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On global properties of solutions of the equation
\bm{y}’\bm{(}\bm{t}\bm{)}=\bm{a}\bm{y}\bm{(} \bm{t}- \bm{b}\bm{y}\bm{(}\bm{t}\bm{)}\bm{)}
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Abstract. Global properties of all maximal solutions of the iterative functional dif-
ferential equation x’(t)=a[x(x(t))-x(t)]+1 are considered. Using a correspondence
among solutions of the above equation and those of the functional differential equation
y’(t)=ay(t- by(t)), global properties of all maximal solutions of the last equation are
described.
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1. Introduction

Hartung and Rri [3] studied “small” solutions corresponding to small
(in sup norm) initial functions of the initial value problem (IVP for short)

y’(t)=ay(t-b|y(t)|) , t\geq 0 , (1)

y(t)=\Phi(t) , t \leq 0 , (2)

where a>0 , b>0 are constants and \Phi is Lipschitz-continuous on (-\infty, 0] .
They proved that any solution y(t) of (1), (2) with \Phi(0)\neq 0 is nonvanishing
on [0, \infty) and y(t) is identically zero for t \geq 0 provided \Phi(0)=0 . Moreover,
if y(t) is a solution of IVP (1), (2) corresponding to the initial function \Phi(t) ,
then-y(t) is a solution of IVP (1), (2) corresponding to the initial function
-\Phi(t) and so, without loss of generality, we can consider the equation

y’(t)=ay(t- by(t)), t\geq 0 (3)

instead of (1) for \Phi(0)\geq 0 . Hartung and Turi [3] also showed that for
\Phi(0)>0 the following two statements are equivalent:
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(i) There exists K>0 such that the solution y(t) of IVP (1), (2) satisfies

t-b|y(t)|\geq-K for t\geq 0 ;

(ii) There exist T\in \mathbb{R} and \alpha\in C^{1}([0, \infty)) such that the solution of IVP
(1), (2) has the form

y(t)= \frac{1}{b}(t+T+\alpha(t)) , t\geq 0 ,

where \lim_{tarrow\infty}\alpha(t)=0 and \lim_{tarrow\infty}\alpha’(t)=0 ;
and gave necessary and sufficient conditions imposed upon \Phi for which
statement (i) is satisfied.

In this paper we wish to consider the equation

y’(t)=ay(t - by(t)), a\neq 0 , b\neq 0 (4)

without the initial function \Phi . Equation (4) is a differential equation with
deviating argument depending on state and may change its sign. We show
that (4) is equivalent to the iterated functional differential equation

x’(t)=a[x(x(t))-x(t)]+1 , a\neq 0 (5)

and consider properties of all maximal solutions of (5). Rom these proper-
ties we can derive properties of all maximal solutions of (4). We shall show,
among others, that the asymptotic behavior of maximal solutions of (4) for
a>0 and t -arrow\infty are close to that of maximal solutions of IVP (1), (2)
(with a>0 , b>0 and \Phi(0)>0 ) for which statement (i) is satisfied.

We recall that the global properties of maximal solutions for the first-
order iterative differential equations were considered in [1], [4]-[7] .

2. Preliminaries

Definition 1 We say that x is a solution of (5) on an interval J if x\in

C^{1}(J) and (5) is satisfied for t \in J .

Definition 2 Let x be a solution of (5) on an interval J and y be a solution
of (5) on an interval I . We say that y is a continuation of x if J\subset I , J\neq I

and x(t)=y(t) for t\in J . In addition, if t\geq s (resp. t \leq s ) for any t\in I-J

and s\in J , then we say that y is a right (resp. left) continuation of x .

Definition 3 We say that x is a maximal solution of (5) if x has no
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continuation.

Remark 1 Similarly we define a solution of (4) on an interval J and a
maximal solution of (4).

Lemma 1 If y(t) is a solution of (4) on an interval J , then x(t)=t-by(t)
is a solution of (5) on J and conversely, if x(t) is a solution of (5) on an
interval J, then y(t)= \frac{1}{b}(t-x(t)) is a solution of (4) on J .

Proof Let y(t) be a solution of (4) on an interval J and set x(t)=t- by(t)
for t\in J . Then x\in C^{1}(J) and

x’(t)=1-by(\prime t)=1-aby (t- by(t)) =1-aby(x(t))
=1+a[x(x(t))-x(t)]

for t\in J ; hence x(t) is a solution of (5) on J .
Let x(t) be a solution of (5) on an interval J and set y(t)= \frac{1}{b}(t-x(t))

for t\in J . Then y\in C^{1}(J) and

y’(t)= \frac{1}{b}(1-x’(t))=-\frac{a}{b}[x(x(t))-x(t)]

=ay(x(t))=ay(t- by(t))

for t\in J ; hence y is a solution of (4) on J. \square

The following lemma is obvious.

Lemma 2 Let x(t) be a solution of (5) on an interval J. Then

x : Jarrow J.

Remark 2 If x(t) is a solution of (5) on an interval J, then x \in C^{\infty}(J) .

Lemma 3 A function x(t) is a solution of (5) on an interval J if and only
if the function z(t)=-x(-t) , t\in I=\{t : -t\in J\} is a solution of the
equation

z’(t)=-a[z(z(t))-z(t)]+1 (6)

on I .

Proof Let x(t) be a solution of (5) on an interval J and set z(t)=-x(-t)
for t\in I . Then

z’(t)=x’(-t)=a[x(x(-t))-x(-t)]+1=-a[z(z(t))-z(t)]+1
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and so z(t) is a solution of (6) on I .
Let z(t) be a solution of (6) on an interval I and set x(t)=-z(-t) for

t\in J=\{t : -t\in I\} . Then we can verify that x(t) is a solution of (5) on
the interval J. \square

Remark 3 By Lemma 3, it is sufficient to consider only solutions of (5)
with a >0 .

Lemma 4 Let x(t) be a maximal solution of (5) with a>0 on an interval
J and x(t_{0})=t_{0} for a t_{0}\in J . Then

J=\mathbb{R} and x(t)\equiv t .

Proof. We see that the function z(t)=t for t\in \mathbb{R} is a maximal solution
of (5). To prove our lemma it is sufficient to show that x=z . Set w(t)=
x(t)-z(t) for t\in J . Then w(t_{0})=0 . Assume w(t)\not\equiv 0 on J. Then there
exists a t_{1}\in J such that w(t_{1})=0 and let, for example, (t_{1}, \infty)\cap J\neq\emptyset

and

p(t)= \max\{|w(s)| : t_{1}\leq s\leq t\}>0

for t\in J , t>t_{1} (analogously for (-\infty, t_{1})\cap J\neq\emptyset and \max\{|w(s)| : t\leq

s\leq t_{1}\}>0 for t\in J , t<t_{1} ). Let [c, d]\subset J be a compact interval such
that t_{1}\in(c, d) provided t_{1} is an inner point of J , otherwise c=t_{1} , and
set M= \max\{|x’(t)| : c\leq t\leq d\} . Since x(t_{1})=t_{1} , there exists a positive
number \epsilon , \epsilon\leq d-t_{1} , such that x(t)\in[c, d] for t\in[t_{1}, t_{1}+\epsilon] (see Lemma 2).
By the Taylor formula,

w’(t)=a[x(x(t))-x(t)]=ax’(\xi)(x(t)-t)=ax’(\xi)w(t) (7)

for t\in[t_{1}, t_{1}+\epsilon] , where \xi(=\xi(t)) lies between x(t) and t , and so \xi\in[c, d] .
Then (cf. (7)) |w’(t)|\leq aM|w(t)| and

|w(t)| \leq\int_{t_{1}}^{t}|w’(s)|ds\leq aM\int_{t_{1}}^{t}|w(s)|ds\leq aMp(t)(t-t_{1}) ,

t \in[t_{1}, t_{1}+\epsilon] .

Hence p(t)\leq aMp(t)(t-t_{1}) on [t_{1}, t_{1}+\epsilon] and since p(t)>0 for t\in(t_{1}, t_{1}+\epsilon] ,

1\leq aM(t-t_{1})

for (t_{1}, t_{1}+\epsilon] , a contradiction. We have proved that x(t)=z(t)(=t) for
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t\in J and since x(t) is a maximal solution, J=\mathbb{R} and x(t)\equiv t . \square

Lemma 5 Let x(t) be a maximal solution of (5) with a>0 on an interval
J. Then x’(t_{0})=1 for some t_{0}\in J if and only if J=\mathbb{R} and x(t)\equiv t .

Proof. We see that x’(t_{0})=1 for some t_{0}\in J if and only if x(T)=T with
T=x(t_{0}) . By Lemma 4, x(T)=T for some T\in J if and only if J=\mathbb{R}

and x(t)\equiv t . \square

Denote by A^{+} the set of all maximal solutions x of (5) with a>0 such
that x’<1 , and by B^{+} the set of all maximal solutions x of (5) with a>0
such that x’>1 .

Lemma 6 Let x(t) be a maximal solution of (5) with a>0 on J and let
x(t)\not\equiv t . Then either x\in A^{+} or x\in g+

Proof. By Lemma 5, x’(t)\neq 1 for t\in J . Then either x’(t)<1 or x’(t)>1
on J, and consequently either x\in A^{+} or x\in B^{+} \square

Lemma 7 Let x(t) be a maximal solution of (5) with a>0 on J, x(t)\not\equiv t .
Then x\in A^{+} if and only if x(t)<t for t\in J and x\in B^{+} if and only if
x(t)>t for t\in J .

Proof. Since x\in A^{+} if and only if x(x(t))-x(t)<0 for t\in J and x(t)\neq t

on J by Lemma 4, we see that x\in A^{+} if and only if x(t)<t for t\in J .
Analogously for x\in B^{+} \square

3. Set \mathcal{A}^{+}

Lemma 8 Let x\in A^{+} be defined on J. Then x’(t)\neq 0 for t\in J .

Proof. Assume x’(t_{0})=0 for some t_{0}\in J . Then

a[x(x(t_{0}))-x(t_{0})]+1=0 . (8)

Consider the IVP

w’=a(x(w)-w)+1 , w(t_{0})=x(t_{0}) . (9)

Then x(t) is a solution of IVP (9) on J . On the other hand, equality (8)
implies that the constant function w(t)=x(t_{0}) is a solution of IVP (9) on
\mathbb{R} . Since x\in C^{1}(J) , the uniqueness theorem for ODEs gives x(t)=x(t_{0})

for t\in J , and so x’=0 which is impossible. Hence x’(t)\neq 0 on J. \square
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Corollary 1 Let x\in A^{+} be defined on J. Then either 0<x’(t)<1 or
x’(t)<0 for t\in J .

Set

A_{1}^{+}=\{x : x\in A^{+} , 0<x’<1\} , A_{2}^{+}=\{x : x\in A^{+} , x’<0\} .

Remark 4 By Corollary 1, A^{+}=A_{1}^{+}\cup A_{2}^{+}

Theorem 1 A_{2}^{+} is an empty set

Proof. Assume x\in A_{2}^{+} is defined on J . Then

x’(t)=ax’(\xi)(x(t)-t)+1 (10)

for t\in J , where \xi lies between t and x(t) . Since x(t)-t<0 for t\in J

by Lemma 7 and x’(\xi)<0 , we have (cf. (10)) x’(t)>1 for t\in J , a
contradiction. \square

Lemma 9 Let x\in A_{1}^{+} be defined on J. Then x’(t)<0 for t\in J .

Proof. Since (cf. Remark 2)

x’(t)=ax’(t)(x’(x(t))-1) (11)

for t\in J and ax’(t)>0 , x’(x(t))-1<0 on J, it follows from (11) that
x’(t)<0 for t\in J . \square

Theorem 2 Let x\in A_{1}^{+} be defined on J. Then J=\mathbb{R} .

Proof. We first prove that J=\overline{J} , where \overline{J} stands for the closure of J (in
\mathbb{R}) . Assume J\neq\overline{J} . Then there exists \xi\in\overline{J}-J . Let \xi<t for t\in J .
Then, by Lemma 2 and Lemma 7, \xi<x(t)<t for t\in J and therefore
\lim_{tarrow\xi}x(+t)=\xi . Define z\in C^{0}(J\cup\{\xi\}) by

z(t)=\{
x(t) for t\in J,
\xi for t=\xi .

We shall show that z(t) is a solution of (5) on the interval J_{1}=J\cup\{\xi\} .
Since z(t) is a solution of (5) on J , it is sufficient to verify that z\in C^{1}(J_{1})

and

z’(\xi)=a[z(z(\xi))-z(\xi)]+1=a(\xi-\xi)+1=1 .
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From the equality

z(t)-z( \xi)=\int_{\xi}^{t}(a[x(x(s))-x(s)]+1)ds , t\in J_{1} ,

we deduce that

\frac{z(t)-z(\xi)}{t-\xi}-1=\frac{a}{t-\xi}\int_{\xi}^{t}[x(x(s))-x(s)]ds

= \frac{a}{t-\xi}\int_{\xi}^{t}[z(z(s))-z(s)]ds (12)

for t>\xi , t\in J . The function z(z(t))-z(t) is continuous on J_{1} , z(z(\xi))-
z(\xi)=0 , and consequently for any \epsilon>0 , there exists \delta>0 such that

|z(z(t))-z(t)|< \frac{\epsilon}{a} for \xi\leq t<\xi+\delta .

Hence (cf. (12))

| \frac{z(t)-z(\xi)}{t-\xi}-1|<\frac{a}{t-\xi}\frac{\epsilon}{a}(t-\xi)=\epsilon for \xi<t<\xi+\delta ,

which yields z’(\xi)=1 . We have proved that z(t) is a solution of (5) on J_{1} ,
and so z is a left continuation of x , a contradiction.

Assume \xi>t for t\in J . Since 0<x’(t)<1 , x’(t)<0 and x(t)<t for
t\in J , there exists the finite limit \lim_{t}

- \xi_{-}x(t)=C and C<\xi . Set

u(t)=\{
x(t) for t\in J,

C for t=\xi .

Then one can prove that u(t) is a solution of (5) on J_{1} . Consequently, u is
a right continuation of x , a contradiction.

Hence J=\overline{J}
’

and therefore either J=[A, B] or J=[A, \infty) or J=
(-\infty, B] or J=\mathbb{R} , where A , B\in \mathbb{R} . Assume either J=[A, B] or J=
[A, \infty) . Then x(A)\geq A by Lemma 2. On the other hand x(t)<t for
t\in J by Lemma 7, and consequently x(A)<A , a contradiction. Let
J=(-\infty, B] . Then x(B)<B by Lemma 7. Consider the IVP

w’=a(x(w)-w)+1 , w(B)=x(B) . (13)

Since x\in C^{1}(J) and x(B)<B , IVP (13) has a unique solution in a
neighbourhood \mathcal{U} of the point t=\xi , say w(t) . On the other hand x(t) is
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a solution of IVP (13) on J=(-\infty, B] . So x(t)=w(t) for t\in J\cap \mathcal{U} and
then w(t)\leq B for t\in \mathcal{U} . Define

y(t)=\{
x(t) for t\in J,
w(t) for t =\mathcal{U}-J.

Then y\in C^{1}(J\cup \mathcal{U}) , y’(t)=w’(t)=a[x(w(t))-w(t)]+1=a[x(y(.t))-
y(t)]+1=a[y(y(t))-y(t)]+1 for t\in \mathcal{U}-J ; hence y(t) is a right continuation
of x on the interval J\cup \mathcal{U} , a contradiction. This proves J=\mathbb{R} . \square

Lemma 10 Let x\in A_{1}^{+} Then t/iere exists the finite limit \lim_{t}
-

\infty x(t)=

T and

x(T)=T- \frac{1}{a} .

Moreover, x’(T)< \frac{1}{2} ,

\lim_{tarrow-\infty}(x(t)-t)^{(i)}=0 , i=0,1,2

and

\lim_{tarrow\infty}x’(t)=0 , \lim_{tarrow\infty}x’(t)=0 .

Proo/. Since 0<x’(t)<1 and x’(t)<0 for t\in \mathbb{R} , there exist finite
limits \lim_{tarrow-\infty}x’(t)=K and \lim_{tarrow\infty}x’(t)=L , 1\geq K>L\geq 0 . As-
sume L>0 . Then \lim_{tarrow\infty}x(t)=\infty , and consequently \lim_{tarrow\infty}x’(t)=

\lim_{tarrow\infty}ax’(t)(x’(x(t))-1)=aL(L-1)<0 , which contradicts \lim_{tarrow\infty}x’(t)=

L . Assume K<1 . Using the equality \lim_{tarrow-\infty}x(t)=-\infty which fol-
lows form the inequality x(t)<t for t \in \mathbb{R} , we have \lim_{tarrow-\infty}x’(t)=

\lim_{tarrow-\infty}ax’(t)(x’(x(t))-1)=aK(K-1)<0 and then \lim_{tarrow-\infty}x’(t)=

-\infty , a contradiction. Hence K=1 , L=0 and therefore \lim_{tarrow\pm\infty}x’(t)=

\lim_{tarrow\pm\infty}x’(t)(x’(x(t))-1)=0 .

We know that x(t) is increasing on \mathbb{R} . Hence either \lim_{tarrow\infty}x(t)=\infty or
\lim_{tarrow\infty}x(t)=T Assume \lim_{tarrow\infty}x(t)=\infty . Since a[x(x(t))-x(t)]+1>0
on \mathbb{R} and \lim_{tarrow-\infty}x(t)=-\infty (see, e.g., Lemma 7), we have a(x(t)-t)+1>
0 for t\in \mathbb{R} and therefore x(t)>t- \frac{1}{a} on \mathbb{R} . Let A\in \mathbb{R} be a number such
that x’(t) \leq\frac{1}{2} for t\in[A, \infty) . The existence of A follows from the equality
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\lim_{tarrow\infty}x’(t)=0 . Then

x(t)-x(A)= \int_{A}^{t}x’(s)ds\leq\frac{1}{2}(t-A)

and therefore

t- \frac{1}{a}<x(t)\leq x(A)+\frac{1}{2}(t-A) , t\in[A, \infty) ,

which is impossible. Hence \lim_{tarrow\infty}x(t)=T From the equality

x’(t)=-ax(t)+(ax(x(t))+1) , t\in \mathbb{R}

we obtain (for t\in \mathbb{R} )

x(t)=e^{-at}(x(0)+ \int_{0}^{t}e^{as}(ax(x(s))+1)ds)

and using the L’Hospital rule

T= \lim_{tarrow\infty}x(t)=\lim_{tarrow\infty}\frac{x(0)+\int_{0}^{t}e^{as}(ax(x(s))+1)ds}{e^{at}}

= \frac{1}{a}\lim_{tarrow\infty}(ax(x(t))+1)=x(T)+\frac{1}{a} .

Hence x(T)=T- \frac{1}{a} . Then x’(T)=a[x(T- \frac{1}{a})-x(T)]+1=-x’(\nu)+1 for
some \nu\in(T-\frac{1}{a}, T) . By Lemma 9, x’ is decreasing, and so x’(\nu)>x’(T) .
Consequently, x’(T)<-x’(T)+1 which implies x’(T) \backslash ’\frac{1}{2} .

By the Taylor formula,

(x(t)-t)’=a[x(x(t))-x(t)]=ax’(\xi)(x(t)-t) , (14)

where \xi lies between x(t) and t , and therefore \xi<t , which gives x’(\xi)>x’(t)

using the fact that x’ is decreasing on \mathbb{R} . Then

(x(t)-t)’<ax’(t)(x(t)-t) , t\in \mathbb{R} .

Applying differential inequalities (see, e.g., [2]) we have

x(t)-t\geq x(0)e^{a(x(t)-x(0))}

for t\in(-\infty, 0] . Since \lim_{tarrow-\infty}x(t)=-\infty and x(t)-t<0 for t\in \mathbb{R} , we
obtain \lim_{tarrow-\infty}(x(t)-t)=0 . Hence the lemma is proved. \square

Theorem 3 For each (T, \xi)\in \mathbb{R}^{2}.0<T-\xi\leq\frac{1}{a} , there exists x\in A_{1}^{+}
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such that

x(T)=\xi .

The proof of Theorem 3 is based on the following two lemmas, where
\mathcal{K}_{(T,\xi)} will be denoted, for each (T, \xi)\in \mathbb{R}^{2},0<T-\xi\leq\frac{1}{a} , the set

\mathcal{K}_{(T,\xi)}=\{x : x\in C^{1}((-\infty, T]) , x(T)=\xi , t-T+\xi\leq x(t)\leq t ,

0\leq x’(t)\leq 1 for t\in(-\infty, T]\} .

The set \mathcal{K}_{(T,\xi} ) \neq\emptyset since u_{c}\in \mathcal{K}_{(T,\xi)} for each c \in[0, \frac{1}{T-\xi}] where

u_{c}(t)=t-(T-\xi)e^{c(t-T)} , t\in(-\infty, T] .

Lemma 11 Let (T, \xi)\in \mathbb{R}^{2},0<T-\xi\leq\frac{1}{a} and x\in \mathcal{K}_{(T,\xi)} . Then there
exists a unique solution y of the IVP

y’=a(x(y)-x(t))+1 , (15)

y(T)=\xi (16)

on (-\infty, T] and, moreover, y\in \mathcal{K}_{(T,\xi)} .

Proof Since x\in C^{1}((-\infty, T]) , there exists the unique maximal solution
y(t) of IVP (15), (16) on an interval I . We shall show that I=(-\infty, T] .
Assume I\neq(-\infty, T] . Let y(t_{0})=t_{0} for a t_{0}\in I . Consider equation (15)
together with the initial condition

y(t_{0})=t_{0} . (17)

Then y(t) is a solution of IVP (15), (17) on I and since the function u(t)\equiv t

is also a solution of this IVP on (-\infty, T] , we have y(t)=u(t)=t for t\in I

by the uniqueness theorem for ODEs, which contradicts y(T)=\xi . Hence

y(t)<t for t\in I . (18)

Let t_{1}\in I . Then (cf. (18)) x(y(t_{1}))-x(t_{1})=x’(\xi)(y(t_{1})-t_{1})\leq 0

where y(t_{1})<\xi<t_{1} , and therefore y’(t_{1})=ax’(\xi)(y(t_{1})-t_{1})+1\leq 1 which
proves

y’(t)\leq 1 for t\in I . (19)
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Assume y(t_{2})<t_{2}-T+\xi for some t_{2}\in I . Then (cf. (16)) there exists
t_{3}\in I such that y’(t_{3})>1 which contradicts (19). Hence

t-T+\xi\leq y(t) for t\in I . (20)

By our assumption y is the maximal solution of IVP (15), (16) defined
on I , I\neq(-\infty, T] . Thus I=(A, T], -\infty<A<T and lim \sup_{tarrow A}+|y(t)|=

\infty which contradicts (18) and (20); hence I=(-\infty, T] .
Assume y’(t_{4})<0 where t_{4}\in(-\infty, T] . Since (cf. (20))

a[x(y(t_{4}))-x(t_{4})]=ax’(\epsilon)(y(t_{4})-t_{4})\geq-x’(\epsilon)

for some \epsilon\in(y(t_{4}), t_{4}) , we have

0>y’(t_{4})=a[x(y(t_{4}))-x(t_{4})]+1\geq-x’(\epsilon)+1 .

Then x’(\epsilon)>1 which contradicts x\in \mathcal{K}_{(T,\xi} ). Thus

0\leq y’(t) , t\in(-\infty, T] . (21)

Prom (16), (18)-(21) and I=(-\infty, T] it follows that y\in \mathcal{K}_{(T,\xi)} . \square

Let (T, \xi)\in \mathbb{R}^{2},0<T-\xi\leq\frac{1}{a} . By Lemma 11, for each x\in \mathcal{K}_{(T,\xi)}

there exists a unique maximal solution y_{x} of IVP (15), (16) and y_{x}\in \mathcal{K}_{(T,\xi)} .
Define the operator P_{(T,\xi)} by P_{(T,\xi)}(x)=y_{x} for x\in \mathcal{K}_{(T,\xi)} . Then

P_{(T,\xi)} : \mathcal{K}_{(T,\xi)}arrow \mathcal{K}_{(T,\xi)} . (22)

Let X_{T} be the Fk\’echet space of C^{1} functions on (-\infty, T] with the topol-
ogy of locally uniform convergence of the functions and their derivatives on
(-\infty, T] .

Lemma 12 Let (T, \xi)\in \mathbb{R}^{2},0<T-\xi\leq\frac{1}{a} . Then the operator P_{(T,\xi)} :
\mathcal{K}_{(T,\xi)}\subset X_{T} - X_{T} is compact.

Proof. We first prove that P_{(T,\xi)} is a continuous operator. Let \{x_{n}\}\subset

\mathcal{K}_{(T,\xi)} be a convergent sequence (in X_{T} ), x_{n} -arrow x . Then \lim_{narrow\infty}x_{n}^{(i)}(t)=

x^{(i)}(t) locally uniformly on (-\infty, T] for i=0,1 . Set

y_{n}=P_{(T,\xi)}(x_{n}) , y=P_{(T,\xi)}(x) , n\in \mathbb{N} .

Then

y_{n}(T)=\xi , y_{n}’(t)=a[x_{n}(y_{n}(t))-x_{n}(t)]+1 (23)
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for t\in_{-} (-\infty, T] , n\in N and

y(T)=\xi , y’(t)=a[x(y(t))-x(t)]+1 , t\in(-\infty, T] .

We now show that \lim_{narrow\infty}y_{n}^{(i)}(t)=y^{(i)}(t) locally uniformly on (-\infty, T]

(i=0,1) . Since (cf. (22)) \{y_{n}\}\subset \mathcal{K}_{(T,\xi)} , we have 0\leq y_{n}’(t)\leq 1 , t-T+\xi\leq

y_{n}(t)\leq t for t\in (-\infty, T] and n\in N . Let \{y_{k_{n}}\} be a subsequence of
\{y_{n}\} . By the Cauchy diagonal process and the Arzel\‘a-Ascoli theorem, there
exists a subsequence \{y_{k_{jn}}(t)\} of \{y_{k_{n}}(t)\} locally uniformly convergent on
(-\infty, T] . Set

z(t)= \lim_{narrow\infty}y_{k_{jn}}(t) , t\in(-\infty, T] .

Applying the Lebesgue dominated convergence theorem as narrow\infty in the
equalities

y_{k_{jn}}(t)= \xi+\int_{T}^{t}(a[x_{k_{jn}}(y_{k_{jn}}(s))-x_{k_{jn}}(s)]+1)ds ,

t\in(-\infty, T] , n\in N ,

we get

z(t)= \xi+\int_{T}^{t}(a[x(z(s))-x(s)]+1)ds , t\in(-\infty, T] ,

and so z(t) is a solution of IVP (15), (16) on (-\infty, T] . We know that
this IVP has a unique solution and that y(t) is a solution of this prob-
lem, and consequently y(t)=z(t) for t\in(-\infty, T] . We have proved that
any subsequence \{y_{k_{n}}\} of \{y_{n}\} has in turn a subsequence \{y_{k_{jn}}\} such that
\lim_{narrow\infty}y_{k_{jn}}(t)=y(t) locally uniformly on (-\infty, T] . Hence \lim_{narrow\infty}y_{n}(t)=

y(t) locally uniformly on (-\infty, T] and then

\lim_{narrow\infty}(y_{n}’(t)-y’(t))=\lim_{narrow\infty}a[x_{n}(y_{n}(t))-x_{n}(t)-x(y(t))+x(t)]=0

locally uniformly on (-\infty, T] . Thus \lim_{narrow\infty}y_{n}=y in X_{T} , and so

\lim_{narrow\infty}P_{(T,\xi)}(x_{n})=\lim_{narrow\infty}y_{n}=y=P_{(T,\xi)}(x) ,

which proves that P_{(T,\xi)} is a continuous operator.
It remains to show that P_{(T,\xi)}(\mathcal{K}_{(T,\xi)}) is a relatively compact subset of

X_{T} . Let \{y_{n}\}\subset P_{(T,\xi)}(\mathcal{K}_{(T,\xi)}) . Then there exists a sequence \{x_{n}\}\subset \mathcal{K}_{(T,\xi)}

such that y_{n}=P_{(T,\xi)}(x_{n}) , n\in \mathbb{N} , and therefore equalities (23) are sat-
isfied. Using the Cauchy diagonal process and the Arzel\‘a-Ascoli theorem
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we can assume, without loss of generality, that \{x_{n}(t)\} and \{y_{n}(t)\} are
locally uniformly convergent on (-\infty, T] and let \lim_{narrow\infty}x_{n}(t)=x(t) ,
\lim_{narrow\infty}y_{n}=y(t) . Then (23) implies that \{y_{n}’(t)\} is locally uniformly
convergent on (-\infty, T] and we have \lim_{narrow\infty}y_{n}’(t)=y’(t) . Hence \{y_{n}\} is
a convergent sequence in X_{T} , and consequently P_{(T,\xi)}(\mathcal{K}_{(T,\xi)}) is relatively
compact subset of X_{T} . This completes the proof. \square

Proof of Theorem 3. Fix (T, \xi)\in \mathbb{R}^{2},0<T-\xi\leq\frac{1}{a} . Since \mathcal{K}_{(T,\xi)} is a
bounded convex closed subset of the Fr\’echet space X_{T} and P_{(T,\xi)} : \mathcal{K}_{(T,\xi)}

-

\mathcal{K}_{(T,\xi)} is a compact operator by Lemma 12, we can apply Tychonoff-
Schauder fixed point theorem to the operator P_{(T,\xi)} . Hence there exists
a fixed point y\in \mathcal{K}_{(T,\xi)} of P_{(T,\xi)} . Of course, 0\leq y’(t)\leq 1 ,

y’(t)=a[y(y(t))-y(t)]+1 , t\in(-\infty, T]

and y(T)=\xi . Then y is a solution of (5) on (-\infty, T] . By Theorem 2, any
z\in A_{1}^{+} is defined on \mathbb{R} , and consequently there exists a right continuation
of y on \mathbb{R} , say x . The solution x satisfies the conclusions of Theorem 3.

\square

4. Set \mathcal{B}^{+}

Theorem 4 \mathcal{B}^{+} is an empty set

Proof. Assume \mathcal{B}^{+}\neq\emptyset . Then there exists x\in \mathcal{B}^{+} , and let x be defined on
an interval J . Since x’(t)>1 for t\in J , the equality x’(t)=ax’(t)[x’(x(t))-
1] implies x’(t)>0 on J , and consequently x’(t) and (0<)x(t)-t are
increasing on J . By Lemma 2, x(t)\in J for each t\in J and therefore [t, \infty)\subset

J for each t\in J . Rom the Taylor formula we get x’(t)=ax’(\epsilon)[x(t)-t]+1

for t\in J where t <\epsilon(=\epsilon(t))<x(t) . Then x’(t)<x’(\epsilon) since x’>0 , and
so x’(t)>ax’(t)[x(t)-t]+1 and

x’(t)[1-a(x(t)-t)]>1 (24)

for t\in J . We know that \lim_{tarrow\infty}(x(t)-t)=\infty . Hence \lim_{tarrow\infty}x’(t)[1-

a(x(t)-t)]=-\infty which contradicts (24). \square

5. Survey of main results

Set \epsilon=sign a and \nu=signb .
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Theorem 5 For each (T, \xi)\in \mathbb{R}^{2},0<\epsilon(T-\xi)\leq\frac{1}{|a|} , there exists a

maximal solution x of (5) on \mathbb{R} such that x(T)=\xi .
If x\neq t is a maximal solution of (5) on an interval J , then

(i) J=\mathbb{R} ;
(ii) \epsilon(x(t)-t)<0,0<x’(t)<1 , \epsilon x’(t)<0 for t\in \mathbb{R} ;
(iii) there exists T\in \mathbb{R} such that x(T)=T- \frac{1}{a} and \lim_{tarrow\epsilon\infty}x(t)=T ;
(iv) x(t)=t+\alpha(t) , where \alpha\in C^{\infty}(\mathbb{R}) , \epsilon\alpha(t)<0 for t\in \mathbb{R} and

\lim_{tarrow-\epsilon\infty}\alpha(t)=\lim_{tarrow-\epsilon\infty}\alpha’(t)=\lim_{tarrow-\epsilon\infty}\alpha’(t)=0 ;

(v) x(t)=T+\beta(t) , where \beta\in C^{\infty}(\mathbb{R}) , \epsilon\beta(t)<0 for t\in \mathbb{R} and

\lim_{tarrow\epsilon\infty}\beta(t)=\lim_{tarrow\epsilon\infty}\beta’(t)=\lim_{tarrow\in\infty}\beta’(t)=0 .

Proof Let \epsilon=1 . The first statement is Theorem 3. Let x be a maximal
solution of (5) on an interval J , x\neq t . By Theorem 1 and Theorem 4,
x\in A_{1}^{+} and J=\mathbb{R} by Theorem 2. Property (ii) follows from the definition
of the set A_{1}^{+} : Lemma 7 and Lemma 9. Remark 2, Lemma 10 and (ii) imply
properties (iii)-(v) . For \epsilon=-1 , the assertions of our theorem follow from
Lemma 3 (cf. Remark 3) and Theorem 5 with \epsilon=1 . \square

Applying Lemma 1 to Theorem 5 we immediately obtain the following
properties of maximal solutions for equation (4).

Theorem 6 For each (T, \xi)\in \mathbb{R}^{2},0<\epsilon(T-\xi)\leq\frac{1}{|a|} , there exists a

maximal solution y of (4) on \mathbb{R} such that y(T)= \frac{1}{b}(T-\xi) .
If y is a maximal solution of (4) on an interval J and y\neq 0 , then

(j) J=\mathbb{R} ;
(jj) \epsilon\nu y(t)>0,0<\nu y’(t)<\frac{1}{|b|} , \epsilon\nu y’(t)>0 for t\in \mathbb{R} ;

(jjj) there exists T\in \mathbb{R} such that y(T)= \frac{1}{ab} and \lim_{tarrow\in\infty} (t- y(t) =T;
(jv) \lim_{tarrow-\epsilon\infty}y(t)=\lim_{tarrow-\epsilon\infty}y’(t)=\lim_{tarrow-\epsilon\infty}y’(t)=0 ;
(v) y(t)= \frac{1}{b}(t-T+\gamma(t)) , where \gamma\in C^{\infty}(\mathbb{R}) , \epsilon\gamma(t)>0 for t\in \mathbb{R} and

\lim_{tarrow\epsilon\infty}\gamma(t)=\lim_{tarrow\epsilon\infty}\gamma’(t)=\lim_{tarrow\epsilon\infty}\gamma’(t)=0 .
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