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Invariant projectively flat affine connections
on Lie groups
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Abstract. The simple Lie groups with left invariant projectively flat affine connections
are classified. This is accomplished by proving that some of the possibilities that appear
in the previous work by Urakawa [U , Theorem C] do not actually occur.
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1. Introduction

Recently, Urakawa [U], based on previous work by Shima [S], classified
the irreducible simply connected Riemannian symmetric spaces with invari-
ant projectively flat affine connections and studied the simple Lie groups
with left invariant projectively flat affine connections. For the latter he
obtained the next result:

Theorem 1 ( [U , Theorem C] ) Let G be a real simple Lie group. If G
admits a left invariant projectively flat affine connection, then its Lie algebra

\mathfrak{g} is one of the following:
(a) 0 (3)\cong zu(2) ,
(b) g\downarrow(n+1, \mathbb{R}) , n\geq 1 ,
(c) zu^{*}(2n) , n\geq 2 ,
(d)

\epsilon u(r,s)o(7,7)

.
(r+s= even, r+s\geq 4); o(3,4);o(1,9) , o(5,5);o(3,11) ,

It was remarked too in [U] that in the cases (a)-(c) above, being G
simply connected, it admits a left invariant projectively flat affine connec-
tion, but for the case (d) it is not known wether or not G admits such a
connection.

The purpose of this note is to show that none of the possibilities in
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case (d) above allow a left invariant projectively flat affine connection on
the Lie group. The proof will heavily rely on the results in [U].

Also, the theoretical characterization of the simply connected hom0-
geneous spaces M=G/K admitting a G-invariant projectively flat affine
connection given in [U , Theorem 1.3] (and based on [S , Theorem 1.1]) can
be proved, in case M=G, in a different and more algebraic way, which does
not require the group being simply connected. This will be our Theorem 2.

As an immediate consequence, the following classification result
emerges, where we use \epsilon \mathfrak{l}(n, \mathbb{H}) instead of \epsilon u^{*}(2n) , and since \epsilon t(1, \mathbb{H})\cong\epsilon u(2) ,
cases (a) and (c) can be put together:

Main Theorem Let G be a real simple Lie group. Then G admits a left
invariant projectively flat affine connection if and only if its Lie algebra \mathfrak{g}

is one of the following:
(a) \epsilon \mathfrak{l}(n+1, \mathbb{R}) , n\geq 1 ,
(b) 5\mathfrak{l}(n, \mathbb{H}) , n\geq 1 .

By [NP, Theorem 4], a connected semisimple Lie group admits a bi-
invariant projectively flat affine connection if and only if its Lie algebra is
either s((n+1, \mathbb{R}) or \epsilon \mathfrak{l}(n, \mathbb{H}) , (n\geq 1) . In particular, it is simple. Therefore,
no new connected simple Lie groups are obtained when the bi invariant re-
striction is reduced to just left invariant. However, the restriction in our
Main Theorem on G being simple (and not just semisimple) is necessary.
For instance, the semisimple Lie algebra g =z\mathfrak{l}(2, \mathbb{R})\oplus g[(3, \mathbb{R}) has a rep-
resentation satisfying the requirements of our Theorem 2 below, namely
\tilde{V}=Mat_{2\cross 3}(\mathbb{R})\oplus Mat_{2\cross 3}(\mathbb{R}) with the natural action of \mathfrak{g} on it. There-
fore, the semisimple Lie group SL(2, \mathbb{R})\cross SL(3, \mathbb{R}) admits a left invariant
projectively flat affine connection.

As in [S, U] , all the connections considered will be assumed to be
torsion-free and Ricci-symmetric. It is well-known (see [NS]) that the affine
connection \nabla is projectively flat if and only if for any vector fields X , Y , Z :

i) its curvature tensor R satisfies

R(X, Y)Z= \frac{1}{n-1}(Ric(Y, Z)X-Ric(X, Z)Y) , (1)

where Ric is the Ricci tensor and n is the dimension of the manifold,
and
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ii) Ric satisfies the Codazzi equation:

(\nabla_{X}Ric)(Y, Z)=(\nabla_{Y}Ric)(X, Z) . (2)

2. Left invariant projectively flat affine connections on Lie groups

This section is devoted to characterize the Lie groups, not necessarily
simply connected, admitting a left invariant projectively flat affine connec-
tion.

First notice that any left invariant affine connection \nabla on a Lie group G
gives rise to a bilinear multiplication \lambda : \mathfrak{g}\cross \mathfrak{g}arrow \mathfrak{g} , given by \lambda(X, Y)=\nabla_{X}Y

( \mathfrak{g} will always be considered as the Lie algebra of the left invariant vector
fields on G), and conversely, any such \lambda determines a unique left invariant
affine connection \nabla . The fact that \nabla is torsion-free is equivalent to the
condition

\lambda(X, Y)-\lambda(Y, X)=[X, Y] , (3)

for any X, Y\in \mathfrak{g} (that is, ( \mathfrak{g} , \lambda ) is a Lie-admissible algebra). Besides,
the curvature tensor R is determined by the trilinear map \mathfrak{g}\cross \mathfrak{g}\cross \mathfrak{g}

-
\mathfrak{g} ,

(X, Y, Z)\mapsto R(X, Y)Z , which in terms of the multiplication \lambda is given by

R(X, Y)Z=\lambda(X, \lambda(Y, Z))-\lambda(Y, \lambda(X, Z))-\lambda([X, Y], Z) , (4)

for any X, Y, Z\in \mathfrak{g} . In the same way, by left invariance Ric(X, Y) is con-
stant for any X, Y\in \mathfrak{g} , and hence Ric is determined by the bilinear map
\mathfrak{g}\cross \mathfrak{g}

- \mathbb{R} , (X, Y)\mapsto Ric(X, Y) . For simplicity, as in [S, U] , we will consider
the bilinear map \gamma : \mathfrak{g}\cross \mathfrak{g}arrow \mathbb{R} given by \gamma(X, Y)=\frac{1}{n-1}Ric(X, Y) , n being
the dimension of G .

Now, the conditions (1) and (2) for a connection to be projectively flat
become, because of the left invariance,

R(X, Y)Z=\gamma(Y, Z)X-\gamma(X, Z)Y, (1’)

\gamma(\lambda(X, Y) , Z)+\gamma(Y, \lambda(X, Z))=\gamma(\lambda(Y, X), Z)+\gamma(X, \lambda(Y, Z)) , (2’)

for any X, Y, Z\in \mathfrak{g} .

Theorem 2 A real Lie group G admits a left invariant projectively flat
affine connection if and only if there exists a real representation \tilde{\lambda} : \mathfrak{g} arrow

End_{\mathbb{R}}(\tilde{V}) of \mathfrak{g} and a vector v_{0}\in\tilde{V} such that dim \tilde{V}=1+\dim \mathfrak{g} and \tilde{V}=
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\tilde{\lambda}(\mathfrak{g})v_{0}\oplus \mathbb{R}v_{0} .

Proof. Let \nabla be a left invariant projectively flat affine connection on the
Lie group G and \lambda the associated bilinear multiplication on \mathfrak{g} . As in [S, U]
we enlarge \mathfrak{g} to \tilde{V}=\mathfrak{g}\oplus \mathbb{R}e and define \tilde{\lambda} : \mathfrak{g}

arrow End_{\mathbb{R}}(\tilde{V}) by \tilde{\lambda}_{X}e=X and
\tilde{\lambda}_{X}Y=\lambda(X, Y)-\gamma(X, Y)e , for any X, Y\in \mathfrak{g} . Then for any X, Y, Z\in \mathfrak{g} :

[\tilde{\lambda}_{X},\tilde{\lambda}_{Y}]e=\lambda(X, Y)-\gamma(X, Y)e-\lambda(Y, X)+\gamma(Y, X)e

=[X, Y]=\tilde{\lambda}_{[X,Y]}e ,

because of (3) and the Ricci-symmetry of \nabla , and

[\tilde{\lambda}_{X},\tilde{\lambda}_{Y}]Z=\tilde{\lambda}_{X}(\lambda(Y, Z)-\gamma(Y, Z)e)-\tilde{\lambda}_{Y}(\lambda(X, Z)-\gamma(X, Z)e)

=\lambda(X, \lambda(Y, Z))-\gamma(X, \lambda(Y, Z))e-\gamma(Y, Z)X

-\lambda(Y, \lambda(X, Z))+\gamma(Y, \lambda(X, Z))e+\gamma(X, Z)Y

=\lambda([X, Y], Z)-\gamma([X, Y], Z)e

=\tilde{\lambda}_{[X,Y]}Z ,

where we have used (2’) , (3) and (4).

Therefore, \tilde{\lambda} is a representation of \mathfrak{g} and, with v_{0}=e , it satisfies \tilde{V}=

\tilde{\lambda}(\mathfrak{g})v_{0}\oplus \mathbb{R}v_{0} .
Conversely, given such a representation \tilde{\lambda} : \mathfrak{g}

arrow End_{\mathbb{R}}(\tilde{V}) , for any
X, Y\in \mathfrak{g},\tilde{\lambda}_{X}(\tilde{\lambda}_{Y}v_{0})\in\tilde{V}=\tilde{\lambda}(\mathfrak{g})v_{0}\oplus \mathbb{R}v_{0} , and hence there exist bilinear
maps \lambda : \mathfrak{g}\cross \mathfrak{g}

-
\mathfrak{g} and \gamma : \mathfrak{g}\cross \mathfrak{g}

- \mathbb{R} such that

\tilde{\lambda}_{X}(\tilde{\lambda}_{Y}v_{0})=\tilde{\lambda}_{\lambda(X,Y)}v_{0}-\gamma(X, Y)v_{0} . (5)

Since (\tilde{\lambda}_{X}\tilde{\lambda}_{Y}-\tilde{\lambda}_{Y}\tilde{\lambda}_{X})v_{0}=\tilde{\lambda}_{[X,Y]}v_{0} , equation (5) implies that \gamma is symmetric
and \lambda satisfies equation (3). Therefore, there is a unique left invariant
torsion-free affine connection \nabla on G with \nabla_{X}Y=\lambda(X, Y) for any X, Y\in

\mathfrak{g} . Again, since \tilde{\lambda} is a representation, for any X, Y, Z\in \mathfrak{g} ,

[\tilde{\lambda}_{X},\tilde{\lambda}_{Y}]\tilde{\lambda}_{Z}v_{0}=\tilde{\lambda}_{[X,Y]}\tilde{\lambda}_{Z}v_{0} . (6)

The left hand side of (6) gives

\tilde{\lambda}_{X}(\tilde{\lambda}_{\lambda(Y,Z)}v_{0}-\gamma(Y, Z)v_{0})-\tilde{\lambda}_{Y}(\tilde{\lambda}_{\lambda(X,Z)}v_{0}-\gamma(X, Z)v_{0})

=\tilde{\lambda}_{\lambda(X,\lambda(Y,Z))}v_{0}-\gamma(X, \lambda(Y, Z))v_{0}-\gamma(Y, Z)\tilde{\lambda}_{X}v_{0}

-\tilde{\lambda}_{\lambda(Y,\lambda(X,Z))}v_{0}+\gamma(Y, \lambda(X, Z))v_{0}+\gamma(X, Z)\tilde{\lambda}_{Y}v_{0}
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=\tilde{\lambda}_{\lambda(X,\lambda(Y,Z))-\lambda(Y,\lambda(X,Z))-\gamma(Y,Z)X\dagger\gamma(X,Z)Y}v0

+(\gamma(Y, \lambda(X, Z))-\gamma(X, \lambda(Y, Z)))v_{0} ,

while the right hand side of (6) is

\tilde{\lambda}_{\lambda([X,Y],Z)}v_{0}-\gamma([X, Y], Z)v_{0} .

Therefore:

\lambda(X, \lambda(Y, Z))-\lambda(Y, \lambda(X, Z))-\lambda([X, Y], Z)

=\gamma(Y, Z)X-\gamma(X, Z)Y (7)

\gamma([X, Y], Z)=\gamma(X, \lambda(Y, Z))-\gamma(Y, \lambda(X, Z)) (8)

But equations (4) and (7) give R(X, Y)Z=\gamma(Y, Z)X-\gamma(X, Z)Y for any
X, Y, Z\in \mathfrak{g} , so that

Ric(Y, Z)=trR(-, Y)Z=tr(\gamma(Y, Z)Id-\gamma(-, Z)Y)

=(n-1)\gamma(Y, Z)

for any Y, Z\in \mathfrak{g} , thus obtaining (1’) . And, using (3), equation (8) becomes
(2’) . Therefore, \nabla is a left invariant projectively flat affine connection on
G. \square

3. Proof of the Main Result

Because of Theorems 1 and 2, and the construction in [U] of the conve-
nient representations for the Lie algebras in cases (a)-(c) of Theorem 1, to
prove the Main Theorem it is enough to prove the impossibility of case (d)
in Theorem 1. This will be based on the work by Urakawa with only one
extra ingredient that appears in the next Lemma. It says that there is a
great freedom in choosing the element v_{0} in Theorem 2.

Recall that the Zariski topology on a finite dimensional vector space V
over an infinite field F is the topology where the closed sets are the common
zeros of families of polynomials on V (see, for instance, [H , Appendix to
\S 23]). By a Zariski dense subset we mean a dense subset in the Zariski
topology. Any nonempty open subset in the Zariski topology is dense.

Lemma 3 Let g be a finite dimensional Lie algebra over an arbitrary

infinite field F, let \tilde{\lambda} : \mathfrak{g}

arrow End_{F}(\tilde{V}) be a representation of \mathfrak{g} with dim \tilde{V}=
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1+\dim \mathfrak{g} and let v\in\tilde{V} such that \tilde{V}=Fv\oplus\tilde{\lambda}(\mathfrak{g})v . Then the set

B=\{w\in\tilde{V} : \tilde{V}=Fw\oplus\tilde{\lambda}(\mathfrak{g})w\}

is a Zariski dense subset of \tilde{V}

Proof. Let \{g_{1}, \ldots, g_{n}\} be a fixed basis of g and \{v_{0}, v_{1}, \ldots, v_{n}\} one of \tilde{V} .
Then a vector w\in\tilde{V} is in B if and only if the elements w,\tilde{\lambda}(g_{1})w , \ldots , \tilde{\lambda}(g_{n})w

are linearly independent if and only if the determinant of the matrix P such
that

(w,\tilde{\lambda}(g_{1})w , \ldots,\tilde{\lambda}(g_{n})w)=(v_{0}, v_{1}, . , v_{n})P

is nonzero. Since this determinant is a polynomial in the coordinates of w ,
this gives a nonempty open (and hence dense) set in the Zariski topology
of \tilde{V}\tau

\square

In what follows, we will write gw instead of \tilde{\lambda}(\mathfrak{g})w .
Now, a case by case analysis will be carried out:

i) Proof of the impossibility for \mathfrak{g}=0(3, 4):
According to [U , Remark 3.9], the only representation to be checked is

the direct sum of two copies of the natural representation X and one copy
of the spin one Y :

\tilde{V}=X\oplus X\oplus Y.

Let b(, ) denote the bilinear form (of signature (3, 4)) on X such that
o(3,4)=\{g\in End_{\mathbb{R}}(X) : b(gx_{1}, x_{2})+b(x_{1}, gx_{2})=0\forall x_{1}, x_{2}\in X\} . Let
B=\{w\in\tilde{V} : \tilde{V}=\mathbb{R}w\oplus \mathfrak{g}w\} . It has to be proved that B is empty.
Assuming the contrary:

Claim There is an element v_{0}=(x_{1}, x_{2}, y)\in B such that

|\begin{array}{ll}b(x_{1},x_{1}) b(x_{1},x_{2})b(x_{2},x_{1}) b(x_{2},x_{2})\end{array}|\neq 0 .

This is because the set

\{(x_{1}, x_{2}, y)\in\tilde{V} : |\begin{array}{ll}b(x_{1},x_{1}) b(x_{1},x_{2})b(x_{2},x_{1}) b(x_{2},x_{2})\end{array}|\neq 0\}

is an open set in the Zariski topology.
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Now, consider such a v_{0}=(x_{1}, x_{2}, y) . Then \hat{\mathfrak{g}}=\{g\in \mathfrak{g} : gx_{1}=gx_{2}=

0\} is the orthogonal Lie algebra of the orthogonal complement (\mathbb{R}x_{1}+\mathbb{R}x_{2})^{\perp} ,
with the induced bilinear form, hence the dimension of \hat{\mathfrak{g}} is (\begin{array}{l}52\end{array})=10 and
the kernel of the linear map

\hat{\mathfrak{g}}arrow\tilde{V}

g\mapsto gv_{0}=(gx_{1}, gx_{2}, gy)=(0,0, gy)

has dimension \geq\dim\hat{\mathfrak{g}} - dim Y=10-8=2. Therefore we arrive at the
contradiction

0=\{g\in \mathfrak{g} : gv_{0}=0\}\supseteq\{g\in\hat{\mathfrak{g}} : gy=0\}\neq 0 .

ii) Proof of the impossibility for \mathfrak{g}=o(3,11) and \mathfrak{g}=o(7,7) :

This is similar. By [U , Remark 3.11], the representation to be consid-
ered is

\tilde{V}=X\oplus X\oplus Y,

where X is the natural representation (dim X=14) and Y is a half-spin
representation (dim Y=64). Assuming B\neq\emptyset , take v_{0}=(x_{1}, x_{2}, y) and
\hat{\mathfrak{g}} as in the previous case, so that \dim\hat{\mathfrak{g}}=(\begin{array}{l}122\end{array}) =66 and the kernel of the
corresponding linear map has dimension \geq 66-64=2>0 , arriving at a
contradiction as before.

iii) Proof of the impossibility for \mathfrak{g}=o(1,9) and \mathfrak{g}=o(5,5) :
Again by [U , Remark 3.11], the representation to be considered here is

\tilde{V}=X\oplus X\oplus X\oplus Y,

where X is the natural representation (dim X=10) and Y is a half-spin
representation (dim Y=16). As before, by Zariski density, if B\neq\emptyset there
is an element v_{0}=(x_{1}, x_{2}, x_{3}, y)\in B with det (b(x_{i}, x_{j}))\neq 0 . Now consider
\hat{\mathfrak{g}}=\{g\in \mathfrak{g} : gx_{1}=gx_{2}=gx_{3}=0\} , which is an orthogonal Lie algebra of
dimension (\begin{array}{l}72\end{array})=21 . The kernel of the linear map

\hat{\mathfrak{g}}arrow\tilde{V}

g\mapsto gv_{0}=(gx_{1}, gx_{2}, gx_{3}, gy)=(0,0,0, gy)

has dimension \geq\dim\hat{\mathfrak{g}}- dim Y=21-16=5>0 , a contradiction again.
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iv) Proof of the impossibility for \mathfrak{g}=\epsilon u(r, s) , r+s=2k\geq 4 :
Let V=\mathbb{C}^{2k} with the natural action of \mathfrak{g} on V ; let b:V\cross V -

\mathbb{C} be
the associated hermitian form, so that

\mathfrak{g}=\{g\in End_{\mathbb{C}}(V) : b(gx, y)+b(x, gy)=0
\forall x , y\in V and tr g=0 }.

By [U , Remark 3.7], one has to consider the representation \tilde{V}=lV\oplus(k-l)\hat{V} ,
for 0\leq l\leq k , where \hat{V}=V but with the action g\cdot x=\overline{g}x , where \overline{g}=-g^{t} .
Let B=\{w\in\tilde{V} : \tilde{V}=\mathbb{R}w\oplus \mathfrak{g}w\} and assume it is not empty. As before, by
Zariski density there is an element v_{0}= (x_{1}, . . ’ x_{l}, y_{1}, \ldots y_{k-l})\in B such
that det (b(x_{i}, x_{j}))\neq 0\neq\det(b(y_{r}, y_{s})) .

Let W_{1}=\mathbb{C}x_{1}+\cdot\cdot+\mathbb{C}x_{l}\subseteq \mathbb{C}^{2k}=V and W_{2}=\mathbb{C}y_{1}+ +\mathbb{C}yk-l\subseteq

\mathbb{C}^{2k}=\hat{V} Now, for such a v_{0} ,

\{g\in \mathfrak{g} : gv_{0}=0\}=\{g\in \mathfrak{g} : gW_{1}=0\}\cap\{g\in \mathfrak{g} : \overline{g}W_{2}=0\} .

But \{g\in \mathfrak{g} : gW_{1}=0\} is the special unitary algebra \epsilon n(W_{1}^{\perp}) , associated
to the nondegenerate subspace w_{1}^{r\perp} , so its dimension is (2k-l)^{2}-1 , and
similarly the dimension of \{g\in \mathfrak{g} : \overline{g}W_{2}=0\} is (2k-(k-l))^{2}-1=(k+l)^{2}-1 .
Therefore we arrive at the contradiction

0=\dim_{\mathbb{R}}\{g\in \mathfrak{g} : gv_{0}=0\}

=\dim_{\mathbb{R}}(\{g\in \mathfrak{g} : gW_{1}=0\}\cap\{g\in \mathfrak{g} : \overline{g}W_{2}=0\})

\geq\dim_{\mathbb{R}}\{g\in \mathfrak{g} : gW_{1}=0\}+\dim_{\mathbb{R}}\{g\in \mathfrak{g} : \overline{g}W_{2}=0\}-\dim_{\mathbb{R}}\mathfrak{g}

=(2k-l)^{2}-1+(k+l)^{2}-1-((2k)^{2}-1)

=k^{2}-2kl+2l^{2}-1=(k-l)^{2}+l^{2}-1>0 .

This finishes the proof.
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