}{2}\sum_{j}| sin \theta_{j}|(\triangle_{\theta}v+v)_{j+m}

=- \tan\frac{\triangle\theta}{2}\sum_{j}v_{j}(\triangle_{\theta}| sin \theta|+|\sin\theta|)_{j-m}

=-(v_{m}+v_{m+n/2})

since

(\triangle_{\theta}|\sin\theta|+|\sin\theta|)_{i}=\{

cot (\triangle\theta/2) if i=0 , n/2 ;

0 if otherwise.

Proof of Theorem A. Put C>0 such as \vee\dot{4}(t)\geq-2\tan(\triangle\theta/2)\sum_{j}a_{j}+

b_{\min}\mathcal{L}(0)=:-C . By Theorem 3.1, we have A(t)\leq C(T_{\star}-t) . Then \dot{w}_{7n}\leq

-v_{m}\leq-2\tan(\triangle\theta/2)a_{m}d_{m}^{-1} and A(t)\geq wmdm/2 yield

\frac{\dot{w}_{n\iota}}{w_{m}}\leq-a_{m}\frac{\tan(\triangle\theta/2)}{A(t)}\leq-a_{m}\frac{\tan(\triangle\theta/2)}{C(T_{\star}-t)} .

Hence, by integration over (0, t) , we have

w_{m}(t) \leq w_{m}(0)(\frac{T_{\star}-t}{T_{\star}})^{a_{m}\tan(\triangle\theta/2)/C}

and w_{m}(T_{\star})=0 for all m . Then \mathcal{L}(T_{\star})=0 is concluded. \square

Proof of Theorem B. Since b>0 , it holds that A(t)\leq C(T_{\star}-t) for a
positive constant C>0 . By the condition (A2), we have v_{j}(t)\geq b_{\max} and

-v_{m}=-a_{m} \frac{2\tan(\triangle\theta/2)}{d_{m}}+b_{\max}\leq-a_{m}\frac{2\tan(\triangle\theta/2)}{d_{m}}+v_{m+n/2} .

Then \dot{w}_{m}\leq-2\tan(\triangle\theta/2)a_{m}d_{m}^{-1} and A(t)\geq w_{m}d_{m}/2 provide the point-
extinction in a way similar to the proof of Theorem A. \square \square
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4. Geometric expansion (proof of Theorem C)

We shall prove Theorem C by the super- and subsolution method or
the comparison principle.

Lemma 4.1 Let v be a solution of Problem 1. Under the Assumption
(A3), the functions

v_{j}^{u}(t)= \frac{a_{j}}{\eta t+\kappa_{\max}(0)^{-1}}-b_{j} and ?)j(lt)= \frac{a_{j}}{\mu t+\kappa_{\min}^{\wedge}(0)^{-1}}-b_{j}

are super- and subsolutions of Problem 1, respectively. Here \mu is a positive
constant satisfying/l \geq(\triangle_{\theta}b+b)_{\max} and \eta is defifined in (A3).

Proof By Assumption (A3): \kappa_{\max}(0)(\triangle_{\theta}a+a)_{\max}-(\triangle_{\theta}b+b)_{\min}\leq-\eta ,
we have

\dot{v}_{j}^{u}=-\eta a_{j}^{-1}(v_{j}^{u}+b_{j})^{2}\geq a_{j}^{-1}(v_{j}^{u}+b_{j})^{2}(\triangle_{\theta}v^{u}+v^{u})_{j} .

Here v_{j}^{u} is a supersolution of Problem 1 since v_{j}^{u}(0)\geq v_{j}(0) holds.
In the same way, one can prove that v_{j}^{l} is a subsolution of Problem 1

by Assumption (A3): (\triangle_{\theta}a+a)_{j}\geq 0 and the assumption \mu\geq(\triangle_{\theta}b+b)_{\max} .
\square

We are now ready to present the proof of Theorem C.

Proof of Theorem C. By Lemma 4.1, we can estimate \dot{\mathcal{L}}(t) such as

\frac{\sum_{j}a_{j}}{\mu t+\kappa_{\min}(0)^{-1}}-\sum_{j}b_{j}\leq\frac{\dot{\mathcal{L}}(t)}{-2\tan(\triangle\theta/2)}\leq\frac{\sum_{j}a_{j}}{\eta t+\kappa_{\max}(0)^{-1}}-\sum_{j}b_{j} .

Integration over (0, t) yields

\frac{\mathcal{L}(t)}{2\tan(\triangle\theta/2)}\leq\frac{\mathcal{L}(0)}{2\tan(\triangle\theta/2)}-\frac{\sum_{j}a_{j}}{\mu}\log(\mu\kappa_{\min}(0)t+1)+\sum_{j}b_{j}t

and

\frac{\mathcal{L}(t)}{2\tan(\triangle\theta/2)}\geq,\frac{\mathcal{L}(0)}{2\tan(\triangle\theta/2)}-\frac{\sum_{j}a_{j}}{\eta}\log(\eta\kappa_{\max}(0)t+1)+\sum_{j}b_{j}t .

Let the jth support function be

h_{j}(t):=\langle x_{j}, -n_{j}\rangle .
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Then v_{j}(t)=-\dot{h}_{j}(t) . By Lemma 2.3 (3) (4) and Lemma 4.1, we have v_{j}^{l}\leq

v_{j}\leq v_{j}^{u} , i.e.

\frac{a_{j}}{\mu t+\kappa_{\min}(0)^{-1}}-b_{j}\leq-\dot{h}_{j}(t)\leq\frac{a_{j}}{\eta t+\kappa_{\max}(0)^{-1}}-b_{j} .

Integration of this inequality over (0, t) yields

- \frac{a_{j}}{\eta}\log(\eta\kappa_{\max}(O)t+1)\leq h_{j}(t)-b_{j}t-h_{j}(0)

\leq-\frac{a_{j}}{\mu}\log(\mu\kappa_{\min}(0)t+1)\leq 0 . (4.1)

Therefore one has

lim \underline{h_{j}(t)}=b_{j} , 0\leq j<n . (4.2)
tarrow\infty t

By using (2.7) and the geometric relation d_{j}(t)=2\tan(\triangle\theta/2)(\triangle_{\theta}h(t)+

h(t))_{j} , we have the upper bound of the area A(t) as follows:

A(t)= \frac{1}{2}\sum_{j}d_{j}(t)h_{j}(t)

\leq\frac{1}{2}\sum_{j}d_{j}(t)(b_{j}t+h_{j}(0))

= \tan\frac{\triangle\theta}{2}t\sum_{j}h_{j}(t)(\triangle_{\theta}b+b)_{j}+\tan\frac{\triangle\theta}{2}\sum_{j}h_{j}(t)(\triangle_{\theta}h(0)+h(0))_{j}

\leq\tan\frac{\triangle\theta}{2}t\sum_{j}(\triangle_{\theta}b+b)_{j}(b_{j}t+h_{j}(0))+\frac{1}{2}\sum_{j}d_{j}(0)(b_{j}t+h_{j}(0))

= \tan\frac{\triangle\theta}{2}t^{2}\sum_{j}b_{j}(\triangle_{\theta}b+b)_{j}+\tan\frac{\triangle\theta}{2}t\sum_{j}b_{j}(\triangle_{\theta}h(0)+h(0))_{j}

+ \frac{t}{2}\sum_{j}d_{j}(0)b_{j}+\frac{1}{2}\sum_{j}d_{j}(0)h_{j}(0)

\leq\tan\frac{\triangle\theta}{2}t^{2}\sum_{j}b_{j}(\triangle_{\theta}b+b)_{j}+b_{\max}\mathcal{L}(0)t+A(0) .

Here we have used (4.1) for the upper bound of h_{j}(t) twice, the summation
by parts (2.4) several times and the assumption (A3). In a similar way, we
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obtain the lower bound of the area A(t) :

A(t) \geq\tan\frac{\triangle\theta}{2}t^{2}\sum_{j}b_{j}(\triangle_{\theta}b+b)_{j}

-2 \tan\frac{\triangle\theta}{2}t\frac{\log(\eta\kappa_{\max}(0)t+1)}{\eta}\sum_{j}a_{j}(\triangle_{\theta}b+b)_{j}

+ \frac{\mathcal{L}(0)}{2}(b_{\min}t-\frac{a_{\max}}{\eta} log (\eta\kappa_{\max}(0)t+1))

Therefore it holds that the limits: \mathcal{L}(t) , A(t) - \infty as tarrow\infty . More-
over, one can easily calculate the limit of isoperimetric ratio I(t)=\mathcal{L}(t)^{2}/

(4n tan (\triangle\theta/2)A(t) ) such as

\lim_{tarrow\infty}I(t)=\frac{(\sum_{j}b_{j})^{2}}{n\sum_{j}b_{j}(\triangle_{\theta}b+b)_{j}} .

This limit and (4.2) assert that a rescaled solution polygon \mathcal{P}_{t}/t converges
to the boundary of the Wulff shape \partial \mathcal{W}_{b} in the Hausdorff metric as tarrow\infty .

In particular, if b is a constant, then \lim_{tarrow\infty}I(t)=1 and the Bon-
nesen’s type inequality (see [Eg]) provides that \mathcal{P}_{t}/t converges to a regular
polygon in the Hausdorff metric. This completes the proof of Theorem C.

\square

5. Lower bound of the blow-up time (proof of Theorems D and
E)

We will use Schwarz inequality twice to obtain a lower bound of blowup
up time. A similar idea was used in Giga-Yama-uchi [GY] to give a bound
for the mean curvature flow in higher dimension.

Proof of Theorem D and E. By Schwarz inequality, we have

- \vee\dot{4}(t)=2\tan\frac{\triangle\theta}{2}\sum_{j}a_{j}-2\tan\frac{\triangle\theta}{2}\sum_{j}b_{j}\kappa_{j}^{-1},

=2 \tan\frac{\triangle\theta}{2}\sum_{j}a_{j}^{1/2}\kappa_{j}^{1/2}a_{j}^{1/2}\kappa_{j}^{-1/2}-2\tan\frac{\triangle\theta}{2}\sum_{j}b_{j}\kappa_{j}^{-1}
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\leq\sqrt{a_{\max}}(2\tan\frac{\triangle\theta}{2}\mathcal{L}(t)\sum_{j}b_{j}-\frac{1}{2}\frac{d}{dt}\mathcal{L}(t)^{2})^{1/2}

-2 \tan\frac{\triangle\theta}{2}\sum_{j}b_{j}\kappa_{j}^{-1} .

Integration the above inequality over (0, T_{\star}) , the point-extinction and
Schwarz inequality yield

A(0) \leq\sqrt{a_{\max}}\int_{0}^{T_{\star}}(2\tan\frac{\triangle\theta}{2}\mathcal{L}(t)\sum_{j}b_{j}-\frac{d}{dt}\frac{\mathcal{L}(t)^{2}}{2})^{1/2}dt-B

\leq\sqrt{a_{\max}}(\int_{0}^{T_{\star}}dt)^{1/2}

( \int_{0}^{T_{\star}}(2\tan\frac{\triangle\theta}{2}\mathcal{L}(t)\sum_{j}b_{j}-\frac{d}{dt}\frac{\mathcal{L}(t)^{2}}{2})dt)^{1/2}-B

= \sqrt{a_{\max}}\sqrt{T_{\star}}(\frac{\mathcal{L}(0)^{2}}{2}+2\tan\frac{\triangle\theta}{2}\sum_{j}b_{j}\int_{0}^{T_{\star}}\mathcal{L}(t)dt)^{1/2}-B

where B=2 \tan(\triangle\theta/2)\int_{0}^{T_{\star}}\sum_{j}b_{j}/\kappa_{j}dt .

Proof of Theorem D. Since b\leq 0 , we get

A(0)\leq\sqrt{\frac{a_{\max}}{2}}\mathcal{L}(0)\sqrt{T_{\star}}-b_{\min}\mathcal{L}(0)T_{\star} .

Assumption b\not\equiv 0 means b_{\min}<0 . Hence the solution of this inequality
provides the lower bound of T_{\star} . \square

Proof of Theorem E. Since b>0 , we get

A(0)^{2} \leq a_{\max}T_{\star}(2\tan\frac{\triangle\theta}{2}\sum_{j}b_{j}\mathcal{L}(0)T_{\star}+\frac{1}{2}\mathcal{L}(0)^{2}) .

The solution of this inequality provides the lower bound of T_{\star} . \square \square

Appendices

A. Gradient flow of a total interfacial energy

If the interfacial energy on the curve \Gamma is distributed uniformly as con-
stant 1, then the total interfacial energy of \Gamma is given by
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E[ \Gamma]=\int_{\Gamma}1ds=\int_{T}|x_{\theta}|d\theta ,

( ds=|x_{\theta}|d\theta : the arc-length parameter),

where T=R/2\pi Z is the flat torus. The first variation of E has the form:

\frac{\delta E[\Gamma_{Z}^{\epsilon}]}{\delta z}:=\frac{d}{d\epsilon}E[\Gamma_{Z}^{\epsilon}]|_{\epsilon=0}=\int_{\Gamma}\langle-t_{s}, z\rangle ds

where \Gamma_{Z}^{\epsilon}=\{\vec{x}\in R^{2}|\vec{x}=x+\epsilon z(\theta), x\in\Gamma_{t}, \theta\in T\} . Hence the gradient
of E with L^{2}-metric is grad E[\Gamma]=-t_{s} . Then Frenet-Serret formula t_{s}=

\kappa n yields x_{t}=- grad E[\Gamma]=\kappa n , i.e. v=\langle x_{t}, n\rangle=\kappa . This equation is
called the classical curve-shortening equation, and is investigated by many
authors (see [GH, Gry, AV, And] and references therein).

If the interfacial energy f=f(n) is a positively homogeneous of de-
gree one in C^{2}(R^{2}\backslash \{0\}) , then the gradient flow of total interfacial en-
ergy E[ \Gamma]=\int_{\Gamma}f(n)ds is computed as x_{t}=t(\kappa Hess f(n)t)^{\perp} (see El-
liott [E] ) . Here {}^{t}(x_{1}, x_{2})^{\perp}={}^{t}(-x_{2}, x_{1}) . Then we obtain v=\langle x_{t}, n\rangle=

\langle ( \kappa Hess f(n)t) , n\rangle =\kappa\langle Hessf(n)t, t\rangle . Moreover, if we put f(\theta)=

f(n(\theta)) , then we get the weighted curvature flow v=\omega=(f+f’)\kappa since
(Hess f(n)t , t\rangle =f+f’ holds. The function f+f’ is the inverse of curva-
ture on the boundary \partial \mathcal{W}_{f} of the Wulff shape \mathcal{W}_{f} . 1ndeed, the locus of the
boundary of the Wulff shape \partial \mathcal{W}_{f} is

\partial \mathcal{W}_{f}=\{\vec{x}\in R^{2}|\vec{x}=y(\theta)=-f(\theta)n(\theta)+f’(\theta)t(\theta), \theta\in T\} ,

and then its curvature is \kappa_{\mathcal{W}}=-\langle y_{\theta}, y_{\theta\theta}^{\perp}\rangle|y_{\theta}|^{-3}=(f+f’)^{-1} .

B. Discrete curvature

B. 1. Characterization
Let P be an N_{\star}-admissible piecewise linear curve. Each side of P has

zero curvature, if the curvature is defined in the standard way based on
the Frenet-Serret’s formula. However, the curvature of smooth curves can
alternatively be defined as follows: 1. the negative of the gradient of length
(see Appendix A);2. the negative of derivative of the length w.r.t. signed
area for smooth deformations of the curve. In these sense, the analogous
quantity for P can be defined. These are the two of characterizations of \kappa_{j} .
See, e.g. , Rybka [Ry].

Now we present the third characterization of the curvature as the fol-
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lowing. Since P is an N_{\star}-admissible piecewise linear curve, the inverse of
the discrete curvature is given by 1/\kappa_{j}=\chi_{j}xd_{j}/2\tan(\triangle\theta/2) . In other
words, we have the next relation:

1/discrete curvature =\chi_{j}\cross radius of the largest
(inscribed circle of) inscribed regular polygon.

This relation is a discretized version of the inverse of the usual curvature:

1/curvature=sign\cross radius of the largest inscribed circle.

In this sense each side of P does have nonzero curvature \kappa_{j} . See Figure 2.

B.2. Discrete curvature \kappa_{j} vs. curvature \kappa(\theta_{j})

Suppose a subarc of a curve \Gamma , say \Gamma_{sub} , is Gauss-parametrized and
strictly convex as follows:

\Gamma_{sub}=\{\vec{x}\in R^{2}|\vec{x}=x(\theta), \theta\in[\theta_{j-1}, \theta_{j+1}], \theta_{j-1}<\theta_{j}<\theta_{j+1}\} .

We define a part of circumscribed piecewise linear curve, say P_{sub} , of \Gamma_{sub}

such as

\Gamma_{sub}\cap P_{sub}=\{x(\theta_{j-1}), x(\theta_{j}), x(\theta_{j+1})\} .

See Figure 1.

Fig. 1. P_{sub} (outside: the part of circumscribed piecewise linear
curve of \Gamma_{sub} ), and \Gamma_{sub} (inside: the subarc of \Gamma ).

We call the side including x(\theta_{j}) of P_{sub} the jtll side. The length of the
jth side is denoted by d_{j} . The jth side is a part of tangent line which has
the orientation t(\theta_{j})= (- sin \theta_{j} , cos \theta_{j} ) since the inward normal at x(\theta_{j})

is n(\theta_{j}) . We note that the transition number is \chi_{j}=+1 .
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Fig. 2. Symbolic figure to compare the discrete curvature and the usual curva-
ture. Thick solid = piecewise linear curve P (left) and curve \Gamma (right),
Solid=the largest inscribed polygon (left), and the largest inscribed
circle (right), Dashed = radius (both), Long dashed = half of diagonal
(left).

Let \kappa(\theta_{j}) be the curvature at x(\theta_{j})\in\Gamma_{sub} and \kappa_{j}=\gamma_{j}/d_{j} the discrete
curvature defined on the jth side of \mathcal{P}_{sub} .

The relation between \kappa_{j} and \kappa(\theta_{j}) is calculated as follows (cf. Section 3
in [Gir] ) . First, we decompose the length of the jth side as d_{j}=d_{j}^{+}+d_{j}^{-}

(see Figure 1). Next, we obtain

d_{j}^{+}= \frac{1}{\kappa(\theta_{j})}(\frac{\triangle\theta_{j+1}}{2}-\frac{(\triangle\theta_{j+1})^{2}}{6}\frac{\kappa’(\theta_{j})}{\kappa(\theta_{j})}+O((\triangle\theta_{j+1})^{3}))

by the Taylor expansion of

x( \theta_{j+1})-x(\theta_{j})=\int_{\theta_{j}}^{\theta_{j+1}}\frac{t(\theta)}{\kappa(\theta)}d\theta=\int_{0}^{\triangle\theta_{j+1}}\frac{t(\theta_{j}+\mu)}{\kappa(\theta_{j}+\mu)}d\mu

around \theta_{j} and the decomposition:

d_{j}^{+}=\langle x(\theta_{j+1})-x(\theta_{j}) , t_{j}- cot \triangle\theta_{j+1}n_{j}\rangle .

In the same way, we obtain

d_{j}^{-}= \frac{1}{\kappa(\theta_{j})}(\frac{\triangle\theta_{j}}{2}+\frac{(\triangle\theta_{j})^{2}}{6}\frac{\kappa’(\theta_{j})}{\kappa(\theta_{j})}+O((\triangle\theta_{j})^{3}))

Therefore we have

\kappa_{j}=\frac{\gamma_{j}}{d_{j}^{+}+d_{j}^{-}}=\kappa(\theta_{j})+\frac{\kappa’(\theta_{j})}{3}(\triangle\theta_{j+1}-\triangle\theta_{j})+O((\triangle\theta_{\max})^{2})

(B.I)
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since

\gamma_{j}=\tan\frac{\triangle\theta_{j+1}}{2}+\tan\frac{\triangle\theta_{j}}{2}

= \frac{\triangle\theta_{j+1}+\triangle\theta_{j}}{2}+\frac{(\triangle\theta_{j+1})^{3}+(\triangle\theta_{j})^{3}}{24}+O((\triangle\theta_{j+1})^{5}+(\triangle\theta_{j})^{5})

holds. Here \triangle\theta_{\max}=\max\{\triangle\theta_{j+1}, \triangle\theta_{j}\} and O(\cdot) in equation (B.I) depends
on

\sum_{1\leq\ell\leq 2}\theta\in[\theta_{j-1}\max,\theta_{j+1}]|\frac{d^{\ell}}{d\theta^{\ell}}\kappa(\theta)| and
\theta\in[]\min_{\theta_{j-1},\theta_{j+1}}\kappa(\theta)

.

Hence, it is reasonable to treat N_{\star}-admissible piecewise linear curves
from a numerical point of view.

C. Crystalline curvature

Let f be a crystalline energy and P_{t} an N-admissible piecewise linear
curve. Then the Wulff shape \mathcal{W}_{f} is a polygon and the distance between
the origin and the jth side (which has the orientation n_{j}\in N) is f_{j} . See
Figure 3.

Fig. 3. The jth side of the Wulff shape \mathcal{W}_{f} if f is a crystalline
energy.

If we decompose the length of the jth side such as l(n_{j})=l_{j}^{+}+l_{j}^{-} (see
Figure 3 again), then we get l(n_{j})=\gamma_{j}(f+\triangle_{\theta}f)_{j} since

l_{j}^{+}=f_{j+1} sin \triangle\theta_{j+1}-\frac{f_{j}-f_{j+1}\cos\triangle\theta_{j+1}}{\tan\triangle\theta_{j+1}} , and

l_{j}^{-}=f_{j-1} sin \triangle\theta_{j}-\frac{f_{j}-f_{j-1}\cos\triangle\theta_{j}}{\tan\triangle\theta_{j}}
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hold (awake around equation (1.2) again).
The discrete curvature of the polygon \partial \mathcal{W}_{f} is given as \gamma_{j}/l(n_{j})=(f+

\triangle_{\theta}f)_{j}^{-1} . Hence the crystalline curvature \omega_{j}(t) is

\omega_{j}(t)=\frac{discretecurvatureofP_{t}}{discretecurvatureofpo1ygon\partial \mathcal{W}_{f}}

= \frac{\kappa_{j}(t)}{(f+\triangle_{\theta}f)_{j}^{-1}}=(f+\triangle_{\theta}f)_{j}\kappa_{j}(t) .

This is a discrete version of weighted curvature \omega(\theta, t) :

\omega(\theta, t)=\frac{curvatureof\Gamma_{t}}{curvatureof\partial \mathcal{W}_{f}}=\frac{\kappa(\theta,t)}{(f(\theta)+f’’(\theta))^{-1}},
=(f(\theta)+f’(\theta))\kappa(\theta, t)

at the point (\theta_{j}, t) if f is smooth. Namely, the crystalline curvature is a
discrete weighted curvature.

References

[A1] Almgren R., Crystalline Saffman-Taylor fingers. SIAM J. Appl. Math. 55 (1995),
1511-1535.

[A1T] Almgren F. and Taylor J.E., Flat flow is motion by crystalline curvature for
curves with crystalline energies. J. Diff. Geom. 42 (1995), 1-22.

[And] Andrews B., Evolving convex curves. Calc. Var. 7 (1998), 315-371.
[AGu] Angenent S. and Gurtin M.E., Multiphase thermomechanics with interfacial

stmcture, 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal.
108 (1989), 323-391.

[AV] Angenent S. and Vel\’azquez J.J.L., Asymptotic shape of cusp singulanties in curve
shortening. Duke Math. J. 77 (1995), 71-110.

[BNP] Bellettini G., Novaga M. and Paolini M., Facet-breaking for three dimensional
crystals evolving by mean curvature. Interfaces and Free Boundaries 1 (1999),
39–55.

[DGM] Dohmen C., Giga Y. and Mizoguchi N., Existence of selfsimilar shrinking curves
for anisotropic curvature flow equations. Calc. Var. 4 (1996), 103-119.

[Eg] Eggleston H.G., Convexity. Cambridge Tracts in Mathematics and Mathematical
Physics, 47, Cambridge University Press, New York (1958).

[E] Elliott C M., Approximation of curvature dependent interface motion. The state
of the art in numerical analysis (York, 1996), Inst. Math. Appl. Conf. Ser. New
Ser. 63, Oxford Univ. Press, New York, (1997), 407-440.

[EGS] Elliott C M., Gardiner A.R. and Sch\"atzle R, Crystalline curvature flow of a graph
in a vanational setting. Adv. in Math. Sci. Appl. Gakk\={o}tosho, Tokyo 8 (1998),



Asymptot \iota c behavior of solutions to a crystalline motion 355

425-460.
[FG] Fukui T. and Giga Y., Motion of a graph by nonsmooth weighted curvature.

World Congress of Nonlinear Analysis ’92 (ed. Lakshmikantham, V.), Walter de
Gruyter, Berlin (1996), 47-56.

[GH] Gage M. and Hamilton R.S., The heat equation shrinking convex plane curves.
J. Diff. Geom. 23 (1986), 69-96.

[GL] Gage M. and Yi Li, Evolving plane curves by curvature in relative geometnes II.
Duke Math. J. 75 (1994), 79-98.

[GG1] Giga M.-H. and Giga Y., Geometric evolution by nonsmooth interfacial energy.
Nonlinear analysis and applications (Warsaw, 1994), GAKUTO Internat. Ser.
Math. Sci. Appl. 7 (1996), 125-140, Gakk\={o}tosho, Tokyo.

[GG2] Giga M.-H. and Giga Y., Consistency in evolutions by crystalline curvature.
Free boundary problems, theory and applications (Zakopane, 1995), Pitman {\rm Res} .
Notes Math. Ser. 363 (1996), 186-202, Longman, Harlow.

[GG3] Giga M.-H. and Giga Y., Remarks on convergence of evolving graphs by nonlO-
cal curvature. Progress in partial differential equations, Vol. 1 (Pont-\‘a-Mousson,
1997), Pitman {\rm Res} . Notes Math. Ser. 383 (1998) 99-116, Longman, Harlow.

[GG4] Giga M.-H. and Giga Y., Evolving graphs by singular weighted curvature. Arch.
Rational Mech. Anal. 141 (1998), 117-198.

[GG5] Giga M.-H. and Giga Y., Stability for evolving graphs by nonlocal weighted cur-
vature. Comm. Partial Differential Equations 24 (1999), 109-184.

[GG6] Giga M.-H. and Giga Y., Generalized motion by nonlocal curvature in the plane.
Hokkaido Univ. Preprint Series in Math. 478 (2000).

[GG7] Giga M.-H. and Giga Y., Crystalline and level set flow convergence of a crystalline
algonthm for a general anisotropic curvature flow in the plane. Hokkaido Univ.
Preprint Series in Math. 479 (2000).

[G] Giga Y., Anisotropic curvature effects in interface dynamics. SUGAKU EXPO-
SITIONS (to appear).

[GGu] Giga Y. and Gurtin M.E., A companson theorem for crystalline evolution in the
plane. Quart. J. Appl. Math. LIV (1996), 727-737.

[GGuM] Giga Y., Gurtin M.E. and Matias J., On the dynamics of crystalline motions.
Japan J. Indust. Appl. Math. 15 (1998), 1-44.

[GY] Giga Y. and Yama-uchi K., On a lower bound for the extinction time of surfaces
moved by mean curvature. Calc. Var. 1 (1993), 417-428.

[Gir] Gir\overline{a}oP.M. , Convergence of a crystalline algorithm for the motion of a simple
closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995),
886-899.

[GirKl] Gir\tilde{a}oP.M . and Kohn R.V., Convergence of a crystalline algonthm for the heat
equation in one dimension and for the motion of a graph by weighted curvature.
Numer. Math. 67 (1994), 41-70.

[GirK2] Gir\tilde{a}oP.M . and Kohn R.V., The crystalline algonthm for computing motion
by curvature. Variational methods for discontinuous structures (eds. Serapioni, R
and Tomarelli, F.), Birkh\"auser, Progress in Nonlinear Differential Equations and



356 S. Yazaki

Their Applications 25 (1996), 7-18.
[GP] Goglione R. and Paolini M., Numerical simulations of crystalline motion by

mean curvature with Allen-Cahn relaxation. Free boundary problems, theory and
applications (Zakopane, 1995), Pitman {\rm Res} . Notes Math. Ser. 363 (1996), 203-
216, Longman, Harlow.

[Gry] Grayson M.A., The heat equation shrinks embedded plane curves to round points.
J. Diff. Geom. 26 (1987), 285-314.

[Gul] Gurtin M.E., Thermomechanics of evolving phase boundaries in the plane.
Clarendon Press, Oxford (1993).

[Gu2] Gurtin M.E., Planar motion of an anisotropic interface. Motion by mean curva-
ture and related topics (Trento, 1992), Walter de Gruyter, Berlin, (1994), 89-97.

[IIU] Imai H., Ishimura N. and Ushijima T.K., Motion of spirals by crystalline curva-
ture. Math. Model. Num. Anal. 33 (1999), 797-806.

[IPS] Ishii H., Pires G.E. and Souganidis P.E., Threshold dynamics type approximation
schemes for propagating fronts. J. Math. Soc. Japan 51 (1999), 267-308.

[IS] Ishii K. and Soner H.M., Regulanty and convergence of crystalline motion. SIAM
J. Math. Anal. 30 (1999), 19-37 (electronic).

[NMHS] Nakamura K.-L, Matano H., Hilhotst D. and Sch\"atale R., Singular limit of a

reaction-diffusion equation with a spatially inhomogeneous reaction term. J. Stat.
Phys. 95 (1999), 1165-1185.

[RT] Roosen A.R. and Taylor J.E., Modeling crystal growth in a diffusion field using
fully faceted interfaces. J. Comput. Phys. 114 (1994), 113-128.

[Ry] Rybka P., A crystalline motion: uniqueness and geometric properties. SIAM J.
Appl. Math. 57 (1997), 53-72.

[S1] Stancu A., Uniqueness of self-similar solutions for a crystalline flow. Indiana
Univ. Math. J. 45 (1996), 1157-1174.

[S2] Stancu A., Self-similarity in the deformation of planar convex curves. Free bound-
ary problems, theory and applications (Zakopane, 1995), Pitman {\rm Res} . Notes
Math. Ser. 363 (1996), 271-276, Longman, Harlow.

[S3] Stancu A., Asymptotic behavior of solutions to a crystalline flow. Hokkaido Math.
J. 27 (1998), 303-320.

[T1] Taylor J.E., Crystalline variational problems. Bull. Am. Math. Soc. 84 (1978),
568-588.

[T2] Taylor J.E., Constructions and conjectures in crystalline nondifferential geom-
etry. Proceedings of the Conference on Differential Geometry, Rio de Janeiro,
Pitman Monographs Surveys Pure Appl. Math. 52 (1991), 321-336, Pitman Lon-
don.

[T3] Taylor J.E., Mean curvature and weighted mean curvature. Acta Metall. Mater.
40 (1992), 1475-1485.

[T4] Taylor J.E., Motion of curves by crystalline curvature, including triple junctions
and boundary points. Diff. Geom.: partial diff. eqs. on manifolds (Los Angeles,
CA, 1990), Proc. Sympos. Pure Math. 54 (1993), Part I, 417-438, AMS, Provi-
dencd, RI.



Asymptotic behavior of solutions to a crystalline motion 357

[TCH] Taylor J.E., Cahn J.W. and Handwerker C.A., Geometric models of crystal
growth. Acta Metall. Mater. 40 (1992), 1443-1474.

[UY1] Ushijima T.K. and Yazaki S., Convergence of a crystalline algonthm for the
motion of a closed convex curve by a power of curvature V =K^{\alpha} . SIAM J.
Numer. Anal. 37 (2000), 500-522.

[UY2] Ushijima T.K. and Yazaki S., Convergence of a crystalline algonthm for the
motion of a closed convex curve by a power of curvature. Advances in Numer.
Math.; Proc. of the Fourth Japan-China Joint Seminar on Numer. Math. (eds.
Kawarada, H., Nakamura, M., and Shi, Z.), GAKUTO Internat. Ser. Math. Sci.
and Appl. 12, Gakk\={o}tosho, Tokyo, (1999), 261-270.

[UY3] Ushijima T.K. and Yazaki S., Implicit crystalline algorithm for area-preserving
motion of an immersed convex curve by curvature. Submitted.

[Y] Yazaki S., Asymptotic behavior of solutions to an expanding motion by a negative
power of crystalline curvature. Advances in Mathematical Sciences and Applica-
tions (to appear).

[Yu] Yunger J., Facet stepping and motion by crystalline curvature. PhD Thesis,
Rutgers University (1998).

Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Tokyo 153-8914, Japan

Present address:
Department of Mathematics
General Education Center
Faculty of Engineering
Musashi Institute of Technology
1-28-1 Tamazutsumi, Setagaya-ku
Tokyo 158-8557, Japan
E-mail: shige@fjord.ms.u-tokyo. ac.jp


	1. Introduction and main ...
	1.1. The aim of this paper
	1.2. Background
	1.3. Generalized crystalline ...
	1.4. Main results
	Theorem A ...
	Theorem B ...
	Theorem C ...


	2. Properties of solutions ...
	2.1. A formulation equivalent ...
	2.2. Comparison principle
	2.3. The length and the ...
	2.4. Finite time blow-up

	3. Point-extinction (proof ...
	Theorem 3.1 ...

	4. Geometric expansion ...
	5. Lower bound of the ...
	Appendices
	A. Gradient flow of a ...
	B. Discrete curvature
	B. 1. Characterization
	B.2. Discrete curvature ...

	C. Crystalline curvature

	References

