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Quantization of canonical isomorphisms and the
semiclassical von Neumann theorem
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Abstract. We prove the three mutually related theorems: the theorem on the quantiz-
ability of canonical isomorphisms, the theorem on the quantizability of classical canonical
commutation relations and asemiclassical version of von Neumann’s theorem. Although
some similar results can be obtained on the basis of the deformation theory (e.g. [16],
[15], [10] ) , here we present the proofs which involve only elementary methods and notions.
Moreover, in our approach we can easily compute the quantum corrections. Our deforma-
tion quantizations (semiclassical algebras) are additionally equipped with the deformation
involutions and we study here the algebras of entire functions and of polynomials, instead
of frequently used algebras of c\infty observables.

Key words: semiclassical limit, quantization, canonical commutation relations, canonical
isomorphisms, deformation quantization.

Introduction

Canonical isomorphisms, that is the isomorphisms of aphase space
preserving its symplectic structure, play an important role in classical me-
chanics. Their quantum analogues are unitary transformations of Hilbert
space, “quantum phase space” One of the interesting problems concerning
canonical isomorphisms and unitary transformations is their semiclassical
relationship. An important question concerns quantization of canonical
isomorphism into aunitary transformation, that is, of finding aunitary
transformation which can be treated in some sense as corresponding to a
given canonical isomorphism.

Let us note that the meaning of that correspondence cannot be trivial.
Namely, consider aphase space X , acanonical automorphism u of X and
aprocedure of quantization \bigwedge_{\hslash} (A > 0) of observables on X into operators
acting in aHilbert space. If the transformation of operators T_{u} given by
T_{u}\hat{f}^{\hslash}=(t_{u}f)^{\bigwedge_{\hslash}} with t_{u}f=f\circ u , had the form t_{u}\hat{f}’=U_{\hslash}^{-1}f^{\bigwedge_{\hslash}}U_{\hslash} , where U_{\hslash}

is aunitary transformation, then we could call U_{\hslash} aquantization of u (for
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the given procedure \wedge .). However, such U_{\hslash} usually does not exist, since T_{u}

does not preserve the composition and adjoint of operators (understood in
any formal sense). Thus, it seems to be natural from the semiclassical point
of view to replace t_{u} in the definition of T_{u} by t_{u}1 “quantum corrections” ,
to make T_{u} preserve the multiplication and adjoint. If this is possible, u
should be treated as aquantizable canonical transformation.

This idea can be rigorously formulated, if we use the s0-called defor-
mation model of quantum mechanics instead of the traditional one. In the
deformation model the classical and the quantum algebras of observables
are the same set with different algebraic structures. The quantum struc-
ture is given by adeformation quantization –afamily \{\star_{n}\}_{n\in N} of bilinear
operations in algebra, where \star 0 is the classical multiplication of observables
and the formal operation \star_{\hslash}=\sum_{n=0}^{\infty}\hslash^{n}\star_{n} is associative and satisfies some
conditions of consistence with the classical structure. The deformed mul-
tiplication \star_{\hslash} is an analogue of the multiplication of operators from the
traditional model of quantum mechanics, but the subtle difficulties with
domains of operators do not exist in the deformation model.

The idea of deformation quantization was first introduced by Moyal
(see [19]) and it has been developed by many authors (see e.g. [24], [1],
[2] [14], [15], [10], [6], [13], [7], [20] ) . Deformation quantizations connected
with particular procedures of quantization of observables were used for the
semiclassical studies in the traditional model of quantum mechanics (see
e.g . [4] and [12] ) .

In our considerations we also follow the ideas of the deformation model.
Additionally, to obtain the structure which fully corresponds to the quantum
structure based on the Hilbert space, we consider also the deformations
of the classical involution. Such deformations, analogues of the adjoint
of operator, seem to be anecessary element of the deformation model of
quantum mechanics. However, in most of the literature no deformation
of involution is considered (see [23] as an exception). Thus we introduce
here the notion of semiclassical algebra, which includes the deformations
of the classical multiplication and of the classical involution. Our studies
refer to two kinds of algebras, the polynomial and entire algebras, which
correspond to the algebras of polynomials and of entire functions of 2d-
variables, respectively.

The first of our results, Theorem 1, is asemiclassical version of the well-
known von Neumann theorem on unitary equivalence of representations of
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commutation relations in Hilbert space (see e.g. [21, th. VIII.14]). It states
that two selfadjoint systems satisfying the same commutation relations in
two formal semiclassical algebras are (under some technical assumptions)
equivalent through auniquely determined formal unitary transformation
of these algebras. We compute explicit recurrent formulas for the quan-
tum corrections. The second result concerns the quantization of systems
satisfying classical canonical commutation relations. We prove Theorem 2,
stating that under some natural assumptions the appropriate quantization
exists. Our Theorem 3asserts that each classical canonical isomorphism is
semiclassically quantizable. This result is adirect consequence of the two
previous theorems. As an illustration we find simple recurrent formulas for
the quantum corrections to the canonical transformation induced by alinear
isomorphism of \mathbb{R}^{2d} . We also give some examples showing the relationships
between the quantization in the deformation model of quantum mechanics
and in the traditional one, based on Hilbert space framework.

Some similar results can be obtained by the use of advanced methods of
the deformation (and star-product) theory. In particular, the results similar
to our Theorem 3were obtained by Lichnerowicz in [16]. This theorem is
also closely related to the problem of equivalence of deformations, which
is considered for instance in [15] and [10]. All these papers use Hochschild
or Chevalley cohomology groups (see [9] and [11]) and consider the case
of arbitrary symplectic manifolds. In the present paper, in contrast, using
elementary methods, we study the relationships between the quantization
of canonical isomorphisms, the semiclassisal von Neumann theorem and the
quantization of classical canonical commutation relations. Therefore, our
results can be applied primarily to the case of the linear phase space \mathbb{R}^{2d} ,
which is simple from the deformation theory point of view, but is very
important for applications.

There are also some other differences between the results cited and
ours. The most important is the use of deformation involution in this paper.
Moreover, we do not deal with the commonly used algebra of C^{\infty} functions,
but study the algebras of polynomials and of entire functions. Other im-
portant differences concern the assumptions on the formal deformation \star_{\hslash} .
Generally authors consider only the s0-called star-products, which are for-
mal deformations satisfying some symmetry (parity) assumptions (see e.g.
[14] ) . They usually also require coefficients \star_{n} to be bilinear diferential op-
erators. In our paper we consider the general (also “non-symmetric”) case of
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associative formal deformation \star_{\hslash} . The “non-symmetric” deformations play
an important role in quantum mechanics, and are related in anatural way
to various procedures of quantizations of observables. We also do not make
the differentiability assumption on \star_{n}- s in the case of polynomial algebras.
(Note that many important operators acting in the space of polynomials
are not differential, for instance, the operator of integration.)

In this paper some proofs are omitted or shortened (especially in Sec-
tion 1). For the details we refer the reader to [17] and [18].

The method of quantization of canonical transformations shown here
was suggested to me by Jan Herczynski. Iwould like to thank him also
for his valuable remarks. Iwould also like to thank Janusz Grabowski for
showing me some important references to the subject of deformation theory.

1. Classical and semiclassical algebras

We introduce here some notions which will be used in this paper, with
the main notion of semiclassical algebra being the quantization of classical
algebra.

For multi-indices \alpha , \beta\in N^{m} we denote |’ |= \sum j_{=1} \alpha_{j} , \alpha!=\prod_{j=1}^{m}\alpha_{j} !,
(_{\beta}^{\alpha})= \prod_{j=1}^{m}(_{\beta_{j}}^{\alpha_{j}});\alpha\leq\beta if \alpha j\leq\beta_{j} for j=1 , . , m;if a\in \mathbb{C}^{m} , then
a^{\alpha}= FIj=1m a_{j}^{\alpha_{j}} ; 1j is the multi-index with 1in the j -th position and 0at
the remaining ones (here 06 N). The notation for systems of multi-indices
is similar, e.g., for \alpha\in(N^{m})^{k}|0|=\sum_{j=1}^{k}|Qj| . For z \in \mathbb{C}^{m}|z|=\sum; 1 |z_{k} | .

In this paper algebra is acomplex linear space with bilinear, associative
multiplication and with the neutral element 1. For an algebra A characters
in boldface, like e , f , are used to denote elements of A^{m} for some m\in N;
f_{j} is the j -th term of f , f^{\alpha}=f_{1}^{\alpha_{1}} . f_{m^{m}}^{\alpha} for a \in N^{m} (with f^{0}= I for any
f\in A) . We denote also f’\subset f for f\in A^{m} and f’\in A^{m’} with m’\leq m,

when f_{j}’=f_{j} for j=1 , \ldots , m’ . \mathcal{M}_{m}(X) is the set of m\cross m matrices
with elements in X and for C\in \mathcal{M}_{m}(X)C_{ij} is its element from the i-th
row and the j -th column, Cf\in A^{m} with (Cf)_{i}= \sum_{j=1}^{m}C_{ij}f_{j} . We use
the convention that for F : Xarrow Y the same F denotes the product map
F : X^{m}arrowp Y^{m} , F ((x_{1}, \ldots, x_{m}))=(F(x_{1}), \ldots, F(x_{m})) ;if F is linear we
also omit the brackets, e.g., te= (te_{1}, \ldots, te_{m}) for alinear t:Aarrow B and
e\in 4m.

The typical algebras considered here are Po1(\mathbb{C}^{m}) and Ent(\mathbb{C}^{m}) –the
algebras of polynomials and of entire functions on \mathbb{C}^{m} and also Po1(\mathbb{R}^{m})
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and Ent (\mathbb{R}^{m}) –the algebra of complex polynomials on \mathbb{R}^{m} and of complex
functions on \mathbb{R}^{m} having an extension to an entire function on \mathbb{C}^{m} , with
the usual pointwise operations. For f\in A^{m}a1(f) is the subalgebra of A
generated by f (the smallest one containing all of f_{j} ). For w\in Po1(\mathbb{C}^{m}) ,
w(x)= \sum_{\alpha\leq N}w_{\alpha}x’,, we set w(f)= \sum_{\alpha<N}w_{\alpha}f^{\alpha} . If all the generators f_{j}

commute, then a1(f)=\{w(f) : w\in Po1\overline{(}\mathbb{C}^{m})\} is commutative and then we
call f independent when w(f)=0 only for the zero w\in Po1(\mathbb{C}^{m}) . Amap
* of A is an involution if it is conjugate-linear, (fg)^{*}=g^{*}f^{*} and (f^{*})^{*}=f

for f, g\in A. An algebra with an involution will be called ’algebra.
We denote re^{*}f=\frac{1}{2}(f+f^{*}) , im^{*}f=\frac{1}{2i}(f-f^{*}) , f is real if f^{*}=f,

f\in A^{m} is real when all f_{j} are real. Po1(\mathbb{R}^{m}) and Ent(\mathbb{R}^{m}) are ’algebras
with *being the usual conjugation of functions and Po1(\mathbb{C}^{m}) and Ent(\mathbb{C}^{m})

with the involution *given by the formula f^{*}(z)=\overline{f(\overline{z})} . ’Homomorphism
( isomorphism) is ahomomorphism (isomorphism) of algebras preserving
involution.

1.1. Polynomial and entire algebras

Definition 1.1 Let A be acommutative algebra. A is apolynomial al-
gebra if for some m\in N , m>0 there exists an independent e\in A^{m} such
that A=a1(e) . Each e satisfying the above conditions is an algebraic
base of the polynomial algebra A. An algebra A with agiven topology of
Fr\’echet space is an entire algebra if the multiplication is joint continuous
(i.e. continuous as amap from 4\cross A into A) and
(i) there exists afamily of seminorms \{ |||1\cdot\}j\in N inducing the topology in

A such that \forall f\in A,j\in N\exists\in>0\sup_{n\in N}\epsilon^{n}||f^{n}||j<+\infty ;
(ii) for some m\in N , m>0 there exists e\in A^{m} such that each f\in A

can be uniquely expressed as asum of series j \alpha\in Nmf_{\alpha}e^{\alpha} convergent
in A, with f_{\alpha}\in \mathbb{C} , and \forall f\in A,\in>0\exists C>0\forall\alpha\in N^{m}|f_{\alpha}|<C\epsilon^{|\alpha|} .

Each e satisfying (ii) is an analytic base of the entire algebra A. The number
m is the dimension of A for the both cases of algebras.

The dimension of polynomial and entire algebra is well-defined. Po1(\mathbb{R}^{m})

and Po1(\mathbb{C}^{m}) are m-dimensional polynomial algebras and we can choose
algebraic bases as x= (x_{1}, . , x_{m}) , where x_{j}(x)=x_{j} for x\in \mathbb{R}m or
\mathbb{C}^{m} respectively. Moreover, each m-dimensional polynomial algebra A is
isomorphic to Po1(\mathbb{C}^{m}) –for any algebraic base e of A we can define the
isomorphism \phi_{e} : Pol (\mathbb{C}^{m})arrow A by
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\phi_{e}(w)=w(e) (1.1)

for w\in Po1(\mathbb{C}^{m}) . Polynomial algebras are in some sense the poorest alge-
bras (by the Baire theorem it is impossibile to define there an interesting
topology of acomplete space). Note that the first part of (ii) means that
\{e^{\alpha}\}_{\alpha\in N^{m}} is atopological base of A and thus it is also aSchauder base –
see e.g. [5]. Note also that each family of seminorms inducing the topology
of an entire algebra satisfies the estimate from (i). In Ent(\mathbb{C}^{m}) we choose
the topology of almost uniform convergence, which is induced by the family
|| f||j= \sup_{|z|\leq j}|f(z) | , j\in N. In Ent(\mathbb{R}^{m}) we consider the similar for-
mula for ||f||_{j} , but in place of f\in Ent(\mathbb{R}^{m}) we put f_{ex1}\in Ent(\mathbb{C}^{m}) , the
unique analytic extension of f onto the whole \mathbb{C}^{m} . With these topologies
Ent(\mathbb{C}^{\gamma\gamma l}) and E_{11}t(\mathbb{R}^{m}) become m-dimensional entire algebras, and for an
analytic base we cari also choose x. The series from (ii) is then the usual
Taylor expansion with the origin in 0. From now on, Ent(\mathbb{C}^{m}) and Ent(\mathbb{R}^{m})

will designate these algebras with the above defined topologies. Each m-
dimensional entire algebra is ison orphically homeomorphic to Ent(\mathbb{C}^{m}) ;we
can define \phi_{e} : Ent(\mathbb{C}^{n\iota})arrow A by (1.1), where for w\in Ent(\mathbb{C}^{m}) with
w(x)=\sum_{\alpha\in N^{m}}w_{\alpha}x^{\alpha} we denote iv(e)= \sum_{\alpha\in N^{rn}}w_{\alpha}e^{\alpha} (note that the am-
biguous sense of the symbols \varphi_{e} and w(e) does not lead to confusion). The
above series is convergent in A and by the Banach-Steinhaus theorem it is
easily seen that \phi_{e} is an isomorphism and ahomeomorphism of Ent(C ’)
onto A.

The following simple proposition will be used in the next section.

Proposition 1.1 If Z3 is an algebra, A an \gamma\gamma -dimensional polynomial al-
gebra with an algebraic base e and f\in B^{m} has commuting elements, then
there exists exactly one homomorphism of algebras \varphi : 4arrow B satisfying
the condition \varphi(e)=f.

We now consider operators acting in these two kinds of algebra. Let A
be apolynomial or entire algebra and e\in A^{m} an algebraic or respectively
analytic base. Define A’=a1(e) . We have A’=A in the polynomial
case. In the analytic case A’ is adense polynomial subalgebra of A with an
algebraic base e . For \alpha\in N^{m} the symbol \partial_{e}^{\alpha} denotes the operator from A
into A in the polynomial case, and from A’ into A’ or from A into A in the
analytic case, given by the formula

\partial_{e}^{\alpha}=\phi_{e}’\partial^{\alpha}\phi_{e}^{-1} , (1.1)
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where \phi_{e} is defined for A or A’ and \partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial_{x_{1}}^{1}\cdots\partial}7^{\cdot} We also use the symbol
\partial^{\alpha} to denote \partial_{e}^{\alpha} when the choice of e is clear (e.g. usually e=x for Pol(C”)
and Ent(\mathbb{C}^{m})) . For \alpha=1_{?}.\cdot we write \partial_{e_{j}} instead of \partial_{e}^{\alpha} . When \alpha\in(N^{m})^{k}

and f\in A^{k} (or 4^{\prime k} ), we denote \partial_{e}^{\alpha}f=\prod_{j=1}^{k}\partial_{e}^{\alpha_{j}}f_{j} . Consider ak-linear
operator L given by

Lf= 5 l_{\alpha}\partial_{e}^{\alpha}f (1.3)
\alpha\in(N^{m})^{k}

for f\in(A’)^{k} , where l_{\alpha}\in A. This is awell-defined operator L : (A’)^{k}arrow A.

Proposition 1.2 Each k -linear L : (A’)^{k}-arrow A has the unique form
(1.3).

Definition 1.2 Let A be apolynomial or entire algebra. A k-linear L :
4^{k}arrow a is adifferential operator if

L= \sum_{\alpha\in F}l_{\alpha}\partial_{e}^{\alpha}
, (1.4)

for an algebraic or respectively, analytic base e and afinite set F\subset(N^{m})^{k} .

The choice of the base e is not essential in the above definition. When
A is an entire algebra, then any differential operator L is joint continuous.

We introduce the operation g_{e} transforming bilinear operators into
linear operators. If S(f, g)= \sum_{\gamma,\gamma\in N^{m}},s_{\gamma} ,

\gamma^{\prime\partial_{e}^{\gamma}f\cdot\partial_{e}^{\gamma’}g} for f, g\in A’(s_{\gamma,\gamma’}\in

A) , we set

Z_{e} (S) f= \sum_{|\alpha|\geq 2}(\frac{1}{2^{|\alpha|}-2}\sum_{\gamma+\gamma’=\alpha}s_{\gamma,\gamma’})\partial_{e}^{\alpha}f\cdot , (1.5)

which is well-defined in two cases. First, when f\in A_{J}’.i.e. Z_{e}(S) : A’-arrow A.

Second, when S is differential –then Z_{e}(S) : A-arrow A (with the same
notation) and Z_{e}(S) is differential.

1.2. Classical algebras

Definition 1.3 Acommutative ’algebra with abilinear, antisymmetric
operation \{ . \} : A\cross Aarrow A is aclassical algebra if
(i) (Leibnitz formula) for any f, g , h\in A

\{fg, h\}=f\{g, h\}+\{f, h\}q, (1.6
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(ii) (Jacobi formula) for any f, g , h\in A

\{\{f, g\}, h\}+\{\{h, f\}, g\}+\{\{g, h\}, f\}=0, (1.7)

(iii) (nondegeneracy) for any f\in A if \forall_{g\in A}\{f, g\}=0, then f= cI for
some c\in \mathbb{C} ,

(iv) (’invariance) for any f, g\in A

\{f, g\}^{*}=\{f^{*}, g’\} . (1.8)

The operation \{ , \} in aclassical algebra we call the Poisson bracket.

In literature the above defined classical algebras may also be referred to
as Poisson algebras with involutions, but here, for simplicity and because
of the semiclasical context, we shall use the former name. The algebras
Po1(\mathbb{R}^{2d}) , Ent(\mathbb{R}^{2d}) , Po1(\mathbb{C}^{2d}) and Ent(\mathbb{C}^{2d}) are classical algebras with the
Poisson bracket

\{f,g\}=\partial_{p}f\partial_{q}g-\partial_{p}g\partial_{q}f , (1.9)

where \partial_{q} , \partial_{p} are the systems of d operators with ( \partial_{q})_{j}=\partial_{q_{j}}=\frac{\partial}{\partial_{q_{j}}} , (\partial_{p})_{j}=

\partial_{p_{j}}=4 , arld the coordinates in \mathbb{R}^{2d} and \mathbb{C}^{2d} are denoted ( q_{1} , \ldots , q_{d} ,
p_{1} , \ldots , p_{d} ). We also write fg= \sum_{j=1}^{m}f_{j}g_{j} for f , g\in A^{m} .

Definition 1.4 Asystem e\in A^{m} in aclassical algebra A satisfies classical
canonical commutation relations (abbreviated to cccr) if there exists D\in

V_{m}(\mathbb{C}) such that \{e_{i}, e_{j}\}=D_{ij} Ifor i , j=1 , \ldots , m . We define cr(e)=D
then. When e satisfies cccr and cr(e)=D, we say that e satisfies cccr of
D-type.

If e satisfies cccr of the D-type then D^{T}=-D . In this paper we
consider polynomial and entire classical algebras. Note that these notions
are not simple intersections of the notions of polynomial or entire algebras
with the notion of classical algebra.

Definition 1.5 Aclassical algebra is apolynomial classical algebra if it is
apolynomial algebra with an algebraic base satisfying cccr; it is an entire
classical algebra if it is an entire algebra with an analytic base satisfying cccr,
the involution is continuous and the Poison bracket isjoint continuous. Each
algebraic (analytic) base satisfying cccr in apolynomial (entire) classical
algebra is called acanonical base
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The dimension of any polynomial or entire classical algebra is even.
If e\in A^{m} is acanonical base, then \det cr(e)\neq 0 and for anonsingular
C\in A1_{m}(\mathbb{C}) the formula f=Ce defines also acanonical base, which
satisfies

cr(f)=Ccr(e)C^{T} (1.10)

Po1(\mathbb{R}^{2d}) , Po1(\mathbb{C}^{2d}) and Ent (\mathbb{R}^{2d}) , Ent (\mathbb{C}^{2d}) are our main examples of poly-
nomial and entire classical algebras. The system x = (x_{1}, \ldots, x_{2d}) is a
real canonical base for all of them. We denote (q, p)= x, where q=
(q_{1}, \ldots, q_{d}) , p =(p_{1}, . , p_{d}) and

cr((q, p))=(\begin{array}{ll}0 -II 0\end{array})

The Poisson bracket is abilinear differential operator in each polynomial
or entire classical algebra A, since for any canonical base e\in A^{m} with
cr(e)=D and

\{f, g\}=\sum_{i,j=1,\ldots,m}D_{i,j}\partial_{e_{i}}f\partial_{e_{j}}g (1.11)

for f, g\in A. Atransformation of aphase spaces preserving the symplectic
structure is called canonical. For canonical ?f we can define the transforma-
tion t_{u} of algebras of observables by t_{u}f=f\circ u , and t_{u} preserves the Poisson
bracket. In this paper we use the name canonical also for transformations
of observables.

Definition 1.6 Atransformation of classical algebras t : Aarrow B is
canonical, if it is a*homomorphism of algebras and t\{f, g\}=\{tf, tg\}

for f, g\in A. If t is invertible, we call it acanonical isomorphism.

Proposition 1.3 Let A and 13 be both polynomial or both entire classical
algebras. If t:Aarrow B is continuous in the entire case and e is a canonical
base of A, then
a) if t is a canonical isomorphism, then te is a canonical base of 13 and

cr(te)= cr(e);
b) if e is real, te is a real canonical base of B with cr(te) =cr(e) and t

is a homomorphism of algebras, then t is a canonical isomorphism.

The restriction: tf=f_{1\mathbb{R}^{2d}} is aacanonical isomorphism of Po1(\mathbb{C}^{2d})

onto Po1(\mathbb{R}^{2d}) or of Ent(\mathbb{C}^{2d}) onto Ent(\mathbb{R}^{2d}) and t^{-1}f=f_{ext} .
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Example 1.1 For m, n\in N consider amap u(n,m) of \mathbb{R}^{2} or \mathbb{C}^{2} given by
u(n,m)(q,p)=(q+(p+q^{n})^{m},p+q^{n}) . This is an analytical diffeomorphism
and u_{(n,m)}^{-1}(q,p)=(q-p^{m},p-(q-p^{m})^{n}) . Define s(n,m)f=f\circ u(n,m) for
afunction f on \mathbb{R}^{2} or \mathbb{C}^{2} . By Proposition 1.3 b) s(n,m) can be treated as a
canonical isomorphism of Po1(\mathbb{R}^{2}) , Po1(\mathbb{C}^{2}) , Ent(\mathbb{R}^{2}) or Ent(\mathbb{C}^{2}) .

1.3. Semiclassical algebras
We now introduce semiclassical notions, which in some sense are the

quantizations of the classical notions. We consider semiclassical algebras
–classical algebras with deformation product or deformation quantization
(see e.g. [1], [7], [14], [20]) and deformation involution (see e.g. [23]) being
classical multiplication and involution with quantum corrections. Serniclas-
sical algebras are analogues of quantum “algebras” of operators acting in a
Hilbert space. We also use the parallel approach with the notion of formal
semiclassical algebra, an ’algebra of the formal power series in the Planck
constant \hslash with the coefficients in aclassical algebra. The multiplication
and the involution correspond there to the operator product and adjoint
from the quantum model. The linear space of formal series in \hslash with the
coefficients in alinear space A we denote by 4[[7_{i}]] and its elements by
f_{\hslash} , g_{\hslash} etc., the coefficient of f_{\hslash} of \hslash^{n} is denoted by f^{(n)} and we write
f_{\hslash}= \sum n=0\infty\hslash^{n}f^{(n)}=f^{(0)}+ Af^{(1)}+\hslash2 f^{(2)}+ We often identify f\in 4

with its image under the embedding: A\ni farrow f+\hslash 0+\hslash^{2}0+\cdot\cdot \tau \in 4[[\hslash]] .
We set the hierarchy of some operations: the “strongest” are operations

of the type of * , *_{n} ; the next linear operators like t , t_{n} , s ;the next \star , \star_{n} ,
and the weakest+ , -. For instance t_{1}f\star 3tg^{*_{7}}-tof^{*}h=[(t1f)\star 3(t(g^{*_{7}}))]-

[(t_{0}(f^{*}))h] .

Definition 1.7 Aclassical algebra A with afamily \{\star_{n}\}_{n\in N} of bilinear
operations and afamily \{^{*_{n}}\}_{n\in N} of conjugate-linear operations in A is a
semiclassical algebra if
(i) for any f, g , h\in A , n\in N

\sum_{j+k=n}(f\star_{j}g)\star_{k}h=\sum_{j+k=n}f\star_{j}(g\star_{k}h)
; (1.12)

(ii) for any f\in A and n>0
I \star_{n}f=f\star_{n} Il =0; (1.13)
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(iii)

\star 0= ., \{ . \}_{1}=\{.1(1.14)

where for f, g\in A

\{f, g\}_{n}=i(f\star_{n}g-g\star_{n}f) ; (1.15)

(iv) for any f, g\in A , n\in N

\sum_{j+k=n}(f\star jg)^{*_{k}}=\sum_{j+k+l=n}g^{*_{k}}\star jf^{*\iota}
; (1.16)

(v) for any f\in Ain\in N

\sum_{j+k=n}(f^{*_{j}})^{*_{k}}=\{
f for n=0
0for n>0; (1.17)

(vi)

*0=* (1.18)

The family \{\star_{n}\}_{n\in N} is called adeformation product or deformation quan-
tization in A and \{^{*_{n}}\}_{n\in N} –adeformation involution in A. Afamily
\{f^{(n)}\}_{n\in N} of elements of A is selfadjoinl when for any n\in N

\sum_{k+l=n}(f^{(k)})^{*\iota}=f^{(n)}
; (1.19)

afamily \{f^{(n)}\}_{n\in N} of elements (f_{1}^{(n)}, \ldots, f_{m}^{(n)})\in A^{m} is selfadjoint when all
\{f_{i}^{(n)}\}_{n\in N} are selfadjoint.

To simplify the notation we shall usually denote asemiclassical alge-
bra by asingle letter. Let A be an algebra, \{\star_{n}\}_{n\in N} afamily of bilinear
operations and \{^{*_{n}}\}_{n\in N} afamily of conjugate-linear operations in A. For
f_{\hslash} , g_{\hslash}\in a[[\hslash]] define

f_{\hslash} \star_{\hslash}g_{\hslash}=\sum_{n=0}^{\infty}\hslash^{n}\sum_{j+k+l=n}f^{(k)}\star_{j}g^{(l)} , (1.20)

f_{\hslash}^{*_{\hslash}}= \sum_{n=0}^{\infty}\hslash^{n}\sum_{k+l=n}(f^{(k)})^{*\iota} . (1.14)
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Proposition 1.4 If A is a classical algebra, \star 0 , \star 1 and *0 satisfy (1.14)
and (1.18), then A with the families \{\star_{n}\}_{n\in N} and \{^{*_{n}}\}_{n\in N} is a semiclassical
algebra iff A[[\hslash]] is an algebra with the multiplication \star_{\hslash} , the unity If \in A

and the involution*_{\hslash} . Moreover, an element f_{\hslash} of this algebra is real iff
\{f^{(n)}\}_{n\in N} is selfadjoint in A.

We define aformal semiclassical algebra as an ’algebra A[[\hslash]] related
to asemiclassical algebra A by the above proposition.

Example 1.2 Consider amatrix M\in A t_{d} (R) and let A be one of the
classical algebras Po1(\mathbb{R}^{2d}) , Po1(\mathbb{C}^{2d}) , Ent (\mathbb{R}^{2d}) , Ent (\mathbb{C}^{2d}) . Define

f\star_{n}^{M}g= \sum \frac{i^{n}}{\alpha!\beta!}((E\partial_{q})^{\alpha}\partial_{p}^{\beta}f)((M\partial_{q})^{\beta}\partial_{p}^{\alpha}g) ,
|cr\f} |=n

f^{*_{n}^{M}}= \sum_{|\alpha|=n}\frac{i^{n}}{\alpha!}(G\partial_{q})^{\alpha}\partial_{p}^{\alpha}f^{*}

for f, g\in A, where E=I+M, G=I+2M. \{A, \{\star_{n}^{M}\}_{n\in N}, \{^{*_{n}^{M}}\}_{n\in N}\}

is asemiclassical algebra (see [17]). We denote it respectively Po1_{M}(\mathbb{R}^{2d}) ,
Po1_{M}(\mathbb{C}^{2d}) , Ent_{M}(\mathbb{R}^{2d}) , Ent_{M}(\mathbb{C}^{2d}) and we call them M semiclassical alge-
bras. The best known semiclassical algebras which can be obtained this way
are the following (see e.g. [3])
a) Po1_{q- p}(\mathbb{R}^{2d}) , etc. –q-p semiclassical algebras, when M=-I:

f \star_{n}^{q- p}g=\sum_{|\alpha|=n}\frac{(-i)^{n}}{\alpha!}\partial_{p}^{\alpha}f\partial_{q}^{\alpha}g , f^{*_{n}}q-p= \sum_{|\alpha|=n}\frac{(-i)^{n}}{\alpha!}\partial_{q}^{\alpha}\partial_{p}^{\alpha}f^{*};

b) Po1_{p- q}(\mathbb{R}^{2d}) , etc. –p-q semiclassical algebras, when M=0:

f \star_{n}^{p- q}g=\sum_{|\alpha|=n}\frac{i^{n}}{\alpha!}\partial_{p}^{\alpha}f\partial_{q}^{\alpha}g
, f^{*_{n}}p-q= \sum_{|\alpha|=n}\frac{i^{n}}{\alpha!}\partial_{q}^{\alpha}\partial_{p}^{\alpha}f^{*};

c) Po1_{W}(\mathbb{R}^{2d}) , etc. –Weyl semiclassical algebras, when M=- \frac{1}{2}I :

f \star_{n}^{W}g=\sum_{|\alpha+\beta|=n}\frac{(-1)^{|\beta|}i^{n}}{2^{n}\alpha!\beta!}(\partial_{q}^{\alpha}\partial_{p}^{\beta}f)(\partial_{q}^{\beta}\partial_{p}^{\alpha}g) ,

f^{*_{n}^{W}}=\{
f^{*} for n=0
0for n>0.
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Example 1.3 Let Po1_{\eta\xi}(\mathbb{C}^{2d}) and Ent_{\eta\xi}(\mathbb{C}^{2d}) be classical algebras given
as follows. As algebras they simply are Po1(\mathbb{C}^{2d}) and Ent(\mathbb{C}^{2d}) respectively,
for Ent_{\eta\xi}(\mathbb{C}^{2d}) the Fr\’echet space topology is the same as in Ent(\mathbb{C}^{2d}) . The
Poisson bracket is given by the formula \{f, g\}=i(\partial_{\eta}f\partial\xi g-\partial_{\eta}g\partial\xi f) , where
the coordinates in \mathbb{C}^{2d} are denoted here by (\eta, \xi) . We completely change the
formula for involution: f^{*}(\eta, \xi)=\overline{f(\overline{\xi},\overline{\eta})} for (\eta, \xi)\in \mathbb{C}^{2d} . Po1_{\eta\xi}(\mathbb{C}^{2d}) is a
polynomial and Ent_{\eta\xi}(\mathbb{C}^{2d}) an entire classical algebra. As acanonical base
we can take the system x denoted here by (\eta, \xi) . This canonical base is not
real, but \eta^{*}=\xi , \xi^{*}=\eta . The \eta\xi -Weyl semiclassical algebras Po1_{\eta\xi- W}(\mathbb{C}^{2d}) ,
Ent_{\eta\xi- W}(\mathbb{C}^{2d}) are given by

f \star_{n}^{\eta\xi- W}g=\sum_{|\alpha+\beta|=n}\frac{(-1)^{|\beta|}}{2^{n}\alpha!\beta!}(\partial_{\xi}^{\alpha}\partial_{\eta}^{\beta}f)(\partial_{\xi}^{\beta}\partial_{\eta}^{\alpha}g) ,

f^{*_{n}}\eta\xi- W=\{

f^{*} for n=0
0for n>0.

The above examples are related to some procedures of quantizations
of observables: q-p, pq and Weyl semiclassical algebras to q-p, pq and
Weyl quantizations (see [3]); \eta\xi-Weyl semiclassical algebra to Weyl quan-
tization in Bargmann space (see [4]) and M-semiclassical algebras to the
quantization given by the so called T-symbol(see [22], [17]), where T=
(\begin{array}{ll}A A+BA B\end{array}) \in A f_{2d}(\mathbb{R}) for some A, B\in \mathcal{M}_{d}(\mathbb{R}) with |\det A|=1, and

M=(A^{-1}B)^{T}

Definition 1.8 Asemiclassical algebra A is apolynomial semiclassical
algebra if A is apolynomial classical algebra; it is an entire semiclassical
algebra if A is an entire classical algebra, all *_{n} are continuous and \star_{n} are
joint continuous. Apolynomial or entire semiclassical algebra is differential
if all \star_{n} are differential.

All the semiclassical algebras from the examples 1.2 and 1.3 are differ-
ential. However, it is easy to construct non-differential examples.

The quantum commutator \frac{i}{\hslash} [, ] in 4[[\hslash]] is acounterpart of the Poisson
bracket:

\frac{i}{\hslash}[f_{\hslash}, g_{\hslash}]=\sum_{n=0}^{\infty}\hslash^{n}\sum_{j+k+l=n}\{f^{(k)}, g^{(l)}\}_{1+j} (1.22)
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for f_{\hslash} , g_{\hslash}\in q[[\hslash]] (where { \}_{n} is given by (1.15)). Thus, informally,
\frac{i}{\hslash}[f_{\hslash}, g_{\hslash}]=\frac{i}{\hslash}(f_{\hslash}\star_{\hslash}g_{\hslash}-g_{\hslash}\star_{\hslash}f_{\hslash}) . The well-known Moyal bracket (see e.g.
[1], [19] ) is the quantum commutator for Weyl semiclassical algebras.

Proposition 1.5 Let A be a semiclassical algebra. We have
(i) (Jacobi formula in A[[\hslash]] ) for f_{\hslash} , g_{\hslash} , h_{\hslash}\in A[[\hslash]]

\frac{i}{\hslash}[\frac{i}{\hslash}[f_{\hslash}, g_{\hslash}], h_{\hslash}]+ \frac{i}{\hslash}[\frac{i}{\hslash}[h_{\hslash}, f_{\hslash}] , g_{\hslash}]+ \frac{i}{\hslash}[\frac{i}{\hslash}[g_{\hslash}, h_{\hslash}] , f_{\hslash}]=0; (1.23)

(ii) for any f, g , h\in A , n\in N

\sum_{k+l=n}\{\{f, g\}_{1+k}, h\}_{1+l}+\{\{h, f\}_{1+k}, g\}_{11l}+\{\{,1, h\}_{1+k}, f\}_{1+l}=0;

(1.24)

(iii)

I^{*_{\hslash}}=\mathbb{I} ; (1.25)

(iv) for any f_{\hslash} , g_{\hslash}\in a[[\hslash]]

( \frac{i}{\hslash}[f_{\hslash}, g_{\hslash}])^{*_{\hslash}}=\frac{i}{\hslash}[f_{\hslash}^{*_{\hslash}}, g_{\hslash}^{*_{\hslash}}] . (1.26)

Definition 1.9 Let A be asemiclassical algebra. Afamily \{f^{(n)}\}_{n\in N}

of elements of A^{m} satisfies quantum canonical commutation relations with
corrections (abbreviated to qccr+c) if for some D\in M_{m}(\mathbb{C}) and for all
i , j=1 , \ldots , m

\sum_{k+l+s=n}\{f_{i}^{(k)}, f_{j}^{(l)}\}_{1+s}=\{

D_{i_{J}}.Ifor n=0
0for n>0.

(1.27)

If (1.27) holds we say that \{f^{(n)}\}_{n\in N} satisfies qccr+c of D-type. Asystem
f\in A^{m} satisfies quantum canonical commutation relations (abbreviated to
qccr) if for some D\in \mathcal{M}_{m}(\mathbb{C}) and for all i , j=1 , \ldots , m

\{f_{i}, f_{j}\}_{n}=\{

D_{ij} Ifor n=1
0for n>1.

(1.28)

Analogically, when (1.28) holds we say that f satisfies qccr of D -type. A
system f\in A^{m} is quantizable if there exists \{f^{(n)}\}_{n\in N} satisfying qccr+c
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with f^{(0)}= f;afamily \{f^{(n)}\}_{n\in N} is then aquantization of f and f^{(n)}

for n\geq 1 are quantum corrections to f . We say that f is selfadjoint
quantizable if it has aquantization which is aselfadjoint family (which we
call aselfadjoint quantization).

For afamily \{f^{(n)}\}_{n\in N} consider asystem (f_{\hslash,1}, \ldots, f_{\hslash,m})\in (A[[\hslash]])^{m}

given by

f_{\hslash,i}= \sum_{n=0}^{\infty}\hslash^{n}f_{i^{r}}^{(n)} (1.29)

Proposition 1.6 If A is a semiclassical algebra, then \{f^{(n)}\}_{n\in N} satisfies
qccr+c of D-type iff \frac{i}{\hslash}[f_{\hslash,i}, f_{\hslash,j}]=D_{ij} I for i , j=1 , \ldots , m .

Thus qccr+c are analogue of operator canonical commutation relations
in aHilbert space. Note that f satisfies qccr of D-type iff the family
\{f^{(n)}\}_{n\in N} given by f^{(0)}=f and f^{(n)}=0 for n>0 satisfies qccr+c of
D-type. Roughly speaking, qccr is qccr+c with zero corrections. Hence, if

f satisfies qccr, then f is quantizable. If \{f^{(n)}\}_{n\in N} satisfies qccr+c of D-
type, then f^{(0)} satisfies cccr of D-type. The inverse fact on quantizability of
systems satisfying cccr is one of the main problems considered in this paper
(see Theorem 2). The system (q, p) in M-semiclassical algebras and (\eta, \xi)

in \eta\xi-Weyl semiclassical algebra are quantizable since they satisfy qccr.
We define now semiclassical unitary transformations, which are in some

sense quantizations of canonical transformations. In the quantum case, for
aunitary operator U acting in aHilbert space, we can consider the trans-
formation Tu, T_{U}A=U^{-1}AU, acting on quantum observables (operators)
A . Thus Tu preserves the algebraic structure of “observables algebra” A
similar property defines semiclassical unitary transformations.

Definition 1.10 Afamily \{t_{n}\}_{n\in N} of linear transformations between semi-
classical algebras A and 8is asemiclassical unitary transformation of A
into B if
(i) for any f, g\in A , n\in N

\sum_{j+k=n}t_{k}(f\star_{j}g)=\sum_{j+k+l=n}t_{k}f\star_{j}t_{l}
g; (1.30)
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(ii)

t_{n} (I) =\{
Ifor n=0
0for n>0,

(1.31)

(iii) for any f\in A , n\in N

E t_{k}f^{*_{j}}= 5 (t_{k}f)^{*_{j}} . (1.32)
j -+k=n j+k=n

Atransformation t : Aarrow B is quantizable if there exists asemiclassical
unitary transformation \{t_{n}\}_{n\in N} of A into 8such that to=t;\{t_{n}\}_{n\in N} is then
aquantization of t . The transformations t_{n} for n\in N are coefficients of the
semiclassical unitary transformation or, for n>0, the quantum corrections
to t .

Let \{t_{n}\}_{n\in N} be afamily of linear transformations of A into B. We
consider the transformation t_{\hslash} : 4[[\hslash]]arrow B[[\hslash]] given by

t_{\hslash}f_{\hslash}= \sum_{n=0}^{\infty}\hslash^{n}\sum_{j+k=n}t_{j}f^{(k)} . (1.33)

Proposition 1.7 If A and 13 are semiclassical algebras, then \{t_{n}\}_{n\in N} is a
semiclassical unitary transformation of A into t3 iff t_{\hslash} is a* homomorphism
of the formal semiclassical algebra 4[[7i]] into B[[\hslash]] .

If \{t_{n}\}_{n\in N} is asemiclassical unitary transformation, then we call t_{\hslash} a
formal unitary transformation. By Proposition 1.7

t_{\hslash}( \frac{i}{\hslash}[f_{\hslash}, g_{\hslash}])=\frac{i}{\hslash} [t_{\hslash}f_{\hslash}, t_{\hslash}g_{\hslash}] (1.34)

for f_{\hslash} , g_{\hslash}\in A[[h]] or, equivalently, for f, g\in A , n\in N

\sum_{j+k=n}t_{k}\{f, g\}_{1+j}=\sum_{j+k+l=n}\{t_{k}f, t_{l}g\}_{1+j}
. (1.35)

In particular we obtain canonicity of to. The inverse fact on quantizability
of canonical transformations is one of the main subjects of this paper (see
Theorem 3).

Consider semiclassical algebras A, B. Let \{e^{(n)}\}_{n\in N} and \{f^{(n)}\}_{n\in N}

be families of elements of A^{m} and B^{m} respectively and let \{t_{n}\}_{n\in N} be a
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family of linear transformations of A into N. Then .\{f^{(n)}\}n\in N is an image

of \{e^{(n)}\}_{n\in}N by \{t_{n}\}_{n\in N} if

\sum_{j+k=n}t_{k}e_{i}^{(j)}=f_{i}^{(n)}
(1.36)

for i=1 , \ldots , m , n\in N. The above can be also written in the form t_{\hslash}e\hslash,i=

f_{\hslash,i} , where e_{\hslash,i} , f_{\hslash,i} are given by (1.29). Hence, if \{e^{(n)}\}_{n\in N} satisfies qccr+c
of D-type, \{t_{n}\}_{n\in N} is asemiclassical unitary transformation and \{f^{(n)}\}_{n\in N}

is an image of \{e^{(n)}\}_{n\in N} by \{t_{n}\}_{n\in N} , then by (1.34) \{f^{(n)}\}_{n\in N} also satisfies
qccr+c of D-type.

Consider semiclassical algebras A, B , C with afamily \{t_{n}\}_{n\in N} of linear
transformations of A into B and \{s_{n}\}_{n\in N} of B into C . The family \{u_{n}\}_{n\in N}=

\{\sum_{j+k=n}s_{j}\circ t_{k}\}_{n\in N} is the superposition of \{s_{n}\}_{n\in N} and \{t_{n}\}_{n\in N} ;we denote
it by \{s_{n}\}_{n\in N}\circ\{t_{n}\}_{n\in N} . On the level of formal semiclassical algebras the
above simply means that u_{\hslash}=s_{\hslash}\circ t_{\hslash} , hence superposition is associative.
When A=C, then the family \{s_{n}\}_{n\in N} is the inverse of \{t_{n}\}_{n\in N} , if \{s_{n}\}_{n\in N^{\circ}}

\{t_{n}\}_{n\in N}=\{Id_{A,n}\}_{n\in N} and \{t_{n}\}_{n\in N}\circ\{s_{n}\}_{n\in N}=\{IdB,n\}_{n\in N} , where IdA,n=
IdA for n=0 and IdA,n=0 for n>0 and similarly for B . If the inverse
of \{t_{n}\}_{n\in N} exists, then we denote it by \{t_{n}\}_{n\in N}^{-1} and we say that \{t_{n}\}_{n\in N} is
invertible. Obviously, \{s_{n}\}_{n\in N}=\{t_{n}\}_{n\in N}^{-1} iff s_{\hslash}=t_{\hslash}^{-1}- By Proposition 1.7,
superpositions and the inverses of semiclassical unitary transformations are
also semiclassical unitary transformations.

Definition 1.11 An invertible semiclassical unitary transformation is a
semiclassical unitary isomorphism. The formal unitary transformation cor-
responding to asemiclassical unitary isomorphism is aformal unitary is0-
morphism.

If \{t_{n}\}_{n\in N} is asemiclassical unitary isomorphism, then to is acanonical
isomorphism. Moreover we have:

Proposition 1.8 If \{t_{n}\}_{n\in N} is a quantization of a canonical isomorphism
t_{0} , then \{t_{n}\}_{n\in N} is a semiclassical unitary isomorphism and \{t_{n}\}_{n\in N}^{-1} is a

quantization of t_{0}^{-1}

2. The semiclassical von Neumann theorem

In this section we prove asemislassical version of von Neumann the0-
rem on unitary equivalence of quantum operator commutation relations in



42 M. Moszyiiski

Hilbert space (see [21, th. VIII.14]), Theorem 1below.
In formal semiclassical algebras terms the idea of the semiclassical von

Neumann theorem may be expressed as follows: under some “technical as-
sumptions”, if (e\hslash,1, . , e\hslash,m) , (f_{\hslash,1}, \ldots, f_{\hslash,m}) are real systems of elements
of formal semiclassical algebras A[[\hslash]] , B[[\hslash]] respectively and the commuta-
tion relations

\frac{i}{\hslash}[e_{\hslash,i}, e_{\hslash,j}]=D_{i,j}I , \frac{i}{\hslash}[f_{\hslash,i}, f_{\hslash,j}]=D_{i,j} I

hold for i , j=1 , \ldots , m and some D\in M_{m}(\mathbb{C}) , then there exists a formal
unitary transformation t_{\hslash} : B[[\hslash]]arrow B[[\hslash]] , such that t_{\hslash}e_{\hslash,i}=f_{\hslash,i} for
i=1 , \ldots , m . We thus need atool to construct aproper semiclassical
unitary transformation.

2.1. The inductive lemma
The following lemma is our main technical tool. We shall say that

acondition with anatural parameter n is satisfied on the level s , if it is
satisfied for n=s.
Lemma 2.1 (The inductive lemma) Suppose that \{e^{(n)}\}_{n\in N} , \{f^{(n)}\}_{n\in N}

satisfy qccr+c of the same type in semiclassical algebras A, B respectively
and that e^{(0)}\in A^{m} is independent. If n\geq 1 and for any k=0, \ldots , n-1
there exist linear transformations t_{k} : Aarrow B satisfying (1.30), (1.31) and
(1.36) on the levels 0, . ’ n- l, then there exists the exactly one linear
transformation t_{n}’ : 4’arrow B, there A’=a1(e^{(0)}) , satisfying
(i) t_{n}’(fg)=t_{n}’f t0g+tof t_{n}’g-P_{n}(f, g) for f, g\in A’ , where P_{n} :

A\cross Aarrow B,

P_{n}(f, g)= \sum_{k\neq n}t_{k}(f\star_{j}g)-j+k=nj+k,l \neq n\sum_{k+l=n},t_{k}f\star_{j}t_{l}

g; (2.1)

(ii) t_{n}’I =0;
(iii) t_{n}’e^{(0)}=\overline{f}^{(n)} , wheref-(y)

\in B^{m},\overline{f}^{(n)}=f^{(n)}-j+
k \neq n\sum_{k=n},t_{k}e^{(j)}

.

Proof The uniqueness of the choice of t_{n}’ is immediate, since a1(e^{(0)})=

A’ . We prove the existence of t_{n}’ employing the idea from the theory of ordi-
nary differential equations, where the extended phase space is constructed
to replace the problem of solving of anon-autonomous equation by the
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problem of solving of the corresponding autonomous equation. Therefore
we first find the linear transformation \varphi : A’arrow\overline{A} , where \overline{A}=A\cross B,
satisfying
(i’) \varphi(fg)=\varphi(f)\varphi(g) for f, g\in 4’, where the operation : \overline{A}\cross\overline{A}-arrow\overline{A}

is defined for f, g\in A , f ’ , g’\in B by

(f, f’)(g, g’)=(fg, f’t_{0}g+t_{0}fg’-P_{n}(f, g)) ; (2.2)

(ii’)\varphi(I)= (I, 0);
(iii’)\varphi(e_{i}^{(0)})= ( e_{i}^{(0)},\overline{f}sn)

) for any i=1 , . , m .
If \varphi is as above, then it has the form f =(\varphi_{1},22) , and by (i’) and (ii’)
\varphi_{1} : A’arrow 4 is ahomomorphism of the algebras. Since A’=a1(e^{(0)}) and
(iii’) holds, \varphi_{1}(f)=f for f\in A’ . We can thus define t_{n}’= 7^{2}2 and by (i’) ,
(ii’) , (iii’) it satisfies the conditions (i), (ii), (iii).

We have to prove the existence of 2 \cdot Suppose that \overline{A} is the algebra
with the multiplication and with the unity (I, 0) , in which ( e_{i}^{(0)},\overline{f}Sn) )

commute for i=1 , \ldots , m . Then the above conditions on \varphi exactly mean
that 2 is ahomomorphism of the algebras with values on e(0) fixed by (iii’) .
Observe that by the independence of e(0) the algebra A’ is apolynomial
algebra and e(0) is its algebraic base. The existence of A follows then from
Proposition 1.1, provided our suppositions on \overline{A} are true.

We first check that (e_{r}^{(0)},\overline{f}_{r}^{(n)}) and ( e_{s}^{(0)},\overline{f}Sn) ) commutes under 0. By
(2.2) we can write this as P_{n}(e_{r}^{(0)}, e_{s}^{(0)})=P_{n}(e_{s}^{(0)}, e_{r}^{(0)}) , and this is, by (2.1)
and (1. 15), equivalent to

i+I_{-1} t_{i} \{e_{r}^{(0)}, es^{0)}\}1+j=\sum_{i+k+z=n-1}\{t_{i}e_{r}^{(0)}, t_{k}e_{s}^{(0)}\}_{1+z}
. (2.3)

The above condition corresponds to (1.35) on the level n-1 for e_{r} , e_{s}
(0) (0)

(thus it would follow from (1.30) on the level n , but we assumed (1.30) only
on the levels 0, . . . ’ n-1). To prove (2.3), consider first the case n>1 and
transform the LHS of (2.3) using the fact that \{e^{(n)}\}_{n\in N} satisfies qccr+c
and that tjfi=0 for j>0, and next using (1.35) on the levels 0, . ’ n-2
(which holds by (1.30) on the levels 1, . . . ’ n-1):

p t_{i}\{e_{r}^{(0)}, e(^{0)}\}_{1+j}=- 1 t_{i} p \{e_{r}^{(u)}, e_{s}^{(w)}\}_{1+z}

i+j=n-1 i+j=n-1
u+w+z=jz\neq j
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=-i+u+ I=n-1t_{i}\{e_{r}^{(u)}, e_{s}^{(w)}\}_{1+z}

u+w\neq 0

=- \sum_{0<u+w\leq n-1}\sum_{i+z=n-1-(u+w)}t_{i}\{e_{r}^{(u)}, e_{s}^{(w)}\}_{1+z}

=- \sum_{u+w\neq 0}\{t_{i}e_{r}^{(u)}, t_{k}e_{s}^{(w)}\}_{1+z}i+k+z+u+w=n-1^{\cdot}

Using (1.36) on the levels 0, . . ’ n-1 and the fact that \{f^{(n)}\}_{n\in N} satisfies
qccr+c , we also have

0= \sum \{f_{r}^{(j)} , f_{S}^{(l)}\}_{1+z}= \sum \sum \{t_{i}e_{r}^{(u)} , t_{k}e_{S}^{(w)}\}_{1+z}

j+z+l=n-1 j+z+l=n-1k+w=l
i+u=j

= \sum \{t_{i}e_{r}^{(u)} , t_{k}e_{S}^{(w)}\}_{11z}+ \sum \{t_{i}e_{r}^{(0)} , t_{k}e_{S}^{(0)}\}_{11z} ,
i+k+z+u+w=n-1 i+k+z=n-1

u+w\neq 0

and this equality together with the previous one implies (2.3) for n>1.
When n=1 it is sufficient to use the condition t0e^{(0)}=f^{(0)} and the fact
that e^{(0)} , f^{(0)} satisfy cccr of the same type.

The bilinearity of and the neutrality of (I, 0)\in\overline{A} is evident, so it
remains to prove the associativity of O. By the equality t_{0}(fg)=t_{0}ft_{0}g

((1.30) on the level 0) it suffices to show that for f, g , h\in A

P_{n}(fg, h)-P_{n}(f, gh)-tofP_{n}(g, h)+P_{n}(f, g)t_{0}h=0. (2.4)

Thus, by (2.1) we must prove that L_{I}+L_{II}+R_{I}+R_{II}=0, where

L_{I}= \sum_{i+}i\neq nj=n,t_{i}[(fg)\star_{j}h-f\star_{j}(gh)]

;

L_{II}= \sum_{i+}i\neq nj=n,t_{i}(f\star_{j}g)t_{0}h-t_{0}f

, t_{i}(g\star_{j}h) ;

R_{I}=i+j+k=n \sum_{i,k\neq n}t_{i}f\star_{j}t_{k}(gh)-t_{k}(fg)\star_{j}t_{i}h

;

R_{II}=i+j+k_{-}^{-}n \sum_{i,k\neq n}

t_{0}f (t_{i}g\star_{j}t_{k}h))-(t_{7}f\star_{j}t_{i}g) | t_{0} h.
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Using (1.12) for f , g , h we have

0= \sum_{i=0}^{n-1}0=\sum_{i=0}^{n-1}t_{i}[(fg)\star(n-i)h-f\star(n-i)(gh)]

+ \sum_{k=1}^{n}\sum_{i=0}^{n-k}tJ(f\star_{k}g)\star(n-i-k)h-f\star(n-i-k)(g\star_{k}h)]

=L_{I}+ \sum_{k=1}^{n}\sum_{r+u+s=n-k}t_{r}(f\star_{k}g)\star_{u}t_{S}h-t_{S}f\star_{u}t_{r}(g\star kh) ,

where the last equality follows from (1.30) on the levels 0, . . . ’ n-1 for f\star kg,
h and for f , g\star k h. Thus we have

\sum t_{r}(f\star_{k}g)\star_{u}t_{S}h-t_{S}f\star_{u}t_{r}(g\star kh)=-L_{I} , (2.5)
(r,u,s,k)\in A

where A=\{(r, u, s, k)\in N^{4} : r+u+s+k=n, k>0\} . By (1.12) for t_{k}f ,
t_{l}g , t_{m}h we also have

0= \sum_{i=0}^{n}\sum_{r,l,s\neq n}0=\sum_{ir+l+s=i=0}^{n}\sum_{r,l,s\neq n}\sum_{kr+l+s=i+u=n-i}(t_{r}f\star_{k}t_{l}g)\star_{u}t_{s}h-t_{r}f\star_{u}
( t_{l}g\star c^{t}s h)

= \sum_{(r,u,s,k,l)\in C\cup D}(t_{r}f\star_{k}t_{l}g)\star_{u}t_{s}h-t_{s}f\star_{u}(t_{r}g\star_{k}t_{l}h)
, (2.6)

with

C=\{(r, u, s, k, l)\in N^{5} : r+u+s+k+l=n, r+k+l\neq n, s\neq n\} ,

D= { (r, u, s, k, l)\in N^{5} : r+k+l=n, s=0, k=0, r ! n , l !-n},

where in the last equality we have used the symmetry in r , l , s and the
formula

C\cup D

=\{(r, u, s, k, l)\in N^{5} : r+u+s+k+l=n, r\neq n, l\neq n, s/|n\} .

By (1.30) on the levels 0, . . . ’ n-1 for f , g and for g , h we have respectively

0= \sum_{j\neq n,s\neq n}0=j+u+s=nj
j \neq n,s\neq n\sum_{+u+s=n},[\sum_{r+k=j}t_{r}(f\star_{k}g)-\sum_{r+k+l=j}t_{r}f\star_{k}t_{l}g]\star_{u}t_{s}h

;
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0= \sum_{j\neq n,s\neq n}0=j+u+s=nj
j \neq n,s\neq n\sum_{+u+s=n},t_{s}f\star_{u}[r+\sum_{k=j}t_{r}(g\star_{k}h)-\sum_{r+k+l=j}t_{r}g\star_{k}t_{l}h]

Since C ” D=l) , substracting the above equalities and using (2.6), we get

\sum_{(r,u,s,k)\in B}t_{r}(f\star_{k}g)\star_{u}t_{s}h-t_{s}f\star_{u}t_{r}(g\star_{k}h)

= 5 (t_{r}f\star ktlg)\star_{u}t_{S}h-t_{s}f\star_{u}(t_{r}g\star_{k}t_{l}h)

(r,u,s,k,l)\in C

=- \sum (t_{r}f\star ktlg)\star_{u}t_{s}h-t_{s}f\star_{u}(t_{r}g\star_{k}t_{l}h)=R_{II} , (2.7)
(r,u,s,k,l)\in D

where B=\{(r, u, s, k)\in N^{4} : r+u+s+k=n, r+k\neq n, s\neq n\} . Let

A_{1}=A\backslash B=\{(r, u, s, k)\in N^{4} : r+k=n, k>0, u=s=0\} ,
A_{2}=BZ A= { (r, u , s , k)\in fJ4 : r+u+s=n, r\neq n , s A n , k=0 }.

As A\backslash A_{1}=A\cap) B=B\backslash A_{2} , we can replace the sum “
\sum_{(r} ,u,s,k) \in A”in ttie

LHS of (2.5) by “
\sum_{(r,u,s.k)\in B},+ I_{(}r,u , s,7c ) \in A_{1}-\sum_{(r,u,s,k)\in A_{2}}

” and then by
(2.7), this sum is equal to R_{II}+L_{II}+R_{I} , which establishes (2.4). El

Note, that if A=A’ and t_{0} is invertible, then (2.4) from the above
proof means, that t_{0}^{-1}P_{n} is aHochschild 2-cocycle and (i) of Lemma 2.1
means, that this 2-cocycle is exact (see e.g. [14])

We can prove now the corollary, a“simple version” of the semiclassical
von Neumann theorem.

Corollary 2.1 Consider a semiclassical algebra B and a polynomial semi-
classical algebra A. If \{e^{(n)}\}_{n\in N} , \{f^{(n)}\}_{n\in N} are selfadjoint families satisfy-
ing qccr+c of the same type in A ancl 13 respectively and e(0)is a canonical
base of A, then there exists a unique semiclassical unitary transformation
\{t_{n}\}_{n\in N} such that \{f^{(n)}\}_{n\in N} is an image of \{e^{(n)}\}_{n\in N} by \{t_{n}\}_{n\in N} .

Proof. Since we have A’=A, using Proposition 1.1 and the inductive
lemma we can obtain the existence of t_{0} and then of t_{n}- s , such that the
corresponding t_{\hslash} is the unique homomorphism of A[[\hslash]] into B[[\hslash]] of the
form (1.33), for which t_{h}e_{\hslash,i}=f_{\hslash,i} (where e_{\hslash,i} , 7_{\hslash,i} are connected with
\{e^{(n)}\}_{n\in N} , \{f^{(n)}\}_{n\in N} by (1.29) ) . Moreover, by Proposition 1.4 all e_{\hslash,i} and
f_{\hslash,i} are real. By Proposition 1.7, it suffices to prove that t_{\hslash}f_{\hslash}^{*_{\hslash}}=(t_{\hslash}f_{\hslash})^{*_{\hslash}}
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for f_{\hslash}\in A[[\hslash]] . Consider s_{\hslash} : A[[\hslash]]arrow B[[\hslash]] given by s_{\hslash}f_{\hslash}=(t_{\hslash}f_{\hslash}^{*_{\hslash}})^{*_{\hslash}}

for f_{\hslash}\in a[[\hslash]] . From the properties of an ivolution we see that s_{\hslash} is also
ahomomorphism of A[[\hslash]] into B[[\hslash]] satisfying s_{\hslash}e_{\hslash,i}=f_{\hslash,i} and it has the
form (1.33). Thus, by the unicity, we have s_{\hslash}=t_{\hslash} , which finishes the proof.

El

This corollary doesn’t give the explicit formulas for the coefficients t_{n}

of the semiclassical unitary transformation. We shall obtain such formulas
in the “main” semiclassical von Neumann theorem.

2.2. The explicit formulas for polynomial and entire algebras

We formulate here the main result of this section.

Theorem 1(The semiclassical von Neumann theorem) Suppose that A
and B are both polynomial semiclassical algebras or both entire differential
semiclassical algebras, \{e^{(n)}\}_{n\in N} and \{f^{(n)}\}_{n\in N} are selfadjoint families sat-
isfying qccr-+c of the same type in A and 13 respectively and e^{(0)} , f^{(0)} are
canonical bases of A and 6respectively. Then there exists a unique semi-
classical unitary transformation \{t_{n}\}_{n\in N} with continuous coefficients in the
entire differential case such that \{f^{(n)}\}_{n\in N} is an image of \{e^{(n)}\}_{n\in N} by
\{t_{n}\}_{n\in N} . Moreover, to is a canonical isomorphism of A onto B given by the
formula

t_{0}=\phi_{f^{(0)}}\phi_{e^{(0)}}^{-1} (2.8)

and t_{n} for n\in N have the form t_{n}=t_{0}D_{n} , where D_{n} : 4arrow A are
recurrently defined by

D_{0}=IdA, D_{n}=-Z_{e^{(0)}}(R_{n})+ \sum_{j=1}^{m}\overline{e}_{j}^{(n)}\partial_{e_{j}}(0) (2.9)

for n\geq 1 , where R_{n} : A\cross Aarrow A,

R_{n}(f, g)= \sum_{k\neq n}D_{k}(f\star_{j}g)-,\sum_{jj+k=n+k+l=n}(D_{k}f)\sim\star_{j}(D_{l}g)

, (2.10)

with \star_{j}\sim : A\cross Aarrow A given for f, g\in 4, j\in N by

f\sim\star_{j}g=t_{0}^{-1}(t_{0}f\star_{j}t_{0}g) (2.11)



48 M. Moszy\acute{n}ski

and where \overline{e}^{\langle n)}\in A^{m} are given by

\tilde{e}^{\langle}rz)

=t_{0}^{-1}f^{(n)}-j+
k \neq n\sum_{k=n},D_{k}e(j)

. (2.12)

In the entire differential case D_{n} are differential operators.

Proof. Observe first that e^{(0)} and f^{(0)} are real and thus, by Proposition 1.3,
t_{0} defined by (2.8) is acanonical isomorphism of A onto B and by definition
is ahomeomorphism in the entire differential case. We prove by induction
that \{t_{n}\}_{n\in N} is well-defined, that it satisfies (1.30), (1.31), (1.36), and that
D_{n} are differential in the entire differential case. The zero step is already
done; suppose that the above is true on the levels 0, . . . ’ n- l. By Lemma
2.1 there exists t_{n}’ : A’=a1(e^{(0)})arrow B satisfying (i), (ii), (iii). By (2.1),
(2.10) and by our inductive assumptions we have R_{n}=t_{0}^{-1}P_{n} . Let us define
D_{n}’ : A’arrow A and R_{n}’ : A’\cross A’arrow A by the formulas

D_{n}’=t_{0}^{-1}t_{n}’ , R_{n}’=R_{n|A’\cross A’} .

By (i) we have

D_{n}’(fg)-D_{n}’fg-fDng =-R_{n}’(f, g) (2.13)

for f, g\in A’r By Proposition 1.2 the operators D_{n}’ and R_{n}’ can be written
in the form

D_{n}’f= \sum_{\alpha\in N^{m}}d_{\alpha}\partial_{e^{(0)}}^{\alpha}f
,

R_{n}’(f, g)=, \sum_{\gamma,\gamma\in N^{m}}r_{\gamma,\gamma’}\partial_{e^{(0)}}^{\gamma}f\cdot\partial_{e^{(0)}}^{\gamma’}g
,

with d_{\alpha} , r_{\gamma,\gamma’}\in A for f, g\in A’ . Thus we can rewrite (2.13) as

\sum_{\gamma,\gamma’\neq 0}d_{\gamma+\gamma’}

(\begin{array}{l}\gamma+\gamma’\gamma\end{array})

\partial_{e^{(0)}}^{\gamma}f\partial_{e^{(0)}}^{\gamma’}g=-,\sum_{\gamma,\gamma\in N^{m}}r_{\gamma,\gamma’}\partial_{e^{(0)}}^{\gamma}/\partial_{e^{(0)}}^{\gamma’}g

and hence, by the uniqueness of the form (1.3) of an operator, we have
7_{\gamma+\gamma} , (\begin{array}{l}\gamma+\gamma’\gamma\end{array})=-r_{\gamma_{=}\gamma’} for \gamma , \gamma’\in N^{m}\backslash \{0\} and r_{\gamma,\gamma’}=0 if y =0 or \gamma’=0.

Therefore, for any \alpha\in N^{mZ}\{0\}

-

\sum_{\gamma+\gamma’=\alpha}r_{\gamma,\gamma’}=-\sum_{\gamma+\gamma’=\alpha}r\gamma
,
\gamma’=d_{\alpha}\sum_{\gamma+\gamma’=\alpha}

(\begin{array}{l}\alpha\gamma\end{array})

\gamma,\gamma’\neq 0 \gamma,\gamma’\neq 0
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=d_{\alpha} \sum_{\gamma\neq 0,\alpha}

(\begin{array}{l}\alpha\gamma\end{array})=d_{\alpha}(2^{|\alpha|}-2) .

\gamma\leq\alpha

By the above, we can express D_{n}’ by R_{n}’ and by afirst-0rder differential
operator using the operation Z_{e}(0) (see (1.5)). We have

D_{n}’=-Z_{e}(0)
(R_{n}’)+ \sum_{|\alpha|\leq 1}d_{\alpha}\partial_{e^{(0)}}^{\alpha}

.

The coefficients d_{\alpha} for |\alpha|\leq 1 are determined by the conditions (ii) and
(iii) of Lemma 2.1, which imply that D_{n}’I =0 and D_{n}’e^{(0)}=t_{0}^{-1}\overline{f}^{(n)} with
\overline{f}^{(n)} defined in (iii) of Lemma 2.1. Thus d_{0}=0 and by (2.12) d_{1_{j}}=\tilde{e}’.n).
Finally we obtain

D_{n}’=-Z_{e}(0) (R_{n}’)+ \sum_{j=1}^{m}\overline{e}J^{n)}\partial_{e_{j}^{(0)}} . (2.14)

Observe that in the polynomial case the above means that D_{n}’=D_{n} (since
A’=A and R_{n}’=R_{n} then) and that t_{n}’=t_{n} . Therefore, we obtain (1.30),
(1.31) and (1.36) which completes the induction in this case. In the entire
differential case we have to prove first that R_{n} is adifferential operator. By
(2.10) and by the inductive assumption it is enough to prove that for any
7\in N\sim\star_{j} is adifferential operator, which is easy to check by remarks after
Definition 1.4. By (2.9), the operator D_{n} and then also t_{n} is well-defined,
since R_{n} is differential and we can apply Z_{e}(0) to it. Moreover, D_{n} is also
differential. Since differential operators are continuous we may complete
the induction in this case by the standard continuity arguments. To prove
(1.32) we proceed analogously to the proof of Corollary 2.1. The uniqueness
immediatelly follows from Lemma 2.1. El

Remarks
(i) Theorem 1and Corollary 2.1 can be somewhat generalized. We can

assume \sigma -selfacljointness of \{e^{(n)}\}_{n\in N} and \{f^{(n)}\}_{n\in N} for any permuta-
tion \sigma of \{ 1, \ldots , m\} (the same for A and S) instead of selfadjointnes,
where we call asystem f\in A^{m}a -real for a’algebra A if f_{i}^{*}=f_{\sigma(i)} for
i=1 , \ldots , m and we call afamily \{f^{(n)}\}_{n\in N}\sigma -selfadjoint in asemiclas-
sical algebra A if the corresponding system (f_{\hslash,1}, \ldots, f_{\hslash,m})\in(A[[\hslash]])^{m}

is cr-real. Note that f_{\sigma^{2}(i)}=f_{i} for i=1 , \ldots , m and for a \sigma-real f . The
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canonical base (\eta, \xi) in Ent_{\eta\xi}(\mathbb{C}^{2d}) is an example of aa-real system
for \sigma given by \sigma(j)=(j+d)mod 2d for j\in\{1, \ldots, 2d\} .

(ii) By Proposition 1.8, the family \{t_{n}\}_{n\in N} from Theorem 1is asemiclas-
sical unitary isomorphism and in the entire differential case \{t_{n}\}_{n\in N}^{-1}

has continuous coefficients.

We use the formulas from Theorem 1to compute the operator D_{1} in a
simple but nontrivial case.

Example 2.1 Let A=B be atw0-dimmensional q-p or p-q or Weyl semi-
classical algebra (polynomial or entire) and consider e(0) =x=(q, p) ,

f^{(0)}=(q, p+q^{2}) . Both systems satisfy qccr of (_{1}0 -01I-type in A,

hence taking e^{(n)}=f^{(n)}=0 for n\geq 1 we obtain \{e^{(n)}\}_{n\in N} and \{f^{(n)}\}_{n\in N}

satisfying qccr+c . Since e(0) is acanonical base, f^{(0)}=s(2,0)e^{(0)} (see Exam-
ple 1.1) is also acanonical base by Proposition 1.3. We also have t_{0}=s(2,0)

and, moreover, \overline{e}^{(1)}=0 and R_{1}(f, g)=f\star_{1}g-f\sim\star_{1}g for f, g\in A. Therefore
we compute

D_{1}=Z_{x}(\sim\star_{1}-\star_{1}) .

Let us denote D_{1} for the considered cases by D_{1}^{(q- p)} , D_{1}^{(p- q)} , D_{1}^{(W)} respec-
tively. In q-p case we have

f\star_{1}g=-iapf\partial_{q}g

for f, g\in A, hence

f\sim\star_{1}g=-i\partial_{p}f(2q\partial_{p}g+\partial_{q}g) ,

which follows that

D_{1}^{(q- p)}=-iq\partial_{q}\partial_{p} .

Analogously, for p-q and Weyl cases, we find

D_{1}^{(p- q)}=iq\partial_{q}\partial_{p} , D_{1}^{(W)}=0.

The following result is an important (and immediate) consequence of
Theorem 1.

Corollary 2.2 Suppose that two structures of polynomial or of entire dif-
ferential semidassical algebras are defined in a polynomial or, respectively



Quantization of canonical isomorphisms 51

in an entire classical algebra and that there exists a real canonical base of
this classical algebra being selfadjoint quantizable in the both semiclassical
algebras. Then these semiclassical algebras are semiclassically unitary is0-
morphic.

This proves the semiclassical “equivalence” of all M semiclassical al-
gebra structures (see Example 1.2) defined in one of Po1(\mathbb{R}^{2d}) , Po1(\mathbb{C}^{2d}) ,
Ent(\mathbb{R}^{2d}) and Ent(\mathbb{C}^{2d}) , since the canonical base x=(q, p) is selfadjoint
quantizable in all these semiclassical algebras. However, as we shall see
soon, the quantizability assumption in the above corollary is not necessary!

3. Quantization of classical canonical commutation relations

We consider here the problem of quantization of systems satisfying clas-
sical canonical commutation relations.

Let A be an m-dimmensional polynomial or entire classical algebra and
e acanonical base of A. For s=1 . . ’ m we denote

7_{e,s}g=(\{g, e_{1}\}, \ldots, \{g, e_{s}\})\in A^{s} ,

\mathcal{D}_{e,s}g=(\{g_{i}, e_{j}\})_{i,j=1,\ldots,s}=(\begin{array}{l}\nabla_{e,s}g_{1}\vdots\nabla e,s9s\end{array}) \in \mathcal{M}_{s}(A)

for g\in A and for g\in A^{s} . When s=m, we shall also write 7e and D_{e}

instead of \nabla e,s and D_{e,s} . For C\in M_{s}(4) and
s’=1,.\cdot s’\cdot

. ’ s we denote by
C[s’] the s’\cross s’ matrix with (C[s’])_{i,j}=C_{i,j} , i,j=1,
3.1. Equations \mathcal{D}_{e}g=C and \mathcal{D}_{e}g-(\mathcal{D}_{e}g)^{T}=C

In the present subsection we study solvability of some equations arising
in the quantization of cccr.

Proposition 3.1 Consider an m-dimmensional polynomial or entire clas-
sical algebra with a canonical base e and matrices C\in M_{m}(4) and C’\in

\mathcal{M}_{s+1}(A) for some s\in\{1, . . , m-1\} .
a) The equation \mathcal{D}_{e}g=C has a solution g\in A^{m} iff \{C_{i,j}, e_{k}\}=\{C_{i,k}, e_{j}\}

for i , j , k=1 , \ldots , m .
b) If C^{\prime T}=-C’ and

\{ C_{i,j}’, e_{k}\} +\{C_{k,i}’, e_{j}\}+ \{C_{j,k}’, e_{i}\} =0 (3.1)
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for i,j , k=1 , . , s+1 and \dot{g}\in A^{s} satisfies (\mathcal{D}_{e,s}\dot{g})-(\mathcal{D}_{e,s}\dot{g})^{T}=C_{[s]}’ ,
then there exists g\in A^{s+1} such that j \subset g and

(\mathcal{D}_{e,s+1}g)-(\mathcal{D}_{e,s+1}g)^{T}=C’ (3.2)

c) The equation

(\mathcal{D}_{e}g)-(\mathcal{D}_{e}g)^{T}=C (3.3)

has a solution g\in A^{m} iff C^{T}=-C and for i,j , k=1 , \ldots , m

\{C_{i,j}, e_{k}\}+\{C_{k,i}, e_{j}\}+\{C_{j,k}, e_{i}\}=0.

This proposition can be easily proved using the following lemma (we
omit here the details and also the proof of the lemma –see [17] or [18] ) .

Lemma 3.1 Suppose that g\in A^{j} for some j=1 , \ldots , m . Then the equa-
tion

!_{e,j}f=g (3.4)

has a solution f\in A iff
\mathcal{D}_{e,j}g=(\mathcal{D}_{e,j}g)^{T} (3.5)

3.2. Quantization of canonical bases
We prove here the following theorem on the quantization of canonical

bases:

Theorem 2 Each canonical base of a polynomial or entire semiclassical
algebra is quantizable and moreover it is selfadjoint quantizable if it is real.

To prove this theorem we need arecursive lemma.

Lemma 3.2 Suppose that A is an m-dimmensional polynomial or entire
semiclassical algebra with a canonical base e and that \dot{e}.\subset\dot{e}\subset e, where
\dot{e}\in A^{s+1},\dot{e}.\in A^{s} for some s=1 , \ldots , m- l. If \{\dot{e}^{(n)}.\}_{n\in N} is a quantization
of \dot{e}

., then there exists \{\dot{e}^{(n)}\}_{n\in N} being a quantization of \dot{e} and satisfying
\dot{e}^{(n)}.\subset\dot{e}^{(n)} for n\in N. Moreover, if \dot{e} is real and \{\dot{e}^{(n)}.\}_{n\in N} is selfadjoint,
then the above \{\dot{e}^{(n)}\}_{n\in N} can be also choosen selfadjoint.

Sketch of the proof. We have to prove that for any n\in N there exists
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\dot{e}^{(n)}\in A^{s+1} satisfying \dot{e}^{(0)}=\dot{e} and for n\geq 1\dot{e}(n) :) ie(n) \in A^{s} and

\sum_{r+t+v=n}\{\dot{e}_{i}^{(r)},\dot{e}j^{t)}\}_{1+v}=0

for any i,j=1 , . . ’ s+ l. We recurrently construct \dot{e}(rz) Suppose that
n\geq 1 and that \dot{e}^{(k)} for k=0, \ldots , n-1 satisfying the above conditions are
already constructed. Thus the needed \dot{e}(n) should satisfy \dot{e_{\vee}}^{(n)}\supset\dot{e}.(n)and

the matrix equation

(\mathcal{D}_{e,s+1}\dot{e}^{(n)})-(\mathcal{D}_{e,s+1}\dot{e}^{(n)})^{T}=C^{(n)} ,

with C^{(n)}\in \mathcal{M}_{s+1}(A) ,

C_{ij}^{(n)}=- \sum_{r,t\neq n}\{\dot{e}_{i}^{(r)},\dot{e}r+t+v=n3^{t)}\}_{1+v}

.

As \{\dot{e}^{(n)}.\}_{n\in N} satisfies qccr-hc, we have

(\mathcal{D}_{e,s}\dot{e}^{(n)}.)-(\mathcal{D}_{e,s}\dot{e}^{(n)}.)^{T}=C_{[s]}^{(n)} .

Prom (1.15) it follows that (C^{(n)})^{T}=-C^{(n)} . Using the Jacobi identity
(1.24) and the inductive assumption we can check that (3.1) holds for
C=C^{(n)} (see [17] or [18]). Therefore the existence of \dot{e}(n) follows from
Proposition 3.1 b). Suppose now that \dot{e} is real and \{\dot{e}^{(n)}.\}_{n\in N} , is selfadjoint,
and choose an arbitrary \{\dot{e}^{(n)}\}_{n\in N} satisfying the conditions of the already
proved first part of the lemma. Let \dot{e}_{\hslash} ,

i= \sum_{n=0}^{\infty}\hslash^{n}\dot{e}_{i}^{(n)} for i=1, \ldots , s+1
and \dot{e}_{\hslash,i}.=\sum_{n=0}^{\infty}\hslash^{n}\dot{e}_{i}^{(n)}.for i=1 , \ldots , s (\dot{e}_{\hslash,i},\dot{e}_{\hslash,i}.\in A[[\hslash]]) . Thus we have
\dot{e}_{\hslash} , i=\dot{e}_{\hslash}

.,
i for i=1 , . . ’ s . Moreover (\dot{e}_{\hslash,i}.)^{*_{\hslash}}=\dot{e}_{\hslash}

.,
i for i=1 , \ldots , s and

\frac{i}{\hslash}[\dot{e}_{\hslash,i},\dot{e}_{\hslash,j}]=(cr(\dot{e}))_{ij} I (3.6)

for i,j=1 , \ldots , s11 . By (1.25), (1.26) and since (cr(\dot{e}))_{ij}\in \mathbb{R} (which
holds by reality of \dot{e} and by (1.8) ) we have \frac{i}{\hslash}[\dot{e}_{\hslash,i},\dot{e}_{\hslash,s+1}^{*_{\hslash}}]=(cr(\dot{e}))_{i,s+1}I

for i=1, \ldots , s . Hence by (3.6) \frac{i}{\hslash}[\dot{e}_{\hslash,i}, re^{*_{\hslash}}\dot{e}_{\hslash,s+1}] =(cr(\dot{e}))_{i,s+1} If. By
antisymmetricity of A [, ] and of cr(\dot{e}) , the family \{f^{(n)}\}_{n\in N} of systems
from A^{s+1} given by the conditions f_{i}^{(n)}=\dot{e}_{i}^{(n)} for i=1 , . , s and by
\sum_{n=0}^{\infty}\hslash^{n}f_{s+1}^{(n)}=re^{*_{\hslash}}\dot{e}_{\hslash,s+1} , is selfadjoint, it satisfies \dot{e}^{(n)}.\subset 4^{(rz)} for n\in N

and it is aquantization of \dot{e} . \square
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Proof of Theorem 2. Let A be apolynomial or entire yn-dimmensiona1

semiclassical algebra and e its canonical base. We recurrently construct
quantizations of all \dot{e}\subset e having the dimmension between 1and m. The
recursion is possible by Lemma 3.2, provided that \dot{e}=e_{1}\in A^{1} is quantiz-

able (or selfadjoint quantizable for real e ). To obtain aquantization only,
we can take arbitrary elements of A as e_{1}^{(n)} for n\geq 1, since (1.27) always
holds when i=j (e.g. by antisymmetricity of { \}_{n} ). By (1.19) the family
\{e_{1}^{(n)}\}_{n\in N} will be selfadjoint if for any n\in N

2iirr)*0(e_{1}^{(n)})=e_{1}^{(n)}-(e_{1}^{(n)})^{*0}=k
k \neq n\sum_{+l=n},(e_{1}^{(k)})^{*\iota}

.

If e is real, the above condition holds for n=0 (since *0=* ). We shall
obtain it also for n\geq 1 defining recurrently

e_{1}^{(n)}=f^{(n)}+ \frac{1}{2}k
k \neq n\sum_{+l=n},(e_{1}^{(k)})^{*_{l}}

,

where f^{(n)} are arbitrary real elements of A. \square

Remarks
(i) As can be seen from the proof of Theorem 2and of Lemma 3.2, quanti-

zation (and salfadjoint quantization) of canonical bases is non-unique.
This non-uniqueness is aconsequence of the fact that solutions of the
equation (3.3) are defined up to the term of the form \nabla_{e}f for f\in A

(see Lemma 3.1).
(ii) Prom Theorem 2we immediately obtain quantizability (or salfadjoint

quantizability) of “subsystems” of canonical bases, that is, of such
systems f\in 4s that f_{j}\in\{e_{1}, . , e_{m}\} for j=1 , \ldots , s , where e\in 4^{m}

is acanonical base of A (real for salfadjoint quantizability).

We now present an example of afamily satisfying qccr+c with non-
trivial quantum corrections.

Example 3.1 Consider atw0-dimmensional Weyl semiclassical algebra
with the canonical base

e=(q+(p+q^{k})^{l}, p+q^{k})=s_{(k,l)}(q, p) ,

k , l\in N , (s(k,l) is acanonical isomorphism from Example 1.1 and p=p_{1} ,
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q=q_{1} , since d=1). Proceeding as in the proof of Theorem 2we construct
the quantum corrections e^{(n)} to e . These corrections cannot be all equal to
zero, since e does not satisfy qccr, e.g. for k=l=3

\{e_{1}, e_{2}\}_{3}=\{(p+q^{3})^{3}, q^{3}\}_{3}=\frac{3}{2}\neq 0.

We can quantize e_{2} taking zero corrections, that is,

e_{2}^{(n)}=0 (3.7)

for n\geq 1 (it is aselfadjoint quantization, since*_{n}=0 for n\geq 1 ). Afamily
\{e^{(n)}\}_{n\in N} will be aquantization of e , if for n\geq 1

\{e_{2}^{(n)}, e_{1}\}=\{e_{1}^{(n)}, e_{2}\}-\sum_{r,t\neq n}\{e_{2}^{(r)}, e_{1}^{(t)}\}_{1+v}r+t+v=n

. (3.8)

Using the canonical isomorphism s_{(k,l)}^{-1} , by (3.7) we obtain

\{p, s_{(k,l)}^{-1}e_{1}^{(n)}\}=s_{(k,l)}^{-1}\sum_{t=0}^{n-1}\{e_{1}^{(t)}, p+q^{k}\}_{1+}(n-t) ,

and since \{p, \cdot\}=\partial_{q} and \{\cdot, p\}j=0 for j>1, we can choose

e_{1}^{(n)}=s(k,l) \int_{q}s_{(k,l)}^{-1}\sum_{t=0}^{n-1}\{e_{1}^{(t)}. q^{k}\}_{1+(n-t)} (3.9)

for n\geq 1, where the operetor \int_{q} : Ent(\mathbb{C}^{2})arrow Ent(\mathbb{C}^{2}) (or Ent(\mathbb{R}^{2})arrow

Ent(\mathbb{R}^{2})) is given for f= \sum_{i,j\in N}f_{ij}q^{i}p^{j} , f_{ij}\in \mathbb{C} by the formula

/1^{f=} \mbox{\boldmath $\iota$}.B \frac{1}{j+1}f_{ij}q^{i+1}p^{j} .

Finally \{e^{(n)}\}_{n\in N} with e^{(0)}=e and with e^{(n)} given recurrently for n\geq 1

by (3.9) and (3.7) is aselfadjoint quantization of e , since *= e0 and*_{n}=0

for n\geq 1 and \{ \}_{r} , sk,l and \int_{q} commute with * (being the usual conjugation
of function here).

4. Quantization of canonical isomorphisms

We prove here our result concerning quantizability of canonical isomor-
phisms of polynomial and entire algebras. As an illustration we find simple
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recurrent formulas for the quantum corrections in the case of linear canon-
ical isomorphisms of the phase space for M-semiclassical algebras. We also
find corresponding unitary transformations acting in Hilbert space.

4.1. The quantizability theorem
We can combine the results of Theorem 1and of Theorem 2to obtain

the following result.

Theorem 3Suppose that A and B are both polynomial semiclassical al-
gebras or both entire differential semiclassical algebras and that A possesses
a real canonical base. If t : Aarrow 6 is a canonical isomorphism, contin-
uous in the entire differential case, then t is quantizable and in the entire
differential case the quantum corrections to t can be choosen continuous.

Proof. Let e be areal canonical base of A. By proposition 1.3 te is areal
canonical base of B with cr(#e)=cr(e) and thus by Theorem 2 e and te are
selfadjoint quantizable. Therefore there exist selfadjoint families \{e^{(n)}\}_{n\in N} ,
\{f^{(n)}\}_{n\in N} satisfying qccr+c of the same type in A and B respectively such
that e^{(0)}=e, 4^{(0)}=te. By Theorem 1there exists asemiclassical unitary
transformation \{t_{n}\}_{n\in N} (with continuous coefficients in the entire differen-
tial case) such that \{f^{(n)}\}_{n\in N} is an image of \{e^{(n)}\}_{n\in N} by \{t_{n}\}_{n\in N} . In
particular toe=t0e^{(0)}=f^{(0)}=te and since t_{0} and t are homomorphisms
of algebras, we have to=t. Thus \{t_{n}\}_{n\in N} is aquantization of t . \square

Remarks
(i) Quantum corrections for t are not uniquely determined (see also the

remark (i) after the proof of Theorem 2).
(ii) If acanonical base e and some selfadjoint quantizations of e and te

are choosen, then there is aunique choice of quantum corrections t_{n} .
They are given by the formulas from Theorem 1, that is, t_{n}=tD_{n} for
n\geq 1 and D_{n} are recurrently defined by (2.9), (2.10), (2.11), (2.12)
with to=t and e^{(0)}=e. The remark (ii) after the proof of Theorem 1
is also valid here.

(iii) The existence of areal canonical base of A is an important assumption
of Theorem 3. It can be proved (see [17] or [18]) that if A possesses
\sigma-real canonical base for some permutation \sigma (see remark (i) after the
proof of Theorem 1), then A possesses also areal canonical base.
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4.2. The case of linear isomorphisms of \mathbb{R}^{2d}

Consider an m-dimmensional polynomial or entire classical algebra with
areal canonical base e . Let C\in Mm(M) satisfy

cr(e)=Ccr(e)C^{T} (4.1)

and denote t_{C} : Aarrow A

t_{C}= 1 fl_{e}^{-1} , (4.2)

where f=Ce. Since C has real coefficients, f is areal system and thus
by (4.1) and Proposition 1.3 f is areal canonical base. Therefore, by
Proposition 1.3, t_{C} is acanonical isomorphism of A (and ahomeomorphism
in the entire case).

We define now some classes of multilinear differential operators for A.
By (9_{e,k}^{(n)} we denote the set of all k-linear operators P:A^{k}arrow A of the form

P= \sum p_{\alpha}\partial_{e}^{\alpha} ,
\alpha\in(N^{m})^{k}

|\alpha|=n

where p_{\alpha}\in \mathbb{C} (in particular these operators have “constant coefficients
relatively to e”). For instance, the multiplication in A is in 0_{e,2}^{(0)} , and
\{, \}\in t9_{e,2}^{(2)} by (1.11). Note that all operators from \bigcup_{n\in N}(9_{e,1}^{(n)} commute.

We shall define also the operation \tilde{Z}_{e} , which transforms bilinear dif-
ferential operators into linear operators in A. It is defined by the formula
which is similar to (1.5):

\tilde{Z}_{e}(S)f=\sum_{\alpha\in N^{m}}\sum_{\gamma+\gamma’=\alpha}s_{\gamma,\gamma’}\partial_{e}^{\alpha}f

for f\in A, where S is abilinear differential operator,

S(f, g)=, \sum_{\gamma,\gamma\in N^{m}}s_{\gamma,\gamma’}\partial2 f\partial_{e}^{\gamma’}g

for f, g\in A. For instance

\tilde{Z}_{e}(\cdot)=Id. (4.3)

Note that if S\in t9_{e,2}^{(n)} for n\geq 2, then \tilde{Z}_{e}(S)\in 0_{e,1}^{(n)} and

Z(S)= \frac{1}{2^{n}-2}\tilde{Z}_{e}(S) . (4.4)
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For linear operators D , D’ and abilinear P, we define bilinear operators
tc . P(D, D’) and alinear Dc by the formulas

Pc(f, g)=t_{C}^{-1}P(t_{C}f, t_{C}g) , Dc=t_{C}^{1}Dt_{C} ,
P(D, D’)(f, g)=P(Df, D’g) ,

f, g\in A.

Lemma 4.1 Under the previous assumptions on A, e and C, if P\in(9_{e,2}^{(k)} ,
D\in t9_{e,1}^{(l)} and D’\in(D_{e,1}^{(l’)} , then
a) DP\in 0_{e,2}^{(k+l)} and \tilde{Z}_{e}(DP)=2^{l}D\tilde{Z}_{e}(P) ;

b) P(D, D’)\in 0_{e,2}^{(k+l+l’)} and \tilde{Z}_{e}(P(D, D’))=DD’\tilde{Z}_{e}(P) ;

c) Pc\in t9_{e,2}^{(k)} and \tilde{Z}_{e}(Pc)=(\tilde{Z}_{e}(P))c .

We can now formulate aresult concerning quantization of canonical
isomorphism t_{C} .

Corollary 4.1 Let A be an m-dimmensional polynomial or entire semi-
classical algebra with a real canonical base e and suppose that (i) e satisfies
qccr, (ii) e^{*_{n}}=0 for n>0;(iii)\star_{n}\in(9_{e,2}^{(2n)} for n\in N. If C\in A f_{m}(\mathbb{R})

satisfies (4.1) and the operators D_{n} : 4arrow A are given by the recurrent
formula

D_{0}=Id_{A} ,
D_{n}= \frac{-1}{4^{n}-2}[j+k\sum_{k\neq n}4^{k}D_{k}L_{j}-\sum_{k,l\neq n}D_{k}D_{l}(L_{j})_{C}]=nj+k+l=n

(4.5)

for n\geq 1, where

L_{j}=\tilde{Z}_{e}(\star_{j}) ,

then D_{n}\in O_{e,1}^{(2n)} and the family \{t_{n}\}_{n\in N} with t_{n}=t_{C}D_{n} is a quantization
of t_{C} (with continuous coefficients in the entire case).

Proof By (iii) L_{j}\in t9_{e,1}^{(2j)} and thus D_{n} given by (4.5) are in (9_{e,1}^{(2n)} for any
n\in N. On the other hand, by the remark (ii) after the prof of Theorem 3,
the recurrent formulas (2.9), (2.10), (2.11) and (2.12) with t_{0}=t_{C} are valid
for quantization of t_{C} . Thus define e^{(n)}=f^{(n)}=0 for n>0 and e(0) =e,
f^{(0)}=t_{C}e. Obviously, by (i) and (ii) \{e^{(n)}\}_{n\in N} is aselfadjoint quantization
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of e . We have

\{f_{k}, f_{i}\}_{n}=\sum_{i,j=1,\ldots,m}C_{ki}C_{lj}\{e_{k}, e_{l}\}_{n}=0

for n>0, thus analogously \{f^{(n)}\}_{n\in N} is aselfadjoint quantization of the
canonical base f . By (2.12), the RHS of the recurrent formula (2.9) reduces
to-Z_{e}(R_{n}) . Hence by (4.4) and Lemma 4.1, the two definitions of operators
D_{n} are equivalent. \square

Example 4.1 Consider the classical algebra A=Po1(\mathbb{R}^{2d}) or Ent(\mathbb{R}^{2d})

and an arbitrary linear canonical transformation C of the phase space \mathbb{R}^{2d}

(that is, alinear transformation preserving the standard symplectic form
dq\wedge dp in \mathbb{R}^{2d} ). If we identify C with the element of A f_{2d}(\mathbb{R}) , then this
property of C is just defined by (4.1) with e=(q, p)=x (see e.g. [8]). We
can rewrite (4.1) in the form of the system of matrix equations

KL^{T}=LK^{T} , MN^{T}=NM^{T} , KN^{T}-LM’=I,

where C has the block form

C= (\begin{array}{ll}K LM N\end{array}) (4.6)

with K, L , M, N\in \mathcal{M}_{d}(\mathbb{R}) . By (4.2), the canonical isomorphism t_{C} (acting
on the algebra A level) satisfies t_{C}f=f\circ C for f\in A.

We can compute now afamily of quantum corrections for t_{C} in M-
semiclassical algebras PolM (\mathbb{R}^{2d}) or EntM (\mathbb{R}^{2d}) (see Example 1.2) using the
above corollary. Note that the only terms in (4.5) depending on the choice
of semiclassical algebra are operators Lj , hence it is enough to compute
these operators. Denote the operator L_{j} by L_{j}^{M} for agiven M-semiclassical
algebra. By (4.3) and Lemma 4.1 we have

L_{n}^{M}= E 5^{(E\partial_{q})}
’

(M\partial_{q})^{\beta}\partial_{p}^{\alpha+\beta}

| x+j3|=n

= \sum_{|\gamma|=n}\frac{i^{n}}{\gamma!}[\sum_{\alpha\leq\gamma}
(\begin{array}{l}\gamma\alpha\end{array}) (E\partial_{q})^{\alpha}(M\partial_{q})^{\gamma-\alpha}]\partial_{p}^{\gamma}

= \sum\frac{i^{n}}{\gamma!}(E\partial_{q}+M\partial_{q})^{\gamma}\partial_{p}^{\gamma}=\sum\frac{i^{n}}{\gamma!}(G\partial_{q})^{\gamma}\partial_{p}^{\gamma} .
|\gamma|=n |\gamma|=n
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Usually the corrections t_{n} for t_{C} are compositions of t_{C} and of some
quite complicated differential operators with constant coefficients depending
on C and M . Hovever, when we deal with Weyl semiclassical algebras,
then G=0 and thus all the corrections t_{n} are zero for n\geq 1 . This is
the well-known result and the invariance of all \star_{n}^{W} from Weyl deformation
quantization for linear canonical transformations of the phace space is an
immediate consequence of it (see [3] V \S 1.4). When G\neq 0, then quantum
corrections are usually nonzero. For instance, in q-p semiclassical algebra

(for G=-I) for C= (\begin{array}{ll}0 -II 0\end{array}) we have t_{1}=it_{C}\partial_{p}\partial_{q} .

Observe also that by the above formula for L_{n}^{M} and by the formulas for
deformations in M-semiclassical algebras, in each algebra of this type \star_{n}^{M}

and *_{n}^{M} are closely related by the equality

f^{*_{n}^{M}}=L_{n}^{M}(f^{*})=\tilde{Z}_{x}(\star_{n})(f^{*}) .

4.3. Connections with unitary transformations of Hilbert space

It would be interesting to find arelationship between semiclassical uni-
tary isomorphisms considered in this paper and unitary transformations of
Hilbert space. To do this we need some map between semiclassical algebra
and “algebra” of quantum observables (operators) in the appropriate Hilbert
space. We consider here the simple case of the semiclassical unitary isomor-
phism being the quantization of canonical transformation t_{C} (from the pre-
vious subsection) in the semiclassical algebra A=Po1_{q- p}(\mathbb{R}^{2d}) or Po1_{p- q}(\mathbb{R}^{2d})

or Po1_{W}(\mathbb{R}^{2d}) . The natural Hilbert space corresponding to A is L^{2}(\mathbb{R}^{d}) and
the natural map between A and operators in L^{2} (Il d ) is the procedure \wedge 7 of
quantization of observables from A –q-p, p-q or Weyl quantization respec-
tively (see e.g. [3]). In particular we have \wedge , : Aarrow \mathcal{D}iffff(\mathbb{R}^{d}) for \hslash>0

(note that Ais no longer aformal parameter here), where Di7(\mathbb{R}^{d}) is aset of
differential operators with polynomial coefficients in L^{2}(\mathbb{R}^{d}) with the (invari-
ant) domain S(\mathbb{R}^{d}) –the space of Schwartz functions. Note that Dj7J(\mathbb{R}^{d})

with the composition of operators, with the identity operator in S(\mathbb{R}^{d}) and
with the adjoint being the restriction of the usual Hilbert adjoint of oper-
ators to S(\mathbb{R}^{d}) forms a’algebra. Using Proposition 1.4 it is easy to prove
that \{Po1(\mathbb{R}^{2d}), \star I,*(\hslash)(\hslash),\} with \star(\hslash) : Po1(\mathbb{R}^{2d})xPo1(\mathbb{R}^{2d})arrow Po1(\mathbb{R}^{2d})

and *(\hslash) : Pol (\mathbb{R}^{2d})arrow Pol (\mathbb{R}^{2d}) given by
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f \star\hslash)g(=\sum_{n=0}^{\infty}\hslash^{n}f\star_{n}g, f^{*}(\hslash)=\sum_{n=0}^{\infty}\hslash^{n}f^{*_{n}}

is also a’algebra for any \hslash>0 (note that by the formulas from Exam-
ple 1.2 the above sums are finite for fixed f, g\in A). Moreover, from the
construction of the semicalssical structure in A (see [3]) it follows that \bigwedge_{\hslash}

is a’isomorphism of this ’algebra onto \mathcal{D}iffff(\mathbb{R}^{d}) for any \hslash>0 and

d^{\hslash}=Q_{\hslash} , B^{\hslash}=P_{\hslash} , (4.7)

where (Q_{\hslash,j}\varphi)(x)=x_{j}\varphi(x) , (P_{\hslash,j}\varphi)(x)= 74\varphi(x) for \varphi
\in S(\mathbb{R}^{d}) , x\in \mathbb{R}^{d} .

We denote by \vee

1 the inverse ’isomorphism. Let \{t_{n}\}_{n\in N} be the quantization
of t_{C} constructed in Example 4.1. It is easily seen from Propositipon 1.7
that for \hslash>0 the transformation t_{(\hslash)} : Po1(\mathbb{R}^{2d})arrow Po1(\mathbb{R}^{2d}) given for
f\in A by

t_{(\hslash)}f= \sum_{n=0}^{\infty}ll^{n}t_{n}f

is a’isomorphism of \{Po1(\mathbb{R}^{2d}), \star I,’(\hslash)(\hslash)’\} (the above sum is finite for any
f by Corollary 4.1) and

t_{(\hslash)}(q, p)=t_{C}(q, p)=C(q, p) (4.8)

(since D_{n}q_{i}=D_{n}p_{i}=0 for n\geq 1 , i=1 , \ldots , d). For \hslash>0 consider now
the transformation J_{C,\hslash} : \mathcal{D}\iota jj(\mathbb{R}d) arrow \mathcal{D} iff (\mathbb{R}^{d}) , T_{C,\hslash}=^{\bigwedge_{\hslash}}\circ t_{(\hslash)}\circ^{\bigvee_{\hslash}} , which
is a“Isomorphism by the above considerations. By (4.7) and (4.8) we have

I , \hslash(Q_{\hslash}, P_{\hslash})=C(Q_{\hslash}, P_{\hslash}) . (4.9)

We can now precisely formulate our problem as the question about the
exisistence of such aunitary transformation u_{C,\hslash} of L^{2}(\mathbb{R}^{d}) preserving S(\mathbb{R}^{d})

that for any X\in \mathcal{D}iffff(\mathbb{R}^{d}) and \hslash>0J_{C,\hslash}X=b_{C,\hslash}^{1}XU_{C,\hslash} . The ansver
is positive for all C . To find the appropriate u_{C,\hslash} we shall use the fact
that any linear canonical transformation C of the phase space R^{2d} has a
decomposition of the form

(\begin{array}{ll}D^{-1} 00 D^{T}\end{array})(\begin{array}{ll}I 0R I\end{array})(\begin{array}{ll}P_{r} P_{r}’-P_{r}’ P_{r}\end{array})(\begin{array}{ll}I \overline{R}0 I\end{array}) ( D-0-1
\overline{D}cT ),

(4.10)
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where r\in\{0-, . . , d\} , D,\overline{D} , R,\overline{R}\in \mathcal{M}_{d}(\mathbb{R}) satisfy \det D , \det\overline{D}\neq 0 , R^{T}=

R,\overline{R}^{T}=R and P_{r} , P_{r}’ are projections in \mathbb{R}^{d} given by P_{r}x=(x_{1} , . , x_{r} ,
0, . , 0) and P_{r}’x= (0, , 0, x_{r+1}, \ldots, x_{d}) (in particular P_{0}=P_{d}’=0 )
(see [17] for the proof). We first restrict our considerations to the cases of
C being one of the terms of the above decomposition. Since the condition
(4.9) uniquely determines the ’isomorphism of \prime Diffff(\mathbb{R}^{d}) , we can easily find
u_{C,\hslash} in these cases:

(i) if C=(_{-P_{r}}P_{r}, 2 ) with r\in\{0, , d\} , then u_{C,\hslash}= fr, \hslash , where

\mathcal{F}_{r,\hslash} is the quantum Fourier transform in L^{2}(\mathbb{R}^{d}) in the last d-r
coordinates, that is, \mathcal{F}_{r,\hslash}=I when r=d and for r<d , 1 \in S(\mathbb{R}^{d})

and x\in \mathbb{R}^{d}

( \mathcal{F}_{r,\hslash}\varphi)(x)=(2\pi\hslash)^{-(d-r)/2}\int_{\mathbb{R}^{(d-r)}}

\exp (- \frac{i}{\hslash} (x_{r+1}, . , x_{d})s) 7’(x_{1}, , x_{r}, s)ds

(and it is uniquely extended to the unitary transformation of the whole
L^{2}(\mathbb{R}^{d})) ;

(ii) if C= (\begin{array}{ll}I 0R I\end{array}) with R=R^{T} , then u_{C,\hslash}=M_{R,\hslash} , where M_{R,\hslash} is the

operator of multiplication by the function g_{R,\hslash} : \mathbb{R}^{d}arrow \mathbb{C} , g_{R,\hslash}(x)=

\exp(\frac{i}{2\hslash}(Rx)x) for x\in \mathbb{R}^{d} ;

(iii) if C= (\begin{array}{ll}I R0 I\end{array}) with R=R^{T} , then u_{C,\hslash}=V_{R,\hslash} , where \backslash ?_{R,\hslash}=

\mathcal{F}_{0,\hslash}^{-1}M_{(-R),\hslash}\mathcal{F}_{0}

, \hslash ;

(iv) if C= (\begin{array}{ll}D^{-1} 00 D^{T}\end{array}) with \det D\neq 0, then i_{C,\hslash}=S_{D}^{<>} , where S_{D}^{<>}

is the normalized change of variables connected with D , that is, for
1\in L^{2}(\mathbb{R}^{d})S_{D}^{o}\varphi=|\det D|^{\frac{1}{2}}\varphi\circ D .

Using these special cases and the decomposition (4.10) we can define U_{C,\hslash}

for \hslash>0 for an arbitrary C by the formula

1_{C,\hslash}=S_{D}^{0}V_{R\hslash}\mathcal{F}_{r,\hslash}JAR , \hslash S_{D}^{o} .

It seems natural to treat the obtained family of unitary transformation u_{C,\hslash}

as aquantization of the canonical map C. Similar construction can be made
when we take an arbitrary semiclassical algebra Po1_{M}(\mathbb{R}^{2d}) as A. In this
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case the quantization \bigwedge_{\hslash} should be defined by T-symbol(see [17] for the
details).

Unfortunatelly, the case of quantizations of nonlinear canonical is0-
morphisms of the phase space is much more difficult. It remains an open
problem to rigorously construct in like manner afamily of unitary transfor-
mations corresponding to agiven semiclassical unitary transformation in a
more general case.
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