Hilbert schemes and cyclic quotient surface singularities

Rie Kidoh

(Received March 15, 1999)

Abstract. Let G be a finite cyclic subgroup of $GL(2, \mathbb{C})$ of order n which contains no reflections. Let \mathbb{A}^2 be the complex affine plane. We consider a certain subscheme $\operatorname{Hilb}^G(\mathbb{A}^2)$ of $\operatorname{Hilb}^n(\mathbb{A}^2)$ consisting of G-invariant zero-dimensional subschemes of length n. We describe the structure of $\operatorname{Hilb}^G(\mathbb{A}^2)$ and prove this is the minimal resolution of the quotient surface singularity \mathbb{A}^2/G .

Key words: Hilbert scheme, cyclic, quotient singularities, resolution.

Introduction

Let \mathbf{A}^2 be the complex affine plane. Let $S^n(\mathbf{A}^2)$ be the *n*th symmetric product of \mathbf{A}^2 , and $\operatorname{Hilb}^n(\mathbf{A}^2)$ the Hilbert scheme parametrizing all zerodimensional subschemes of \mathbf{A}^2 of length *n*. By the natural morphism π : $\operatorname{Hilb}^n(\mathbf{A}^2) \to S^n(\mathbf{A}^2)$ called Hilbert-Chow morphism $\operatorname{Hilb}^n(\mathbf{A}^2)$ is a crepant resolution of $S^n(\mathbf{A}^2)$.

Let G be a small finite subgroup of $GL(2, \mathbb{C})$, that is, G is a finite subgroup of $GL(2, \mathbb{C})$ which contains no reflections. Then G acts on \mathbb{A}^2 , hence it acts both $\operatorname{Hilb}^n(\mathbb{A}^2)$ and $S^n(\mathbb{A}^2)$ so that the Hilbert-Chow morphism is G-equivariant. Assume that n equals the order of G. Then the G-fixed point set of $S^n(\mathbb{A}^2)$ is isomorphic to the quotient space \mathbb{A}^2/G . Hence we see readily that there is a unique irreducible component of G-fixed point set in $\operatorname{Hilb}^n(\mathbb{A}^2)$ dominating \mathbb{A}^2/G , which we denote by $\operatorname{Hilb}^G(\mathbb{A}^2)$. For finite subgroups G of $SL(2, \mathbb{C})$, Ito and Nakamura proved in [IN96] [IN98] that $\operatorname{Hilb}^G(\mathbb{A}^2)$ is the minimal resolution of the simple singularity \mathbb{A}^2/G . Using this realization of the minimal resolution of \mathbb{A}^2/G , they also gave an explanation to the so-called McKay observation, though in part. Nakamura conjectured that $\operatorname{Hilb}^G(\mathbb{A}^3)$ is a crepant resolution of \mathbb{A}^3/G for any finite subgroup G of $SL(3, \mathbb{C})$ and proved it for an Abelian group in [N]. Recentry the conjecture proved by Bridgeland, King and Reid in [BKR].

When G is a small finite cyclic subgroup of $GL(2, \mathbb{C})$ we call the germ

¹⁹⁹¹ Mathematics Subject Classification: 14C05, 14E15.

R. Kidoh

of the quotient singularity \mathbf{A}^2/G at the origin a cyclic quotient surface singularity. In the present article we prove that $\operatorname{Hilb}^G(\mathbf{A}^2)$ is the minimal resolution of the cyclic quotient surface singularity \mathbf{A}^2/G and describe the structure of $\operatorname{Hilb}^G(\mathbf{A}^2)$ in detail.

In Section 1 we give some preparatory lemmas on continued fractions. In Section 2 we recall toric resolutions of cyclic quotient surface singularities. We recall some basic facts on $\text{Hilb}^G(\mathbf{A}^2)$ in Section 3. We present our main theorem in Section 4 and 5.

1. Continued Fractions

Let n and ℓ are positive integers such that $1 \leq \ell < n$ and $gcd(n, \ell) = 1$. In this section we consider the modified continued fractions of $\frac{n}{\ell}$ and $\frac{n}{n-\ell}$. Let

$$\frac{n}{\ell} = [[b_1, b_2, b_3, \dots, b_r]] := b_1 - \frac{1}{|b_2|} - \frac{1}{|b_3|} - \dots - \frac{1}{|b_r|} \quad (b_\mu \ge 2)$$
$$\frac{n}{n-\ell} = [[a_1, a_2, a_3, \dots, a_e]] \quad (a_\nu \ge 2) \tag{1.1}$$

be the Hirzebruch-Jung continued fractions. Then we define triples $(i_{\mu}, j_{\mu}, k_{\mu})$ $(\mu = 0, 1, ..., r + 1)$ and $(\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu})$ $(\nu = 0, 1, ..., e + 1)$ of nonnegative integers as follows:

$$\begin{cases} (i_0, j_0, k_0) := (n, 0, 1), & (i_1, j_1, k_1) := (\ell, 1, 1), \\ (i_{\mu+1}, j_{\mu+1}, k_{\mu+1}) := b_{\mu}(i_{\mu}, j_{\mu}, k_{\mu}) - (i_{\mu-1}, j_{\mu-1}, k_{\mu-1}), \end{cases}$$
(1.2)

$$\begin{cases} (\alpha_0, \beta_0, \gamma_0) := (n, 0, 1), & (\alpha_1, \beta_1, \gamma_1) := (n - \ell, 1, 1), \\ (\alpha_{\nu+1}, \beta_{\nu+1}, \gamma_{\nu+1}) := a_{\nu}(\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}) - (\alpha_{\nu-1}, \beta_{\nu-1}, \gamma_{\nu-1}). \end{cases}$$

Then it is easy to see by $a_{\nu}, b_{\mu} \geq 2$ that

$$\begin{cases} i_0 > i_1 > \dots > i_{r+1} = 0, \\ j_0 < j_1 < \dots < j_{r+1} = n, \\ k_0 \le k_1 \le \dots \le k_{r+1} = n - \ell, \end{cases} \begin{cases} \alpha_0 > \alpha_1 > \dots > \alpha_{e+1} = 0, \\ \beta_0 < \beta_1 < \dots < \beta_{e+1} = n, \\ \gamma_0 \le \gamma_1 \le \dots \le \gamma_{e+1} = \ell. \end{cases}$$

By induction on μ and ν we get

$$\begin{cases} i_{\mu} + (n-\ell)j_{\mu} = nk_{\mu}, \\ i_{\mu-1}j_{\mu} - i_{\mu}j_{\mu-1} = n, \\ k_{\mu-1}j_{\mu} - k_{\mu}j_{\mu-1} = 1, \end{cases} \begin{cases} \alpha_{\nu} + \ell\beta_{\nu} = n\gamma_{\nu}, \\ \alpha_{\nu-1}\beta_{\nu} - \alpha_{\nu}\beta_{\nu-1} = n, \\ \gamma_{\nu-1}\beta_{\nu} - \gamma_{\nu}\beta_{\nu-1} = 1. \end{cases}$$
(1.3)

Next we investigate the relations between $(i_{\mu}, j_{\mu}, k_{\mu})$ and $(\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu})$. First we review a lemma from Riemenschneider [R74, Lemma 3].

Lemma 1.1 Let $\frac{n}{\ell} = [[b_1, b_2, \dots, b_r]]$ and $\frac{n_1}{\ell_1} := [[b_2, b_3, \dots, b_r]]$. Suppose $\frac{n_1}{n_1 - \ell_1} = [[a_2, a_3, \dots, a_e]]$. Then we have $\frac{n}{n - \ell} = [\underbrace{[2, \dots, 2, a_2 + 1, a_3, \dots, a_e]}].$

Proof. We prove this by induction on the first term b_1 of n/ℓ . Assume $b_1 = 2$. Then we have $\frac{n}{\ell} = 2 - \frac{\ell_1}{n_1} = \frac{2n_1 - \ell_1}{n_1}$. On the other hand, $\frac{n}{n-\ell} - 1 = \frac{n_1}{n_1 - \ell_1}$. It follows that $\frac{n}{n-\ell} = [[a_2 + 1, a_3, \dots, a_e]]$. This prove the lemma in this case.

Next we consider the case $b_1 \geq 3$. Let $\frac{n}{\ell} = [[b_1, b_2, \dots, b_r]]$ and $n_1/\ell_1 = [[b_2, b_3, \dots, b_r]]$. Let $\frac{n'}{\ell'} := \frac{n-\ell}{\ell}$. Then we have $\frac{n'}{\ell'} = [[b_1 - 1, b_2, \dots, b_r]]$. We put $\frac{n'_1}{\ell'_1} := [[b_2, b_3, \dots, b_r]]$ and suppose $\frac{n'_1}{n'_1 - \ell'_1} = [[a_2, a_3, \dots, a_e]]$. Then by the induction hypothesis we have

$$\frac{n'}{n'-\ell'} = [\underbrace{[2,\ldots,2]}_{b_1-3}, a_2+1, a_3, \ldots, a_e]].$$

It follows from $\frac{n}{n-\ell} = \frac{n'+\ell'}{n'} = 2 - \frac{n'-\ell'}{n'}$ that

$$\frac{n}{n-\ell} = [\underbrace{[2, \dots, 2]}_{b_1-2}, a_2 + 1, a_3, \dots, a_e]]$$

where a_i 's are the terms of $\frac{n'_1}{n'_1 - \ell'_1}$. Since $\frac{n'_1}{\ell'_1} = \frac{n}{\ell}$ and $\frac{n'_1}{n'_1 - \ell'_1} = \frac{n_1}{n_1 - \ell_1}$, the lemma holds for $\frac{n}{\ell}$ and $\frac{n_1}{n_1 - \ell_1}$.

Proposition 1.2 There is a duality between the continued fraction expansions of $\frac{n}{\ell}$ and $\frac{n}{n-\ell}$. To be more precise there are positive integers c_i and

 d_i such that

$$\frac{n}{\ell} = [[d_1 + 1, \underbrace{2, \dots, 2}_{c_1 - 1}, d_2 + 2, \dots, d_{m-1} + 2, \underbrace{2, \dots, 2}_{c_{m-1} - 1}, d_m + 2, \underbrace{2, \dots, 2}_{c_m - 1}]],$$

$$\frac{n}{n-\ell} = [[\underbrace{2, \dots, 2}_{d_1 - 1}, c_1 + 2, \underbrace{2, \dots, 2}_{d_2 - 1}, c_2 + 2, \dots, c_{m-1} + 2, \underbrace{2, \dots, 2}_{d_m - 1}, c_m + 1]].$$

Proof. We prove the lemma by induction on the length of the continued fraction $\frac{n}{\ell}$. If the length of the continued fraction equals one, we see m = 1, $c_1 = 1$ and $\frac{n}{\ell} = d_1 + 1$. Then $\frac{n}{n-\ell} = \frac{d_1+1}{d_1} = [\underbrace{[2,\ldots,2]}]$.

Now we consider the general case. For $\frac{n}{\ell}$ as in proposition we define

$$\frac{n_1}{\ell_1} := [\underbrace{[2,\ldots,2]}_{c_1-1}, d_2+2,\ldots, d_{m-1}+2, \underbrace{2,\ldots,2}_{c_{m-1}-1}, d_m+2, \underbrace{2,\ldots,2}_{c_m-1}]].$$

By the induction hypothesis, we have

$$\frac{n_1}{n_1 - \ell_1} = [[c_1 + 1, \underbrace{2, \dots, 2}_{d_2 - 1}, c_2 + 2, \dots, c_{m-1} + 2, \underbrace{2, \dots, 2}_{d_m - 1}, c_m + 1]].$$

Then by Lemma 1.1

$$\frac{n}{n-\ell} = [\underbrace{[2,\ldots,2]}_{d_1-1}, c_1+2, \underbrace{2,\ldots,2}_{d_2-1}, c_2+2, \ldots, c_{m-1}+2, \underbrace{2,\ldots,2}_{d_m-1}, c_m+1]].$$

Notation Let the modified continued fraction of $\frac{n}{\ell}$ be

$$\frac{n}{\ell} = [[d_1 + 1, \underbrace{2, \dots, 2}_{c_1 - 1}, d_2 + 2, \dots, d_{m-1} + 2, \underbrace{2, \dots, 2}_{c_{m-1} - 1}, d_m + 2, \underbrace{2, \dots, 2}_{c_m - 1}]].$$

We define

$$\mu(\lambda) := 1 + \sum_{j=0}^{\lambda} c_j, \quad \nu(\lambda) := \sum_{j=0}^{\lambda} d_j, \quad (\lambda = 0, 1, \dots, m),$$

where $c_0 := 0$, $d_0 := 0$. And we define positive integers by

$$i(\mu) := i_{\mu-1} - i_{\mu}, \quad j(\mu) := j_{\mu} - j_{\mu-1}, \quad (1 \le \mu \le \mu(m)), \\ \alpha(\nu) := \alpha_{\nu-1} - \alpha_{\nu}, \quad \beta(\nu) := \beta_{\nu} - \beta_{\nu-1}, \quad (1 \le \nu \le \nu(m) + 1).$$
(1.4)

Proposition 1.3

- $i(1) = \alpha_1, j(1) = \beta_1,$ (i)
- $i(\mu) = \alpha_{\nu(\lambda+1)}, \ j(\mu) = \beta_{\nu(\lambda+1)} \ for \ 0 \le \lambda \le m-1 \ and \ \mu(\lambda) + 1 \le \mu \le n$ (ii) $\mu(\lambda+1),$
- (iii) $\alpha(\nu(m) + 1) = i_{\mu(m)-1}, \ \beta(\nu(m) + 1) = j_{\mu(m)-1},$ (iv) $\alpha(\nu) = i_{\mu(\lambda)}, \ \beta(\nu) = j_{\mu(\lambda)} \text{ for } 0 \le \lambda \le m-1 \text{ and } \nu(\lambda) + 1 \le \nu \le m-1$ $\nu(\lambda+1).$

Proof. We put $r := \mu(m), e := \nu(m) + 1$. We write $\frac{n}{\ell} = [[b_1, b_2, \dots, b_r]]$ and $\frac{n}{n-\ell} = [[a_1, a_2, \dots, a_e]]$ for simplicity. Then we have

$$egin{aligned} i(1) &= i_0 - i_1 = n - \ell = lpha_1, \ i(\mu+1) &= i_\mu - (b_\mu i_\mu - i_{\mu-1}) \ &= i_{\mu-1} - i_\mu - (b_\mu - 2) i_\mu \ &= i(\mu) - (b_\mu - 2) i_\mu \ & ext{ for } \mu \geq 1. \end{aligned}$$

In the same way we see $\alpha(1) = i_1$ and $\alpha(\nu+1) = \alpha(\nu) - (a_{\nu}-2)\alpha_{\nu} \ (\nu \ge 1)$.

Similarly we have $j(1) = 1 = \beta_1, j(\mu + 1) = j(\mu) + (b_{\mu} - 2)j_{\mu}, \beta(1) = j_1$ and $\beta(\nu+1) = \beta(\nu) + (a_{\nu}-2)\beta_{\nu}$. Therefore by Proposition 1.2

$$\begin{split} i(\mu) &= i(\mu(\lambda) + 1), \quad j(\mu) = j(\mu(\lambda) + 1) \\ & \text{for } \mu(\lambda) + 1 \le \mu \le \mu(\lambda + 1), \\ \alpha(\nu) &= \alpha(\nu(\lambda) + 1), \quad \beta(\nu) = \beta(\nu(\lambda) + 1) \\ & \text{for } \nu(\lambda) + 1 \le \nu \le \nu(\lambda + 1). \end{split}$$

By definition $\alpha(\nu(0) + 1) = \alpha(1) = i_1, \beta(\nu(0) + 1) = \beta(1) = j_1$. Then

$$i(\mu(0) + 1) = i(2) = i(1) - (d_1 - 1)i_1$$

= $\alpha_1 - \{\alpha(2) + \alpha(3) + \dots + \alpha(\nu(1))\} = \alpha_{\nu(1)},$
$$j(\mu(0) + 1) = j(2) = j(1) + (d_1 - 1)j_1$$

= $\beta_1 + \{\beta(2) + \beta(3) + \dots + \beta(\nu(1))\} = \beta_{\nu(1)}.$

We suppose that (i)–(iv) hold for $\mu \leq \mu(\lambda)$ and $\nu \leq \nu(\lambda)$. Assume first $\lambda < m$. Then we have

$$\begin{aligned} \alpha(\nu(\lambda)+1) &= \alpha(\nu(\lambda)) - c_{\lambda}\alpha_{\nu(\lambda)} \\ &= i_{\mu(\lambda-1)} - \{i(\mu(\lambda-1)+1) + \dots + i(\mu(\lambda)-1) + i(\mu(\lambda))\} \\ &= i_{\mu(\lambda)}. \end{aligned}$$

Assume next $\lambda = m$. Then we have

$$\begin{aligned} \alpha(\nu(m)+1) &= \alpha(\nu(m)) - (c_m - 1)\alpha_{\nu(m)} \\ &= i_{\mu(m-1)} - \{i(\mu(m-1)+1) + \dots + i(\mu(m) - 1)\} \\ &= i_{\mu(m)-1}. \end{aligned}$$

Similarly we see

$$i(\mu(\lambda) + 1) = i(\mu(\lambda)) - d_{\lambda+1}i_{\mu(\lambda)}$$

= $\alpha_{\nu(\lambda)} - \{\alpha(\nu(\lambda) + 1) + \alpha(\nu(\lambda) + 2) + \dots + \alpha(\nu(\lambda + 1))\}$
= $\alpha_{\nu(\lambda+1)}$.

Similarly we can also prove the assertions for $\beta(\nu)$ and $j(\mu)$.

2. Cyclic Quotient Singularities

The isomorphism classes of cyclic quotient surface singularities are in one-to-one correspondence to the conjugacy classes of small finite cyclic subgroups of $GL(2, \mathbb{C})$. Up to conjugacy we may assume that any small abelian subgroup of $GL(2, \mathbb{C})$ is generated by $\sigma := \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{\ell} \end{pmatrix}$ where ζ is a primitive *n*-th root of unity and ℓ is a positive integer such that $1 \leq \ell < n$ and $gcd(n, \ell) = 1$. We denote the group by $C_{n,\ell}$. Let (x, y) be a coordinate system of the complex affine space \mathbb{A}^2 . Then $C_{n,\ell}$ operates upon \mathbb{A}^2 from the right by $(x, y) \to (x, y)g$ $(g \in C_{n,\ell})$. We denote the quotient space $\mathbb{A}^2/C_{n,\ell}$ by $A_{n,\ell}$. We remark that two germs $(A_{n,\ell}, 0)$ and $(A_{n',\ell'}, 0)$ are equivalent if and only if n = n' and $\ell = \ell'$ or $\ell\ell' \equiv 1 \pmod{n}$ ([B]), if and only if $A_{n,\ell} \simeq A_{n',\ell'}$.

In what follows we put $G := C_{n,\ell}$ for simplicity. The quotient space $A_{n,\ell}$ and its minimal resolution are in fact torus embeddings as we see below.

Proposition 2.1 Let $N \simeq \mathbb{Z}^2$ be a free abelian group of rank 2 with a basis e_1 and e_2 and $M := \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. Let $\tau := \langle ne_1 + (n - \ell)e_2, e_2 \rangle \subset N \otimes_{\mathbb{Z}} \mathbb{R}$ be the cone in $N \otimes \mathbb{R}$ generated by $ne_1 + (n - \ell)e_2$ and e_2 . Then

$$A_{n,\ell} \simeq X_{\tau} := \operatorname{Spec} \mathbf{C}[\check{\tau} \cap M] = \operatorname{Spec} \mathbf{C}[x, y]^G.$$

Proof. Let $\{f_1, f_2\}$ be the dual basis of M such that $\langle e_i, f_j \rangle = \delta_{ij}$. We put $N^* := (n\mathbf{Z})e_1 \oplus \mathbf{Z}e_2, \ M^* := (\frac{1}{n}\mathbf{Z})f_1 \oplus \mathbf{Z}f_2 = \operatorname{Hom}_{\mathbf{Z}}(N^*, \mathbf{Z})$. Since $\check{\tau} = \langle f_1, f_2 - \frac{n-\ell}{n}f_1 \rangle$, Spec $\mathbf{C}[\check{\tau} \cap M^*] = \operatorname{Spec} \mathbf{C}[x, y] \simeq \mathbf{A}^2$ where $x := \mathbf{e}(\frac{1}{n}f_1)$

 $y := \mathbf{e}(f_2 - \frac{n-\ell}{n}f_1)$ and $\mathbf{e}(*) := \exp(2\pi\sqrt{-1} *)$. We define a symmetric pairing $f : M^*/M \times N/N^* \to \mu_n$ by $f(\bar{a}, \bar{b}) := \zeta^{n\langle a, b \rangle}$ where μ_n is a cyclic group generated by ζ and \bar{a} (resp. \bar{b}) is represented by $a \in M^*$ (resp. $b \in N$). The action of $N/N^* \simeq \mu_n$ on Spec $\mathbf{C}[\check{\tau} \cap M^*]$ is defined by $\bar{b} \cdot \mathbf{e}(a) :=$ $f(\bar{a}, \bar{b})\mathbf{e}(a)$ $(a \in \check{\tau} \cap M^*, b \in N)$. Then $\bar{e_1} \cdot x = \zeta x$ and $\bar{e_1} \cdot y = \zeta^{\ell} y$. Because f is non-singular we see Spec $\mathbf{C}[\check{\tau} \cap M] \simeq \operatorname{Spec} \mathbf{C}[x, y]^{N/N^*} \simeq \mathbf{A}^2/C_{n,\ell}$.

The minimal resolution S of X_{τ} is constructed by using the continued fraction $\frac{n}{\ell} = [[b_1, b_2, \dots, b_r]]$ as follows.

Let $v_{\mu} := j_{\mu}e_1 + k_{\mu}e_2$ and we subdivide τ into $\tau_{\mu} := \langle v_{\mu-1}, v_{\mu} \rangle$ ($\mu = 1, \ldots, r+1$). Let Δ be the fan consisting of all of τ_{μ} and its faces. (1.3) shows that affine charts $U_{\mu} := \operatorname{Spec} \mathbf{C}[\check{\tau_{\mu}} \cup M]$ ($\mu = 1, 2, \ldots, r+1$) are smooth. Since $v_{\mu+1} + v_{\mu-1} = b_{\mu}v_{\mu}$ and $b_{\mu} \geq 2$, $\tilde{S} := T_N \operatorname{emb}(\Delta)$ is the minimal resolution of X_{τ} . And the dual graph of the exceptional set of this minimal resolution is:

$$b_1 \quad b_2 \quad b_3 \quad b_{r-1} \quad b_r$$

By the proof of Proposition 2.1 we see $\mathbf{A}^2 \simeq \operatorname{Spec} \mathbf{C}[x, y]$ and $\mathbf{A}^2/G \simeq X_{\tau}$ where $x = \mathbf{e}(\frac{1}{n}f_1), y = \mathbf{e}(f_2 - \frac{n-\ell}{n}f_1)$. By definition

$$U_{\mu} = \operatorname{Spec} \mathbf{C}[\mathbf{e}(k_{\mu-1}f_1 - j_{\mu-1}f_2), \mathbf{e}(-k_{\mu}f_1 + j_{\mu}f_2)].$$

Hence by (1.3) we see

$$-k_{\mu}f_{1} + j_{\mu}f_{2} = -i_{\mu}\left(\frac{1}{n}f_{1}\right) + j_{\mu}\left(f_{2} - \frac{n-\ell}{n}f_{1}\right),$$

$$U_{\mu} = \operatorname{Spec} \mathbf{C}[s_{\mu}, t_{\mu}], \quad s_{\mu} = x^{i_{\mu-1}}/y^{j_{\mu-1}}, \quad t_{\mu} = y^{j_{\mu}}/x^{i_{\mu}}.$$
 (2.1)

3. Hilbert Schemes and Symmetric Products

Let $S^n(\mathbf{A}^2)$ be the *n*th symmetric product of \mathbf{A}^2 . This is by definition the quotient of the product of *n* copies of \mathbf{A}^2 by the natural permutation action of the symmetry group of *n* letters.

Lemma 3.1 Let $S^n(\mathbf{A}^2)^G$ be the subset of $S^n(\mathbf{A}^2)$ consisting of all the points of $S^n(\mathbf{A}^2)$ fixed by any element of G. Then $S^n(\mathbf{A}^2)^G$ has a unique natural normal surface structure isomorphic to \mathbf{A}^2/G .

Proof. Let $q \neq 0 \in \mathbf{A}^2$. The point q is fixed by no element of G except

the identity. Therefore the set $G \cdot \mathfrak{q} := \{g(\mathfrak{q}); g \in G\}$ determines a point in $S^n(\mathbf{A}^2)^G$. Conversely any point of $S^n(\mathbf{A}^2)^G$ is an unordered set Σ of npoints in \mathbf{A}^2 . If Σ contains a point \mathfrak{q} different from the origin, the above argument shows that Σ contains the set $G \cdot \mathfrak{q}$. Since $|\Sigma| = |n| = |G|$, we have $\Sigma = G \cdot \mathfrak{q}$.

We see that $G \cdot \mathfrak{q} = G \cdot \mathfrak{q}'$ for a pair of points $\mathfrak{q}(\neq 0)$ and $\mathfrak{q}'(\neq 0)$ if and only if $\mathfrak{q}' \in G \cdot \mathfrak{q}$. Therefore we have the isomorphism $S^n(\mathbf{A}^2 \setminus \{0\})^G \simeq (\mathbf{A}^2 \setminus \{0\})/G$, which extends to a natural bijection j between $S^n(\mathbf{A}^2)^G$ and \mathbf{A}^2/G . Since \mathbf{A}^2/G is normal, $S^n(\mathbf{A}^2)^G$ has a unique structure of normal complex space via the bijection j. Hence j gives the isomorphism $S^n(\mathbf{A}^2)^G \simeq \mathbf{A}^2/G$.

Definition 3.2 Let $\operatorname{Hilb}^{n}(\mathbf{A}^{2})$ be the *Hilbert scheme of n points* on \mathbf{A}^{2} . By definition any $Z \in \operatorname{Hilb}^{n}(\mathbf{A}^{2})$ is a zero dimensional subscheme with $h^{0}(Z, \mathcal{O}_{Z}) = \dim(\mathcal{O}_{Z}) = n$.

Remark We identify a subscheme Z and the defining ideal I_Z of Z, so that we consider $I_Z \in \text{Hilb}^n(\mathbf{A}^2)$ since no confusion is possible.

The group G acts on \mathbf{A}^2 so that it acts on $\operatorname{Hilb}^n(\mathbf{A}^2)$ canonically. Let $\operatorname{Hilb}^n(\mathbf{A}^2)^G$ be the subset of $\operatorname{Hilb}^n(\mathbf{A}^2)$ consisting of all the points fixed by any element of G. The Hilbert scheme $\operatorname{Hilb}^n(\mathbf{A}^2)$ is nonsingular ([F]) and the action of G on $\operatorname{Hilb}^n(\mathbf{A}^2)$ at any point of $\operatorname{Hilb}^n(\mathbf{A}^2)^G$ is linearlized, therefore $\operatorname{Hilb}^n(\mathbf{A}^2)^G$ is also nonsingular ([IN98, Lemma 9.1]).

Definition 3.3 Let $\operatorname{Hilb}^{G}(\mathbf{A}^{2})$ be a unique irreducible component of $\operatorname{Hilb}^{n}(\mathbf{A}^{2})$ dominating $S^{n}(\mathbf{A}^{2})^{G}$.

We have a natural morphism π : Hilb^G(\mathbf{A}^2) $\rightarrow S^n(\mathbf{A}^2)^G$ defined by $\pi(Z) = \sum_{p \in \mathbf{A}^2} (\dim \mathcal{O}_{Z,p}) p$ for $Z \in \operatorname{Hilb}^G(\mathbf{A}^2)$. Any point of $S^n(\mathbf{A}^2)^G \setminus \{0\}$ is a *G*-orbit of a point $\mathfrak{q}(\neq(0,0)) \in \mathbf{A}^2$. It determines a *G*-invariant reduced zero dimensional subscheme. This gives the inverse map of π over ($\mathbf{A}^2 \setminus \{0\}$)/*G*. It follows that $\operatorname{Hilb}^G(\mathbf{A}^2)$ is birationally equivalent to $S^n(\mathbf{A}^2)^G$. In fact, we prove that $\operatorname{Hilb}^G(\mathbf{A}^2)$ is the minimal resolution of \mathbf{A}^2/G in Section 5.

Lemma 3.4 Let I_Z be the defining ideal of $Z \in \text{Hilb}^G(\mathbf{A}^2)$. Any *G*-invariant function vanishing on supp(Z) is contained in I_Z .

Especially if $\operatorname{supp}(Z) = \{0\}$ then I_Z contains all of $x^{\alpha_{\nu}}y^{\beta_{\nu}}$ and $x^{i(\mu)}y^{j(\mu)}$.

Proof. First we check $\mathcal{O}_{\mathbf{A}^2}/I_Z \simeq \mathbf{C}[G]$ as *G*-modules. Let $H := \operatorname{Hilb}^G(\mathbf{A}^2)$ and $G := \{g_1 = \operatorname{id}, g_2, \ldots, g_n\}$. If *Z* is a *G*-orbit of a point $p \neq (0,0)$ then $\mathcal{O}_{\mathbf{A}^2}/I_Z = \bigoplus_{i=1}^n \mathbf{C}\delta_{g_i}$ where $\delta_{g_i}(g_j p) := \delta_{ij}$. *G* acts on $\oplus \mathbf{C}\delta_{g_i}$ by $(g_j \circ \delta_{g_i})(p) := \delta_{g_i}(g_j^{-1}p) = \delta_{g_jg_i}(p)$ and it gives $\mathbf{C}[G] \simeq \oplus \mathbf{C}\delta_{g_i} (g_i \mapsto \delta_{g_i})$ as *G*-modules.

Because dim $\mathcal{O}_{\mathbf{A}^2}/I_Z = n$ for any $Z \in H$, $\mathcal{O}_{\mathbf{A}^2 \times H}$ is a locally free \mathcal{O} module of rank n. G operates upon the vector space $\mathcal{O}_{\mathbf{A}^2 \times \{Z\}}/I_Z$ and the coefficients of the action of g_i are regular functions on H. By $g_i^n = 1$ ($\forall i$) we see that all the eigenvalues are roots of unity. In particular its trace is independent of $Z \in H$. Since any representation of a finite group is uniquely determined by its character, the representation of G in $\mathcal{O}_{\mathbf{A}^2 \times \{Z\}}/I_Z$ is independent of $Z \in H$. Therefore $\mathcal{O}_{\mathbf{A}^2}/I_Z \simeq \mathbf{C}[G]$ for any $Z \in H$.

 $\mathbf{C}[G]$ has a unique trivial *G*-submodule $\mathbf{C}(\sum_{g\in G} g)$ by the complete reducibility of *G*-module. Therefore a *G*-submodule spanned by *G*-invariant functions in $\mathcal{O}_{\mathbf{A}^2}/I_Z$ is isomorphic to \mathbf{C} as *G*-modules. It follows that any *G*-invariant function vanishing on *Z* is contained in I_Z .

By (1.4) $x^{\alpha_{\nu}}y^{\beta_{\nu}}$ are *G*-invariant functions. Combining with Proposition 1.3 if $\operatorname{supp}(Z) = \{0\}$ then $x^{\alpha_{\nu}}y^{\beta_{\nu}}, x^{i(\mu)}y^{j(\mu)} \in I_Z$.

4. Hilb^G(A²)

Theorem 4.1 Let $G = C_{n,\ell}$. Then $\operatorname{Hilb}^G(\mathbf{A}^2)$ set-theoretically consists of the following G-invariant ideals of collength n = |G|:

$$I_{\mu}(p_{\mu},q_{\mu}) := (x^{i_{\mu-1}} - p_{\mu}y^{j_{\mu-1}}, y^{j_{\mu}} - q_{\mu}x^{i_{\mu}}, x^{i(\mu)}y^{j(\mu)} - p_{\mu}q_{\mu})$$

where $1 \leq \mu \leq r+1$ and $(p_{\mu}, q_{\mu}) \in \mathbf{A}^2$.

Remark

- (i) $r, i_{\mu}, j_{\mu}, i(\mu)$ and $j(\mu)$ are nonnegative integers defined in (1.1), (1.2) and (1.4).
- (ii) $I_{r+1}(p_{r+1}, 0) = (x, y^n)$ because $i_r = 1, i_{r+1} = 0$.
- (iii) $\{x^{i_{\mu}}; 1 \leq \mu \leq r\}$ is a set of *special* representations which are associated to the irreducible components of the exceptional set in the minimal resolution of \mathbf{A}^2/G by the work of Riemenschneider [R98] and Wunram [W].

Proof. Let $\mathfrak{m}_{\mathfrak{p}}$ (resp. $\mathfrak{m}_{A_{n,\ell}}$) be the maximal ideal of $\mathfrak{p} \in \mathbf{A}^2$ (resp. of the origin of $A_{n,\ell}$) and $\mathfrak{n} = \mathfrak{m}_{A_{n,\ell}} \mathcal{O}_{\mathbf{A}^2}$. We put $\mathfrak{m} := \mathfrak{m}_{(0,0)}$.

We note $I_{\mu}(p_{\mu}, q_{\mu})$ is a *G*-invariant ideal. In fact, $i_{\mu} \equiv \ell j_{\mu} \pmod{n}$ by (1.3) and $x^{i(\mu)}y^{j(\mu)}$ is a *G*-invariant function by Proposition 1.3 and (1.3).

First we consider the case where $\operatorname{supp}(Z) \neq \{0\}$. We recall that the subset $\{Z \in \operatorname{Hilb}^G(\mathbf{A}^2); \operatorname{supp}(Z) \neq \{0\}\}$ is bijective to $(\mathbf{A}^2 \setminus \{0\})/G$. Hence for any $Z \in \operatorname{Hilb}^G(\mathbf{A}^2)$ with $\operatorname{supp}(Z) \neq \{0\}$, there exists a point $\mathfrak{p} \in \operatorname{supp}(Z)$ such that $I_Z = \prod_{\mathfrak{q} \in G\mathfrak{p}} \mathfrak{m}_{\mathfrak{q}}$. Next we prove that I_Z coincides with one of the I_{μ} for a suitable pair (p_{μ}, q_{μ}) . If $\mathfrak{p} = (u, v) \in \mathbf{A}^2$ with $uv \neq 0$, we put $p_{\mu} := u^{i_{\mu-1}}/v^{j_{\mu-1}}$ and $q_{\mu} := v^{j_{\mu}}/u^{i_{\mu}}$ for any $1 \leq \mu \leq r$. Then $I_{\mu}(p_{\mu}, q_{\mu}) \subset \mathfrak{m}_{\mathfrak{p}}$. If v = 0 and $u \neq 0$ (resp. if u = 0 and $v \neq 0$), then we see $I_1(u^n, 0) \subset \mathfrak{m}_{\mathfrak{p}}$ (resp. $I_{r+1}(0, v^n) \subset \mathfrak{m}_{\mathfrak{p}}$).

Since $I_{\mu}(p_{\mu}, q_{\mu})$ is *G*-invariant, we infer $I_{\mu}(p_{\mu}, q_{\mu}) \subset \prod_{q \in G_{\mathfrak{p}}} \mathfrak{m}_{q}$. On the other hand dim $\mathcal{O}_{\mathbf{A}^{2}}/I_{\mu}(p_{\mu}, q_{\mu}) \leq n$. In fact $\mathcal{O}_{\mathbf{A}^{2}}/I_{\mu}(p_{\mu}, q_{\mu})$ is spanned by monomials $x^{\lambda_{1}}y^{\lambda_{2}}$ where

$$(\lambda_1, \lambda_2) \in \Lambda := \{ (\lambda_1, \lambda_2); 0 \le \lambda_1 < i_{\mu-1} \text{ and } 0 \le \lambda_2 < j_{\mu} - j_{\mu-1}, \\ \text{or } 0 \le \lambda_1 < i_{\mu-1} - i_{\mu} \text{ and } j_{\mu} - j_{\mu-1} \le \lambda_2 < j_{\mu} \}.$$

And by (1.3) $i_{\mu-1}(j_{\mu}-j_{\mu-1}) + \{j_{\mu}-(j_{\mu}-j_{\mu-1})\}(i_{\mu-1}-i_{\mu}) = n$. It follows that $I_{\mu}(p_{\mu},q_{\mu}) = \prod_{q \in Gp} \mathfrak{m}_{q}$.

As we remarked after Definition 3.3, π : Hilb^G(\mathbf{A}^2) $\rightarrow S^n(\mathbf{A}^2)^G \simeq \mathbf{A}^2/G$ is a resolution, which is an isomorphism over $(\mathbf{A}^2 \setminus \{0\})/G$. Now we study the exceptional set $\pi^{-1}(0) = \{Z \in \text{Hilb}^G(\mathbf{A}^2); \text{supp}(Z) = \{0\}\}$. We prove that it is the union of $I_\mu(p_\mu, q_\mu)$ with $p_\mu q_\mu = 0$ ($1 \le \mu \le r - 1$) and $I_1(0, q_1)$, $I_{r+1}(p_{r+1}, 0)$. In fact, since \mathbf{A}^2/G is a normal surface, it follows from Zariski's connectedness theorem ([EGA], III 4.3) that $\pi^{-1}(0)$ is connected. Hence we can determine $\pi^{-1}(0)$ by using deformations.

We remark first that by definition of I_{μ} , $I_{\mu}(p_{\mu}, q_{\mu}) \subset \mathfrak{m}$ if and only if $p_{\mu}q_{\mu} = 0$ for $2 \leq \mu \leq r$ or $p_1 = 0$ or $q_{r+1} = 0$. Moreover we check that these ideals belong to $\operatorname{Hilb}^{G}(\mathbf{A}^2)$. In fact, if $p_{\mu}q_{\mu} = 0$ the monomials $\{x^{\lambda_1}y^{\lambda_2}; (\lambda_1, \lambda_2) \in \Lambda\}$ is a basis of $\mathcal{O}_{\mathbf{A}^2}/I_{\mu}(p_{\mu}, q_{\mu})$. Therefore $I_{\mu}(p_{\mu}, q_{\mu}) \in$ $\operatorname{Hilb}^{G}(\mathbf{A}^2)$.

Now let Z be the subscheme defined by one of the ideals $I_{\mu}(p_{\mu}, q_{\mu})$. We consider G-equivariant versal deformations of Z. The tangent space of $\operatorname{Hilb}^{G}(\mathbf{A}^{2})$ at a point I_{Z} is isomorphic to $\operatorname{Hom}_{\mathcal{O}_{\mathbf{A}^{2}}}(I_{Z}, \mathcal{O}_{\mathbf{A}^{2}}/I_{Z})^{G}$. Now we prove a lemma to determine deformations of Z inside $\pi^{-1}(0)$.

Lemma 4.2 There is a basis $\{\phi_{-}, \phi_{+}\}$ of $T := \operatorname{Hom}_{\mathcal{O}_{A^{2}}}(I_{\mu}(0,0), \mathcal{O}_{A^{2}}/$

 $I_{\mu}(0,0))^G$ defined by

$$egin{aligned} \phi_-(x^{i_{\mu-1}}) &= y^{j_{\mu-1}}, & \phi_-(y^{j_{\mu}}) &= 0, \ \phi_+(x^{i_{\mu-1}}) &= 0, & \phi_+(y^{j_{\mu}}) &= x^{i_{\mu}}. \end{aligned}$$

Proof. We put $I := I_{\mu}(0,0) = (x^{i_{\mu-1}}, y^{j_{\mu}}, x^{i(\mu)}y^{j(\mu)})$. It follows from $\mathcal{O}_{\mathbf{A}^2}/I \simeq \mathbf{C}[G]$ that G-invariant $\mathcal{O}_{\mathbf{A}^2}$ -homomorphism $\phi \in T$ does not change the characters of elements of I. Since $\mathcal{O}_{\mathbf{A}^2}/I$ has a basis $\{x^{\lambda_1}y^{\lambda_2}; (\lambda_1, \lambda_2) \in \Lambda\}$ and $i_{\mu} \equiv \ell j_{\mu} \pmod{n}$, ϕ is defined by

$$\phi(x^{i_{\mu-1}}) = c_1 y^{j_{\mu-1}}, \quad \phi(y^{j_{\mu}}) = c_2 x^{i_{\mu}}, \quad \phi(x^{i(\mu)} y^{j(\mu)}) = c_3 \quad (c_i \in \mathbf{C}).$$

Applying ϕ to $x^{i_{\mu-1}}y^{j(\mu)} \in I$, we see

$$\phi(x^{i_{\mu-1}}y^{j(\mu)}) = y^{j(\mu)}\phi(x^{i_{\mu-1}}) = c_1 y^{j_{\mu}} = 0 \text{ in } \mathcal{O}_{\mathbf{A}^2}/I$$

Since $\phi(x^{i_{\mu-1}}y^{j(\mu)}) = \phi(x^{i_{\mu}}x^{i(\mu)}y^{j(\mu)}) = c_3x^{i_{\mu}}$ and $x^{i_{\mu}} \neq 0$ in $\mathcal{O}_{\mathbf{A}^2}$, we infer $c_3 = 0$. Thus the lemma follows from dim $T = \dim \operatorname{Hilb}^G(\mathbf{A}^2) = 2$.

By Lemma 4.2 $\{I_{\mu}(p_{\mu}, q_{\mu}); (p_{\mu}, q_{\mu}) \in \mathbf{A}^2\}$ is a *G*-equivariant versal deformation of $I_{\mu}(0, 0)$. On the other hand, we have

$$\begin{aligned} x^{i_{\mu-1}}y^{j_{\mu}} &= x^{i_{\mu}}y^{j_{\mu-1}}x^{i(\mu)}y^{j(\mu)}, \\ y^{j_{\mu+1}} &= (y^{j_{\mu}} - q_{\mu}x^{i_{\mu}})y^{j(\mu+1)} + q_{\mu}x^{i_{\mu+1}}x^{i(\mu+1)}y^{j(\mu+1)} \in I_{\mu}(0, q_{\mu}) \end{aligned}$$

because $x^{i(\mu+1)}y^{j(\mu+1)} \in I_{\mu}(0,q_{\mu})$ by Lemma 3.4. We see $I_{\mu}(0,q_{\mu}) = I_{\mu+1}(q_{\mu}^{-1},0)$ for $q_{\mu} \neq 0$. Hence $\lim_{q_{\mu}\to\infty} I_{\mu}(0,q_{\mu}) = I_{\mu+1}(0,0)$ for $\mu \leq r$. To be more precise in $\operatorname{Grass}(\mathfrak{m}/\mathfrak{n}+\mathfrak{m}^n,n-1)$ we get $\lim_{q_{\mu}\to\infty} I_{\mu}(0,q_{\mu})/\mathfrak{n}+\mathfrak{m}^n = I_{\mu+1}(0,0)/\mathfrak{n}+\mathfrak{m}^n$. Similarly we infer $\lim_{p_{\mu}\to\infty} I_{\mu}(p_{\mu},0) = I_{\mu-1}(0,0)$ for $\mu \geq 2$.

Since $\pi^{-1}(0)$ is connected. We have

$$\pi^{-1}(0) = \{I_1(0,q_1)\} \cup \{I_{r+1}(p_{r+1},0)\} \\ \cup \{I_{\mu}(p_{\mu},q_{\mu}); p_{\mu}q_{\mu} = 0, 2 \le \mu \le r\}.$$

Thus Theorem 4.1 is proved.

5. The isomorphism $\operatorname{Hilb}^G(A^2) \simeq S$

Theorem 5.1 Let S be the toric minimal resolution of the cyclic singularity $A_{n,\ell} = \mathbf{A}^2/G$. Then $S \simeq \text{Hilb}^G(\mathbf{A}^2)$. In fact, let $U_{\mu} = \text{Spec } \mathbf{C}[s_{\mu}, t_{\mu}]$

R. Kidoh

the affine charts of S $(1 \le \mu \le r+1)$ given in Section 2. Then the isomorphism of S with $\operatorname{Hilb}^{G}(\mathbf{A}^{2})$ is given by the morphism defined by the universal property of $\operatorname{Hilb}^{n}(\mathbf{A}^{2})$ from the S-flat family of zero dimensional subschemes defined by the G-invariant ideals of $\mathcal{O}_{\mathbf{A}^{2}}$;

$$I_{\mu}(s_{\mu}, t_{\mu}) := (x^{i_{\mu-1}} - s_{\mu}y^{j_{\mu-1}}, y^{j_{\mu}} - t_{\mu}x^{i_{\mu}}, x^{i_{(\mu)}}y^{j(\mu)} - s_{\mu}t_{\mu})$$

Proof. First we check that $I_{\mu}(s_{\mu}, t_{\mu}) = I_{\mu+1}(s_{\mu+1}, t_{\mu+1})$ if two points $(s_{\mu}, t_{\mu}) \in U_{\mu}$ and $(s_{\mu+1}, t_{\mu+1}) \in U_{\mu+1}$ are coincident in S. In fact, if both the points represent the same point in S, then it follows from (2.1) that $s_{\mu+1}t_{\mu} = 1$ and $t_{\mu+1} = t_{\mu}^{b_{\mu}}s_{\mu}$. Then $x^{i_{\mu}} - s_{\mu+1}y^{j_{\mu}} = s_{\mu+1}(t_{\mu}x^{i_{\mu}} - y^{j_{\mu}}) \in I_{\mu}(s_{\mu}, t_{\mu})$. We check

$$egin{aligned} h(b_{\mu}) &:= x^{i(\mu+1)}y^{j(\mu+1)} - s_{\mu+1}t_{\mu+1} \ &= x^{i(\mu)-(b_{\mu}-2)i_{\mu}}y^{j(\mu)+(b_{\mu}-2)j_{\mu}} - t_{\mu}^{b_{\mu}-1}s_{\mu} \end{aligned}$$

is contained in $I_{\mu}(s_{\mu}, t_{\mu})$ by induction on b_{μ} . If $b_{\mu} = 2$ then $h(b_{\mu}) = x^{i(\mu)}y^{j(\mu)} - s_{\mu}t_{\mu} \in I_{\mu}(s_{\mu}, t_{\mu})$. If $b_{\mu} > 2$ then $j(\mu + 1) > j_{\mu}$ and

$$h(b_{\mu}) = x^{i(\mu+1)} y^{j(\mu+1)-j_{\mu}} (y^{j_{\mu}} - t_{\mu} x^{i_{\mu}}) + t_{\mu} h(b_{\mu} - 1).$$

By the induction hypothesis $h(b_{\mu} - 1) \in I_{\mu}(s_{\mu}, t_{\mu})$ and we get $h(b_{\mu}) \in I_{\mu}(s_{\mu}, t_{\mu})$. Since $y^{j_{\mu+1}} - t_{\mu+1}x^{i_{\mu+1}} = y^{j(\mu+1)}(y^{j_{\mu}} - t_{\mu}x^{i_{\mu}}) + t_{\mu}x^{i_{\mu+1}}h(b_{\mu}) \in I_{\mu}(s_{\mu}, t_{\mu})$ we see $I_{\mu+1}(s_{\mu+1}, t_{\mu+1}) \subset I_{\mu}(s_{\mu}, t_{\mu})$. Both the ideals have the same colongth n. Hence $I_{\mu+1}(s_{\mu+1}, t_{\mu+1}) = I_{\mu}(s_{\mu}, t_{\mu})$.

Therefore the family of the zero dimensional subschemes defined by I_{μ} is well-defined on S. Since dim $\mathcal{O}_{\mathbf{A}^2}/I_{\mu}(s_{\mu}, t_{\mu})$ is constant, this family is S-flat. By the universality of Hilbⁿ(\mathbf{A}^2) we have a natural morphism $f: S \to \operatorname{Hilb}^n(\mathbf{A}^2)$, which factors through $\operatorname{Hilb}^G(\mathbf{A}^2)$ by the G-invariance of the ideals I_{μ} . By the proof of Theorem 4.1, in fact because no irreducible component of $\pi^{-1}(0)$ is contracted by f by Lemma 4.2, we have a finite birational morphism of S onto $\operatorname{Hilb}^G(\mathbf{A}^2)$. Since $\operatorname{Hilb}^G(\mathbf{A}^2)$ is nonsingular and S is minimal we infer $S \simeq \operatorname{Hilb}^G(\mathbf{A}^2)$.

Acknowledgments I would like to thank Prof. Iku Nakamura for his support which made this work possible and Prof. Oswald Riemenschneider for his helpful comments on this article.

References

- [B] Brieskorn Egbert, Rationale singularitäten komplexer flächen. Invent. Math. 4 (1968), 336–358.
- [BKR] Bridgeland Tom, King Alastair and Reid Miles, *Mukai implies McKay*. Preprint math. AG/9908027, 16 pp.
- [EGA] Grothendieck, Eléments de géometrie algébrique III. Vol. 11, Publ. Math IHES, 1961.
- [F] Fogarty John, Algebraic families on an algebraic surface. Amer. J. Math. 90 (1968), 511-521.
- [H] Hartshone Robin, Algebraic geometry. Graduate Text in Math. 52, Springer, 1977.
- [IN96] Ito Yukari and Nakamura Iku, McKay corespondence and Hilbert schemes. Proc. Japan. Acad. 72 (1996), 135–138.
- [IN98] Ito Yukari and Nakamura Iku, Hilbert schemes and simple singularities. New trends in algebraic geometry (Warwick 1996), London Math. Soc. Lecture Note Ser. 264 (1999), Cambridge Univ. Press., 151–233.
- [N] Nakmaura Iku, *Hilbert schemes of Abelian group orbits*. to appear in J. Alg. Geom.
- [R74] Riemenschneider Oswald, Deformationen von quotientensingularitäten (nach zyklischen gruppen). Math. Ann. 209 (1974), 211–248.
- [R98] Riemenschneider Oswald, Cyclic quotient surface singularities: Constructing the Artin component via the McKay-quiver. RIMS Symposium Report 1033 (1998), 163–171.
- [W] Wunram Jürgen, Reflexive modules on quotient surface singularities. Math. Ann. 279 (1988), 583–598.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060-0810, Japan E-mail: rie-kido@math.sci.hokudai.ac.jp