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Losing a graph with surface diffusion

Charles M. ELLIOTT and Stanislaus MAIER-PAAPE\star
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Abstract. We construct examples where graphs evolved as curves by a generalized
surface diffusion law lose the graph property in finite time, although they remain to exist
as smooth curves.

Key words: surface diffusion, interface motion, geometric evolution.

1. Introduction

We consider geometric evolution laws for curves \Gamma_{t}\subset \mathbb{R}^{2} , t\geq 0 , which,
restricted to [a, b]\cross \mathbb{R} , where [a, b] is some compact interval in \mathbb{R} , are in
fact graphs over the x-axis. Such kind of situations arise, for example, in
surface growth problems [12, 13] , where the surface of a growing material is
modeled by a graph, but the governing evolution equations are geometric.

Our geometric evolution is determined by a generalized surface diffusion
law

V=-\epsilon\partial_{ss}\kappa+f(\kappa, \theta) . (1.1)

Here V denotes the outward normal velocity of the curve, \kappa is the
curvature, s denotes the arclength of the curve and \theta is the angle of the
curve with the x-axis. \epsilon>0 is a parameter and f : \mathbb{R}^{2}arrow \mathbb{R} is a nonlinear
smooth function which is odd in \kappa , even and \pi-periodic in \theta . In the case
f\equiv 0 , (1.1) is motion by surface diffusion [3, 4, 5, 10, 6].

Since the curves \Gamma_{t} , t\geq 0 , are assumed to be graphs over the x-axis,
i.e., \Gamma_{t}=\{(x, h(t, x)), x\in(a, b)\} , the equation (1.1) becomes

\partial_{t}h=-\epsilon\partial_{x}\frac{1}{J_{h}}\partial_{x}\kappa_{h}+f(\kappa_{h}, \theta_{h}) , \kappa_{h}=\partial_{x}\frac{1}{J_{h}}\partial_{x}h , x\in[a, b] ,
(1.2)

where J_{h}=(1+(\partial_{x}h)^{2})^{1/2} and \theta_{h}=\arccos(\frac{1}{J_{h}}) (cf. e.g . [7]). We study
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(1.2) augmented with Neumann and no flux boundary conditions

\partial_{x}h(\cdot, a)=\partial_{x}h(\cdot, b)=\partial_{x}\kappa_{h}(\cdot, a)=\partial_{x}\kappa_{h}(\cdot, b)=0 . (1.3)

Our main result gives that the evolution laws (1.2) and (1.3) for the
graph situation, starting with an initially smooth graph \Gamma_{0}=\{(x, h(0, x)) ,
x\in[a, b]\} can lead to a non-graph situation within finite time, although with
respect to (1.1) the evolving curves \Gamma_{t} do carry on to exist. In particular,
we will show a finite time blow up of \partial_{x}h for some initial graph \Gamma_{0} with a
very steep slope at some point.

Our approach also covers the case of periodic boundary conditions, in
which case the evolution law (1.2) augmented with the boundary conditions

\partial_{x}^{i}h(\cdot, a)=\partial_{x}^{i}h(\cdot, b) , i=0, \ldots , 3, (i.4)

can also lead to a non-graph situation in finite time.
There a,re several evolution laws in the literature which use surface

diffusion as the leading order term. For instance the law V=-\epsilon(\partial_{ss}\kappa+

\frac{1}{2}\kappa^{3})-\cos(2\theta)\kappa introduced by Davi and Gurtin [4] fits into our setting.
Also V=-\epsilon\partial_{ss}\kappa-\cos(2\theta)\kappa would be admissible which, in a simplified
version ( \partial_{ss}\kappa substituted by its linearization at h\equiv 0), is used by Hunt et
al. [11] in a graph situation to model surface growth effects in molecular
beam epitaxy. Another equation for surface growth (again in the graph
situation) is V=-\epsilon\partial_{ss}\kappa-|\cos(\theta)|\kappa introduced by Mazor et al. [13]. Here

f is not differentiable with respect to \theta , but our result would apply for a
smooth nearby equation.

The results obtained in this paper are in strong contrast to second
order models like the curvature flow equation V=\kappa , where the graph-like
solutions stay as a graph under periodic boundary conditions. Such a result
is easily obtained by the intersection-comparison principle (e.g. [2], [1]).

In Giga [8], among other results it is shown that the graph property is
lost in a finite time for V=\kappa+y in the xy-plane. There the comparison
principle is used. Since the present problem does not have the comparison
principle, it is impossible to apply Giga’s method here.

Instead, we model the evolution of the curve as the evolution of the
distance function with respect to a fixed reference curve which is taken so
that it is easy to lose the graph property.

Before we continue with our particular setup, let us briefly remark on
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the conditions imposed on f . They are chosen in order to guarantee that
certain symmetric curves, evolved by the evolution law (1.1) remain sym-
metric. We formulate this as a lemma and leave the obvious proof to the
reader.

Lemma 1.1 (a) Suppose f is odd in \kappa . Then any initially point sym-
metr^{*}ic curve remains point symmetric under the evolution of (1.1) as long
as it exists and is unique.

(b) In case f is even in \theta , we obtain that any initially axisymmetric
curve remains axisymmetric, as long as it exists and is unique; as axes of
symmetry any horizontal or vertical lines are allowed.

We remark that this observation should be sufficient to generalize the
pinching of result of Giga and Ito [9] (f even in \theta is enough) for the gener-
alized surface diffusion law (1.1).

2. Parameterization and Local Existence

In the following we use the parameterization introduced by Elliott and
Garcke [5] for the evolution in (1.1). The idea is to model the evolution of
the curve as the evolution of the distance function with respect to a fixed
smooth curve \mathcal{M}^{*}\subset \mathbb{R}^{2} , see Figure 1.

The restriction of \mathcal{M}^{*} to [-1, 1] \cross \mathbb{R} contains one vertical straight line
of length one and two horizontal straight lines of length one half, which are
connected smoothly. \mathcal{M}^{*} is then extended to an unbounded smooth curve
in \mathbb{R}^{2} by reflection at \{x=1\} and periodic continuation. Let I=[-L, L]\subset
\mathbb{R} and let

X^{*} : Iarrow \mathcal{M}^{*}

\eta\mapsto X^{*}(\eta)

be an arclength parameterization of \mathcal{M}^{*}\cap([-2,2]\cross \mathbb{R}) which again may be
extended to an arclength parameterization X^{*} : \mathbb{R}arrow \mathcal{M}^{*} of the whole of
\mathcal{M}^{*} . Then the unit tangent vector \tau^{*}=\partial_{\eta}X^{*} of \mathcal{M}^{*} satisfies the Frenet
formulas

\partial_{\eta}\tau^{*}=\kappa^{*}n^{*} \partial_{\eta}n^{*}=-\kappa^{*}\tau^{*} , (2.1)

where n^{*} is a unit normal vector and \kappa^{*} is the curvature of \mathcal{M}^{*} with the
sign convention that curvature of a circle is negative. Another ingredient to
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Fig. 1. The reference curve \mathcal{M}^{*} .

describe \mathcal{M}^{*} is \theta^{*}=\theta^{*}(\eta)\in[-\frac{\pi}{2}, \frac{\pi}{2}] , the angle of the curve with the x-axis.

An initial curve \Gamma_{0}\subset \mathbb{R}^{2} , close to \mathcal{M}^{*} , subject to (1.1) evolves to \Gamma_{t}\subset

\mathbb{R}^{2} . t\geq 0 . At least for small time t we may parametrize these curves by

\Gamma_{t}(\eta)=X^{*}(\eta)+d(t, \eta) n^{*}(\eta) , \eta\in \mathbb{R} ,

where d is the distance function from \mathcal{M}^{*} . The tangent \tau and the normal
n of \Gamma_{t} are

\tau=\frac{1}{J}[(1-d\kappa^{*})\tau^{*}+d_{\eta}n^{*}] ,

n=\frac{1}{J}[-d_{\eta}\tau^{*}+(1-d\kappa^{*})n^{*}] ,

where J=|\partial_{\eta}\Gamma.|=((\partial_{\eta}d)^{2}+(1-d\kappa^{*})^{2})^{1/2} is the arclength. The evolution
law (1.1) now transforms to a differential equation for d
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\frac{1-d\kappa^{*}}{J}\partial_{t}d=-\epsilon\frac{1}{J}\partial_{\eta}(\frac{1}{J}\partial_{\eta}\kappa)+f(\kappa, \theta) , \eta\in \mathbb{R} , (2.2)

where \kappa=\kappa(t, \cdot) is the curvature of \Gamma_{t} and \theta=\theta(t, \cdot) is the angle of the
curve \Gamma_{t} with the x-axis: cos \theta=\tau_{1} with \tau=(\tau_{1}, \tau_{2}) . According to [5] we
have

\kappa=\frac{1}{J^{3}}\{(1-d\kappa^{*})\partial_{\eta}^{2}d+2\kappa^{*}(\partial_{\eta}d)^{2}+\partial_{\eta}\kappa^{*}d\partial_{\eta}d+\kappa^{*}(1-d\kappa^{*})^{2}\} .

(2.3)

Therefore, (2.2) is indeed of the form

\partial_{t}d+\epsilon\{J^{-4}\partial_{\eta}^{4}d+P\partial_{\eta}^{3}d+Q\}=J(1-\kappa^{*}d)^{-1}f(\kappa, \theta) , \eta\in \mathbb{R} ,

(2.4)

where P and Q are with arguments (1-\kappa^{*}d)^{-1} , J^{-1}\partial^{i}\kappa^{*} i=0, \ldots , 3,’ \eta ’

and \theta_{\eta}^{i}d , j=0,1,2 .

We now come back to the graph situation (1.2). Of course not every
curve near \mathcal{M}^{*} is a graph over the x-axis, but some are. In fact, being a
graph can be viewed as a condition on d (for instance one needs \partial_{\eta}d<0 for
\eta\in[-\frac{1}{2}, +\frac{1}{2}]) .

Our goal is to construct an initial smooth curve \Gamma_{0}\subset \mathbb{R}^{2} , close to
\mathcal{M}^{*} . which restricted to [-1, 1] \cross \mathbb{R} is a graph \{(x, h_{0}(x)), x\in[-1,1]\} , but
when evolved by (1.2) the graph property is lost in finite time. We choose
Neumann and no flux boundary conditions

\partial_{x}h(\cdot, -1)=\partial_{x}h(\cdot, +1)=\partial_{x}\kappa_{h}(\cdot, -1)=\partial_{x}\kappa_{h}(\cdot, +1)=0 (2.5)

for this scenario. However, our intention is not to handle this directly in
the graph situation, but to monitor the respective evolving curves in the
“close to \mathcal{M}^{*}

” situation as solutions of (2.4). Therefore we must consider
(2.4) for \eta\in[-\frac{L}{2}, +\frac{L}{2}] augmented with the boundary conditions

\partial_{\eta}d ( \cdot,

- \frac{L}{2})=\partial_{\eta}d(\cdot, + \frac{L}{2})=\partial_{\eta}\kappa(\cdot, - \frac{L}{2})=\partial_{\eta}\kappa(\cdot, + \frac{L}{2})=0 . (2.6)

Next we need a local, i.e., small time, existence result for those curves.
In order to be able to use the existence result for the periodic situation
due to Giga and Ito [9], we have to extend our problem to periodic bound-
ary conditions. Any smooth curve \Gamma_{t} satisfying (2.6) can be extended by
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reflection at \{x=-1\} and \{x=+1\} to a periodic problem satisfying

\partial_{t}d+\epsilon\{J^{-4}\partial_{\eta}^{4}d+P\partial_{\eta}^{3}d+Q\}=J(1-\kappa^{*}d)^{-1}f(\kappa, \theta) for \eta\in I ,

\partial_{\eta}^{i}d(\cdot, -L)=\partial_{\eta}^{i}d(\cdot, L) i=0, \ldots , 3. (2.7)

The local existence theorem below is for solutions d=d(t, \eta) of (2.7)
with periodic initial value

d(0, \eta)=d_{0}(\eta) , \eta\in I=[-L, L] . (2.8)

To recover solutions with the boundary condition (2.6) the additional
symmetry

d ( \cdot,

- \frac{L}{2}+\eta)=d(\cdot, - \frac{L}{2}-\eta)

for | \eta|\leq\frac{L}{2}

d ( \cdot,

+ \frac{L}{2}+\eta)=d(\cdot, + \frac{L}{2}-\eta)

is imposed on the initial value d_{0} and then, due to symmetry of \mathcal{M}^{*} and
our equation, conserved for d as long as it exists (cf. Lemma 1.1).

We now rephrase the local existence result of [9]. Since we deal with 2L-
periodic solutions, we introduce I=\mathbb{R}/2L\mathbb{Z} as our new space for the spatial
variable. Let \mu=\mu(L) denote the constant in the Sobolev inequality

||u||_{L^{\infty}(I)}\leq\mu||u||_{H^{1}(I)} for all u\in H^{1}(I) (2.8)

and let \delta^{*}:=(4||\kappa^{*}||_{L^{\infty}(I)})^{-1}>0 . Then [9], Theorem 3 ii ) states

Theorem 2.1 ([9]) Let m\geq 4 be an integer and N\in(0, \delta^{*}//x) . Then
there is a uniform existence time T_{1}(N)>0 , such that for any d_{0}\in H^{m}(I)

with ||d_{0}||_{H^{m}(I)}\leq N , the solution d=d(t, \eta) of (2.7) exists and is unique
for t\in[0, T_{1}(N)] . Furthermore,

d\in L^{2}(0, T_{1}(N);H^{m+2}(I)) , \partial_{t}d\in L^{2}(0, T_{1}(N);H^{m-2}(I))

and ||d(t, \cdot)||_{H^{m}(I)}\leq 2N for t\in[0, T_{1}(N)] .

3. Losing the Graph

We now want to show that an initial graph can develop a vertical slope
in finite time, when moved by surface diffusion. To simplify matters we
work with odd distance functions d

d(\cdot, -\eta)=-d(\cdot, \eta) for \eta\in I . (3.1)
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Again oddness of \mathcal{M}^{*} and the symmetry of our equations yield that an
initially odd d_{0} will evolve as an odd curve under (2.7) as long as it exists
(cf. Lemma 1.1). Oddness immediately implies

\partial_{\eta}^{2i}d(\cdot, 0)=0 for i=0,1,2 .

This, together with \kappa_{1[-\frac{1}{2},\frac{1}{2}]}^{*}\equiv 0 enables computations:

\partial_{t\eta}d(t, 0)=\epsilon\{-\frac{\partial_{\eta}^{5}d(t,0)}{J(t,0)^{4}}+10\frac{\partial_{\eta}d(t,0)(\partial_{\eta}^{3}d(t,0))^{2}}{J(t,0)^{6}}\}

+ \frac{\partial_{\kappa}f(0,\theta(t,0))\partial_{\eta}^{3}d(t,0)}{J(t,0)^{2}}=:\sigma(d(t, \cdot)) ,

where J(t, 0)=(1+(\partial_{\eta}d(t, 0))^{2})^{1/2} (cf. (2.2)). Note that, by the above
equation, \sigma : \mathcal{F}arrow \mathbb{R} is well defined, where \mathcal{F} is the set of all sufficiently
smooth functions g:Iarrow \mathbb{R} (strictly speaking defined on a neighborhood of
O\in I is enough). Both J and \theta are implicitly defined in terms of g .

We will find out that a steep graph where \partial_{t\eta}d_{0}(0) is large enough, will
steepen and become vertical ill finite time. The space of initial values which
ensures this situation is

D_{0}(N, \rho, \tau)

:=\{d_{0}\in D(I)|d_{0} corresponds to a graph in x\in[-1,1] ,

||d_{0}||_{H^{10}(I)}\leq N , \partial_{\eta}d_{0}(0)\geq-\tau and \sigma(d_{0})\geq\rho\} ,

where N , \rho and \tau are positive constants and

D(I)= {d\in H^{10}(I)|d is odd and satisfies (2.6)}

are the functions which obey all the symmetries we have imposed so far.
We note that D_{0}(N, \rho, \tau) is nonempty since prototype functions like d_{0}(\eta)=

-c \frac{\eta^{5}}{5!}-\tau\eta for \eta near 0 are contained in D_{0}(N, \rho, \tau) for some c>0 , at least
in case \rho and \tau are small in magnitude compared to N .

The local existence Theorem 2.1 guarantees (for small N) that solu-
tions of (2.7) with initial value d_{0}\in D_{0}(N, \rho, \tau) do exist at least for t\in

[0, T_{1}] , T_{1}=T_{1}(N) , and d=d(t, \eta) is contained in

D_{T_{1}}(N)=\{d\in L^{2}(0, T_{1;}D(I)\cap H^{12}(I)) , \partial_{t}d\in L^{2}(0, T_{1;}H^{8}(I)) ,
||d(t, \cdot)||_{H^{10}(I)}\leq 2N for t\in[0, T_{1}]\} .
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For d\in D_{T_{1}}(N) there exists some constant K=K(N)>0 such that

|\partial_{tt}\partial_{\eta}d(t, O)|\leq K(N) for all t\in[0, T_{1}] . (3.2)

We are now ready to state our main result:

Theorem 3.1 Assume f : \mathbb{R}^{2}arrow \mathbb{R} is smooth, odd in \kappa , even and \pi-

periodic in \theta . Then for any N\in(0, \delta^{*}/\mu) and \rho , \tau>0 satisfying

2K(N)\tau<\rho^{2}<(T_{1}(N)K(N))^{2} (3.3)

there exists some t_{0}=t_{0}(N, \rho)\in(0, T_{1}(N)) , such that the solution d=
d(t, \eta) of (2.7) with initial value d_{0}\in D_{0}(N, \rho, \tau) satisfies \partial_{\eta}d(t_{0},0)>0 .

Proof. Due to our preliminary work, the proof is now easy. We have from
(3.2) and the definition of D_{0}(N, \rho, \tau) that

\partial_{\eta}d(t, 0)=\partial_{\eta}d_{0}(0)+\int_{0}^{t}\partial_{t}\partial_{\eta}d(s, O)ds

\geq-\tau+t\sigma(d_{0})+\int_{0}^{t}\int_{0}^{s}\partial_{tt}\partial_{\eta}d(u, O)duds

\geq-\tau+\rho t-\frac{t^{2}}{2}K(N) for t\in[0, T_{1}(N)] .

From (3.3) we conclude for t_{0}:=\overline{K}(\overline{N)}4\in[0, T_{1}(N)] that \partial_{\eta}d(t_{0},0)>0 .
\square

The immediate consequence of Theorem 3.1 is that graphs evolved by
surface diffusion may cease to be graphs in finite time. In the particular
situation, we have a change from \partial_{\eta}d(0,0)<0 to \partial_{\eta}d(t_{0},0)>0 giving an
infinite slope for the graph since \mathcal{M}^{*} is here vertical. We summarize:

Corollary 3.2 A graph evolved by generalized surface diffusion (1.2) with
Neumann and no flux boundary conditions (1.3) can lose the graph property
in finite time, while it still evolves as a smooth curve.

Remark 3.3 Since, due to our construction, the considered graphs also
satisfy periodic boundary conditions (1.4) in x\in [-2, 2] , we also obtain
examples of periodic graphs that lose the graph property in finite time.

Acknowledgments The second author wishes to thank the University of
Sussex for its hospitality during the time this research was carried out.



Losing a graph with surface diffusion 305

References

[1] Altschuler S., Angenent S. and Giga Y., Mean curvature flow through singulanties
for surfaces of rotation. J. Geom. Anal. 5 (1995), 293-358.

[2] Angenent S., The zero set of a solution of a parabolic equation. J. Reine Angew.
Math. 390 (1988), 79-96.

[3] Cahn J.W. and Taylor J.E., Surface motion by surface diffusion. Acta metall. mater.
42 (1994), 1045-1063.

[4] Davi F. and Gurtin M.E., On the motion of a phase interface by surface diffusion.
J. Appl. Math. Phys. (ZAMP), 41 (1990), 782-811.

[5] Elliott C.M. and Garcke H., Existence results for diffusive surface motion laws.
Adv. Math. Sci. Appl. 7 (1997), 467-490.

[6] Escher J., Mayer U.F. and Simonett G., The surface diffusion flow for immersed
hypersurfaces. SIAM J. Math. Anal. 29 (1998), 1419-1433.

[7] Giaquinta M. and Hildebrandt S., Calculus of Vanations I. Vol. 310 of Comp. Stud.
Math., Springer, 1996.

[8] Giga Y., Interior derivative blow-up for quasilinear parabolic equations. Discrete
Cont. Dyn. Syst. 1 (1995), 449-461.

[9] Giga Y. and Ito K., On pinching of curves moved by surface diffusion. Commun.
Appl. Anal. 2(3), (1998), 393-405.

[10] Gurtin M.E., Planar motion of an anisotropic interface. In Motion by mean curva-
ture and related topics (Trento, 1992), de Gruyter, Berlin, 1994, 89-97.

[11] Hunt A.W., Orme C., Williams D.R.M., Orr B.G. and Sander L.M., Instabilities in
MBE growth. Europhys. Lett. 27 (1994), 611-616.

[12] Marsili M., Maritan A., Toigo F. and Banavar J.R., Stochastic growth equations
and reparametrization invariance. Rev. Mod. Phys. 68 (1996), 963-983.

[13] Mazor A., Srolovitz D.J., Hagan P.S. and Bukiet B.G., Columnar growth in thin
films. Phys. Rev. Lett. 60 (1988), 424-427.

Charles M. Elliott
Centre for Mathematical Analysis
and its Applications
School of Mathematical and Physical Sciences
University of Sussex
Falmer, Brighton BN19QH, U.K.
E-mail: C.M.Elliott@sussex.ac.uk

Stanislaus Maier-Paape
Institut f\"ur Mathematik
Universit\"at Augsburg
Universit\"atsstraBe 14
D-86135 Augsburg, Germany


	1. Introduction
	2. Parameterization and ...
	Theorem 2.1 ...

	3. Losing the Graph
	Theorem 3.1 ...

	References

