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On kernels of purifiability in arbitrary abelian groups
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Abstract. We determine the structure of a p-vertical[vertical] subgroup A of an arbi-
trary abelian group G such that every neat hull of A is p-purifiable[purifiable] in G.
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Introduction

A subgroup A of an arbitrary abelian group G is said to be purifiable
in G if there exists a pure subgroup H of G containing A which is minimal
among the pure subgroups of G that contain A. Such a subgroup H is said
to be a pure hull of A in G. In general, it is well-known that there exist
non-purifiable subgroups of some p-group, but all subgroups of an arbitrary
abelian group G have neat hulls in G.

First, P. Hill and C. Megibben [6] determined the structure of pure
hulls of p-groups and gave a characterization of p-groups for which every
subgroup is purifiable. Next, K. Benabdallah and J. Irwin introduced
the concept of almost-dense subgroups of p-groups and used this concept to
give a refinement of the structure of pure hulls in p-groups. Furthermore,
K. Benabdallah and T. Okuyama [3] introduced new invariants, the so-
called n-th overhangs of a subgroup of a p-group, which are related to
the n-th relative Ulm-Kaplansky invariants. They used these invariants to
give a necessary condition for a subgroup of a p-group to be purifiable.
K. Benabdallah, B. Charles, and A. Mader introduced the concept of
maximal vertical subgroups supported by a given subsocle of a p-group and
characterized a p-group for which the necessary condition on a subgroup of
a p-group to be purifiable given in [3] is also sufficient.

Recently, we extended the concept of purifiable subgroups of p-groups
to arbitrary abelian groups in [10]. Let p be a prime. A subgroup A of an
arbitrary abelian group G is said to be p-purifiable in G if there exists a
p-pure subgroup H of G containing A which is minimal among the p-pure
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subgroups of G that contain A. Such a subgroup H is said to be a p-pure
hull of A in G. In [10], we showed that a subgroup A is purifiable in G
if and only if A is p-purifiable in G for every prime p. Thus it suffices
to study the p-purifiability in G. However, to our knowledge, a complete
characterization of p-purifiable subgroups is still to be found.

C. Megibben introduced the concept of kernels of purity in [7]. A sub-
group A of an arbitrary abelian group G is said to be a kernel of purity
in G if every neat hull of A in G is pure in G. In [7], we find a complete
characterization of such a subgroup A in an arbitrary abelian group G. In
[8], we characterized a kernel of purity of a p-group using n-th defects of a
given subgroup. It is immediate that a kernel of purity is purifiable.

Now we weaken the concept of kernels of purity. A subgroup A of an
arbitrary abelian group G is said to be a kernel of p-purity in G if every
neat hull of A in G is p-pure in G. Moreover, A is called a kernel of p-
purifiability in G if every neat hull of A in G is p-purifiable in G. Studying
these subgroups plays an important role in studying purifiable subgroups of
arbitrary abelian groups.

Suppose that a subgroup A of an arbitrary abelian group G is a kernel
of p-purifiability in G. If A is neat in G, then we may assume A is not
p-vertical in G, because, if A is p-vertical in G, then A is p-pure in G. Then
there exists a non-negative integer m such that A N p™G is p-vertical in
p™G. Hence we must consider the characterization of p-purifiability without
any condition. Giving an answer to this problem is as difficult as giving a
complete characterization of purifiable subgroups. To make progress on this
problem, we consider the case that A is p-vertical in G.

In this article, in Section 2, we give a complete characterization of
kernels of p-purity in arbitrary abelian groups. In Section 3, we give a
necessary and sufficient condition for a p-vertical subgroup of an arbitrary
abelian group to be a kernel of p-purifiability in a given group.

We gave a definition of strongly purifiable subgroups of p-groups in [9].
Extending it, a subgroup A of an arbitrary abelian group G is said to be
strongly p-purifiable in G if A is eventually p-vertical in G, i.e. Vp (G, A) =
0 for all n = m, and all maximal p-vertical essential extensions of A Np™G
in p™G are pure in p™G for some non-negative integer m. We show that a
kernel of p-purifiability is strongly p-purifiable in G.

All groups considered are arbitrary abelian groups. The terminolo-
gies and notations not expressly introduced here follow the usage of [4].
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Throughout this article, p denotes a prime integer and G, the p-primary
subgroup of the abelian group G.

1. Definitions and basic facts

K. Benabdallah and J. Irwin introduced the concept of almost-dense
subgroups of p-groups and characterized them in . We extended that
concept from p-groups to arbitrary abelian groups in [10]. First, we give
the definition of p-almost-dense and almost-dense subgroups of G.

Throughout this section, let G be an arbitrary abelian group and A a
subgroup of G.

Definition 1.1 A is said to be p-almost-dense in G if the torsion part of
G/K is p-divisible for every p-pure subgroup K of G containing A. More-
over, A is said to be almost-dense in G if A is p-almost-dense in G for every
prime p.

We recall characterizations of p-almost-dense and almost-dense sub-
groups.

Proposition 1.2 [10, Proposition 1.3] A is p-almost-dense in G if and
only if, for all integers n 2 0, A+ p"*1G D p"GJp).

Proposition 1.3 [10, Proposition 1.4]  The following properties are equiv-
alent:

(1) A is almost-dense in G;

(2) for all integers n 2 0 and all primes p, A+ p"T1G D p"Glp];

(3) for every pure subgroup K of G containing A, T(G/K) is divisible.

Next, we give the definition of p-purifiable and purifiable subgroups.

Definition 1.4 A is said to be p-purifiable|purifiable] in G if, among the
p-pure[pure] subgroups of G containing A, there exists a minimal one. Such
a minimal p-pure[pure] subgroup is called a p-pure[pure] hull of A.

We state characterizations of a p-pure hull and a pure hull and an
important relation between p-purifiability and purifiability.

Proposition 1.5 [10, Theorem 1.8] There exists no proper p-pure sub-
group of G containing A if and only if the following three conditions hold:
(1) A is p-almost-dense in G.
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(2) G/A is a p-group.
(3) there exists a non-negative integer m such that p™Glp] C A.

Proposition 1.6 [10, Theorem 1.11] There exists no proper pure sub-
group of G containing A if and only if the following three conditions hold:

(1) A is almost-dense in G.
(2) G/A is torsion.
(3) for every prime p, there exists a non-negative integer my such that

p"?Glp] C A.

Proposition 1.7 [10, Theorem 1.12] A is purifiable in G if and only if
A is p-purifiable in G for every prime p.

The following result is frequently used in this article.

Proposition 1.8 [10, Lemma 4.5] Let H be a p-pure subgroup of G con-
taining A such that p™H|[p] C A for some m 2 0 and H/A is torsion. Then
A is p-purifiable in G. O

In G, for every subgroup A of G, there exist neat hulls of A in G. We
recall the properties of neat hulls in an arbitrary abelian groups.

Proposition 1.9 Let N be a neat hull of A in G. Then we have:
(1) N is neat in G;

(2) N/A is torsion;

(3) Nlp] = Alp] for every prime p.

However, in general, not all neat hulls of A are pure in G. C. Megibben
in [7] defined kernels of purity and characterized them as follows:

Definition 1.10 A is said to be a kernel of purity in G if all neat hulls of
A in G are pure in G.

Theorem 1.11 (7, Theorem 2] A is a kernel of purity in G if and only
if for each prime p, A satisfies the following condition (x) for all positive
integers n.

(x) If p"*lg € A, then either p"g+ 2z € ANP"G for some z € G[p| or
else %ﬁ‘ C p"(z%]). O
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2. Kernels of p-purity

In this section, we consider kernels of p-purity in arbitrary abelian
groups. First, we give several definitions and properties.

Definition 2.1 A subgroup A of an arbitrary abelian group G is said to
be a kernel of p-purity in G if all neat hulls of A in G are p-pure in G.
If all neat hulls of A in G are p-purifiable in G, A is called a kernel of
p-purifiability in G.

Definition 2.2 For every non-negative integer n, we define the n-th p-
overhang of a subgroup A of an arbitrary abelian group G to be the vector
space

(A +p™G) Np"Gp]
(ANp*G)[pl + p"*+Glp]

Moreover, A is said to be p-vertical in G if V, ,(G, A) = 0 for all n 2 0.

‘/;)7'"'(G’ A) =

It is convenient to use the following notations for the numerator and
the denominator of V, (G, A):

A%(p) = (A+ " G)Np"Glp] = (ANP"G) +p"*'G)lp]
and
A7 (p) = (ANP"G)lp] + p"+' Clp).
Proposition 2.3 [10, Proposition 2.2] For every p-pure subgroup K of
an arbitrary abelian group G containing a subgroup A of G,
Von(G,A) 2V, n(K, A)
for all n 2 0.

Proposition 2.4 [10, Theorem 2.3] If a subgroup A is p-purifiable in an

arbitrary abelian group G, then there exists a non-negative integer m such
that Vi »(G, A) =0 for all n 2 m.

For convenience, A as in [Proposition 2.4is called an eventually p-vertical
subgroup if there exists a non-negative integer m such that V,,(G,A) =0
for all n 2 m.
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Definition 2.5 For every non-negative integer n, we define the n-th p-
defect of a subgroup A of an arbitrary abelian group G to be the vector
space

(G
PrnlGA) = Grap] + 4)/4

Lemma 2.6 Let H be a proper p-pure subgroup of an arbitrary abelian
group G containing a subgroup A of G. Then, for all n 2 0,

(1) p™(G/A)p] = p*(H/A)lp] + ZCBH 4pg
(2) p"(H/A)[p] N p"GK]+A _ p"H{f;;HA.

In particular, if A is p-vertical in G and if H is a p-pure hull of A in G,
then we have

p"(G/A)lp| = p"(H/A)[p] ®

for all n 2 0.

p"Glp] + A
—

Proof. (1) Letp"g+A € p™(G/A)[p]. Then p"tlg € ANp"HG C p"t1H.
Hence there exists h € H such that p"g — p™h € p"G|p| and so p"g + A €
p"(H/A)lp] + PR,

(2) Letxz+ Aep™(H/A)pN Q%H—A. Then there exist h € H and
p"g € p"G|p| such that p"*'h € Aand z + A= p"h+ A = p"g + A. Since
p"(h—g) € HNp"G = p"H, we have p™g = p™(h — hg) for some hy € H.
Hence x + A=p"(h—ho) + A € ’%.

Suppose that A is p-vertical in G and H is a pure hull of A in G. By
[Proposition 2.3, A is p-vertical in H. Hence H[p] = A[p]. By (2), the
assertion holds. O

Using Lemma 2.6/(1) and the Dedekind short exact sequence, we have:

Proposition 2.7 Let H be a proper p-pure subgroup of an arbitrary
abelian group G containing a subgroup A of G. Then

DP,TI(G7 A) = DP,n(Hv A)
for all n 2 0.

Proof. 'We have p™(G/A)[p] N H/A = p™(H/A)[p] and 2B 0 g/A =
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p"HA[_Bl__+A. By and the Dedekind short exact sequence, we have

Dp,n(G, A) = Dpan(H7 A)' l:]

Using the concept of n-th p-defect, we have a characterization of p-pure
subgroups as follows:

Proposition 2.8 [5, Proposition 3.2] A subgroup A is a p-pure subgroup
of an arbitrary abelian group G if and only if Dpn(G,A) =0 for all n 2 0.

Let G be a p-group and A a subgroup of G. Then A[p] is said to be
dense in G[p| if G[p] = A[p]|+p"G|p] for all n 2 0. Now, a subsocle A[p] of an
arbitrary abelian group G is said to be p-dense in G[p] if G[p] = A[p]+p"G|p)
for all n 2 0. For a p-dense subsocle A[p] of G[p], we have:

Lemma 2.9 Let G be an arbitrary abelian group and A a subgroup of G.
If Alp| is p-dense in G, then A is a kernel of p-purity in G.

Proof. Let N be a neat hull of A in G. We show that N is p-vertical in G.
Since

p"G[p] € (ANp"Glp]) + p"'Glp] € (N Np"Glp]) + p"'Glp)
and
p"Glp] C A+p"'G C N +p"M'G,

we have NZ&(p) = NS (p) for all n = 0. Hence N is p-vertical in G. By [10,
Proposition 2.6], N is p-pure in G. O

Such a neat hull N of A in G in the proof of is not necessarily
a p-pure hull of A. If N/A is not a p-group, then there exists a smaller one
than N. However, [Proposition 1.§ guarantees that A is p-purifiable in G.

Now we determine a subgroup A of an arbitrary abelian group G when

a subgroup A is a kernel of p-purity in G. Before we do this, we need four
lemmas.

Lemma 2.10 Let G be an arbitrary abelian group and A a subgroup of
G. Alp] is p-dense in G if and only if

p"Glp]+A _p""'Glp]+ A
A N A
for all n 2 0.
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Lemma 2.11 Let G be an arbitrary abelian group and A a subgroup of
G. For an integer n 2 0, V, o(G, A) = 0 if and only if

p"Glpl+ A PTGl + A

P2 (G =

Lemma 2.12 Let G be an arbitrary abelian group and A a subgroup of
G. For non-negative integers m and t, we have

Dp,m.;_t(G, A) = Dp,t(pmG, A N pmG).

Proof. Let pg'A={g € G|pg € A}. Note that

-1 m+t

_Dbg AN(PTTG+ A)
m aA =

Dp’ +t(G ) pm+tG[p]+A

and

-1 m-+t mn
m m NpGAm(p G+A)ﬂp ¢
Dp:(p"G,p"G N A) (™t G[p] + A) N pmG

Note that (pg'4 N (pP™HG + A) N p™G) + (P™HGp] + A) = pgtA N
(p™*'G + A). By the Dedekind short exact sequence, we have

Dp,m+t(G7 A) = Dp,t (pmG7 AN pmG)

]

Lemma 2.13 Let G be an arbitrary abelian group and A a subgroup of
G. Let B be a subgroup of G such that A is essential in B. If A is a kernel
of p-purifiability in G, then B is p-purifiable in G. In particular, if A is a
kernel of p-purity in G, then B is p-vertical in G.

Proof. Let N be a neat hull of B in G. Then N is a neat hull of A in
G. By hypothesis, there exists a p-pure hull H of N in G. Then we have
p"H(p] C N[p| = A[p| for some integer m = 0. Since H/B is torsion, by
[Proposition 1.8, B is p-purifiable in G. If A is a kernel of p-purity, then N
is p-pure in G. Hence B is p-vertical in G. 0

Theorem 2.14 Let G be an arbitrary abelian group and A a subgroup of
G. A is a kernel of p-purity in G if and only if, either
(1) Alp] is p-dense in G[p], or
(2) there ezists a non-negative integer k such that
CleltA _ p"ClpltA o, "G (g (G A) = 0 for all 1> k.
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Proof. (=) If Alp| is not p-dense in G[p|, then, by Lemma 2.10, there

exists a non-negative integer k such that

Gpl+A p*Gp|+A , p"Glp]+ A
A B A 7 A '
Suppose that D, 4+1(G,A) # 0. Then there exists z € G[p] such that
z ¢ p*1Glp] + Alp] and there exists p¥+lg + A € p*t1(G/A)[p] such that
k+1 pFt!Glp]+A
geEGandp" g+ A¢d 3 :
Let K = (pFtlg+x, A). We show that K[p] = Alp]. Let t(p* g+ z)+
a € K[p] such that a € A and t is an integer. Without loss of generality,
we may assume that (¢,p) = 1 and pFlg + A € QL—’%]:—A. By hypothesis,

we have p*tlg + A € M—Gj[ﬁité. By Lemma 2.1T, we have p**'g + A €

ZWiA[p]if—l-. This is a contradiction. Hence K[p] = Alp]. Since K/A is a
p-group, we have K|[q] = A[g] for every prime q. Let N be a neat hull
of A in G containing K. Note that p**'g + N € p**1(G/N)[p]. On the
other hand, if p**lg+ N € p—kilcjvﬂ]\l, then p*tlg = pF*lgo + y for some
p*lgy € p*1G[p] and y € N. Since = (p*'g + z) — (P 1go + ), we
have pF*tlg + z — y € N[p] = A[p]. Hence x € p**'G[p] + A[p]. This is a
contradiction. Hence p*t1g+ N ¢ ﬁj\,—[ﬁﬂ. By [Proposition 2.8, N is not
p-pure in G. Therefore D, .1(G,A) = 0. Moreover, By Lemma 2.13, A
is p-vertical in G. Hence, by [Lemma 2.11, we have D, (G, A) = 0 for all
n> k.

(<) If Alp| is p-dense in G[p], then A is a kernel of p-purity by
Lemma 2.9. Suppose that the condition (2) holds. Let N be a neat hull of
A in G. By Lemma 2.12, A NpFt1G is p-pure in p*+1G. Since A N p**+1G
is essential in N N p**1G, %[p} = 0 and so Dy,(G,N) = 0 for all
n > k. By Lemma 217, V, ,(G,N) = 0 for all n 2 k. Moreover, since
G[p]]v+N = ka][@+N, we have V, (G, N) = 0 for all n 2 0. By [10, Proposi-
tion 2.6], N is p-pure in G. O

By Megibben’s result [Theorem 1.11 and [Theorem 2.14], we state that
a subgroup A of an arbitrary abelian group G is a kernel of purity in G if
and only if, for every prime p, A is kernel of p-purity in G. By [Lemma 2.13,
kernels of p-purity are p-purifiable. The condition for a subgroup to be
a kernel of purity is stronger than the condition for it to be p-purifiable.
Under a weaker condition, we have the following results.
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Corollary 2.15 Let m be a non-negative integer. Suppose that either
(1) p"Glpl+A _ p"T'G[p]+A
A o A

forall n 2 m, or
(2) Dpn(G,A)=0 forall n 2 m.
Then A is p-purifiable in G.

Proof. (1) By hypothesis, p"G[p] C Alp]+p" ' G]p| for all n = m. Hence
Alp]Np™G is p-dense in p™G[p|. By Lemma 2.9, A[p] Np™G is p-purifiable
in p™G. By [10, Theorem 4.1}, A is p-purifiable in G.

(2) By hypothesis and Lemma 2.12, A[p| Np™G is p-pure in p"G. We
also use [10, Theorem 4.1] to prove that A is p-purifiable in G. U

3. Kernels of Purifiability

First of all, we state the relation between kernels of p-purifiability and
kernels of purifiability.

Proposition 3.1 Let G be an arbitrary abelian group and A a subgroup
of G. A is a kernel of purifiability in G if and only if, for every prime p,
A is a kernel of p-purifiability in G.

Proof. (=) Let N be a neat hull of A in G and H a pure hull of N in
G. Then H is p-pure in G. Moreover, by [Proposition 1.6, H/N is torsion
and there exists a non-negative integer m such that p™H[p] C N[p|. By
IProposition 1.8, N is p-purifiable in G.

(<) By [10, Theorem 1.12], it is immediate. O

From [Proposition 3.1|, it suffices to characterize kernels of p-purifiability.
Suppose that a subgroup A of an arbitrary abelian group G is a kernel of
p-purifiability in G. If A is neat in G, then we may assume A is not p-
vertical in GG, otherwise A would be p-pure in G. Then there exists a non-
negative integer m such that ANp™G is p-vertical in p™G. Hence we must
consider the characterization of p-purifiability with no condition. Giving an
answer to this problem is as difficult as giving a complete characterization
of purifiable subgroups. To make progress on this problem, we consider the
case where A is p-vertical in G. Before we give the main Theorem of this
article, we establish various properties.

Proposition 3.2 Let G be an arbitrary abelian group and A a subgroup
of G. For a p-vertical subgroup A of G, we have:
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(1) if A is a kernel of p-purifiability in G, then AN p"G is a kernel of
p-purifiability in p"G for all n 2 0;

(2) if ANp™G is a kernel of p-purifiability in p™G for some integer
m 2 0, then A is a kernel of p-purifiability in G.

Proof. (1) Let L, be a neat hull of AN p"G in p"G. Let L = L, + A.
Then LNp"G = (L, + A)Np"G = L, + (ANP"G) = L.

We prove that L[q] = Alg] for every prime q. Let x € L[p]. Then we
can write £ = a + p"g, where a € A and p"g € L,, with g € G. Since A is
p-vertical in G, we have x = a+p"g € (A+p"G)[p] = Alp] +p"G|p| by [10,
[Proposition 2.7]. Then x = ag+p™go for some ag € Alp|] and p™go € p"GIp).
Since p"go = z—ag € (LNp"G)[p] = Ln[p] = (AND"G)[p] C Alp}, it follows
that z € A[p]. For a prime ¢ # p, let y, € Lig]. Then we have y, = aq + 24,
where a, € A and 24 € L,. Since qaqg = —qz4 € p"G and G/p"G is a p-
group, we have a, € p"G. Hence yq € LNp"Glq] = Ly[q] C Alg]. Therefore
L[q] = Alg] for every prime g. Since L/A = L"A+A = A#Tin and Xr%n"_a‘ is
torsion, L/A is torsion.

Let M be a neat hull of L in G. By [Proposition 1.9, M becomes a neat
hull of A in G. By hypothesis, there exists a p-pure hull H of M in G. Since
H/L is torsion and p™H[p] C M[p] = Lip] for some integer m 2 0, L is
p-purifiablity in G by [Proposition 1.8. By [10, Theorem 4.1], L, = LNp"G
is p-purifiable in p"G. Hence AN p"G is a kernel of p-purifiable in p"G.

(2) Let N be a neat hull of A in G. Then, for every prime g, we have
(NNp™G)lg] = N[glnp™G = Alg] N p™G = (ANp™"G)|g). Let L’ be a
neat hull of N N p™G in p™G. Then L' becomes a neat hull of AN p™G.
By hypothesis, there exists a p-pure hull H of L in p™G. Then Tv—rgTG is
torsion and p"H(p] C L'[p] = (N Np™G)[p|] for some integer r = 0. By
[10, Theorem 4.1] and [Proposition 1.8, N is p-purifiable in G. Hence A is a
kernel of p-purifiability in G. O

Lemma 3.3 Let G be an arbitrary abelian group, A a subgroup of G, and
H a p-pure subgroup of G containing A such that p*G[p] C H for some
integer k = 0. If G/A is a p-group, then p*G C H.

Proof. Let pFg € p*G \ H such that g € G and p**1g € H. Since p**lg e
HNpht1G = pF*t1H, there exists h € H such that p*g —pFh € p*Glp] C H.
Hence pFg € H. This is a contradiction. Therefore p*G C H. U

Lemma 3.4 Let G be an arbitrary abelian group and A a subgroup of
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G. Suppose that there exists an increasingly sequence of positive integers
np<ng <---<n; <...such that

p“Glp] # (AN p™G)[p] + p™ T G[p]

for all i 2 1, and there exists a subgroup K of G containing A and an
increasingly sequence of positive integers mi; < mg < -+ < m; < ... such
that

(1) Klp] = Alp] and

(2) p™(K/A)lp] # p™i 1 (K/A)[p].
Then there exists a subgroup L of G containing A such that

(1) Llq] = Alg] for every prime g,

(2) L/A is a p-group, and

(3) L is not eventually p-vertical in G.

Proof. By hypothesis, we can choose an increasingly sequence of positive

integers t; < to < --- < t, < ...such that

(1) p-1Glp] # (ANp-1G)[p] + p™+-1*'G[p] and

(2) {xox+ A|k=1,2,...} is linearly independent in (K/A)[p] such that
hp(.'rgk + A) = lo.

Let sgx—1 € p2—1G[p] \ ((ANp'2-1G)[p] + p'2-1T1G[p]) for k = 1,2,... and

L= <A,82k_1+$2k | k= 1,2,...).

Let y € L[p]. Then we can write y = a + Xgag(sgk_1 + Tox), where a € A
and ax € Z. Since y — Lpagsok—1 = a + Lraxxor € K[p] = Alp], we have
Yragzer € A. Therefore p divides a. Hence L[p] = A[p]. Since L/A is a p-
group, L[gq] = Alq| for every prime ¢. Next, suppose that V,+,, (G, L) = 0.
Let yx = sok_1 + T9x. Then we have

Sok—1 = Yk — Tox € (L + p'2-171G) N p2—1G[p]
= (ANp"-1G)[p] + p*1HGlp).

This is a contradiction. Hence L is not eventually p-vertical in G. O

Lemma 3.5 Let G be an arbitrary abelian group such that G = D @ B,

where D is a divisible p-group of finite rank and B is unbounded.

(1) If p”Blp] # 0, then there exists a subgroup L of G, such that L[p] =
Dip| and L is not p-purifiable in G.

(2) If p”Blp] =0 andif N is a subgroup of T(G) such that dim N [p] < oo,
then there exists a p-pure subgroup K of T(G) containing N + D such
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that p*K, C D for some integer k 2 0.

Proof. (1) Let z € p“Blp| and D = D' & E, where D' is a subgroup
of D and E[p] = (d). Then there exists a € D such that pa = d. Let
L=D @ (a+x). Then L is a p-group and L[p] = D[p]. Suppose that L is
p-purifiable in G. Let H be a p-pure hull of L in G. By [Proposition 1.6 and
[6, Theorem 2], H is a p-group and H = M & N, where M p| = L[p] = D|[p]
and p™N = 0 for some integer m = 0. Since a + T € H!' C M and
D' =p™D' C p™"M = p™H, we have L C M and hence H = M. Then H
is divisible and H = D. Since a € H, it follows that x € H = D. This is a
contradiction. Therefore L is not p-purifiable in G.

(2) By hypothesis, we may assume that N is a p-group. Since
dim N[p] < oo, &2 is finite. Moreover, since B = G/D 2 NED and
p“B[p] = 0, we have N—BQ N p™(G/D) = 0 for some integer m = 0. Hence
there exists a pure hull K/D of N—]‘SQ in (G/D), such that p’K C D for
some integer t 2 0. Then K is p-pure in G. O

Main Theorem 3.6 Let G be an arbitrary abelian group and A a p-
vertical subgroup of G. Then A is a kernel of p-purifiability in G if and
only if one of the following three conditions holds:

(1) ANp™G is p-dense in p™G for some m 2 0;

(2) Dpm+t(G,A) =0 for some intger m 2 0 and all t = 0;

(3) there exist an integer m 2 0 and subgroups H, K of G such that

"G H o K
AnpmG  ANnpmG ~ ANpmG’

where E%WG is a divisible subgroup of (ﬁ,ﬁ(—;)p of finite rank and

K - p"Glpl+(ANp"G)

ANnpmG 2 ANnpmG
such that p‘”(mi%n—@)[p] = 0.

Proof. (=) Suppose that both of (1) and (2) are not satisfied. Then there
exists an increasingly sequence of positive integers n; < ng <--- <mng <...
such that

p“Glp] # (AN p™G)[p] + p™ ' G[p]

for all 4 > 1. By [Lemma 2.13, A is p-purifiable in G. Let H be a p-pure hull
of Ain G. If p™(H/A)[p] = 0 for some m = 0, we have Dpmy¢(G,A) =0
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for all t 2 0. Hence we may assume that p™(H/A)[p] # 0 for every n = 0.
Next, we prove that there exists a non-negative integer m such that

p™(G/A) =p™(H/A) & K'/A,

where p™(H/A) is a divisible p-group of finite rank and K’/A is a direct
summand of p™(G/A). By Lemma 2.6, for all n > 0, we have

PG/ A)lp] = p(/A) ) & DA

Let 1y < ry < --- < 7; <...be an increasingly sequence of positive inte-
gers such that p™ (H/A)[p] # p"i+'(H/A)[p]. By Lemma 3.4, there exists a
subgroup L of G containing A such that L[g] = A[g] for every prime q, L/A
is a p-group, and L is not eventually p-vertical in G. By [Proposition 2.4,
L is not p-purifiable in G. On the other hand, since every neat hull of L
in G is a neat hull of A in G, L is a kernel of p-purifiability in G. By
Lemma 2.13, L is p-purifiable in G. This is a contradiction. Hence there
exists a non-negative integer m such that p™**(H/A)[p] = p™(H/A)[p] for
all k 2 0. Since p™(H/A) is a p-group and p™(H/A) is pure in p™(G/A),
p™(H/A) is divisible. Hence we have

p™(G/A) =p"(H/A) & K'/A,

where K'/A is a direct summand of p™(G/A). Suppose that
dim(p™(H/A)[p]) = co. Then we can write

p"(H/A) = Dlpl & (P, (i + 4)) .

where D is a divisible subgroup of p™(H/A) and d; + A € p™(H/A)[p]. As
mentioned above, we can choose a set {b; € G[p| | i = 0} such that

bi € pG[p] \ (ANp™G)p] + ™ G[p].

Let M = (A,d;+b; | i 2 1) and € M[p]. Then we have z = a+X;0;(d;+b;)
for some a € A and integers «;. Since a + ¥;a;d; € H[p] = Alp], p divides
a; and so M[p] = Ap|. If hg/A(di +b;+ A) > n;, then b; + A = phitlg+ A
for some g € G. Then, since A is p-vertical in G, we have b; = a + p™tlg €
(A+pM TG Np“Glp] = (ANP™G)[p] +p™T'G[p]. This is a contradiction.
Hence hg/A(di +b; + A) = n;. Let

L= <A7b2k‘—l + dok + bog I k= 1727>
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By a similar proof of Lemma 3.4, L' is not eventually p-vertical in G, L'/A
is a p-group, and L'[q] = Alg] for every prime ¢. Similarly, this is a contra-
diction. Hence dim(p™(H/A)[p]) < oo.

Note that p™H is a p-pure hull of AN p™G in p™G and AN p™G is

p-vertical in p™G. By [Lemma 2.6, we have
ACR R i []ZWGM+@MMW@
AnprGP T AnprGg? AnprG
Since Amm;f{G = me“LA = p™(H/A) is a divisible p-group, there exists a
subgroup K of G such that
"G  p"H © K
ANpmG  AnpmG ~ ANpmG’
where thTG[p] = pT“G[i];—p(’::gpmG). Next, we prove that p“’(AﬁmeG)[p] = 0.
Suppose that p“’(—gﬂfmG)[p] #+ 0. By [Lemma 3.5(1), there exists a
" mG TTLH
subgroup ZﬁL_m_G of (f&7g)p such that (AnpmG)[p] = (5pmg)lp] and
AnLl,,nG is not p-purifiable in Z%"l,,% Since AnL,,InG is a p-group, L"[q] =
(A N p™G)q] for every prime q # p. Let z € L"[p]. Since v 4+ A €
AnmfG)[p] NnE G{i]n (égp % — 0, we have L"[p] = (AN p™G)[p]. Hence
L"[q ] (AN pmG)[q] for every prime ¢. Since a neat hull of L” implies one

of ANp™G, L" is a kernel of p-purifiability in p™G by [Proposition 3.2(1).
Therefore L” is p-purifiable in p™G by Lemma 2.13. Let M’ be a p-pure
hull of L” in p™G. By [Proposition 1.8, AN p™G is p-purifiable in M'. Let
N be a p-pure hull of ANp™G in M’. Then

p*M[p] € L"[p] = (ANp™G)[p] C N

for some integer £k = 0. Since AanG is a p-group, we have p*M C N
w(_p"G
by Lemma 3.3 Then (AnI;;mG)[p] C p (er)w_pﬁé)[p] (AﬂpmG)[p] =

P (aea)le] = 0n( )l € Grpra)lp) and Giyrg)pl =
(£ome)lp] @ (rsg)lt] = (amg)P) @ (ram)lb] = (arpmg) [P @
(47 p]- Since dim((H/A)[p]) < oo, we have ( 1)) = (g [P)
Hence p’“(Aﬁ mG)[p] C (AﬂpmG)[p] (AﬂpmG)[p] and so Amgrlna is p-puri-
fiable in An mG by [Proposition 1.8. This is a contradiction. Hence

P* (zrpmg) p] = 0.
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(<) By [Proposition 2.8, Lemma 2.9, and [Proposition 3.2(2), we may
assume that

(G/A) = (H/A) ® (K/A),

where H/A is a divisible subgroup of (G/A), with dim((H/A)[p]) < oo
and K/A is a subgroup of G/A such that p*(K/A)[p] = 0 and (K/A)[p] =

Glp]+A
A .

Let N’ be a neat hull of A in G. Then

Gp|+A
(G/4)p] = V' /A)p 0 B4

Since N'/A is torsion and dim((N'/A)[p]) = dim((H/A)[p]) < oo, by
Lemma 3.5(2), there exists a p-pure subgroup M”/A of T(G/A) containing
% such that p*(M”"/A), C H/A for some integer k > 0.

Now we prove that M" is p-pure in G. Let pg € M" with g € G. Since
M"/A is p-pure in G/A, there exists € M" such that

Glp] + A

g-o+ A€ (G/A = (H/AH o L=

Since g —x = h + go + a for some h € H, gy € G[p], and a € A, we have
g—90=h+z+ae M’ Hence pg = p(h+ z+a) € pM". Suppose by
induction that M” N p"G = p"M". Let p"tlg € M" with g € G. Since
M"/A is p-pure in G/A, there exists x € M" such that p"tlg — p"tlz € A.
By Lemma 2.6, we have

p"Glp| + A

P (C/A] = p (/) © L)
p"Glp] + A
= (H/a)p o PENEA
Then there exist h € H, p"go € Glp|, and a € A such that p"g — p"z =
h+p"go+a. Since p™(g—go) =p"z+h+a € M"Np"G = p"M", we have

p"tg = p"*t(g — go) = p" iz’ for some 2’ € M”. Hence M" is p-pure in
G. Since

pkM”[p] —+—A
A

C pF(M"/A)lp) C H/A,

we have

pkM”[p] + A
A

p*Glp] + A _

1 0.

C H/AN
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Hence p*M"[p] C A C N’'. Since M"/A is torsion, M"/N is torsion. By
[Proposition 1.8, N’ is p-purifiable in G. O

By [Proposition 3.1 and the Main Theorem, we have:

Corollary 3.7 Let G be an arbitrary abelian group and A a subgroup of
G. Suppose that A is p-vertical in G for every prime p. Then A is a
kernel of purifiability in G if and only if, for every prime p, one of the three
conditions in the Main Theorem 3.7 holds. O

Comparing (Corollary 3.7 with Megibben’s result [Theorem 1.11], we can
see easily that the condition for a subgroup to be a kernel of purifiability is
weaker than the condition for it to be a kernel of purity.

We occasionally use the expression “a maximal p-vertical subgroup M
of a p-vertical subgroup A in an arbitrary abelian group G” meaning im-
plicitely that the subgroup M is maximal among the p-vertical subgroups of
G containing A having properties that M[p] = A[p] and M/A is a p-group.
The existence of maximal p-vertical subgroups for every p-vertical subgroup
of G is guaranteed by [10, Proposition 3.1].

Definition 3.8 Let G be an arbitrary abelian group and A a subgroup
of G. Suppose that A is eventually p-vertical in G such that there exists a
non-negative integer m such that V, ,(G, A) =0 for all n 2 m. A is said to
be strongly p-purifiable in G if all maximal p-vertical extensions of ANp™G
in p™G are p-pure in p™G.

Lemma 3.9 Let G be an arbitrary abelian group and A a p-vertical sub-
group of G. If A is a kernel of p-purifiability in G, then every mazimal
p-vertical subgroup of A is a p-pure hull of A in G.

Proof. Let M be a maximal p-vertical subgroup of G containing A. Since
M/A is a p-group, we have M[q] = A[g] for every prime q # p. Let L be a
neat hull of M in G. Then L becomes a neat hull of A in G. By hypothesis,
there exists a p-pure hull H of L in G. Since H/L is a p-group and L/M
is torsion, H/M is torsion. Moreover, we have p™H|[p] C L[p| = M|p] for
some integer m = 0. By [Proposition 1.8, M is p-purifiable in G. Since M
is maximal p-vertical in G, M is p-pure in G. By [Proposition 1.5, M is a
p-pure hull of A in G. a

From [Proposition 3.2 and [Lemma 3.9 combined, it immediately follows:
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Theorem 3.10 Let G be an arbitrary abelian group and A a p-vertical
subgroup of G. If A is a kernel of p-purifiability in G, then A is strongly
p-purifiable in G. O
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