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C_{\lambda}-groups and \lambda-basic subgroups in modular group rings
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Abstract. This paper is concerned with the investigation of two closely related ques-
tions. The first question is: What is the \lambda-basic subgroup of the group of normed units
V(RG) in an abelian group ring RG with identity of prime characteristic p if B is a
\lambda-basic subgroup of the p-primary abelian group G ? In this way it is shown that if B is
a \lambda-basic subgroup of the p–torsion G and R is perfect, then 1+I(RG;B) is a \lambda-basic
subgroup of V(RG) , where \lambda is a countable limit ordinal. Moreover, B is a direct factor
of 1+I(RG;B) provided that it is \lambda-basic. This generalizes results due to Nachev (1996)
and to the author (1995). The second question is the following: What is the criterion
illustrated V(RG) to be a C_{\lambda} -group when G is an abelian p-group and R is an unitary
commutative ring with prime characteristic p^{?} In this direction it is proved that V(RG)
is a p-primary C_{\lambda} -group if and only if G is a p-primary C_{\lambda} CVgroup, provided R is perfect
and \lambda\leq\Omega . Besides, if R is perfect and G is a p-group which is a C_{\lambda} -group, then the same
holds for V(RG)/G, provided \lambda\leq\Omega . Moreover, if G is a p-torsion C_{\lambda} -group of countable
length \lambda and R is perfect without nilpotents, then V(RG)/G is totally projective and so
G is a direct factor of V(RG) . The last extends in some aspect a result of May (1979,
1988).
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1. Preliminaries

In this section, we assemble the basic concepts which are crucial in the
following development. For pertinent results related to these concepts, we
refer the reader to [12], [15] and [20, 23, 25].

Let G be an abelian group with p-component G_{p} and let R be a com-
mutative ring with unity of prime characteristic p . For RG a group ring
of G over R, V(RG) will denote the group of normalized units (i.e. of aug-
mentation 1 units) in RG, and S(RG) is its p-component (i.e. its Sylow
p-subgroup). For a subgroup H of G, we let I(RG;H) denote the rel-
ative fundamental ideal of RG with respect to H, generated by the ele-
ments 1-h when h varies in H . It is not difficult to verify that if H is
p-primary, then 1+I(RG;H) is a multiplicative p-group. Besides, define

1991 Mathematics Subject Classification : Primary 20C07,16U60,16S34 ; Secondary
20K10,20K20,20K21 .



284 P. Danchev

V(RG;H)=1+I(RG;H) .
A subgroup H of the p-group G is said to be a p^{\alpha}-pure subgroup if

Harrow Garrow G/H represents an element of Ext^{p^{\alpha}}(G/H;H) . This definition
going from Nunke is very important and it is a generalization of the ordinary
purity (i.e. p^{\omega}-purity) in the classical theory of abelian p-groups. A subgroup
H of the p-primary group G is called isotype in G if H\cap G^{p^{\alpha}}=H^{p^{\alpha}} for
every ordinal \alpha . If \beta is an ordinal, we shall say that H is weakly p^{\beta}-pure in
G if H\cap G^{p^{\alpha}}=H^{p^{\alpha}} for all \alpha\leq\beta . It is well-documented [15, 11] that if H
is a p^{\alpha}-pure subgroup of G , then H is a weakly p^{\alpha}-pure subgroup of G ; the
weak p^{\alpha}-purity is equivalent to p^{\alpha} purity for \alpha\leq\omega , i.e. to ordinary purity.

For a more precise information and a further application, we mention
that the following dependences are true. From [15] and [23, 25] , it follows
that if H is a p^{\alpha}-pure in G , then (G/H)^{p^{\beta}}[p]=G^{p^{\beta}}[p]H/H for all \beta<\alpha .
Moreover, if G/H is divisible, where H is p^{\alpha}-pure in G and \alpha is a limit
ordinal, then G^{p^{\beta}}H=G for all \beta<\alpha . Besides from [12], if H is a neat
subgroup in G (i.e. H\cap G^{p}=H^{p} ) and G[p]=G^{p^{\beta}}[p]H[p] for each \beta<\alpha ,
then H is p^{\alpha}-pure in G and G/H is divisible. For more details see also [20].

The totally projective groups as introduced by R. Nunke provide a
generalization of the concept of direct sums of countable reduced groups
[23]. A p-group G is p^{\alpha} projective if Ext^{p^{\alpha}}(G, C)=1 for all groups G. A
reduced p–group G is totally projective if G/G^{p^{\alpha}} is p^{\alpha}-projective for every
ordinal \alpha . The concepts of C_{\lambda} groups and \lambda-basic subgroups (extending to
an arbitrary limit ordinal) are introduced by Ch. Megibben and K. Wallace,
respectively in [21] and [25]. For a fixed but arbitrary limit ordinal \lambda ,
C_{\lambda} shall designate that class of all p-groups G such that G/G^{p^{\alpha}} is totally
projective for all \alpha<\lambda . Groups in the class C_{\lambda} will be referred to as C_{\lambda}-

groups The subgroup B of an abelian p-group G is said to be a \lambda-basic
subgroup of G if

(1) B is totally projective of length at most \lambda ,
(2) B is a p^{\lambda}-pure subgroup of G , and
(3) G/B is divisible.
If \lambda\leq\omega , then it is straightforward to see that B is \lambda-basic if and only

if B is basic in G . It is well-known that every two basic subgroups in G are
isomorphic [10]. Moreover the following is valid [25].

Theorem 1.1 If B and B’ are \lambda -basic subgroups of G then B\cong B’ .

Besides any abelian p-group contains basic subgroups [10]. The follow-
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ing excellent result due to Wallace [25] extends the above fact and the main
statements in [21].

Theorem 1.2 (WALLACE) The reduced abelian primary group G come
tains a proper \lambda -basic subgroup if and only if G is a C_{\lambda} group and \lambda is
confifinal with \omega .

We continue with paragraph entitled

2. Criteria for total projectivity

Since all direct sums of cyclics are totally projective and every totally
projective group of length confinal with \omega is \sigma-summable [2], it is naturally
to exists a criterion (identical to this of Kulikov [10]) which characterizes
the total projectivity in the terms of the cited group classes. This criterion
states as follows (see [20, 16, 13]; [2, 3, 4]):

Theorem 2.1 (L-M-H Criterion) Suppose \lambda is a countable limit ordinal.
Then G is a p primary C_{\lambda} -group, respective C_{\Omega} -group if and only if precisely
one of the following holds

(a) G/G^{p^{\alpha}} is summable (Megibben, 1969)
(b) G/G^{p^{\alpha}} is \sigma -summable (Linton-Megibben, 1977) and [Hill, 1981),

for each ,,\limil \alpha<\lambda , respective \alpha<\Omega .
In particular G is totally projective of length \lambda if and only if (a) or (b)

is valid for each limit \alpha\leq\lambda .

More recently, Hill and Ullery [14] have obtained a new simple char-
acterization of primary totally projective groups with countable lengths.
Namely, the following is fulfilled:

Theorem 2.2 (HILL-ULLERY) The p-torsion abelian group G of count-
able length is totally projective if and only if G= \bigcup_{n<\omega}G_{n} , where G_{n}\subseteq

G_{n+1} and all G_{n} are hei_{L}qht- fifinite , i.e . they have a fifinite height-spectrum
computed in G .

The following note is well to be documented

Remark It is a simple matter to observe that Theorem 2.2 actually is
similar to the classical Honda’s criterion for primary summable groups of
countable lengths (cf. [11, 20]).

We now come to the main paragraph that contains the central results.
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3. Main results

Here we select two sections starting with
I. A construction of \lambda-basic subgroup of V(RG) and V(RG)/G.
Before proving the major statements that motivate this section, we need

one useful

Lemma 3.1 Suppose B is weakly p^{\alpha} -pure in G where \alpha is limit. Then
(BG^{p^{\beta}})[p]=B[p] . G^{p^{\beta}}[p] for each \beta<\alpha .

Proof. Take x in the left hand-side. Hence x=bg, where b\in B , g\in
G^{p^{\beta}} and b^{p}g^{p}=1 . Thus fP \in B\cap G^{p^{\beta+1}}=B^{p^{\beta+1}}(\beta+1<\alpha) and thus
b\in B^{p^{\beta}}B[p] . Observe that x\in G^{p^{\beta}}B[p] , whence x\in G^{p^{\beta}}[p] . B[p] , conclud-
ing the proof. \square

Now we are in position to formulate the following restation of the defi-
nition for a \lambda-basic subgroup, namely

Definition We shall say that the subgroup B of a p-primary abelian group
G is \lambda-basic for a limit ordinal \lambda if

(1) B is totally projective of length at most \lambda ,
(2’) B is a neat subgroup of G and G[p]=B[p]G^{p^{\beta}}[p] for all \beta<\lambda , or

equivalently B is weakly p^{\lambda}-pure in G and G=BG^{p^{\beta}} for all \beta<\lambda .

Remark G/B is divisible follows from (2’) .

But more convenient for us are the following conditions. Before stating
this modification, we give

Definition A subgroup N of an abelian p-group G is called weakly p^{\alpha}-nice
if (G/N)^{p^{\beta}}=G^{p^{\beta}}N/N for each \beta<\alpha .

And so, B is \lambda-basic in a p-group G for limit \lambda if and only if
(1) B is totally projective of length at most \lambda ,
(2’) B is weakly p^{\lambda}-pure and weakly p^{\lambda}-nice in G,
(3) G/B is divisible.
Really, (1) and (2’) obviously yield (1), (2) and (3) owing to our dis-

cussion if \S 1. The converse follows by the same discussion along with the
simple fact that (G/H)[p]=G[p]H/H when H is neat in G . The conditions
in (2’) are equivalent by making use of Lemma 3.1 plus the presented in \S 1
facts. Besides, it is a simple exercise to verify that (2’) holds if and only if
(2’) together with (3) hold.
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Begin now with some other very needed for our presentation preliminary
technical assertions, namely

Proposition 3.1 Given A\leq G , H\leq G and 1\in L\leq R . Then

GV(RG;H)\cap V(LA)AV(LA; A\cap H).

Proof. Given x in the left hand-side. Therefore
x= \sum_{a\in A}\alpha_{a}a=b\sum_{g\in G}r_{g}g , where

\alpha_{a}\in L , b\in G , r_{q}.\in R and \sum_{g\in\overline{g}H}r_{g}=\{

1, \overline{g}\in H

0, \overline{g}\not\in H

for every \overline{g}\in G . According to the canonical forms we derive \alpha_{a}=r_{g} and
a=bg. Because \sum_{g\in G}r_{g}g\in V(RG;H) , there is g’\in H with r_{g’}\neq 0 .
Choose arbitrary \overline{a}\in A and a’=bg’ . Furthermore x=a’ \sum_{a\in A}\alpha_{a}aa^{\prime-1}\in

AV(LA; A\cap H ) because

\sum_{g\in g’\overline{a}H}\alpha_{a}=\sum_{aa^{\prime-1}\in\overline{a}H}\alpha_{a}a^{\prime-1}=\{

1, \overline{a}\in H

0, \overline{a}\not\in H

But \overline{a}H\cap A=\overline{a}(H\cap A) , deducing the proof. \square

Proposition 3.2 For every ordinal \alpha is fulfifilled
V^{p^{\alpha}}(RG)=V(R^{p^{\alpha}}G^{p^{\alpha}})

[GV(RG;H)]^{p^{\alpha}}=G^{p^{\alpha}}V(R^{p^{\alpha}}G^{p^{\alpha}} ; H^{p^{\alpha}})

when H is p-isotype and p-torsion in G .

Proof. The first dependence is proved in [1] (cf. [2, 6] for example, too).
Clearly, in order to show the second, we can restrict on limit \alpha . And
so, choosing x in the left hand-side we write x \in\bigcap_{\beta<\alpha}[GV(RG;H)]^{p^{\beta}}=

\bigcap_{\beta<\alpha}[G^{p^{\beta}}V(R^{p^{\beta}}G^{p^{\beta}} ; H^{p^{\beta}})] using the induction hypothesis and hence x=
g_{\beta} \sum_{a_{\beta}\in G^{p^{\beta}}}r_{a_{\beta}}a_{\beta}=g_{\delta}\sum_{a_{\delta}\in G^{p^{\delta}}}r_{a_{\delta}}a_{\delta}= for g_{\beta}\in G^{p^{\beta}} , g_{\delta}\in G^{p^{\delta}} and
arbitrary \beta<\delta\leq\alpha , where

\sum_{a_{\beta}\in\overline{g}_{\beta}\in H^{p^{\beta}}}r_{a_{\beta}}=\{ 01,
’

\overline{g}_{\beta}\not\in H^{p^{\beta}}\overline{g}_{\beta}\in H^{p^{\beta}} and \sum_{a_{\delta}\in\overline{g}_{\delta}\in H^{p^{\delta}}}r_{a_{\delta}}=\{

1, \overline{g}_{\delta}\in H^{p^{\delta}}

0, \overline{g}_{\delta}\not\in H^{p^{\delta}}

for every \overline{g}_{\beta}\in G^{p^{\beta}} and \overline{g}_{\delta}\in G^{p^{\delta}} The canonical forms yield r_{a_{\beta}}=r_{a_{\delta}}



288 P. Danchev

and g_{\beta}a_{\beta}=g_{\delta}a_{\delta} . Fix a_{\beta}’\in H^{p^{\beta}} such that g_{\beta}a_{\beta}’=g_{\delta}a_{\delta}’ with a_{\delta}’\in H^{p^{\delta}}

Consequently x=g_{\beta}a_{\beta}’ \sum_{a_{\beta}\in G^{p^{\beta}}}r_{a_{\beta}}a_{\beta}a_{\beta}^{\prime-1}\in G^{p^{\delta}}V(R^{p^{\delta}}G^{p^{\delta}} ; ^{H^{p^{\delta}}}) , because

\sum_{a_{\beta}a_{\beta}^{\prime-1}\in\overline{g}_{\delta}H^{p^{\delta}}}r_{a_{\beta}}=\sum_{a_{\delta}\in\overline{g}_{\delta}a_{\acute{\delta}}^{-1}H^{p^{\delta}}}r_{a_{\delta}}=\sum_{a_{\delta}\in\overline{g}_{\delta}H^{p^{\delta}}}r_{a_{\delta}}=\{

1, \overline{g}_{\delta}\in H^{p^{\delta}}

0, \overline{g}_{\delta}\not\in H^{p^{\delta}}

Therefore, the right hand-side contains the left hand-side. The converse
follows owing to the formula in [1], V(R^{p^{\alpha}}G^{p^{\alpha}} ; H^{p^{\alpha}})=V^{p^{\alpha}}(RG;H) . The
proof is finished. \square

A matter of these two facts is the next valuable

Proposition 3.3 Assume H is a subgroup of G with p-torsion. If H is
isotype in G , then GV(RG;H) is isotype in V(RG) and GV(RG;H)/G is
isotype in V(RG)/G .

Proof In fact, H\cap G^{p^{\alpha}}=H^{p^{\alpha}} and Propositions 3.1 plus 3.2 lead us
to this that [GV(RG;H)]\cap V^{p^{\alpha}}(RG)=GV(RG;H)\cap V(R^{p^{\alpha}}G^{p^{\alpha}})=

G^{p^{\alpha}}V(R^{p^{\alpha}}G^{p^{\alpha}} ; H^{p^{\alpha}})=[GV(RG;H)]^{p^{\alpha}}

We now recall the standard group theoretic fact that if C is isotype in
p-torsion G and N\leq C is nice in G , then C/N is isotype in G/N. And so,
by what we have shown above and the fact that G is nice in V(RG)[18,19 ,
4] we derive the claim. This concludes the proof. \square

Proposition 3.4 Given G^{p}\neq 1 . Then V(RG) is a divisible p group if
and only if G is a divisible p-group and R is perfect.

Proof Really, V^{p}(RG)=V(R^{p}G^{p})=V(RG) is equivalent to R=R^{p} and
G=G^{p} elementarily. This finishes the proof. \square

A part of the formulated below main assertions, however, is announced
in [1]. So, we can attack

Theorem 3.1 Presume that G is a p group and \lambda is countable limit. Then
V(RG;B) is a proper \lambda -basic subgroup of V(RG) if and only if B is a proper
\lambda -basic subgroup of G and R is perfect. Moreover, if B is \lambda -basic in G and
R is perfect, then B is a direct factor of V(RG;B) and V(RG;B)G/G is
\lambda -basic in V(RG)/G .

A direct consequence is the classical
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Corollary 3.1 [1, 6, 22] V(RG;B) is proper basic in the p group V(RG)

if and only if B is so in G and R is perfect. Besides, if B is basic in
a p group G and R is perfect, then B is a direct factor of V(RG;B) and
GV(RG;B)/G is basic in V(RG)/G .

These statements are established in conjuction with the next (stated
with no proof in [1] )

Theorem 3.2 Let H be an isotype p-subgroup of G with countable limit
length and R perfect. Then V(RG;H) is totally projective if and only if H
is. Besides, if H is totally projective, then so is V(RG;H)/H and thus H
is a direct factor of V(RG;H) with totally projective complement.

Immediate consequences are the following points (see, for instance, [17]
and [14], respectively)

Corollary 3.2 [1] Assume that R is perfect and
(*) G is totally projective p-torsion of countable length. Then

V(RG)/G is totally projective.
(**) G_{p} is totally projective with countable limit length and R is with

no nilpotents. Then S(RG)/G_{p} is totally projective. In particular, if G_{p} is
the maximal torsion subgroup of G which is totally projective in countable
limit length and R is a fifield, V(RG)/G is a totally projective p-group.

Now we come to the

Proof of Theorem 3.2. First and foremost, suppose V(RG;H) is totally
projective. Then since clearly H is isotype in V(RG;H) , we can apply the
main result in [12] (that, however, follows directly from Theorem 2.2) to
finish the proof in this direction.

The converse claim can be proved by virtue of the significant technique
raised by us in [7] that gives more strong results, but now for simpleness
and compactness of the article, we shall follow essentially the idea in [14,
8]. Well, according to the cited above in \S 2 criterion, H= \bigcup_{n<\omega}H_{n} , where
H_{n}\subseteq H_{n+1} and H_{n} are height-finite in H. hence in G since H is an isotype
subgroup. It is a simple matter to show that H= \bigcup_{\alpha<\mu}N_{\alpha} , where each N_{\alpha}

has a finite height-spectrum in G and |N_{\alpha+1}/N_{\alpha}| is finite for all \alpha . But N_{\alpha}

are nice in G , whence V(RG;H)= \bigcup_{\alpha<\mu}V(RG;N_{\alpha}) where all V(RG;N_{\alpha})

are nice in V(RG)[18] , and so are nice in the isotype by Proposition 3.3
subgroup GV(RG;H) . By means of a claim of May (see [18] or Lemma 3.1
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in [14] ) , the chain

1=V(RG;N_{0})\subseteq \subseteq V(RG;N_{\alpha})\subseteq (\alpha<\mu)

can be refined to a nice composition series for V(RG;H) where each member
of the sequence is p-nice in V(RG) . If T is a generic subgroup in this
refinement, then GT is p-nice in V(RG) , whence in GV(RG;H) . Therefore,
GV(RG;H)/G\cong V(RG;H)/H is totally projective, as desired. But it is
well-known and documented that H is balanced in V(RG;H)[3] (see also
[19] but when R is a field) and so the direct factor property is guaranteed
from [11]. The proof is completed after all. \square

Proof of Corollary 3.2. Follows at the substitution H=G or H=G_{p} and
the formula in [2], S(RG)=S(RG;G_{p}) . Besides, V(RG)=GS(RG)[19]
when R is a field, and so all is proved. \square

Remark The second half of (**) appears in [14].

Now we are ready to give

Proof of Theorem 3.1. We shall consider some steps:

Step 1. B is \lambda-basic in G and R is perfect; or V(RG;B) is \lambda-basic in
V(RG) .

We shall show that the three conditions from the definition for a \lambda-basic
subgroup listed above are satisfied. Indeed:

(1) follows by means of Theorem 3.2 observing that B is isotype in G .
(2’) The first half on the isotype holds owing to [1, Proposition 2].

The weakly niceness is analogous to [18, Lemma 4].
(3) The divisibility is fulfilled by Proposition 3.4, because is valid the

simple fact that V(RG)/V(RG;B)\cong V(R(G/B)) .

Step 2. The direct factor property.
It follows again from Theorem 3.2.
To conclude the proof in general it is sufficient to obtain that

Step 3. GV(RG;B)/G is \lambda-basic in V(RG)/G.
Well, (1) is true according to Theorem 3.2 since as we have promised

B is isotype in G and besides it is easily seen that GV(RG;B)/G\cong

V(RG;B)/B .
(2’) The weakly isotypity may be gotten from Proposition 3.3. The

weakly niceness can be deduced thus. As we have shown above, V(RG;B)
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is weakly nice in V(RG) and further we can copy the proof of Lemma 1 in
[24] to establish that GV(RG;B) is weakly nice in V(RG) . Therefore [11],
GV(RG;B)/G is weakly nice in V(RG)/G.

(3) The divisibility is standard since V(RG)/G/GV(RG;B)/G\cong

V(RG)/GV(RG;B) is an epimorphic image of the divisible group
V(RG)/V(RG;B)\cong V(R(G/B)) . The proof is finished. \square

We will extend now the last proof, as a \lambda-basic subgroup of S(RG) will
be obtained. Well, we can formulate

Theorem 3.3 Let G be torsion, B\leq G_{p} and \lambda be countable limit. Then
V(RG;B) is a proper \lambda -basic subgroup of S(RG) if and only if B is a proper
\lambda -basic subgroup of G_{p} and R is perfect. Moreover, ifB is \lambda -basic in G_{p} and
R is perfect, then B is a direct factor of V(RG;B) and V(RG;B)G_{p}/G_{p}

is \lambda -basic in S(RG)/G_{p} .

Proof The proof goes on the same conclusions as for the p-primary case
observing that G/B must be p-divisible since G/B/G_{p}/B\cong G/G_{p} is p-
divisible [10], and moreover B is weakly p^{\lambda}-nice in G because G_{p} is balanced
in G . The theorem is verified. \square

Corollary 3.3 [1, 6] Assume G is torsion and B<G_{p} . Then V(RG;B)
is basic in S(RG) if and only if B is basic in G_{p} and R is perfect. Moreover,
if B is basic in G_{p} and R is perfect, then B is a direct factor of V(RG;B)
and V(RG;B)G_{p}/G_{p} is basic in S(RG)

Remark Probably Theorem 3.2 is absolute true and for uncountable
lengths, whence Theorem 3.1 will be immediately valid for such lengths,
i.e. in the general case.

Other our major results are selected in the next section.
II. Criteria for C_{\lambda} -groups.
A part of the central results stated here, however, is announced in [5]

and [9].
A direct consequence in one way to Theorem 3.3 is the following

Theorem 3.4 Let G be a torsion group whose G_{p} is of limit length <\Omega

and let R be perfect. Then S(RG) is a C_{\lambda} -group if and only if G_{p} is a
C_{\lambda} -group. Besides, G_{p} a C_{\lambda} -group yields that the same is S(RG)/G_{p} .

Before proving the claim in general, we need
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Lemma 3.2 An isotype subgroup of a primary C_{\lambda} -group is a C_{\lambda} -group
when \lambda\leq\Omega .

Proof. Take C to be isotype in p-primary G that is a C_{\lambda}-group. Hence, be-
cause C/C^{p^{\alpha}} is isotype (isomorphic) in G/G^{p^{\alpha}} , i.e. in other words C/C^{p^{\alpha}}\cong

CG^{p^{\alpha}}/G^{p^{\alpha}} is isotype in G/G^{p^{\alpha}} ; \alpha<\lambda , we can apply the main result in [12]
to get the assertion. \square

Thus we are in position to attack

Proof of Theorem 3.4. The necessity follows by virtue of the above lemma
plus the simple fact that G is isotype in V(RG) .

Next, we treat the more difficult converse question. And so, this part
holds applying Theorems 1.2 and 3.1 plus the simple fact that G is nice in
V(RG)([18,19];[4]) . This completes the proof. \square

We shall generalize now the above theorem for p-primary groups with
uncountable length, that is, \Omega . And so, the following, announced in [5], is
fulfilled:

Theorem 3.5 Suppose G is an abelian p-group, \lambda\leq\Omega and R is perfect.
Then V(RG) is a C_{\lambda} -group if and only if the same holds for G. Besides,
G a C_{\lambda} -group implies that so is V(RG)/G . Moreover, if G is a C_{\lambda} -group
of countable length \lambda and R is perfect with no nilpotents, then G is a direct
factor of V(RG) with a totally projective complement.

Proof. Since \Omega is not confinal with \omega , we need another method for proof.
The necessity in the first half is true using again Lemma 3.2.

Now we shall examine the sufficiency. Well, fix a countable ordinal \alpha .
B\iota 1t G/G^{p^{\alpha}} is totally projective for \alpha<\lambda and thus Theorem 2.2 means that
G/G^{p^{\alpha}}= \bigcup_{n<\omega}(G_{n}/G^{p^{\alpha}}) , where G_{n}\subseteq G_{n+1} and G_{n}/G^{p^{\alpha}} are height-finite
in G/G^{p^{\alpha}} Hence G= \bigcup_{n<\omega}G_{n} , where G_{n} has elements with heights (as
calculated in G) \geq\alpha and elements with a finite number of heights <\alpha .
Thus the same is true for V(RG)= \bigcup_{n<\omega}V(RG_{n}) . Further it is easy to
see that

V(RG)/V(RG^{p^{\alpha}})=\cup[V(RG_{n})V(RG^{p^{\alpha}})/V(RG^{p^{\alpha}})]n<\omega

and because G is nice in V(RG)[18,4] ,
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V(RG)/G/(V(RG/G)^{p^{\alpha}}

\cong V(RG)/GV(RG^{p^{\alpha}})=\cup[V(RG_{n})GV(RG^{p^{\alpha}})/GV(RG^{p^{\alpha}})]n<\omega .

Foremost, choose 1 \neq x\in V(RG_{n})V(RG^{p^{\alpha}})/V(RG^{p^{\alpha}}) whence x=
yV(RG^{p^{\alpha}}) , where y\in V(RG_{n})\backslash V(RG^{p^{\alpha}}) and thus it has height <\alpha .
Apparently since V(RG^{p^{\alpha}}) is nice in V(RG) , then height(x) = height(y).
But consequently V(RG_{n})V(RG^{p^{\alpha}})/V(RG^{p^{\alpha}}) has a finite height-spectrum
in V(RG)/V(RG^{p^{\alpha}}) and Theorem 2.2 yields the fact, immediately.

Further, given 1\neq a\in V(RG_{n})GV(RG^{p^{\alpha}})/GV(RG^{p^{\alpha}}) . By the same
token a=bGV(RG^{p^{\alpha}}) , where b\in V(RG_{n})\backslash GV(RG^{p^{\alpha}}) , hence this ele-
ment has height <\alpha . But it is no loss of generality in assuming that \alpha

is limit (cf. [20]) and so a lemma in [3] guarantees tha,tGV(RG^{p^{\alpha}}) is nice
in V(RG) . Furthermore height(a) =height(bg_{b}) for some g_{b}\in G because
bg_{b}\not\in V(RG^{p^{\alpha}}) . Write b= \sum_{g_{n}\in G_{n}}r_{g_{n}}g_{n} where r_{9n}\in R . It is no harm
in presuming that some g_{n} of this sum is equal to 1, owing to the form of
a . On the other hand certainly height(b) \leq height(a). As a final, we ob-
serve that height(g_{b})\geq height(b)=\min\{height(g_{n})\} and thus this implies
height(a)=height(6), where there is at least one g_{n} with height <\alpha and
so a is an “height-finite” element, finishing the conclusions.

To close the proof in general, it is enough to show only that V(RG)/G
is totally projective, according to Theorem 2.2 stated in paragraph 2 or
to Theorem 2.1 (see as well [2]) proving also that this factor group is \sigma-

summable since as we have just seen it is a C_{\lambda} group
For this aim, as above, it is a simple matter to verify that V(RG)/G=

\bigcup_{n<\omega}[V(RG_{n})G/G] . Because \lambda is countable, all ordinals strictly less than
\lambda can be ordered at \omega and the relation ”< ” thus:

<\alpha_{1}< . . <\alpha_{n}<

Next, we shall construct a special ascending at n chain of subgroups M_{n}

in V(RG) such that they have an almost finite height-spectrum in V(RG)
and V(RG)/G= \bigcup_{n<\omega}(M_{n}G/G) .

In fact, choose these groups in the following manner

M_{n}=\langle r_{1}^{(n)}+r_{2}^{(n)}g_{2}^{(n)}+ +r_{s_{n}}^{(n)}g_{s_{n}}^{(n)}|0\neq r_{1}^{(n)} , \ldots , r_{s_{n}}^{(n)}\in R ,

r_{1}^{(n)}+ +r_{s_{n}}^{(n)}=1;g_{2}^{(n)} , \ldots , g_{s_{n}}^{(n)}\in G_{n} , g_{2}^{(n)} , . . ’
g_{s_{n}}^{(n)} along with their

nontrivial degrees and all their possible products have heights computed
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in G which are <\alpha_{n} ; s_{n}\in N\rangle . Clearly M_{n}\subseteq\Lambda f_{n+1} and M_{n}\subseteq V(RG_{n}) ,
and hence it is evident that all M_{n}G/G generate V(RG)/G. Every element
in M_{n} has the form x_{1}^{\epsilon_{1}} . . x_{t^{t}}^{\epsilon} , where x_{i} are of the above kind, 0\leq\epsilon_{i}\leq

order (x_{i}) and 1 \leq i\leq t , t\in \mathbb{N} . Apparently, by the construction, each
generating element in M_{n} has height <\alpha_{n} .

Now, we shall show that \Lambda l_{n} is almost height-finite. Really, using an
ordinary combinatorical arguments, in the canonical form of an arbitrary
degree of each generating element of M_{n} does exist members of the kind
fg or fg^{\epsilon}(0<\epsilon<order(g)) where f\in R and g\in G_{n} possesse the above
properties, as is not difficult to be seen. On the other hand, it is only
a technical matter to verify that every element of M_{n} may be written as
ay_{n} , where a\in G_{n} and y_{n} has a basis element 1 and has a basis element
with height <\alpha_{n} . So, the height of y_{n} taken in V(RG) is bounded by
some ordinal \alpha_{n} , whence the heights of such special elements are of a finite
number, owing to the construction of G as a countable union of special
selected groups and choosing \alpha=\alpha_{n} . That is why M_{n} are indeed almost
height-finite, as we claimed.

Further, our final purpose is to obtain that GJ/I_{n}/G are height-finite
and so the proof will be finished after all.

In order to prove this, we take 1\neq x_{n}G with x_{n}\in M_{n} . The niceness
of G in V(RG) means that height(x_{n}G)=height(x_{n}g_{x_{n}}) for some g_{x_{n}}\in

G . But the major is that by the above construction x_{n} has or may be
reduced to has an identity basis element, hence it is easily to check that
height (x_{n}g_{x_{n}})=height(x_{n}) because height (xn)\leq height (x_{n}g_{x_{n}}) and there-
form height(gXn)\geq height(xn). As we have shown above, M_{n} is with a finite
number of heights for such elements as x_{n} , furthermore so is GMn/G. This
deduces the statement. \square

The next assertion is actual.

Corollary 3.4 Suppose G is splitting such that G/G_{p} is p-divisible (in
particular, G is torsion) and R is perfect without nilpotents. Then S(RG)
is a C_{\lambda} -group if and only if G_{p} is a C_{\lambda} -group when \lambda\leq\Omega .

Proof. Write G=G_{p}\cross G/G_{p} . Therefore, it is elementary to derive that
S(RG)\cong S(R(G/G_{p})G_{p}) , where R(G/G_{p}) is perfect without nilpotents.
So, we can apply the last theorem to finish the proof. \square
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