Hilbert schemes and cyclic quotient surface singularities

Rie Kidoh

(Received March 15, 1999)

Abstract

Let G be a finite cyclic subgroup of $G L(2, \mathbf{C})$ of order n which contains no reflections. Let \mathbf{A}^{2} be the complex affine plane. We consider a certain subscheme $\mathrm{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ consisting of G-invariant zero-dimensional subschemes of length n. We describe the structure of $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ and prove this is the minimal resolution of the quotient surface singularity \mathbf{A}^{2} / G.

Key words: Hilbert scheme, cyclic, quotient singularities, resolution.

Introduction

Let \mathbf{A}^{2} be the complex affine plane. Let $S^{n}\left(\mathbf{A}^{2}\right)$ be the nth symmetric product of \mathbf{A}^{2}, and $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ the Hilbert scheme parametrizing all zerodimensional subschemes of \mathbf{A}^{2} of length n. By the natural morphism π : $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right) \rightarrow S^{n}\left(\mathbf{A}^{2}\right)$ called Hilbert-Chow morphism $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ is a crepant resolution of $S^{n}\left(\mathbf{A}^{2}\right)$.

Let G be a small finite subgroup of $G L(2, \mathbf{C})$, that is, G is a finite subgroup of $G L(2, \mathbf{C})$ which contains no reflections. Then G acts on \mathbf{A}^{2}, hence it acts both $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ and $S^{n}\left(\mathbf{A}^{2}\right)$ so that the Hilbert-Chow morphism is G-equivariant. Assume that n equals the order of G. Then the G-fixed point set of $S^{n}\left(\mathbf{A}^{2}\right)$ is isomorphic to the quotient space \mathbf{A}^{2} / G. Hence we see readily that there is a unique irreducible component of G-fixed point set in $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ dominating \mathbf{A}^{2} / G, which we denote by $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. For finite subgroups G of $S L(2, \mathbf{C})$, Ito and Nakamura proved in [IN96] [IN98] that $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ is the minimal resolution of the simple singularity \mathbf{A}^{2} / G. Using this realization of the minimal resolution of \mathbf{A}^{2} / G, they also gave an explanation to the so-called McKay observation, though in part. Nakamura conjectured that $\operatorname{Hilb}^{G}\left(\mathbf{A}^{3}\right)$ is a crepant resolution of \mathbf{A}^{3} / G for any finite subgroup G of $S L(3, \mathbf{C})$ and proved it for an Abelian group in $[\mathrm{N}]$. Recentry the conjecture proved by Bridgeland, King and Reid in [BKR].

When G is a small finite cyclic subgroup of $G L(2, \mathbf{C})$ we call the germ
of the quotient singularity \mathbf{A}^{2} / G at the origin a cyclic quotient surface singularity. In the present article we prove that $\operatorname{Hilb}{ }^{G}\left(\mathbf{A}^{2}\right)$ is the minimal resolution of the cyclic quotient surface singularity \mathbf{A}^{2} / G and describe the structure of $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ in detail.

In Section 1 we give some preparatory lemmas on continued fractions. In Section 2 we recall toric resolutions of cyclic quotient surface singularities. We recall some basic facts on $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ in Section 3. We present our main theorem in Section 4 and 5.

1. Continued Fractions

Let n and ℓ are positive integers such that $1 \leq \ell<n$ and $\operatorname{gcd}(n, \ell)=1$. In this section we consider the modified continued fractions of $\frac{n}{\ell}$ and $\frac{n}{n-\ell}$. Let

$$
\begin{align*}
\frac{n}{\ell} & =\left[\left[b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right]\right]:=b_{1}-\frac{1 \mid}{\mid b_{2}}-\frac{1 \mid}{\mid b_{3}}-\cdots-\frac{1 \mid}{\mid b_{r}} \quad\left(b_{\mu} \geq 2\right) \\
\frac{n}{n-\ell} & =\left[\left[a_{1}, a_{2}, a_{3}, \ldots, a_{e}\right]\right] \quad\left(a_{\nu} \geq 2\right) \tag{1.1}
\end{align*}
$$

be the Hirzebruch-Jung continued fractions. Then we define triples $\left(i_{\mu}, j_{\mu}, k_{\mu}\right)(\mu=0,1, \ldots, r+1)$ and $\left(\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}\right)(\nu=0,1, \ldots, e+1)$ of nonnegative integers as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(i_{0}, j_{0}, k_{0}\right):=(n, 0,1), \quad\left(i_{1}, j_{1}, k_{1}\right):=(\ell, 1,1) \\
\left(i_{\mu+1}, j_{\mu+1}, k_{\mu+1}\right):=b_{\mu}\left(i_{\mu}, j_{\mu}, k_{\mu}\right)-\left(i_{\mu-1}, j_{\mu-1}, k_{\mu-1}\right)
\end{array}\right. \tag{1.2}\\
& \left\{\begin{array}{l}
\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right):=(n, 0,1), \quad\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right):=(n-\ell, 1,1) \\
\left(\alpha_{\nu+1}, \beta_{\nu+1}, \gamma_{\nu+1}\right):=a_{\nu}\left(\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}\right)-\left(\alpha_{\nu-1}, \beta_{\nu-1}, \gamma_{\nu-1}\right)
\end{array}\right.
\end{align*}
$$

Then it is easy to see by $a_{\nu}, b_{\mu} \geq 2$ that

$$
\left\{\begin{array} { l }
{ i _ { 0 } > i _ { 1 } > \cdots > i _ { r + 1 } = 0 } \\
{ j _ { 0 } < j _ { 1 } < \cdots < j _ { r + 1 } = n , } \\
{ k _ { 0 } \leq k _ { 1 } \leq \cdots \leq k _ { r + 1 } = n - \ell , }
\end{array} \quad \left\{\begin{array}{l}
\alpha_{0}>\alpha_{1}>\cdots>\alpha_{e+1}=0 \\
\beta_{0}<\beta_{1}<\cdots<\beta_{e+1}=n \\
\gamma_{0} \leq \gamma_{1} \leq \cdots \leq \gamma_{e+1}=\ell
\end{array}\right.\right.
$$

By induction on μ and ν we get

$$
\left\{\begin{array} { l }
{ i _ { \mu } + (n - \ell) j _ { \mu } = n k _ { \mu } , } \tag{1.3}\\
{ i _ { \mu - 1 } j _ { \mu } - i _ { \mu } j _ { \mu - 1 } = n , } \\
{ k _ { \mu - 1 } j _ { \mu } - k _ { \mu } j _ { \mu - 1 } = 1 , }
\end{array} \quad \left\{\begin{array}{l}
\alpha_{\nu}+\ell \beta_{\nu}=n \gamma_{\nu} \\
\alpha_{\nu-1} \beta_{\nu}-\alpha_{\nu} \beta_{\nu-1}=n \\
\gamma_{\nu-1} \beta_{\nu}-\gamma_{\nu} \beta_{\nu-1}=1
\end{array}\right.\right.
$$

Next we investigate the relations between ($i_{\mu}, j_{\mu}, k_{\mu}$) and ($\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}$). First we review a lemma from Riemenschneider [R74, Lemma 3].

Lemma 1.1 Let $\frac{n}{\ell}=\left[\left[b_{1}, b_{2}, \ldots, b_{r}\right]\right]$ and $\frac{n_{1}}{\ell_{1}}:=\left[\left[b_{2}, b_{3}, \ldots, b_{r}\right]\right]$. Suppose $\frac{n_{1}}{n_{1}-\ell_{1}}=\left[\left[a_{2}, a_{3}, \ldots, a_{e}\right]\right]$. Then we have

$$
\frac{n}{n-\ell}=[[\underbrace{2, \ldots, 2}_{b_{1}-2}, a_{2}+1, a_{3}, \ldots, a_{e}]] .
$$

Proof. We prove this by induction on the first term b_{1} of n / ℓ. Assume $b_{1}=2$. Then we have $\frac{n}{\ell}=2-\frac{\ell_{1}}{n_{1}}=\frac{2 n_{1}-\ell_{1}}{n_{1}}$. On the other hand, $\frac{n}{n-\ell}-1=$ $\frac{n_{1}}{n_{1}-\ell_{1}}$. It follows that $\frac{n}{n-\ell}=\left[\left[a_{2}+1, a_{3}, \ldots, a_{e}\right]\right]$. This prove the lemma in this case.

Next we consider the case $b_{1} \geq 3$. Let $\frac{n}{\ell}=\left[\left[b_{1}, b_{2}, \ldots, b_{r}\right]\right]$ and $n_{1} / \ell_{1}=$ $\left[\left[b_{2}, b_{3}, \ldots, b_{r}\right]\right]$. Let $\frac{n^{\prime}}{\ell^{\prime}}:=\frac{n-\ell}{\ell}$. Then we have $\frac{n^{\prime}}{\ell^{\prime}}=\left[\left[b_{1}-1, b_{2}, \ldots, b_{r}\right]\right]$. We put $\frac{n_{1}^{\prime}}{\ell_{1}^{\prime}}:=\left[\left[b_{2}, b_{3}, \ldots, b_{r}\right]\right]$ and suppose $\frac{n_{1}^{\prime}}{n_{1}^{\prime}-\ell_{1}^{\prime}}=\left[\left[a_{2}, a_{3}, \ldots, a_{e}\right]\right]$. Then by the induction hypothesis we have

$$
\frac{n^{\prime}}{n^{\prime}-\ell^{\prime}}=[[\underbrace{2, \ldots, 2}_{b_{1}-3}, a_{2}+1, a_{3}, \ldots, a_{e}]]
$$

It follows from $\frac{n}{n-\ell}=\frac{n^{\prime}+\ell^{\prime}}{n^{\prime}}=2-\frac{n^{\prime}-\ell^{\prime}}{n^{\prime}}$ that

$$
\frac{n}{n-\ell}=[[\underbrace{2, \ldots, 2}_{b_{1}-2}, a_{2}+1, a_{3}, \ldots, a_{e}]]
$$

where a_{i} 's are the terms of $\frac{n_{1}^{\prime}}{n_{1}^{\prime}-\ell_{1}^{\prime}}$. Since $\frac{n_{1}^{\prime}}{\ell_{1}^{\prime}}=\frac{n}{\ell}$ and $\frac{n_{1}^{\prime}}{n_{1}^{\prime}-\ell_{1}^{\prime}}=\frac{n_{1}}{n_{1}-\ell_{1}}$, the lemma holds for $\frac{n}{\ell}$ and $\frac{n_{1}}{n_{1}-\ell_{1}}$.

Proposition 1.2 There is a duality between the continued fraction expansions of $\frac{n}{\ell}$ and $\frac{n}{n-\ell}$. To be more precise there are positive integers c_{i} and
d_{i} such that

$$
\begin{aligned}
& \frac{n}{\ell}=[[d_{1}+1, \underbrace{2, \ldots, 2}_{c_{1}-1}, d_{2}+2, \ldots, d_{m-1}+2, \underbrace{2, \ldots, 2}_{c_{m-1}-1}, d_{m}+2, \underbrace{2, \ldots, 2}_{c_{m}-1}] \\
& \frac{n}{n-\ell}=[[\underbrace{2, \ldots, 2}_{d_{1}-1}, c_{1}+2, \underbrace{2, \ldots, 2}_{d_{2}-1}, c_{2}+2, \ldots, c_{m-1}+2, \underbrace{2, \ldots, 2}_{d_{m}-1}, c_{m}+1]] .
\end{aligned}
$$

Proof. We prove the lemma by induction on the length of the continued fraction $\frac{n}{\ell}$. If the length of the continued fraction equals one, we see $m=1$, $c_{1}=1$ and $\frac{n}{\ell}=d_{1}+1$. Then $\frac{n}{n-\ell}=\frac{d_{1}+1}{d_{1}}=[[\underbrace{2, \ldots, 2}_{d_{1}}]]$.

Now we consider the general case. For $\frac{n}{\ell}$ as in proposition we define

$$
\frac{n_{1}}{\ell_{1}}:=[[\underbrace{2, \ldots, 2}_{c_{1}-1}, d_{2}+2, \ldots, d_{m-1}+2, \underbrace{2, \ldots, 2}_{c_{m-1}-1}, d_{m}+2, \underbrace{2, \ldots, 2}_{c_{m}-1}]]
$$

By the induction hypothesis, we have

$$
\frac{n_{1}}{n_{1}-\ell_{1}}=[[c_{1}+1, \underbrace{2, \ldots, 2}_{d_{2}-1}, c_{2}+2, \ldots, c_{m-1}+2, \underbrace{2, \ldots, 2}_{d_{m}-1}, c_{m}+1]]
$$

Then by Lemma 1.1

$$
\frac{n}{n-\ell}=[[\underbrace{2, \ldots, 2}_{d_{1}-1}, c_{1}+2, \underbrace{2, \ldots, 2}_{d_{2}-1}, c_{2}+2, \ldots, c_{m-1}+2, \underbrace{2, \ldots, 2}_{d_{m}-1}, c_{m}+1]] .
$$

Notation Let the modified continued fraction of $\frac{n}{\ell}$ be

$$
\frac{n}{\ell}=[[d_{1}+1, \underbrace{2, \ldots, 2}_{c_{1}-1}, d_{2}+2, \ldots, d_{m-1}+2, \underbrace{2, \ldots, 2}_{c_{m-1}-1}, d_{m}+2, \underbrace{2, \ldots, 2}_{c_{m}-1}]]
$$

We define

$$
\mu(\lambda):=1+\sum_{j=0}^{\lambda} c_{j}, \quad \nu(\lambda):=\sum_{j=0}^{\lambda} d_{j}, \quad(\lambda=0,1, \ldots, m)
$$

where $c_{0}:=0, d_{0}:=0$. And we define positive integers by

$$
\begin{align*}
i(\mu):=i_{\mu-1}-i_{\mu}, & j(\mu):=j_{\mu}-j_{\mu-1}, & & (1 \leq \mu \leq \mu(m)) \\
\alpha(\nu):=\alpha_{\nu-1}-\alpha_{\nu}, & \beta(\nu):=\beta_{\nu}-\beta_{\nu-1}, & & (1 \leq \nu \leq \nu(m)+1) \tag{1.4}
\end{align*}
$$

Proposition 1.3

(i) $i(1)=\alpha_{1}, j(1)=\beta_{1}$,
(ii) $\left.i(\mu)=\alpha_{\nu(\lambda+1)}, j_{(} \mu\right)=\beta_{\nu(\lambda+1)}$ for $0 \leq \lambda \leq m-1$ and $\mu(\lambda)+1 \leq \mu \leq$ $\mu(\lambda+1)$,
(iii) $\alpha(\nu(m)+1)=i_{\mu(m)-1}, \beta(\nu(m)+1)=j_{\mu(m)-1}$,
(iv) $\alpha(\nu)=i_{\mu(\lambda)}, \beta(\nu)=j_{\mu(\lambda)}$ for $0 \leq \lambda \leq m-1$ and $\nu(\lambda)+1 \leq \nu \leq$ $\nu(\lambda+1)$.

Proof. We put $r:=\mu(m), e:=\nu(m)+1$. We write $\frac{n}{\ell}=\left[\left[b_{1}, b_{2}, \ldots, b_{r}\right]\right]$ and $\frac{n}{n-\ell}=\left[\left[a_{1}, a_{2}, \ldots, a_{e}\right]\right]$ for simplicity. Then we have

$$
\begin{aligned}
i(1) & =i_{0}-i_{1}=n-\ell=\alpha_{1} \\
i(\mu+1) & =i_{\mu}-\left(b_{\mu} i_{\mu}-i_{\mu-1}\right) \\
& =i_{\mu-1}-i_{\mu}-\left(b_{\mu}-2\right) i_{\mu} \\
& =i(\mu)-\left(b_{\mu}-2\right) i_{\mu} \text { for } \mu \geq 1
\end{aligned}
$$

In the same way we see $\alpha(1)=i_{1}$ and $\alpha(\nu+1)=\alpha(\nu)-\left(a_{\nu}-2\right) \alpha_{\nu}(\nu \geq 1)$.
Similarly we have $j(1)=1=\beta_{1}, j(\mu+1)=j(\mu)+\left(b_{\mu}-2\right) j_{\mu}, \beta(1)=j_{1}$ and $\beta(\nu+1)=\beta(\nu)+\left(a_{\nu}-2\right) \beta_{\nu}$. Therefore by Proposition 1.2

$$
\begin{aligned}
i(\mu)=i(\mu(\lambda)+1), \quad j(\mu) & =j(\mu(\lambda)+1) \\
& \text { for } \mu(\lambda)+1 \leq \mu \leq \mu(\lambda+1) \\
\alpha(\nu)=\alpha(\nu(\lambda)+1), \quad \beta(\nu) & =\beta(\nu(\lambda)+1) \\
& \text { for } \nu(\lambda)+1 \leq \nu \leq \nu(\lambda+1)
\end{aligned}
$$

By definition $\alpha(\nu(0)+1)=\alpha(1)=i_{1}, \beta(\nu(0)+1)=\beta(1)=j_{1}$. Then

$$
\begin{aligned}
i(\mu(0)+1) & =i(2)=i(1)-\left(d_{1}-1\right) i_{1} \\
& =\alpha_{1}-\{\alpha(2)+\alpha(3)+\cdots+\alpha(\nu(1))\}=\alpha_{\nu(1)} \\
j(\mu(0)+1) & =j(2)=j(1)+\left(d_{1}-1\right) j_{1} \\
& =\beta_{1}+\{\beta(2)+\beta(3)+\cdots+\beta(\nu(1))\}=\beta_{\nu(1)}
\end{aligned}
$$

We suppose that (i)-(iv) hold for $\mu \leq \mu(\lambda)$ and $\nu \leq \nu(\lambda)$. Assume first $\lambda<m$. Then we have

$$
\begin{aligned}
\alpha(\nu(\lambda)+1) & =\alpha(\nu(\lambda))-c_{\lambda} \alpha_{\nu(\lambda)} \\
& =i_{\mu(\lambda-1)}-\{i(\mu(\lambda-1)+1)+\cdots+i(\mu(\lambda)-1)+i(\mu(\lambda))\} \\
& =i_{\mu(\lambda)}
\end{aligned}
$$

Assume next $\lambda=m$. Then we have

$$
\begin{aligned}
\alpha(\nu(m)+1) & =\alpha(\nu(m))-\left(c_{m}-1\right) \alpha_{\nu(m)} \\
& =i_{\mu(m-1)}-\{i(\mu(m-1)+1)+\cdots+i(\mu(m)-1)\} \\
& =i_{\mu(m)-1}
\end{aligned}
$$

Similarly we see

$$
\begin{aligned}
i(\mu(\lambda)+1) & =i(\mu(\lambda))-d_{\lambda+1} i_{\mu(\lambda)} \\
& =\alpha_{\nu(\lambda)}-\{\alpha(\nu(\lambda)+1)+\alpha(\nu(\lambda)+2)+\cdots+\alpha(\nu(\lambda+1))\} \\
& =\alpha_{\nu(\lambda+1)}
\end{aligned}
$$

Similarly we can also prove the assertions for $\beta(\nu)$ and $j(\mu)$.

2. Cyclic Quotient Singularities

The isomorphism classes of cyclic quotient surface singularities are in one-to-one correspondence to the conjugacy classes of small finite cyclic subgroups of $G L(2, \mathbf{C})$. Up to conjugacy we may assume that any small abelian subgroup of $G L(2, \mathbf{C})$ is generated by $\sigma:=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{\ell}\end{array}\right)$ where ζ is a primitive n-th root of unity and ℓ is a positive integer such that $1 \leq \ell<n$ and $\operatorname{gcd}(n, \ell)=1$. We denote the group by $C_{n, \ell}$. Let (x, y) be a coordinate system of the complex affine space \mathbf{A}^{2}. Then $C_{n, \ell}$ operates upon \mathbf{A}^{2} from the right by $(x, y) \rightarrow(x, y) g\left(g \in C_{n, \ell}\right)$. We denote the quotient space $\mathbf{A}^{2} / C_{n, \ell}$ by $A_{n, \ell}$. We remark that two germs $\left(A_{n, \ell}, 0\right)$ and $\left(A_{n^{\prime}, \ell^{\prime}}, 0\right)$ are equivalent if and only if $n=n^{\prime}$ and $\ell=\ell^{\prime}$ or $\ell \ell^{\prime} \equiv 1(\bmod n)([\mathrm{B}])$, if and only if $A_{n, \ell} \simeq A_{n^{\prime}, \ell^{\prime}}$.

In what follows we put $G:=C_{n, \ell}$ for simplicity. The quotient space $A_{n, \ell}$ and its minimal resolution are in fact torus embeddings as we see below.

Proposition 2.1 Let $N \simeq \mathbf{Z}^{2}$ be a free abelian group of rank 2 with a basis e_{1} and e_{2} and $M:=\operatorname{Hom}_{\mathbf{Z}}(N, \mathbf{Z})$. Let $\tau:=\left\langle n e_{1}+(n-\ell) e_{2}, e_{2}\right\rangle \subset N \otimes \mathbf{Z} \mathbf{R}$ be the cone in $N \otimes \mathbf{R}$ generated by $n e_{1}+(n-\ell) e_{2}$ and e_{2}. Then

$$
A_{n, \ell} \simeq X_{\tau}:=\operatorname{Spec} \mathbf{C}[\check{\tau} \cap M]=\operatorname{Spec} \mathbf{C}[x, y]^{G}
$$

Proof. Let $\left\{f_{1}, f_{2}\right\}$ be the dual basis of M such that $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j}$. We put $N^{*}:=(n \mathbf{Z}) e_{1} \oplus \mathbf{Z} e_{2}, M^{*}:=\left(\frac{1}{n} \mathbf{Z}\right) f_{1} \oplus \mathbf{Z} f_{2}=\operatorname{Hom}_{\mathbf{Z}}\left(N^{*}, \mathbf{Z}\right)$. Since $\check{\tau}=\left\langle f_{1}, f_{2}-\frac{n-\ell}{n} f_{1}\right\rangle, \operatorname{Spec} \mathbf{C}\left[\check{\tau} \cap M^{*}\right]=\operatorname{Spec} \mathbf{C}[x, y] \simeq \mathbf{A}^{2}$ where $x:=\mathbf{e}\left(\frac{1}{n} f_{1}\right)$
$y:=\mathbf{e}\left(f_{2}-\frac{n-\ell}{n} f_{1}\right)$ and $\mathbf{e}(*):=\exp (2 \pi \sqrt{-1} *)$. We define a symmetric pairing $f: M^{*} / M \times N / N^{*} \rightarrow \mu_{n}$ by $f(\bar{a}, \bar{b}):=\zeta^{n\langle a, b\rangle}$ where μ_{n} is a cyclic group generated by ζ and \bar{a} (resp. \bar{b}) is represented by $a \in M^{*}$ (resp. $b \in N$). The action of $N / N^{*} \simeq \mu_{n}$ on Spec $\mathbf{C}\left[\check{\tau} \cap M^{*}\right]$ is defined by $\bar{b} \cdot \mathbf{e}(a):=$ $f(\bar{a}, \bar{b}) \mathbf{e}(a)\left(a \in \check{\tau} \cap M^{*}, b \in N\right)$. Then $\overline{e_{1}} \cdot x=\zeta x$ and $\overline{e_{1}} \cdot y=\zeta^{\ell} y$. Because f is non-singular we see $\operatorname{Spec} \mathbf{C}[\check{\tau} \cap M] \simeq \operatorname{Spec} \mathbf{C}[x, y]^{N / N^{*}} \simeq \mathbf{A}^{2} / C_{n, \ell}$.

The minimal resolution S of X_{τ} is constructed by using the continued fraction $\frac{n}{\ell}=\left[\left[b_{1}, b_{2}, \ldots, b_{r}\right]\right]$ as follows.

Let $v_{\mu}:=j_{\mu} e_{1}+k_{\mu} e_{2}$ and we subdivide τ into $\tau_{\mu}:=\left\langle v_{\mu-1}, v_{\mu}\right\rangle(\mu=$ $1, \ldots, r+1$). Let Δ be the fan consisting of all of τ_{μ} and its faces. (1.3) shows that affine charts $U_{\mu}:=\operatorname{Spec} \mathbf{C}\left[\tau_{\mu} \cup M\right](\mu=1,2, \ldots, r+1)$ are smooth. Since $v_{\mu+1}+v_{\mu-1}=b_{\mu} v_{\mu}$ and $b_{\mu} \geq 2, \tilde{S}:=T_{N} \mathrm{emb}(\Delta)$ is the minimal resolution of X_{τ}. And the dual graph of the exceptional set of this minimal resolution is:

By the proof of Proposition 2.1 we see $\mathbf{A}^{2} \simeq \operatorname{Spec} \mathbf{C}[x, y]$ and $\mathbf{A}^{2} / G \simeq$ X_{τ} where $x=\mathbf{e}\left(\frac{1}{n} f_{1}\right), y=\mathbf{e}\left(f_{2}-\frac{n-\ell}{n} f_{1}\right)$. By definition

$$
U_{\mu}=\operatorname{Spec} \mathbf{C}\left[\mathbf{e}\left(k_{\mu-1} f_{1}-j_{\mu-1} f_{2}\right), \mathbf{e}\left(-k_{\mu} f_{1}+j_{\mu} f_{2}\right)\right] .
$$

Hence by (1.3) we see

$$
\begin{align*}
& -k_{\mu} f_{1}+j_{\mu} f_{2}=-i_{\mu}\left(\frac{1}{n} f_{1}\right)+j_{\mu}\left(f_{2}-\frac{n-\ell}{n} f_{1}\right), \\
& U_{\mu}=\operatorname{Spec} \mathbf{C}\left[s_{\mu}, t_{\mu}\right], \quad s_{\mu}=x^{i_{\mu-1}} / y^{j_{\mu-1}}, \quad t_{\mu}=y^{j_{\mu}} / x^{i_{\mu}} . \tag{2.1}
\end{align*}
$$

3. Hilbert Schemes and Symmetric Products

Let $S^{n}\left(\mathbf{A}^{2}\right)$ be the nth symmetric product of \mathbf{A}^{2}. This is by definition the quotient of the product of n copies of \mathbf{A}^{2} by the natural permutation action of the symmetry group of n letters.
Lemma 3.1 Let $S^{n}\left(\mathbf{A}^{2}\right)^{G}$ be the subset of $S^{n}\left(\mathbf{A}^{2}\right)$ consisting of all the points of $S^{n}\left(\mathbf{A}^{2}\right)$ fixed by any element of G. Then $S^{n}\left(\mathbf{A}^{2}\right)^{G}$ has a unique natural normal surface structure isomorphic to \mathbf{A}^{2} / G.
Proof. Let $\mathfrak{q}(\neq 0) \in \mathbf{A}^{2}$. The point \mathfrak{q} is fixed by no element of G except
the identity. Therefore the set $G \cdot \mathfrak{q}:=\{g(\mathfrak{q}) ; g \in G\}$ determines a point in $S^{n}\left(\mathbf{A}^{2}\right)^{G}$. Conversely any point of $S^{n}\left(\mathbf{A}^{2}\right)^{G}$ is an unordered set Σ of n points in \mathbf{A}^{2}. If Σ contains a point \mathfrak{q} different from the origin, the above argument shows that Σ contains the set $G \cdot \mathfrak{q}$. Since $|\Sigma|=|n|=|G|$, we have $\Sigma=G \cdot \mathfrak{q}$.

We see that $G \cdot \mathfrak{q}=G \cdot \mathfrak{q}^{\prime}$ for a pair of points $\mathfrak{q}(\neq 0)$ and $\mathfrak{q}^{\prime}(\neq 0)$ if and only if $\mathfrak{q}^{\prime} \in G \cdot \mathfrak{q}$. Therefore we have the isomorphism $S^{n}\left(\mathbf{A}^{2} \backslash\{0\}\right)^{G} \simeq$ $\left(\mathbf{A}^{2} \backslash\{0\}\right) / G$, which extends to a natural bijection j between $S^{n}\left(\mathbf{A}^{2}\right)^{G}$ and \mathbf{A}^{2} / G. Since \mathbf{A}^{2} / G is normal, $S^{n}\left(\mathbf{A}^{2}\right)^{G}$ has a unique structure of normal complex space via the bijection j. Hence j gives the isomorphism $S^{n}\left(\mathbf{A}^{2}\right)^{G} \simeq \mathbf{A}^{2} / G$.

Definition 3.2 Let $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ be the Hilbert scheme of n points on \mathbf{A}^{2}. By definition any $Z \in \operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ is a zero dimensional subscheme with $h^{0}\left(Z, \mathcal{O}_{Z}\right)=\operatorname{dim}\left(\mathcal{O}_{Z}\right)=n$.

Remark We identify a subscheme Z and the defining ideal I_{Z} of Z, so that we consider $I_{Z} \in \operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ since no confusion is possible.

The group G acts on \mathbf{A}^{2} so that it acts on $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ canonically. Let $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)^{G}$ be the subset of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ consisting of all the points fixed by any element of G. The Hilbert scheme $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ is nonsingular $([$ F $])$ and the action of G on $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ at any point of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)^{G}$ is linearlized, therefore $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)^{G}$ is also nonsingular ([IN98, Lemma 9.1]).

Definition 3.3 Let $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ be a unique irreducible component of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ dominating $S^{n}\left(\mathbf{A}^{2}\right)^{G}$.

We have a natural morphism $\pi: \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right) \rightarrow S^{n}\left(\mathbf{A}^{2}\right)^{G}$ defined by $\pi(Z)=\sum_{p \in \mathbf{A}^{2}}\left(\operatorname{dim} \mathcal{O}_{Z, p}\right) p$ for $Z \in \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. Any point of $S^{n}\left(\mathbf{A}^{2}\right)^{G} \backslash\{0\}$ is a G-orbit of a point $\mathfrak{q}(\neq(0,0)) \in \mathbf{A}^{2}$. It determines a G-invariant reduced zero dimensional subscheme. This gives the inverse map of π over $\left(\mathbf{A}^{2} \backslash\right.$ $\{0\}) / G$. It follows that $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ is birationally equivalent to $S^{n}\left(\mathbf{A}^{2}\right)^{G}$. In fact, we prove that $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ is the minimal resolution of \mathbf{A}^{2} / G in Section 5.

Lemma 3.4 Let I_{Z} be the defining ideal of $Z \in \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. Any G invariant function vanishing on $\operatorname{supp}(Z)$ is contained in I_{Z}.

Especially if $\operatorname{supp}(Z)=\{0\}$ then I_{Z} contains all of $x^{\alpha_{\nu}} y^{\beta_{\nu}}$ and $x^{i(\mu)} y^{j(\mu)}$.

Proof. First we check $\mathcal{O}_{\mathbf{A}^{2}} / I_{Z} \simeq \mathbf{C}[G]$ as G-modules. Let $H:=\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ and $G:=\left\{g_{1}=\mathrm{id}, g_{2}, \ldots, g_{n}\right\}$. If Z is a G-orbit of a point $p \neq(0,0)$ then $\mathcal{O}_{\mathbf{A}^{2}} / I_{Z}=\bigoplus_{i=1}^{n} \mathbf{C} \delta_{g_{i}}$ where $\delta_{g_{i}}\left(g_{j} p\right):=\delta_{i j} . G$ acts on $\oplus \mathbf{C} \delta_{g_{i}}$ by $\left(g_{j} \circ \delta_{g_{i}}\right)(p):=\delta_{g_{i}}\left(g_{j}^{-1} p\right)=\delta_{g_{j} g_{i}}(p)$ and it gives $\mathbf{C}[G] \simeq \oplus \mathbf{C} \delta_{g_{i}}\left(g_{i} \mapsto \delta_{g_{i}}\right)$ as G-modules.

Because $\operatorname{dim} \mathcal{O}_{\mathbf{A}^{2}} / I_{Z}=n$ for any $Z \in H, \mathcal{O}_{\mathbf{A}^{2} \times H}$ is a locally free \mathcal{O} module of rank n. G operates upon the vector space $\mathcal{O}_{\mathbf{A}^{2} \times\{Z\}} / I_{Z}$ and the coefficients of the action of g_{i} are regular functions on H. By $g_{i}^{n}=1(\forall i)$ we see that all the eigenvalues are roots of unity. In particular its trace is independent of $Z \in H$. Since any representation of a finite group is uniquely determined by its character, the representation of G in $\mathcal{O}_{\mathbf{A}^{2} \times\{Z\}} / I_{Z}$ is independent of $Z \in H$. Therefore $\mathcal{O}_{\mathbf{A}^{2}} / I_{Z} \simeq \mathbf{C}[G]$ for any $Z \in H$.
$\mathbf{C}[G]$ has a unique trivial G-submodule $\mathbf{C}\left(\sum_{g \in G} g\right)$ by the complete reducibility of G-module. Therefore a G-submodule spanned by G-invariant functions in $\mathcal{O}_{\mathbf{A}^{2}} / I_{Z}$ is isomorphic to \mathbf{C} as G-modules. It follows that any G-invariant function vanishing on Z is contained in I_{Z}.

By (1.4) $x^{\alpha_{\nu}} y^{\beta_{\nu}}$ are G-invariant functions. Combining with Proposition 1.3 if $\operatorname{supp}(Z)=\{0\}$ then $x^{\alpha_{\nu}} y^{\beta_{\nu}}, x^{i(\mu)} y^{j(\mu)} \in I_{Z}$.

4. $\operatorname{Hilb}^{G}\left(\mathrm{~A}^{2}\right)$

Theorem 4.1 Let $G=C_{n, \ell}$. Then $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ set-theoretically consists of the following G-invariant ideals of colength $n=|G|$:

$$
I_{\mu}\left(p_{\mu}, q_{\mu}\right):=\left(x^{i_{\mu-1}}-p_{\mu} y^{j_{\mu-1}}, y^{j_{\mu}}-q_{\mu} x^{i_{\mu}}, x^{i(\mu)} y^{j(\mu)}-p_{\mu} q_{\mu}\right)
$$

where $1 \leq \mu \leq r+1$ and $\left(p_{\mu}, q_{\mu}\right) \in \mathbf{A}^{2}$.

Remark

(i) $r, i_{\mu}, j_{\mu}, i(\mu)$ and $j(\mu)$ are nonnegative integers defined in (1.1), (1.2) and (1.4).
(ii) $I_{r+1}\left(p_{r+1}, 0\right)=\left(x, y^{n}\right)$ because $i_{r}=1, i_{r+1}=0$.
(iii) $\left\{x^{i_{\mu}} ; 1 \leq \mu \leq r\right\}$ is a set of special representations which are associated to the irreducible components of the exceptional set in the minimal resolution of \mathbf{A}^{2} / G by the work of Riemenschneider [R98] and Wunram [W].

Proof. Let $\mathfrak{m}_{\mathfrak{p}}$ (resp. $\mathfrak{m}_{A_{n, \ell}}$) be the maximal ideal of $\mathfrak{p} \in \mathbf{A}^{2}$ (resp. of the origin of $\left.A_{n, \ell}\right)$ and $\mathfrak{n}=\mathfrak{m}_{A_{n, \ell}} \mathcal{O}_{\mathbf{A}^{2}}$. We put $\mathfrak{m}:=\mathfrak{m}_{(0,0)}$.

We note $I_{\mu}\left(p_{\mu}, q_{\mu}\right)$ is a G-invariant ideal. In fact, $i_{\mu} \equiv \ell j_{\mu}(\bmod n)$ by (1.3) and $x^{i(\mu)} y^{j(\mu)}$ is a G-invariant function by Proposition 1.3 and (1.3).

First we consider the case where $\operatorname{supp}(Z) \neq\{0\}$. We recall that the subset $\left\{Z \in \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right) ; \operatorname{supp}(Z) \neq\{0\}\right\}$ is bijective to $\left(\mathbf{A}^{2} \backslash\{0\}\right) / G$. Hence for any $Z \in \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ with $\operatorname{supp}(Z) \neq\{0\}$, there exists a point $\mathfrak{p} \in$ $\operatorname{supp}(Z)$ such that $I_{Z}=\prod_{\mathfrak{q} \in G \mathfrak{p}} \mathfrak{m}_{\mathfrak{q}}$. Next we prove that I_{Z} coincides with one of the I_{μ} for a suitable pair $\left(p_{\mu}, q_{\mu}\right)$. If $\mathfrak{p}=(u, v) \in \mathbf{A}^{2}$ with $u v \neq 0$, we put $p_{\mu}:=u^{i_{\mu-1}} / v^{j_{\mu-1}}$ and $q_{\mu}:=v^{j_{\mu}} / u^{i_{\mu}}$ for any $1 \leq \mu \leq r$. Then $I_{\mu}\left(p_{\mu}, q_{\mu}\right) \subset \mathfrak{m}_{\mathfrak{p}}$. If $v=0$ and $u \neq 0$ (resp. if $u=0$ and $v \neq 0$), then we see $I_{1}\left(u^{n}, 0\right) \subset \mathfrak{m}_{\mathfrak{p}}\left(\right.$ resp. $\left.I_{r+1}\left(0, v^{n}\right) \subset \mathfrak{m}_{\mathfrak{p}}\right)$.

Since $I_{\mu}\left(p_{\mu}, q_{\mu}\right)$ is G-invariant, we infer $I_{\mu}\left(p_{\mu}, q_{\mu}\right) \subset \prod_{\mathfrak{q} \in G \mathfrak{p}} \mathfrak{m}_{\mathfrak{q}}$. On the other hand $\operatorname{dim} \mathcal{O}_{\mathbf{A}^{2}} / I_{\mu}\left(p_{\mu}, q_{\mu}\right) \leq n$. In fact $\mathcal{O}_{\mathbf{A}^{2}} / I_{\mu}\left(p_{\mu}, q_{\mu}\right)$ is spanned by monomials $x^{\lambda_{1}} y^{\lambda_{2}}$ where

$$
\begin{aligned}
\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda:= & \left\{\left(\lambda_{1}, \lambda_{2}\right) ; 0 \leq \lambda_{1}<i_{\mu-1} \text { and } 0 \leq \lambda_{2}<j_{\mu}-j_{\mu-1}\right. \\
& \text { or } \left.0 \leq \lambda_{1}<i_{\mu-1}-i_{\mu} \text { and } j_{\mu}-j_{\mu-1} \leq \lambda_{2}<j_{\mu}\right\} .
\end{aligned}
$$

And by (1.3) $i_{\mu-1}\left(j_{\mu}-j_{\mu-1}\right)+\left\{j_{\mu}-\left(j_{\mu}-j_{\mu-1}\right)\right\}\left(i_{\mu-1}-i_{\mu}\right)=n$. It follows that $I_{\mu}\left(p_{\mu}, q_{\mu}\right)=\prod_{\mathfrak{q} \in G \mathfrak{p}} \mathfrak{m}_{\mathfrak{q}}$.

As we remarked after Definition 3.3, $\pi: \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right) \rightarrow S^{n}\left(\mathbf{A}^{2}\right)^{G} \simeq$ \mathbf{A}^{2} / G is a resolution, which is an isomorphism over $\left(\mathbf{A}^{2} \backslash\{0\}\right) / G$. Now we study the exceptional set $\pi^{-1}(0)=\left\{Z \in \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right) ; \operatorname{supp}(Z)=\{0\}\right\}$. We prove that it is the union of $I_{\mu}\left(p_{\mu}, q_{\mu}\right)$ with $p_{\mu} q_{\mu}=0(1 \leq \mu \leq r-1)$ and $I_{1}\left(0, q_{1}\right), I_{r+1}\left(p_{r+1}, 0\right)$. In fact, since \mathbf{A}^{2} / G is a normal surface, it follows from Zariski's connectedness theorem ([EGA], III 4.3) that $\pi^{-1}(0)$ is connected. Hence we can determine $\pi^{-1}(0)$ by using deformations.

We remark first that by definition of $I_{\mu}, I_{\mu}\left(p_{\mu}, q_{\mu}\right) \subset \mathfrak{m}$ if and only if $p_{\mu} q_{\mu}=0$ for $2 \leq \mu \leq r$ or $p_{1}=0$ or $q_{r+1}=0$. Moreover we check that these ideals belong to $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. In fact, if $p_{\mu} q_{\mu}=0$ the monomials $\left\{x^{\lambda_{1}} y^{\lambda_{2}} ;\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda\right\}$ is a basis of $\mathcal{O}_{\mathbf{A}^{2}} / I_{\mu}\left(p_{\mu}, q_{\mu}\right)$. Therefore $I_{\mu}\left(p_{\mu}, q_{\mu}\right) \in$ $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$.

Now let Z be the subscheme defined by one of the ideals $I_{\mu}\left(p_{\mu}, q_{\mu}\right)$. We consider G-equivariant versal deformations of Z. The tangent space of $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ at a point I_{Z} is isomorphic to $\operatorname{Hom}_{\mathcal{O}_{\mathbf{A}^{2}}}\left(I_{Z}, \mathcal{O}_{\mathbf{A}^{2}} / I_{Z}\right)^{G}$. Now we prove a lemma to determine deformations of Z inside $\pi^{-1}(0)$.

Lemma 4.2 There is a basis $\left\{\phi_{-}, \phi_{+}\right\}$of $T:=\operatorname{Hom}_{\mathcal{O}_{\mathbf{A}^{2}}}\left(I_{\mu}(0,0), \mathcal{O}_{\mathbf{A}^{2}} /\right.$
$\left.I_{\mu}(0,0)\right)^{G}$ defined by

$$
\begin{array}{ll}
\phi_{-}\left(x^{i_{\mu-1}}\right)=y^{j_{\mu-1}}, & \phi_{-}\left(y^{j_{\mu}}\right)=0, \\
\phi_{+}\left(x^{i_{-1}}\right)=0, & \phi_{+}\left(y^{j_{\mu}}\right)=x^{i_{\mu}} .
\end{array}
$$

Proof. We put $I:=I_{\mu}(0,0)=\left(x^{i_{\mu-1}}, y^{j_{\mu}}, x^{i(\mu)} y^{j(\mu)}\right)$. It follows from $\mathcal{O}_{\mathbf{A}^{2}} / I \simeq \mathbf{C}[G]$ that G-invariant $\mathcal{O}_{\mathbf{A}^{2}}$-homomorphism $\phi \in T$ does not change the characters of elements of I. Since $\mathcal{O}_{\mathbf{A}^{2}} / I$ has a basis $\left\{x^{\lambda_{1}} y^{\lambda_{2}} ;\left(\lambda_{1}, \lambda_{2}\right) \in\right.$ $\Lambda\}$ and $i_{\mu} \equiv \ell j_{\mu}(\bmod n), \phi$ is defined by

$$
\phi\left(x^{i_{\mu-1}}\right)=c_{1} y^{j_{\mu-1}}, \quad \phi\left(y^{j_{\mu}}\right)=c_{2} x^{i_{\mu}}, \quad \phi\left(x^{i(\mu)} y^{j(\mu)}\right)=c_{3} \quad\left(c_{i} \in \mathbf{C}\right) .
$$

Applying ϕ to $x^{i_{\mu-1}} y^{j(\mu)} \in I$, we see

$$
\phi\left(x^{i_{\mu-1}} y^{j(\mu)}\right)=y^{j(\mu)} \phi\left(x^{i_{\mu-1}}\right)=c_{1} y^{j_{\mu}}=0 \quad \text { in } \mathcal{O}_{\mathbf{A}^{2}} / I .
$$

Since $\phi\left(x^{i_{\mu-1}} y^{j(\mu)}\right)=\phi\left(x^{i_{\mu}} x^{i(\mu)} y^{j(\mu)}\right)=c_{3} x^{i_{\mu}}$ and $x^{i_{\mu}} \neq 0$ in $\mathcal{O}_{\mathbf{A}^{2}}$, we infer $c_{3}=0$. Thus the lemma follows from $\operatorname{dim} T=\operatorname{dim} \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)=2$.

By Lemma $4.2\left\{I_{\mu}\left(p_{\mu}, q_{\mu}\right) ;\left(p_{\mu}, q_{\mu}\right) \in \mathbf{A}^{2}\right\}$ is a G-equivariant versal deformation of $I_{\mu}(0,0)$. On the other hand, we have

$$
\begin{aligned}
& x^{i_{\mu-1}} y^{j_{\mu}}=x^{i_{\mu}} y^{j_{\mu-1}} x^{i(\mu)} y^{j(\mu)}, \\
& y^{j_{\mu+1}}=\left(y^{j_{\mu}}-q_{\mu} x^{i_{\mu}}\right) y^{j(\mu+1)}+q_{\mu} x^{i_{\mu+1}} x^{i(\mu+1)} y^{j(\mu+1)} \in I_{\mu}\left(0, q_{\mu}\right) .
\end{aligned}
$$

because $x^{i(\mu+1)} y^{j(\mu+1)} \in I_{\mu}\left(0, q_{\mu}\right)$ by Lemma 3.4. We see $I_{\mu}\left(0, q_{\mu}\right)=$ $I_{\mu+1}\left(q_{\mu}^{-1}, 0\right)$ for $q_{\mu} \neq 0$. Hence $\lim _{q_{\mu} \rightarrow \infty} I_{\mu}\left(0, q_{\mu}\right)=I_{\mu+1}(0,0)$ for $\mu \leq r$. To be more precise in $\operatorname{Grass}\left(\mathfrak{m} / \mathfrak{n}+\mathfrak{m}^{n}, n-1\right)$ we get $\lim _{q_{\mu} \rightarrow \infty} I_{\mu}\left(0, q_{\mu}\right) / \mathfrak{n}+\mathfrak{m}^{n}=$ $I_{\mu+1}(0,0) / \mathfrak{n}+\mathfrak{m}^{n}$. Similarly we infer $\lim _{p_{\mu} \rightarrow \infty} I_{\mu}\left(p_{\mu}, 0\right)=I_{\mu-1}(0,0)$ for $\mu \geq 2$.

Since $\pi^{-1}(0)$ is connected. We have

$$
\begin{aligned}
\pi^{-1}(0)=\left\{I_{1}\left(0, q_{1}\right)\right\} & \cup\left\{I_{r+1}\left(p_{r+1}, 0\right)\right\} \\
& \cup\left\{I_{\mu}\left(p_{\mu}, q_{\mu}\right) ; p_{\mu} q_{\mu}=0,2 \leq \mu \leq r\right\} .
\end{aligned}
$$

Thus Theorem 4.1 is proved.

5. The isomorphism $\operatorname{Hilb}^{G}\left(\mathrm{~A}^{2}\right) \simeq S$

Theorem 5.1 Let S be the toric minimal resolution of the cyclic singularity $A_{n, \ell}=\mathbf{A}^{2} / G$. Then $S \simeq \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. In fact, let $U_{\mu}=\operatorname{Spec} \mathbf{C}\left[s_{\mu}, t_{\mu}\right]$
the affine charts of $S(1 \leq \mu \leq r+1)$ given in Section 2. Then the isomorphism of S with $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ is given by the morphism defined by the universal property of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ from the S-flat family of zero dimensional subschemes defined by the G-invariant ideals of $\mathcal{O}_{\mathbf{A}^{2}}$;

$$
I_{\mu}\left(s_{\mu}, t_{\mu}\right):=\left(x^{i_{\mu-1}}-s_{\mu} y^{j_{\mu-1}}, y^{j_{\mu}}-t_{\mu} x^{i_{\mu}}, x^{i(\mu)} y^{j(\mu)}-s_{\mu} t_{\mu}\right)
$$

Proof. First we check that $I_{\mu}\left(s_{\mu}, t_{\mu}\right)=I_{\mu+1}\left(s_{\mu+1}, t_{\mu+1}\right)$ if two points $\left(s_{\mu}, t_{\mu}\right) \in U_{\mu}$ and $\left(s_{\mu+1}, t_{\mu+1}\right) \in U_{\mu+1}$ are coincident in S. In fact, if both the points represent the same point in S, then it follows from (2.1) that $s_{\mu+1} t_{\mu}=1$ and $t_{\mu+1}=t_{\mu}^{b_{\mu}} s_{\mu}$. Then $x^{i_{\mu}}-s_{\mu+1} y^{j_{\mu}}=s_{\mu+1}\left(t_{\mu} x^{i_{\mu}}-y^{j_{\mu}}\right) \in$ $I_{\mu}\left(s_{\mu}, t_{\mu}\right)$. We check

$$
\begin{aligned}
h\left(b_{\mu}\right) & :=x^{i(\mu+1)} y^{j(\mu+1)}-s_{\mu+1} t_{\mu+1} \\
& =x^{i(\mu)-\left(b_{\mu}-2\right) i_{\mu}} y^{j(\mu)+\left(b_{\mu}-2\right) j_{\mu}}-t_{\mu}^{b_{\mu}-1} s_{\mu}
\end{aligned}
$$

is contained in $I_{\mu}\left(s_{\mu}, t_{\mu}\right)$ by induction on b_{μ}. If $b_{\mu}=2$ then $h\left(b_{\mu}\right)=$ $x^{i(\mu)} y^{j(\mu)}-s_{\mu} t_{\mu} \in I_{\mu}\left(s_{\mu}, t_{\mu}\right)$. If $b_{\mu}>2$ then $j(\mu+1)>j_{\mu}$ and

$$
h\left(b_{\mu}\right)=x^{i(\mu+1)} y^{j(\mu+1)-j_{\mu}}\left(y^{j_{\mu}}-t_{\mu} x^{i_{\mu}}\right)+t_{\mu} h\left(b_{\mu}-1\right) .
$$

By the induction hypothesis $h\left(b_{\mu}-1\right) \in I_{\mu}\left(s_{\mu}, t_{\mu}\right)$ and we get $h\left(b_{\mu}\right) \in$ $I_{\mu}\left(s_{\mu}, t_{\mu}\right)$. Since $y^{j_{\mu+1}}-t_{\mu+1} x^{i_{\mu+1}}=y^{j(\mu+1)}\left(y^{j_{\mu}}-t_{\mu} x^{i_{\mu}}\right)+t_{\mu} x^{i_{\mu+1}} h\left(b_{\mu}\right) \in$ $I_{\mu}\left(s_{\mu}, t_{\mu}\right)$ we see $I_{\mu+1}\left(s_{\mu+1}, t_{\mu+1}\right) \subset I_{\mu}\left(s_{\mu}, t_{\mu}\right)$. Both the ideals have the same colength n. Hence $I_{\mu+1}\left(s_{\mu+1}, t_{\mu+1}\right)=I_{\mu}\left(s_{\mu}, t_{\mu}\right)$.

Therefore the family of the zero dimensional subschemes defined by I_{μ} is well-defined on S. Since $\operatorname{dim} \mathcal{O}_{\mathbf{A}^{2}} / I_{\mu}\left(s_{\mu}, t_{\mu}\right)$ is constant, this family is S-flat. By the universality of $\operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$ we have a natural morphism $f: S \rightarrow \operatorname{Hilb}^{n}\left(\mathbf{A}^{2}\right)$, which factors through $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ by the G-invariance of the ideals I_{μ}. By the proof of Theorem 4.1, in fact because no irreducible component of $\pi^{-1}(0)$ is contracted by f by Lemma 4.2, we have a finite birational morphism of S onto $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$. Since $\operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$ is nonsingular and S is minimal we infer $S \simeq \operatorname{Hilb}^{G}\left(\mathbf{A}^{2}\right)$.

Acknowledgments I would like to thank Prof. Iku Nakamura for his support which made this work possible and Prof. Oswald Riemenschneider for his helpful comments on this article.

References

[B] Brieskorn Egbert, Rationale singularitäten komplexer fächen. Invent. Math. 4 (1968), 336-358.
[BKR] Bridgeland Tom, King Alastair and Reid Miles, Mukai implies McKay. Preprint math. AG/9908027, 16 pp .
[EGA] Grothendieck, Eléments de géometrie algébrique III. Vol. 11, Publ. Math IHES, 1961.
[F] Fogarty John, Algebraic families on an algebraic surface. Amer. J. Math. 90 (1968), 511-521.
[H] Hartshone Robin, Algebraic geometry. Graduate Text in Math. 52, Springer, 1977.
[IN96] Ito Yukari and Nakamura Iku, McKay corespondence and Hilbert schemes. Proc. Japan. Acad. 72 (1996), 135-138.
[IN98] Ito Yukari and Nakamura Iku, Hilbert schemes and simple singularities. New trends in algebraic geometry (Warwick 1996), London Math. Soc. Lecture Note Ser. 264 (1999), Cambridge Univ. Press., 151-233.
[N] Nakmaura Iku, Hilbert schemes of Abelian group orbits. to appear in J. Alg. Geom.
[R74] Riemenschneider Oswald, Deformationen von quotientensingularitäten (nach zyklischen gruppen). Math. Ann. 209 (1974), 211-248.
[R98] Riemenschneider Oswald, Cyclic quotient surface singularities: Constructing the Artin component via the McKay-quiver. RIMS Symposium Report 1033 (1998), 163-171.
[W] Wunram Jürgen, Reflexive modules on quotient surface singularities. Math. Ann. 279 (1988), 583-598.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: rie-kido@math.sci.hokudai.ac.jp

