An extremal class of 3-dimensional elliptic affine spheres

Marcus Kriele, Christine Scharlach and Luc Vrancken*

(Received December 14, 1998; Revised February 21, 2000)

Abstract

In analogy to an inequality of Chen [Che93], Scharlach, Simon, Verstraelen and Vrancken [SSVV97] have found a new inequality for (equi-) affine spheres. This inequality is optimal and in this paper we classify those 3 -dimensional elliptic affine spheres for which the corresponding equality is assumed. This is achieved through reducing the problem to the problem of classifying those 2-dimensional minimal surfaces in S_{3}^{5} whose ellipses of curvature are circles. We end with the investigation of 2-dimensional minimal surfaces in S_{3}^{5} with positive definite induced metric whose ellipses of curvature are circles.

Key words: affine differential geometry, Chen's equality, 1-dimensional nullity distribution, affine spheres.

1. Introduction

Consider an immersed hypersurface with relative normalization, i.e., an immersion $f: M \rightarrow \mathbb{R}^{n+1}$ together with a transverse vector field ξ such that $\mathrm{D} \xi$ has its image in $f_{*} T_{x} M$. The relative hypersurface (f, ξ) is a sphere if its normal lines $\mathbb{R} \xi(x)$ have a common intersection. From this definition one immediately has the existence of a function $\epsilon: M \rightarrow \mathbb{R}$ with $0=\mathrm{D}(f(x)+$ $\epsilon(x) \xi(x))=\mathrm{D} f(x)+\epsilon(x) \mathrm{D} \xi+\mathrm{d} \epsilon(x) \otimes \xi$ which in turn implies that $\epsilon \neq 0$ is constant. Moreover, the Weingarten map is a multiple of the identity. Since ϵ is constant we can always rescale f to obtain $\epsilon= \pm 1$. In the following we will only be concerned with such unit spheres. Whether an immersed hypersurface constitutes a sphere depends crucially on the chosen normalization ξ. For instance, in Euclidean hypersurface theory $(\xi$ is the outer normal to $f(M)$ with respect to a fixed scalar product in \mathbb{R}^{n+1}), a sphere $f(M)$ is necessarily isometric to the round sphere $S^{n}(r)$ of radius r. The other extreme occurs if we choose the centro-affine normalization where we take for ξ simply $-f$. Clearly, in this theory any hypersurface is a unit sphere. The classification of unit spheres is a highly non-trivial problem for the equi-affine theory of immersed hypersurfaces introduced by

[^0]Blaschke (see, for instance, [Bla23]). Spheres with respect to this theory are often called affine spheres.

While in Euclidean hypersurface theory an immersion $f: M \rightarrow \mathbb{R}^{n+1}$ inherits a scalar product from Euclidean space, in equi-affine hypersurface theory one only has a constant determinant function det of \mathbb{R}^{n+1}. Denote by det* the dual volume form in $\left(\mathbb{R}^{n+1}\right)^{*}$ and by $Y: M \rightarrow\left(\mathbb{R}^{n+1}\right)^{*}$ the conormal defined by $Y(\xi)=1$ and $Y_{\mid f_{*} T M}=0$. For each choice of transverse vector field ξ, the volume forms det and det* define n-forms $\omega:=(-1)^{n} f^{*}(\operatorname{det}(\xi, \cdot, \ldots, \cdot))$ and $\omega^{*}=(-1)^{n} Y^{*}\left(\operatorname{det}^{*}(Y, \cdot, \ldots, \cdot)\right)$. The equi-affine normalization ξ is the (up to orientation) unique relative normalization which is invariant under the unimodular group and satisfies $\omega= \pm \omega^{*}$ (see, for instance, [LSZ93]). The induced equi-affine connection ∇ is given by $\mathrm{D}_{U} V=\nabla_{U} V+h(U, V) \xi$, where h is called the equi-affine metric or Blaschke metric. (See [Bla23, §§39-40] for a somewhat different introduction.)

In the case that h is definite we can fix the orientation of the equi-affine normal $\xi(= \pm f)$ such that h is positive definite. Then the sign of ϵ in the definition of spheres is an invariant, and M is called an elliptic affine unit sphere if $\epsilon=1$ and a hyperbolic affine unit sphere if $\epsilon=-1 .{ }^{1}$

The abundance of affine unit spheres dwarfs any attempts at a complete classification. In order to obtain detailed information one has therefore to revert to sub-classes such as the class of complete affine unit spheres [LSZ93]. Various authors have also imposed curvature conditions but even in the case of constant curvature (with respect to h) only a partial classification has been achieved yet [VLS91, MR92, KV97]. In analogy to work by Chen [Che93], Scharlach, Simon, Verstraelen and Vrancken [SSVV97] have found a new curvature invariant for (equi-) affine spheres. They also gave a lower bound, depending only on ϵ and the dimension of the sphere. In this paper we will classify those 3 -dimensional, elliptic affine unit spheres which extremize the new curvature invariant. In Section 2 we will show that they admit a preferred ruling. Thus the geometry is determined by 2-dimensional submanifolds transverse to this ruling. This will be used in Section 3 to find a reduction to the problem of investigating 2-dimensional minimal submanifolds (i.e. the mean curvature vector field vanishes) of S_{3}^{5}

[^1]whose ellipses of curvature are non-degenerate circles. Here $S_{3}^{5} \subset \mathbb{R}^{6}$ is the 5 -dimensional (pseudo)sphere of index 3. Finally, 2-dimensional minimal submanifolds of S_{3}^{5} with positive definite induced metric whose ellipses of curvature are circles are studied in Section 4.

2. Affine unit 3 -spheres which satisfy Chen's equality

Let $f: M \rightarrow \mathbb{R}^{n+1}$ be an affine unit sphere. Denote the Levi-Civita connection with respect to h by $\widehat{\nabla}$ and the normalized scalar curvature and sectional curvature by $\hat{\kappa}$ and \hat{K}, respectively. Furthermore, $G_{2}\left(T_{x} M\right)$ denotes the Grassmannian of 2-dimensional subspaces of $T_{x} M$. Following [Che93], Scharlach, Simon et al. [SSVV97] have shown that the inequality

$$
\frac{n(n-1)}{2} \hat{\kappa}(p)-\sup _{\Pi \in G_{2}\left(T_{x} M\right)} \hat{K}_{p}(\Pi) \geq \epsilon \frac{1}{2}(n+1)(n-2)
$$

holds. ${ }^{2}$ We call this inequality Chen's inequality and the corresponding equality Chen's equality. In this paper, we will classify those elliptic 3dimensional affine unit spheres which realize Chen's equality. We will start by chosing a frame adapted to the problem.

Lemma 1 ([SSVV97]) Let M be an n-dimensional affine unit sphere which realizes Chen's equality, $x \in M$ and $K(U, V)=\nabla_{U} V-\hat{\nabla}_{U} V$. If $K_{x} \neq 0$ then there exists an h-orthonormal frame $\left\{E_{1}, \ldots, E_{n}\right\}$ and a function λ in a neighbourhood of x such that

$$
\begin{array}{lll}
K\left(E_{1}, E_{1}\right)=\lambda E_{1}, & K\left(E_{1}, E_{i}\right)=0, & K\left(E_{1}, E_{2}\right)=-\lambda E_{2}, \\
K\left(E_{2}, E_{i}\right)=0, & K\left(E_{2}, E_{2}\right)=-\lambda E_{1}, & K\left(E_{i}, E_{j}\right)=0,
\end{array}(i, j>2) .
$$

The Christoffel symbols of the Levi-Civita connection $\widehat{\nabla}$ defined by $\widehat{\nabla}_{E_{b}} E_{c}=$ $\sum_{a=1}^{n} \widehat{\Gamma}_{b c}^{a} E_{a}$ satisfy

$$
\widehat{\Gamma}_{11}^{i}=\widehat{\Gamma}_{22}^{i}, \quad \widehat{\Gamma}_{12}^{i}=-\widehat{\Gamma}_{21}^{i}, \quad \widehat{\Gamma}_{i j}^{1}=\widehat{\Gamma}_{i j}^{2}=0, \quad \widehat{\Gamma}_{i 1}^{2}=-\frac{1}{3} \widehat{\Gamma}_{12}^{i}, \quad(i, j>2) .
$$

Remark 1 Here $\operatorname{span}\left\{E_{3}, \ldots, E_{n}\right\}$ is an $(n-2)$-dimensional integrable distribution which spans at each point x with $K_{x} \neq 0$ the nullity space

[^2]of K_{x}.
Let us now specialize to 3-dimensional, definite affine unit spheres which satisfy Chen's equality.

Lemma 2 Let $f=E_{0}: M \rightarrow \mathbb{R}^{4}$ be a 3-dimensional, definite affine unit sphere with positive definite equi-affine metric and $x \in M$ with $K_{x} \neq$ 0 . Then in a neighbourhood of x there are functions $\alpha, \beta, \gamma, \delta$ and h orthonormal 1-forms $\omega^{1}, \omega^{2}, \omega^{3}$ such that

$$
\begin{array}{r}
\mathrm{D}\left(\begin{array}{l}
E_{0} \\
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \omega^{1} \\
-\epsilon \omega^{1} & \lambda \omega^{1} & \\
-\epsilon \omega^{2} & \gamma \omega^{1}-(\delta+\lambda) \omega^{2}+\frac{\beta}{3} \omega^{3} \\
-\epsilon \omega^{3} & -\alpha \omega^{1}+\beta \omega^{2} & \omega^{2} \\
& -\gamma \omega^{1}+(\delta-\lambda) \omega^{2}-\frac{\beta}{3} \omega^{3} & \alpha \omega^{1}-\beta \omega^{2} \\
& -\lambda \omega^{1} & \beta \omega^{1}+\alpha \omega^{2} \\
& -\beta \omega^{1}-\alpha \omega^{2} & 0
\end{array}\right)\left(\begin{array}{l}
E_{0} \\
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)
\end{array}
$$

holds, where E_{1}, E_{2}, E_{3} are chosen as in Lemma 1.
Proof. Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ is an orthonormal frame we have $\widehat{\Gamma}_{b c}^{a}=-\widehat{\Gamma}_{b a}^{c}$. Hence in view of Lemma 1 we have $\alpha:=\widehat{\Gamma}_{11}^{3}=\widehat{\Gamma}_{22}^{3}, \beta:=\widehat{\Gamma}_{12}^{3}=-\widehat{\Gamma}_{21}^{3}=$ $-3 \widehat{\Gamma}_{31}^{2}, \gamma:=\widehat{\Gamma}_{12}^{1}, \delta:=\widehat{\Gamma}_{21}^{2}, \widehat{\Gamma}_{33}^{1}=\widehat{\Gamma}_{33}^{2}=0$. Now the assertion follows from the equation $\mathrm{D}_{E_{b}} E_{c}=\left(K_{b c}^{a}+\widehat{\Gamma}_{b c}^{a}\right) E_{a}-\epsilon \delta_{b c} E_{0}$ and the form of $K_{b c}^{a}$.

In [SSVV97] all affine unit spheres (of arbitrary dimension n) which satisfy Chen's equality and for which the distribution $\operatorname{span}\left\{E_{1}, E_{2}\right\}$ is integrable, have been classified. For $n=3$, we have $h\left(\left[E_{1}, E_{2}\right], E_{3}\right)=2 \beta$ which implies that the classification for the case $\beta=0$ is known. We will give an existence and uniqueness result for elliptic 3 -dimensional affine unit spheres satisfying Chen's equality which rests on the following observation.

Corollary 1 Let M be an affine unit sphere which satisfies Chen's equality and $x \in M$. If $K_{x} \neq 0$ then there is a neighbourhood \mathcal{U} of x such that $f(\mathcal{U})$ is ruled by arcs of ellipses if it is elliptic and by arcs of hyperbolas if it is hyperbolic. These ellipses (respectively hyperbolas) are centered at 0.

Proof. We show that the integral curves of E_{3} are centered ellipses if $\epsilon=1$ and centered hyperbolas if $\epsilon=-1$. Since $D_{E_{3}} D_{E_{3}} E_{0}=D_{E_{3}} E_{3}=-\epsilon E_{0}$ the
integral curves of E_{3} satisfy $\ddot{\gamma}=-\epsilon \gamma$. It follows that there exist vectors $A, B \in \mathbb{R}^{4}$ such that $\gamma(t)=A \cos (t)+B \sin (t)$ in the elliptic case $(\epsilon=1)$ and $\gamma(t)=A \cosh (t)+B \sinh (t)$ in the hyperbolic case $(\epsilon=-1)$.

In view of Corollary 1 the geometry of M is determined by 2-dimensional submanifolds transverse to this elliptic/hyperbolic ruling. In the next section we will give an explicit reduction in the elliptic case.

3. The correspondence of affine unit 3 -spheres which satisfy Chen's equality and minimal immersions whose ellipses of curvature are circles

The following lemma is a consequence of the fact that $\operatorname{SL}(4, \mathbb{R})$ and $\mathrm{SO}(3,3)$ are locally isomorphic [Hel78].

Lemma 3 There is a natural local diffeomeorphism $\iota: \mathrm{SL}(4, \mathbb{R}) \rightarrow \mathrm{SO}(3,3)$ such that each $\iota(E)$ has exactly two pre-images.

Proof. Let $E=\left\{E_{0}, E_{1}, E_{2}, E_{3}\right\}$ be a basis with $\operatorname{det}\left(E_{0}, E_{1}, E_{2}, E_{3}\right)=1$ and define

$$
\begin{array}{ll}
(\iota(E))_{0}=\frac{1}{2}\left(E_{0} \wedge E_{3}+E_{1} \wedge E_{2}\right), & (\iota(E))_{5}=\frac{1}{2}\left(E_{0} \wedge E_{3}-E_{1} \wedge E_{2}\right) \\
(\iota(E))_{1}=\frac{1}{2}\left(E_{0} \wedge E_{1}+E_{2} \wedge E_{3}\right), & (\iota(E))_{3}=\frac{1}{2}\left(E_{0} \wedge E_{1}-E_{2} \wedge E_{3}\right) \\
(\iota(E))_{2}=\frac{1}{2}\left(E_{0} \wedge E_{2}+E_{3} \wedge E_{1}\right), & (\iota(E))_{4}=\frac{1}{2}\left(E_{0} \wedge E_{2}-E_{3} \wedge E_{1}\right)
\end{array}
$$

In the 6 -dimensional linear space $\operatorname{span}\left\{(\iota(E))_{0}, \ldots,(\iota(E))_{5}\right\}$ we define a scalar product via

$$
\langle X, Y\rangle E_{0} \wedge E_{1} \wedge E_{2} \wedge E_{3}=2 X \wedge Y
$$

It is easy to see that this scalar product has signature $(+,+,+,-,-,-)$ and that $\left\{(\iota(E))_{0}, \ldots,(\iota(E))_{5}\right\}$ is an orthonormal basis with respect to this scalar product. The map ι is clearly smooth. Assume that there exist $E, \tilde{E} \in \mathrm{SL}(\underset{\sim}{\sim}, \mathbb{R})$ with $\iota(E)=\iota(\tilde{E})$. It then follows that for all i, j we have $E_{i} \wedge E_{j}=\tilde{E}_{i} \wedge \tilde{E}_{j}$ and therefore $\tilde{E}_{i}=+E_{i}$ for all i or $\tilde{E}_{i}=-E_{i}$ for all i. Hence $\iota^{-1}(A)$ is empty or has exactly two elements for any $A \in \operatorname{SO}(3,3)$ and our claim follows from the fact that $\mathrm{SO}(3,3)$ and $\mathrm{SL}(4, \mathbb{R})$ have the same dimension.

Let $E=\left\{E_{0}, E_{1}, E_{2}, E_{3}\right\}: M \rightarrow \mathrm{SL}(4, \mathbb{R})$ be the adapted frame introduced in Lemma 1. We will now use this diffeomorphism to lift E to $\mathrm{SO}(3,3)$.

Lemma 4 Let E be chosen as in Lemma 2 and let $F=\iota(E)$. Then F satisfies the structure equations $\mathrm{d} F=T_{\epsilon} F$, where

$$
T_{-}=\left(\begin{array}{cccc}
0 & -\alpha \omega^{1}+\beta \omega^{2} & -\beta \omega^{1}-\alpha \omega^{2} \\
\alpha \omega^{1}-\beta \omega^{2} & 0 & -\gamma \omega^{1}+\delta \omega^{2}-\beta / 3 \omega^{3} & \\
\beta \omega^{1}+\alpha \omega^{2} & \gamma \omega^{1}-\delta \omega^{2}+\beta / 3 \omega^{3} & 0 & \\
-\omega^{2} & \lambda \omega^{1} & -\lambda \omega^{2}+\omega^{3} \\
\omega^{1} & -\lambda \omega^{2}-\omega^{3} & -\lambda \omega^{1} & \\
0 & \omega^{2} & -\omega^{1} & \\
& -\omega^{2} & \omega^{1} & 0 \\
& \lambda \omega^{1} & -\lambda \omega^{2}-\omega^{3} & \omega^{2} \\
& -\lambda \omega^{2}+\omega^{3} & -\lambda \omega^{1} & -\omega^{1} \\
& 0 & -\gamma \omega^{1}+\delta \omega^{2}-\beta / 3 \omega^{3} & \alpha \omega^{1}-\beta \omega^{2} \\
& \gamma \omega^{1}-\delta \omega^{2}+\beta / 3 \omega^{3} & 0 & \beta \omega^{1}+\alpha \omega^{2} \\
& -\alpha \omega^{1}+\beta \omega^{2} & -\beta \omega^{1}-\alpha \omega^{2} & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
& T_{+}= \\
& \left.\begin{array}{ccc}
0 & -\alpha \omega^{1}+(1+\beta) \omega^{2} & -(1+\beta) \omega^{1}-\alpha \omega^{2} \\
\alpha \omega^{1}-(1+\beta) \omega^{2} & 0 & -\gamma \omega^{1}+\delta \omega^{2}+(1-\beta / 3) \omega^{3} \\
(1+\beta) \omega^{1}+\alpha \omega^{2} & \gamma \omega^{1}-\delta \omega^{2}-(1-\beta / 3) \omega^{3} & 0 \\
0 & \lambda \omega^{1} & -\lambda \omega^{2} \\
0 & -\lambda \omega^{2} & -\lambda \omega^{1} \\
0 & 0 & 0 \\
& 0 & 0 \\
\\
\lambda \omega^{1} & -\lambda \omega^{2} & 0 \\
-\lambda \omega^{2} & -\lambda \omega^{1} & 0 \\
0 & -\gamma \omega^{1}+\delta \omega^{2}-(1+\beta / 3) \omega^{3} & 0 \omega^{1}+(1-\beta) \omega^{2} \\
\gamma \omega^{1}-\delta \omega^{2}+(1+\beta / 3) \omega^{3} & 0 & -(1-\beta) \omega^{1}+\alpha \omega^{2} \\
-\alpha \omega^{1}-(1-\beta) \omega^{2} & (1-\beta) \omega^{1}-\alpha \omega^{2} & 0
\end{array}\right)
\end{aligned}
$$

Proof. This is a direct calculation using equation (1). We use the notations: $F_{1+}=F_{0}, F_{1-}=F_{5}, F_{2+}=F_{1}, F_{2-}=F_{3}, F_{3+}=F_{2}, F_{3-}=F_{4}$.

$$
\begin{aligned}
& 2 \mathrm{D} F_{1 \pm} \\
& =\mathrm{D}\left(E_{0} \wedge E_{3} \pm E_{1} \wedge E_{2}\right) \\
& =\left(\omega^{1} \otimes E_{1}+\omega^{2} \otimes E_{2}+\omega^{3} \otimes E_{3}\right) \wedge E_{3} \\
& +E_{0} \wedge\left(-\epsilon \omega^{3} \otimes E_{0}+\left(-\alpha \omega^{1}+\beta \omega^{2}\right) \otimes E_{1}-\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{2}\right) \\
& \pm\left(-\epsilon \omega^{1} \otimes E_{0}+\lambda \omega^{1} \otimes E_{1}+\left(-\gamma \omega^{1}+(\delta-\lambda) \omega^{2}-\frac{\beta}{3} \omega^{3}\right) \otimes E_{2}\right. \\
& \left.+\left(\alpha \omega^{1}-\beta \omega^{2}\right) \otimes E_{3}\right) \wedge E_{2} \\
& \pm E_{1} \wedge\left(-\epsilon \omega^{2} \otimes E_{0}+\left(\gamma \omega^{1}-(\lambda+\delta) \omega^{2}+\frac{\beta}{3} \omega^{3}\right) \otimes E_{1}-\lambda \omega^{1} \otimes E_{2}\right. \\
& \left.+\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{3}\right) \\
& =\left(-\alpha \omega^{1}+\beta \omega^{2} \pm \epsilon \omega^{2}\right) \otimes E_{0} \wedge E_{1}+\left(\omega^{2} \mp\left(\alpha \omega^{1}-\beta \omega^{2}\right)\right) \otimes E_{2} \wedge E_{3} \\
& +\left(-\beta \omega^{1}-\alpha \omega^{2} \mp \epsilon \omega^{1}\right) \otimes E_{0} \wedge E_{2}+\left(-\omega^{1} \mp \beta \omega^{1} \mp \alpha \omega^{2}\right) \otimes E_{3} \wedge E_{1} \\
& =\left((1 \pm 1)\left(-\alpha \omega^{1}+\beta \omega^{2}\right)+(1 \pm \epsilon) \omega^{2}\right) \otimes F_{2+} \\
& +\left((1 \mp 1)\left(-\alpha \omega^{1}+\beta \omega^{2}\right)-(1 \mp \epsilon) \omega^{2}\right) \otimes F_{2-} \\
& +\left(-(1 \pm \epsilon) \omega^{1}-(1 \pm 1)\left(\beta \omega^{1}+\alpha \omega^{2}\right)\right) \otimes F_{3+} \\
& +\left((1 \mp \epsilon) \omega^{1}-(1 \mp 1)\left(\beta \omega^{1}+\alpha \omega^{2}\right)\right) \otimes F_{3-}, \\
& 2 \mathrm{DF} \mathrm{~F}_{2 \pm} \\
& =\mathrm{D}\left(E_{0} \wedge E_{1} \pm E_{2} \wedge E_{3}\right) \\
& =\left(\omega^{1} \otimes E_{1}+\omega^{2} \otimes E_{2}+\omega^{3} \otimes E_{3}\right) \wedge E_{1} \\
& +E_{0} \wedge\left(-\epsilon \omega^{1} \otimes E_{0}+\lambda \omega^{1} \otimes E_{1}+\left(-\gamma \omega^{1}+(\delta-\lambda) \omega^{2}-\frac{\beta}{3} \omega^{3}\right) \otimes E_{2}\right. \\
& \left.+\left(\alpha \omega^{1}-\beta \omega^{2}\right) \otimes E_{3}\right) \\
& \pm\left(-\epsilon \omega^{2} \otimes E_{0}+\left(\gamma \omega^{1}-(\lambda+\delta) \omega^{2}+\frac{\beta}{3} \omega^{3}\right) \otimes E_{1}-\lambda \omega^{1} \otimes E_{2}\right. \\
& \left.+\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{3}\right) \wedge E_{3} \\
& \pm E_{2} \wedge\left(-\epsilon \omega^{3} \otimes E_{0}+\left(-\alpha \omega^{1}+\beta \omega^{2}\right) \otimes E_{1}-\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{2}\right) \\
& =\left(\alpha \omega^{1}-\beta \omega^{2} \mp \epsilon \omega^{2}\right) \otimes E_{0} \wedge E_{3}+\left(-\omega^{2} \pm \alpha \omega^{1} \mp \beta \omega^{2}\right) \otimes E_{1} \wedge E_{2} \\
& +\left(\lambda \omega^{1}\right) \otimes E_{0} \wedge E_{1}+\left(\mp \lambda \omega^{1}\right) \otimes E_{2} \wedge E_{3} \\
& +\left((\delta-\lambda) \omega^{2}-\gamma \omega^{1}-\frac{\beta}{3} \omega^{3} \pm \epsilon \omega^{3}\right) \otimes E_{0} \wedge E_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\omega^{3} \pm(\delta+\lambda) \omega^{2} \mp \gamma \omega^{1} \mp \frac{\beta}{3} \omega^{3}\right) \otimes E_{3} \wedge E_{1} \\
= & \left((1 \pm 1)\left(\alpha \omega^{1}-\beta \omega^{2}\right)-(1 \pm \epsilon) \omega^{2}\right) \otimes F_{1+} \\
& +\left((1 \mp 1)\left(\alpha \omega^{1}-\beta \omega^{2}\right)+(1 \mp \epsilon) \omega^{2}\right) \otimes F_{1-} \\
& +(1 \mp 1) \lambda \omega^{1} \otimes F_{2+}+(1 \pm 1) \lambda \omega^{1} \otimes F_{2-} \\
& +\left((1 \pm \epsilon) \omega^{3}-(1 \mp 1) \lambda \omega^{2}+(1 \pm 1)\left(-\gamma \omega^{1}+\delta \omega^{2}-\frac{\beta}{3} \omega^{3}\right)\right) \otimes F_{3+} \\
& +\left(-(1 \mp \epsilon) \omega^{3}-(1 \pm 1) \lambda \omega^{2}+(1 \mp 1)\left(-\gamma \omega^{1}+\delta \omega^{2}-\frac{\beta}{3} \omega^{3}\right)\right) \otimes F_{3-}
\end{aligned}
$$

$2 \mathrm{DF}_{3 \pm}$

$$
\begin{aligned}
= & \mathrm{D}\left(E_{0} \wedge E_{2} \pm E_{3} \wedge E_{1}\right) \\
= & \left(\omega^{1} \otimes E_{1}+\omega^{2} \otimes E_{2}+\omega^{3} \otimes E_{3}\right) \wedge E_{2} \\
& +E_{0} \wedge\left(-\epsilon \omega^{2} \otimes E_{0}+\left(\gamma \omega^{1}-(\lambda+\delta) \omega^{2}+\frac{\beta}{3} \omega^{3}\right) \otimes E_{1}-\lambda \omega^{1} \otimes E_{2}\right. \\
& \left.\quad+\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{3}\right) \\
& \pm\left(-\epsilon \omega^{3} \otimes E_{0}+\left(-\alpha \omega^{1}+\beta \omega^{2}\right) \otimes E_{1}-\left(\beta \omega^{1}+\alpha \omega^{2}\right) \otimes E_{2}\right) \wedge E_{1} \\
& \pm E_{3} \wedge\left(-\epsilon \omega^{1} \otimes E_{0}+\lambda \omega^{1} \otimes E_{1}+\left(-\gamma \omega^{1}+(\delta-\lambda) \omega^{2}-\frac{\beta}{3} \omega^{3}\right) \otimes E_{2}\right. \\
& \left.\quad+\left(\alpha \omega^{1}-\beta \omega^{2}\right) \otimes E_{3}\right) \\
= & \left(\beta \omega^{1}+\alpha \omega^{2} \pm \epsilon \omega^{1}\right) \otimes E_{0} \wedge E_{3}+\left(\omega^{1} \pm \beta \omega^{1} \pm \alpha \omega^{2}\right) \otimes E_{1} \wedge E_{2} \\
& +\left(\gamma \omega^{1}-(\lambda+\delta) \omega^{2}+\frac{\beta}{3} \omega^{3} \mp \epsilon \omega^{3}\right) \otimes E_{0} \wedge E_{1} \\
& +\left(-\omega^{3} \mp\left(-\gamma \omega^{1}+(\delta-\lambda) \omega^{2}-\frac{\beta}{3} \omega^{3}\right)\right) \otimes E_{2} \wedge E_{3} \\
& +\left(-\lambda \omega^{1}\right) \otimes E_{0} \wedge E_{2}+\left(\pm \lambda \omega^{1}\right) \otimes E_{3} \wedge E_{1} \\
= & \left((1 \pm 1)\left(\beta \omega^{1}+\alpha \omega^{2}\right)+(1 \pm \epsilon) \omega^{1}\right) \otimes F_{1+} \\
& +\left((1 \mp 1)\left(\beta \omega^{1}+\alpha \omega^{2}\right)-(1 \mp \epsilon) \omega^{1}\right) \otimes F_{1-} \\
& +\left((1 \pm 1)\left(\gamma \omega^{1}-\delta \omega^{2}+\frac{\beta}{3} \omega^{3}\right)-(1 \mp 1) \lambda \omega^{2}-(1 \pm \epsilon) \omega^{3}\right) \otimes F_{2+} \\
& +\left((1 \mp 1)\left(\gamma \omega^{1}-\delta \omega^{2}+\frac{\beta}{3} \omega^{3}\right)-(1 \pm 1) \lambda \omega^{2}+(1 \mp \epsilon) \omega^{3}\right) \otimes F_{2-} \\
& +\left(-(1 \mp 1) \lambda \omega^{1}\right) \otimes F_{3+}+\left(-(1 \pm 1) \lambda \omega^{1}\right) \otimes F_{3-}
\end{aligned}
$$

We are now in a position to describe the reduction referred to in the last section. We will show how the frame given in Lemma 4 in the elliptic case can be geometrically interpreted. Unfortunately such an interpretation does not seem to exist in the hyperbolic case. We denote by S_{3}^{5} the unit pseudosphere in R_{3}^{6}, i.e. S_{3}^{5} has dimension 5 and index 3 . In the following the notion of a minimal immersion $g: N \rightarrow S_{3}^{5}$ means that the mean curvature vector field of g vanishes. This is not equivalent to $g(N)$ spanning locally minimal area.

Theorem 1 Let $f: M \rightarrow \mathbb{R}^{4}$ be a 3-dimensional elliptic affine unit sphere which satisfies Chen's equality. Assume that $K_{x} \neq 0$ for all $x \in M$ and let N be a 2-dimensional submanifold of M which is transverse to the elliptic ruling defined by E_{3}. Then $g: N \rightarrow S_{3}^{5}, x \mapsto g(x)=F_{0}(x)=\frac{1}{2}\left(E_{0}(x) \wedge\right.$ $\left.E_{3}(x)+E_{1}(x) \wedge E_{2}(x)\right)$ is a minimal immersion with positive definite induced metric whose ellipses of curvature are circles.

Proof. Since N is transverse to the flow lines of E_{3}, F_{0} restricted to N is an immersion into S_{3}^{5}. If $\left\{f_{1}, f_{2}\right\}$ is the basis dual to the pullback $\left\{\left(\omega^{1}\right)_{T N},\left(\omega^{2}\right)_{T N}\right\}$ of $\left(\omega^{1}, \omega^{2}\right)$ to N then the basis

$$
\begin{aligned}
& e_{1}=\frac{1}{\alpha^{2}+(1+\beta)^{2}}\left(-\alpha f_{1}+(1+\beta) f_{2}\right), \\
& e_{2}=\frac{1}{\alpha^{2}+(1+\beta)^{2}}\left(-(1+\beta) f_{1}-\alpha f_{2}\right)
\end{aligned}
$$

satisfies $\mathrm{d} F_{0}\left(e_{i}\right)=F_{i}$ and is therefore an orthonormal basis of N equipped with the metric induced by F_{0}. The shape tensor is given by

$$
\begin{aligned}
& I\left(e_{1}, e_{1}\right)=\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}\left(-\alpha F_{3}-(1+\beta) F_{4}\right), \\
& I\left(e_{1}, e_{2}\right)=\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}\left(-(1+\beta) F_{3}+\alpha F_{4}\right), \\
& I\left(e_{2}, e_{2}\right)=\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}\left(\alpha F_{3}+(1+\beta) F_{4}\right) .
\end{aligned}
$$

Hence F_{0} must be a minimal immersion. Since

$$
\begin{aligned}
& I\left(\cos (t) e_{1}+\sin (t) e_{2}, \cos (t) e_{1}+\sin (t) e_{2}\right) \\
& =\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}\left(\cos ^{2}(t)\left(-\alpha F_{3}-(1+\beta) F_{4}\right)\right. \\
& \quad+2 \sin (t) \cos (t)\left(-(1+\beta) F_{3}+\alpha F_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\sin ^{2}(t)\left(\alpha F_{3}+(1+\beta) F_{4}\right)\right) \\
& =\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}\left(\cos (2 t)\left(-\alpha F_{3}-(1+\beta) F_{4}\right)\right. \\
& \left.\quad+\sin (2 t)\left(-(1+\beta) F_{3}+\alpha F_{4}\right)\right)
\end{aligned}
$$

the ellipses of curvature are circles.
In the rest of this section we will elaborate on the relation between this class of minimal immersions and elliptic affine unit 3 -spheres which satisfy Chen's equality. We will show that we can find an orthonormal frame adapted to the minimal immersion such that the frame map satisfies $d F=T_{+} F$.

Let N be a 2-dimensional manifold, let $g: N \rightarrow S_{3}^{5}$ be an immersion with positive definite induced metric and without totally geodesic points. Then, taking an arbitrary orthonormal basis $\left\{e_{1}, e_{2}\right\}$ at a point p and writing a unit vector v as $v=\cos \theta e_{1}+\sin \theta e_{2}$, we see that

$$
\begin{gathered}
I I(v, v)=\cos ^{2} \theta I\left(e_{1}, e_{1}\right)+2 \sin \theta \cos \theta I\left(e_{1}, e_{2}\right)+\sin ^{2} \theta I\left(e_{2}, e_{2}\right) \\
=\frac{1}{2}\left(I I\left(e_{1}, e_{1}\right)+I I\left(e_{2}, e_{2}\right)\right)+\frac{1}{2} \cos 2 \theta\left(I I\left(e_{1}, e_{1}\right)\right. \\
\left.\quad-\Pi\left(e_{2}, e_{2}\right)\right)+\sin 2 \theta I I\left(e_{1}, e_{2}\right) .
\end{gathered}
$$

From this, we see that the image of $\{\Pi(v, v) \mid\langle v, v\rangle=1\}$ is at every point an ellipse. This ellipse is a circle centered at the origin if and only if

$$
\begin{align*}
& I I\left(e_{1}, e_{1}\right)+I I\left(e_{2}, e_{2}\right)=0 \tag{2}\\
& \left\langle I I\left(e_{1}, e_{1}\right)-I I\left(e_{2}, e_{2}\right), I I\left(e_{1}, e_{2}\right)\right\rangle=0 \tag{3}\\
& \left\langle\frac{1}{2}\left(I I\left(e_{1}, e_{1}\right)-I I\left(e_{2}, e_{2}\right)\right), \frac{1}{2}\left(I I\left(e_{1}, e_{1}\right)-I I\left(e_{2}, e_{2}\right)\right)\right\rangle \\
& \quad=\left\langle I\left(e_{1}, e_{2}\right), I I\left(e_{1}, e_{2}\right)\right\rangle \tag{4}
\end{align*}
$$

In particular, we see that an immersion with ellipse of curvature centered at the origin is minimal and has the property that $\|I(v, v)\|=$ $\sqrt{-\langle I I(v, v), I I(v, v)\rangle}$ is independent of the unit length vector at the point p. Conversely, it is also clear that all minimal immersions with that property have ellipse of curvature a circle centered at the origin.

Assume now that g has no totally geodesic points and has ellipse of curvature a circle. Let $\left\{e_{1}, e_{2}\right\}$ be an orthonormal frame. Then $M=$ $\|I(e, e)\|>0$ for any unit vector e and independent of the choice of unit
vector at a point p and we can associate with g a second order frame

$$
\begin{aligned}
& G: N \rightarrow \mathrm{SO}(3,3), \\
& x \mapsto G(x)=\left(G_{0}(x) G_{1}(x) G_{2}(x) G_{3}(x) G_{4}(x) G_{5}(x)\right)^{\top}
\end{aligned}
$$

such that $G_{0}=g, G_{1}=g_{*}\left(e_{1}\right), G_{2}=g_{*}\left(e_{2}\right), G_{3}=\frac{1}{M} \mathbb{I}\left(e_{1}, e_{2}\right), G_{4}=$ $\frac{1}{M} \mathbb{I}\left(e_{1}, e_{1}\right) . G_{5}$ is uniquely defined by $G \in \operatorname{SO}(3,3)$.

Since $g_{*} T N=\operatorname{span}\left\{G_{1}, G_{2}\right\}$ and the image of II is given by span $\left\{G_{3}, G_{4}\right\}$, we have for each $x \in N$ a splitting $\mathbb{R}^{6}=\operatorname{span}\left\{G_{0}\right\} \oplus$ span $\left\{G_{1}, G_{2}\right\} \oplus \operatorname{span}\left\{G_{3}, G_{4}\right\} \oplus \operatorname{span}\left\{G_{5}\right\}$ which is invariant with respect to the orthonormal frame $\left\{e_{1}, e_{2}\right\}$. We denote the orthogonal projection $\mathbb{R}^{6} \rightarrow$ $\operatorname{span}\left\{G_{5}\right\}$ by pr_{5} and we let $\nabla_{U} I(V, W)=D_{U}^{\perp}(I(V, W))-I\left(\nabla_{U} V, W\right)-$ $I\left(V, \nabla_{U} W\right)$, where D_{U}^{\perp} denotes the normal component to the surface, but tangential to the sphere, of $\mathrm{D}_{U} I I(V, W)$.
Lemma 5 Let $g: N \rightarrow S_{3}^{5}$ be a minimal immersion whose ellipses of curvature are non-degenerate circles. Then there exist a local orthonormal frame $\left\{e_{1}, e_{2}\right\}$ with dual basis $\left\{\mu^{1}, \mu^{2}\right\}$, one-forms ω_{2}^{1} and S_{4}^{3}, and a function N_{4} such that the corresponding frame G satisfies

$$
\mathrm{d} G=\left(\begin{array}{cccccc}
0 & \mu^{1} & \mu^{2} & 0 & 0 & 0 \tag{5}\\
-\mu^{1} & 0 & -\omega_{2}^{1} & M \mu^{2} & M \mu^{1} & 0 \\
-\mu^{2} & \omega_{2}^{1} & 0 & M \mu^{1} & -M \mu^{2} & 0 \\
0 & M \mu^{2} & M \mu^{1} & 0 & -S_{4}^{3} & N_{4} \mu^{1} \\
0 & M \mu^{1} & -M \mu^{2} & S_{4}^{3} & 0 & N_{4} \mu^{2} \\
0 & 0 & 0 & -N_{4} \mu^{1} & -N_{4} \mu^{2} & 0
\end{array}\right) G .
$$

Proof. We start with a second order frame $G: N \rightarrow \mathrm{SO}(3,3)$. Since the Codazzi equation is given by $\nabla_{U} I(V, W)=\nabla_{V} I(U, W)$ and G_{5} is perpendicular to $\mathbb{I}(V, W)$ for all $V, W \in T M$, we have

$$
\begin{aligned}
\left\langle\mathrm{D}_{e_{1}} G_{3}, G_{5}\right\rangle & =\left\langle\frac{1}{M} \mathrm{D}_{e_{1}}\left(I\left(e_{1}, e_{2}\right)\right), G_{5}\right\rangle=\left\langle\frac{1}{M} \nabla_{e_{1}} I\left(e_{1}, e_{2}\right), G_{5}\right\rangle \\
& \left.=\left\langle\frac{1}{M} \nabla_{e_{2}} I\left(e_{1}, e_{1}\right), G_{5}\right)\right\rangle=\left\langle\mathrm{D}_{e_{2}} G_{4}, G_{5}\right\rangle
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left\langle\mathrm{D}_{e_{2}} G_{3}, G_{5}\right\rangle & =\left\langle\frac{1}{M} \mathrm{D}_{e_{2}}\left(\mathbb{I}\left(e_{1}, e_{2}\right)\right), G_{5}\right\rangle=\left\langle\frac{1}{M} \nabla_{e_{1}} I\left(e_{2}, e_{2}\right), G_{5}\right\rangle \\
& =-\left\langle\frac{1}{M} \nabla_{e_{1}} I\left(e_{1}, e_{1}\right), G_{5}\right\rangle=-\left\langle\mathrm{D}_{e_{1}} G_{4}, G_{5}\right\rangle,
\end{aligned}
$$

where we have used that $\mathbb{I}\left(e_{1}, e_{1}\right)+\mathbb{I}\left(e_{2}, e_{2}\right)=0$. This implies that $S:=$ $\mathrm{d} G G^{-1} \in \mathrm{SO}(3,3)$ is of the following form:

$$
\begin{align*}
& \mathrm{d} G= \\
& \left(\begin{array}{cccccc}
0 & \mu^{1} & \mu^{2} & 0 & 0 & 0 \\
-\mu^{1} & 0 & -\omega_{2}^{1} & M \mu^{2} & M \mu^{1} & 0 \\
-\mu^{2} & \omega_{2}^{1} & 0 & M \mu^{1} & -M \mu^{2} & 0 \\
0 & M \mu^{2} & M \mu^{1} & 0 & -S_{4}^{3} & N_{4} \mu^{1}-N_{3} \mu^{2} \\
0 & M \mu^{1} & -M \mu^{2} & S_{4}^{3} & 0 & N_{3} \mu^{1}+N_{4} \mu^{2} \\
0 & 0 & 0 & -N_{4} \mu^{1}+N_{3} \mu^{2} & -N_{3} \mu^{1}-N_{4} \mu^{2} & 0
\end{array}\right) G . \tag{6}
\end{align*}
$$

By a rotation of $\left\{e_{1}, e_{2}\right\}$ we can obtain $N_{3}=0$. (Here we have redefined G_{1}, G_{2} accordingly so that $g_{*} e_{i}=G_{i}$). To see this note first that $\left\langle\mathrm{D}_{e_{1}} G_{3}, \mathrm{D}_{e_{1}} G_{4}\right\rangle=-N_{3} N_{4}$ and $\left\langle\mathrm{D}_{e_{2}} G_{3}, \mathrm{D}_{e_{2}} G_{4}\right\rangle=N_{3} N_{4}$. For $\psi \in[0,2 \pi)$ we define $\tilde{e}_{1}=\cos \psi e_{1}+\sin \psi e_{2}, \tilde{e}_{2}=-\sin \psi e_{1}+\cos \psi e_{2}$. Since $I\left(e_{2}, e_{2}\right)=$ $-M G_{4}$ we have

$$
\tilde{G}_{3}=\frac{1}{M} \Pi\left(\tilde{e}_{1}, \tilde{e}_{2}\right)=\left(\cos ^{2} \psi-\sin ^{2} \psi\right) G_{3}-2 \cos \psi \sin \psi G_{4}
$$

and

$$
\tilde{G}_{4}=\frac{1}{M} \Pi\left(\tilde{e}_{1}, \tilde{e}_{1}\right)=2 \cos \psi \sin \psi G_{3}+\left(\cos ^{2} \psi-\sin ^{2} \psi\right) G_{4} .
$$

Now a short calculation gives for $\psi=0$

$$
\left\langle\mathrm{D}_{\tilde{e}_{1}} \tilde{G}_{3}, \mathrm{D}_{\tilde{e}_{1}} \tilde{G}_{4}\right\rangle=\left\langle\mathrm{D}_{e_{1}} G_{3}, \mathrm{D}_{e_{1}} G_{4}\right\rangle=-N_{3} N_{4}
$$

and for $\psi=\pi / 2$

$$
\left\langle\mathrm{D}_{\tilde{e}_{1}} \tilde{G}_{3}, \mathrm{D}_{\tilde{e}_{1}} \tilde{G}_{4}\right\rangle=\left\langle\mathrm{D}_{e_{2}} G_{3}, \mathrm{D}_{e_{2}} G_{4}\right\rangle=N_{3} N_{4} .
$$

Hence there is a $\psi \in[0, \pi / 2]$ with $-\tilde{N}_{3} \tilde{N}_{4}=0$. Without loss of generality we can assume that $N_{3}=0$. Choosing the corresponding orthonormal frame $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$ and dropping the ${ }^{\sim}$ proves our assertion.

If we rotate the pair of vectors $\left(G_{1}, G_{2}\right)$ and $\left(G_{3}, G_{4}\right)$ independently by two angles θ and φ so that

$$
\begin{array}{ll}
\tilde{G}_{1}=\cos \theta G_{1}+\sin \theta G_{2}, & \tilde{G}_{2}=-\sin \theta G_{1}+\cos \theta G_{2} \\
\tilde{G}_{3}=\cos \varphi G_{3}+\sin \varphi G_{4}, & \tilde{G}_{4}=-\sin \varphi G_{3}+\cos \varphi G_{4},
\end{array}
$$

then we obtain the 1 -form valued matrix

$$
\begin{aligned}
& \tilde{S}=\left(\begin{array}{cc}
0 & \cos \theta \mu^{1}+\sin \theta \mu^{2} \\
-\cos \theta \mu^{1}-\sin \theta \mu^{2} & 0 \\
\sin \theta \mu^{1}-\cos \theta \mu^{2} & \omega_{2}^{1}-\mathrm{d} \theta \\
0 & M\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) \\
0 & M\left(\cos (\theta+\varphi) \mu^{1}-\sin (\theta+\varphi) \mu^{2}\right) \\
0 & 0
\end{array}\right. \\
& -\sin \theta \mu^{1}+\cos \theta \mu^{2} \\
& -\omega_{2}^{1}+\mathrm{d} \theta \\
& 0 \\
& M\left(\cos (\theta+\varphi) \mu^{1}-\sin (\theta+\varphi) \mu^{2}\right) \\
& -M\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) \\
& M\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) \\
& M\left(\cos (\theta+\varphi) \mu^{1}-\sin (\theta+\varphi) \mu^{2}\right) \\
& \begin{array}{c}
0 \\
S_{4}^{3}-\mathrm{d} \varphi \\
-N_{4}\left(\cos \varphi \mu^{1}+\sin \varphi \mu^{2}\right)
\end{array} \\
& \left.\begin{array}{cc}
0 & 0 \\
M\left(\cos (\theta+\varphi) \mu^{1}-\sin (\theta+\varphi) \mu^{2}\right) & 0 \\
-M\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) & 0 \\
-S_{4}^{3}+\mathrm{d} \varphi & N_{4}\left(\cos \varphi \mu^{1}+\sin \varphi \mu^{2}\right) \\
0 & N_{4}\left(-\sin \varphi \mu^{1}+\cos \varphi \mu^{2}\right) \\
-N_{4}\left(-\sin \varphi \mu^{1}+\cos \varphi \mu^{2}\right) & 0
\end{array}\right) .
\end{aligned}
$$

Lemma 6 Let N be a 2-dimensional manifold. For any frame $G: N \rightarrow$ $\mathrm{SO}(3,3)$ satisfying (5) there exist uniquely defined functions $\varphi, \lambda, \alpha, \beta, \gamma, \delta$: $\mathbb{R} \times N \rightarrow \mathbb{R}$ and 1 -forms ω^{1}, ω^{2}, ω^{3} such that the map $\left(\theta, x^{1}, x^{2}\right) \mapsto \tilde{G}$ satisfies $\mathrm{d} \tilde{G}=T_{+} \tilde{G}$.

Proof. We will use the freedom to choose $\varphi\left(x^{1}, x^{2}, \theta\right)$ so that $\tilde{S}=T_{+}$.

Since

$$
\left(T_{+}\right)_{0}^{1}+\left(T_{+}\right)_{3}^{5}+\frac{2}{\lambda}\left(T_{+}\right)_{1}^{4}=0, \quad\left(T_{+}\right)_{0}^{2}+\left(T_{+}\right)_{4}^{5}+\frac{2}{\lambda}\left(T_{+}\right)_{1}^{3}=0,
$$

we have to satisfy

$$
\tilde{S}_{0}^{1}+\tilde{S}_{3}^{5}+\frac{2}{\lambda} \tilde{S}_{1}^{4}=0, \quad \tilde{S}_{0}^{2}+\tilde{S}_{4}^{5}+\frac{2}{\lambda} \tilde{S}_{1}^{3}=0
$$

and therefore

$$
\begin{aligned}
& \cos \theta \mu^{1}+\sin \theta \mu^{2}+N_{4}\left(\cos \varphi \mu^{1}+\sin \varphi \mu^{2}\right) \\
& \quad=\frac{2 M}{\lambda}\left(-\cos (\theta+\varphi) \mu^{1}+\sin (\theta+\varphi) \mu^{2}\right), \\
& \sin \theta \mu^{1}-\cos \theta \mu^{2}+N_{4}\left(\sin \varphi \mu^{1}-\cos \varphi \mu^{2}\right)
\end{aligned}
$$

$$
=\frac{2 M}{\lambda}\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) .
$$

By interchanging $\mu^{1} \rightarrow-\mu^{2}$ and $\mu^{2} \rightarrow \mu^{1}$ it is clear that both equations are equivalent. From the first equation the 1 -forms $\cos \theta \mu^{1}+\sin \theta \mu^{2}+$ $N_{4}\left(\cos \varphi \mu^{1}+\sin \varphi \mu^{2}\right)$ and $-\cos (\theta+\varphi) \mu^{1}+\sin (\theta+\varphi) \mu^{2}$ are linearly dependent which is equivalent to

$$
\begin{equation*}
\sin (2 \theta+\varphi)+N_{4} \sin (\theta+2 \varphi)=0 \tag{7}
\end{equation*}
$$

From the same equation we get then

$$
\begin{equation*}
\lambda=-\frac{2 M \cos (\theta+\varphi)}{\cos \theta+N_{4} \cos \varphi} . \tag{8}
\end{equation*}
$$

The equations $\left(T_{+}\right)_{1}^{3}=\tilde{S}_{1}^{3}$ and $\left(T_{+}\right)_{1}^{4}=\tilde{S}_{1}^{4}$ imply

$$
\begin{align*}
\omega^{1} & =\frac{M}{\lambda}\left(\sin (\theta+\varphi) \mu^{1}+\cos (\theta+\varphi) \mu^{2}\right) \tag{9}\\
\omega^{2} & =-\frac{M}{\lambda}\left(\cos (\theta+\varphi) \mu^{1}-\sin (\theta+\varphi) \mu^{2}\right) . \tag{10}
\end{align*}
$$

Since $\left(T_{+}\right)_{0}^{1}-\left(T_{+}\right)_{3}^{5}=\tilde{S}_{0}^{1}-\tilde{S}_{3}^{5}$ is equivalent to

$$
-2 \alpha \omega^{1}+2 \beta \omega^{2}=\left(\cos \theta-N_{4} \cos \varphi\right) \mu^{1}+\left(\sin \theta-N_{4} \sin \varphi\right) \mu^{2}
$$

we obtain

$$
\begin{align*}
& \alpha=-\frac{\lambda}{2 M}\left(\sin (2 \theta+\varphi)-N_{4} \sin (\theta+2 \varphi)\right), \tag{11}\\
& \beta=-\frac{\lambda}{2 M}\left(\cos (2 \theta+\varphi)-N_{4} \cos (\theta+2 \varphi)\right) . \tag{12}
\end{align*}
$$

The only independent relations left is the pair of equations $2 \omega_{3}=\left(T_{+}\right)_{1}^{2}-$ $\left(T_{+}\right)_{3}^{4}=\tilde{S}_{1}^{2}+\tilde{S}_{3}^{4}=S_{4}^{3}-\omega_{2}^{1}+\mathrm{d}(\theta-\varphi), 2\left(-\gamma \omega^{1}+\delta \omega^{2}-\frac{\beta}{3} \omega^{3}\right)=\left(T_{+}\right)_{1}^{2}+\left(T_{+}\right)_{3}^{4}=$ $\tilde{S}_{1}^{2}+\tilde{S}_{3}^{4}=-S_{4}^{3}-\omega_{2}^{1}+\mathrm{d}(\theta+\varphi)$. Denote the basis dual to $\left\{\mu^{1}, \mu^{2}, \mathrm{~d} \theta\right\}$ by $\left\{e_{1}, e_{2}, e_{\theta}\right\}$ and write $\omega^{3}=\left(\omega^{3}\right)_{1} \mu^{1}+\left(\omega^{3}\right)_{2} \mu^{2}+\left(\omega^{3}\right)_{\theta} \mathrm{d} \theta$. Then the first equation is equivalent to

$$
\begin{align*}
& \left(\omega^{3}\right)_{1}=\frac{1}{2}\left(S_{4}^{3}-\omega_{2}^{1}-\mathrm{d} \varphi\right)\left(e_{1}\right), \tag{13}\\
& \left(\omega^{3}\right)_{2}=\frac{1}{2}\left(S_{4}^{3}-\omega_{2}^{1}-\mathrm{d} \varphi\right)\left(e_{2}\right), \tag{14}\\
& \left(\omega^{3}\right)_{\theta}=\frac{1}{2}\left(1-\mathrm{d} \varphi\left(e_{\theta}\right)\right) . \tag{15}
\end{align*}
$$

The second equation gives

$$
\left.\begin{array}{l}
\binom{\gamma}{\delta}=-\frac{\lambda}{2 M}\left(\begin{array}{cc}
\sin (\theta+\varphi) & \cos (\theta+\varphi) \\
\cos (\theta+\varphi) & -\sin (\theta+\varphi)
\end{array}\right) \\
\qquad\binom{\left(\left(\frac{\beta}{3}-1\right)\left(S_{4}^{3}-d \varphi\right)-\left(\frac{\beta}{3}+1\right) \omega_{2}^{1}\right)\left(e_{1}\right)}{\left(\left(\frac{\beta}{3}-1\right)\left(S_{4}^{3}-d \varphi\right)-\left(\frac{\beta}{3}+1\right) \omega_{2}^{1}\right)\left(e_{2}\right)}, \\
\left(\omega^{3}\right)_{\theta}= \tag{17}
\end{array}\right)-\frac{3}{2 \beta}\left(1+\mathrm{d} \varphi\left(e_{\theta}\right)\right) . .
$$

Thus the functions $\varphi, \lambda, \alpha, \beta, \gamma, \delta$ and the 1 -forms $\omega^{1}, \omega^{2}, \omega^{3}$ are all determined. Therefore we only need to show that the equation (17) is a consequence of equations (7)-(16). Inserting equations (9), (10) into $\left(T_{+}\right)_{0}^{1}=\tilde{S}_{0}^{1}$ we obtain $-\frac{M}{\lambda}(1+\beta)=\cos (2 \theta+\varphi)$. Using equation (7) and equation (8) after some computations we obtain $\lambda=-2 M /\left(\cos (2 \theta+\varphi)+N_{4} \cos (\theta+2 \varphi)\right)$. Taking the θ-derivative of equation (7) gives

$$
\begin{aligned}
0= & \left(\cos (2 \theta+\varphi)+N_{4} \cos (\theta+2 \varphi)\right)\left(1+2 \mathrm{~d} \varphi\left(e_{\theta}\right)\right) \\
& \quad+\cos (2 \theta+\varphi)\left(1-\mathrm{d} \varphi\left(e_{\theta}\right)\right) \\
= & \frac{-2 M}{\lambda}\left(1+2 \mathrm{~d} \varphi\left(e_{\theta}\right)\right)-\left(1-\mathrm{d} \varphi\left(e_{\theta}\right)\right) \frac{(1+\beta) M}{\lambda} .
\end{aligned}
$$

This is equivalent to $0=-3-\beta-(3-\beta) \mathrm{d} \varphi\left(e_{\theta}\right)$ which together with equation (15) implies equation (17).

Theorem 2 Let \tilde{N} be a two-dimensional manifold and let $\tilde{g}: \tilde{N} \rightarrow S_{3}^{5}$ be a minimal immersion with positive definite induced metric whose ellipses of curvature are non-degenerate circles. Then there is a 3 -dimensional elliptic affine unit sphere $f: M \rightarrow \mathbb{R}^{4}$ which satisfies Chen's equality and a natural immersion $j: \tilde{N} \rightarrow M$ such that $j(\tilde{N})$ can be identified with the submanifold N given in Theorem 1.

Proof. Let $\left\{e_{1}, e_{2}\right\}$ be the orthornormal frame of $T \tilde{N}$ provided by Lemma 5 and denote by $\left\{\mu^{1}, \mu^{2}\right\}$ the dual frame. Let (x^{1}, x^{2}) be a coordinate system of \tilde{N}, and denote an additional coordinate by θ. We now can define functions $\varphi, \alpha, \beta, \gamma, \delta, \lambda$ and 1 -forms $\omega^{1}, \omega^{2}, \omega^{3}$ via equations (7)-(16). The frame map

$$
F: \mathcal{U} \subset \mathbb{R}^{3} \rightarrow \mathrm{SO}(3,3)
$$

$$
x \mapsto\left(\begin{array}{c}
g \\
\cos (\theta) \mathrm{d} g\left(e_{1}\right)+\sin (\theta) \mathrm{d} g\left(e_{2}\right) \\
-\sin (\theta) \mathrm{d} g\left(e_{1}\right)+\cos (\theta) \mathrm{d} g\left(e_{2}\right) \\
\frac{1}{M}\left(\cos (\varphi) \Pi\left(e_{1}, e_{2}\right)+\sin (\varphi) \mathbb{I}\left(e_{1}, e_{1}\right)\right) \\
\frac{1}{M}\left(-\sin (\varphi) \mathbb{I}\left(e_{1}, e_{2}\right)+\cos (\varphi) \mathbb{I}\left(e_{1}, e_{1}\right)\right) \\
F_{5}
\end{array}\right),
$$

where F_{5} is uniquely determined by the requirement $F \in \mathrm{SO}(3,3)$, satisfies $\mathrm{d} F=T_{+} F$. Since $\iota: \mathrm{SL}(4, \mathbb{R}) \rightarrow \mathrm{SO}(3,3)$ is a covering map, it has a local inverse ι^{-1}. By the form of T_{+}, the immersion $f\left(x^{1}, x^{2}, x^{3}\right)=\left(\iota^{-1}(F)\right)_{0}$ defines a 3 -dimensional ellipic affine unit sphere which satisfies Chen's equality.

Remark 2 Let $\left(x^{1}, x^{2}\right)$ be coordinates of $N \subset M$. It would then be natural to choose a third coordinate x^{3} of M such that it is aligned with the invariant vector field E_{3}.

Let $x^{3}=\frac{1}{2}(\theta-\varphi), \rho=\frac{1}{2}(\theta+\varphi)$. Then we have $E_{3}=\partial_{x^{3}}$ and the system (7)-(17) is equivalent to

$$
\begin{align*}
0 & =\sin \left(x^{3}+3 \rho\right)+N_{4} \sin \left(-x^{3}+3 \rho\right), \tag{18}\\
\lambda & =\frac{-2 M \cos (2 \rho)}{\cos \left(x^{3}+\rho\right)+N_{4} \cos \left(-x^{3}+\rho\right)}, \tag{19}\\
\omega^{1} & =-\frac{\cos \left(x^{3}+\rho\right)+N_{4} \cos \left(-x^{3}+\rho\right)}{2 \cos (2 \rho)}\left(\sin (2 \rho) \mu^{1}+\cos (2 \rho) \mu^{2}\right), \tag{20}
\end{align*}
$$

$$
\begin{equation*}
\omega^{2}=\frac{\cos \left(x^{3}+\rho\right)+N_{4} \cos \left(-x^{3}+\rho\right)}{2 \cos (2 \rho)}\left(\cos (2 \rho) \mu^{1}-\sin (2 \rho) \mu^{2}\right), \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\omega^{3}=\frac{1}{2}\left(S_{4}^{3}-\omega_{2}^{1}\right)+\mathrm{d} x^{3}, \tag{22}
\end{equation*}
$$

$$
(\alpha, \beta)=\cos (2 \rho)\left(\frac{\sin \left(x^{3}+3 \rho\right)-N_{4} \sin \left(3 \rho-x^{3}\right)}{\cos \left(x^{3}+\rho\right)+N_{4} \cos \left(-x^{3}+\rho\right)},\right.
$$

$$
\begin{equation*}
\left.\frac{\cos \left(x^{3}+3 \rho\right)-N_{4} \cos \left(3 \rho-x^{3}\right)}{\cos \left(x^{3}+\rho\right)+N_{4} \cos \left(-x^{3}+\rho\right)}\right) \tag{23}
\end{equation*}
$$

$$
\begin{align*}
\binom{\gamma}{\delta}=- & \frac{\lambda}{2 M}\left(\begin{array}{cc}
\sin (2 \rho) & \cos (2 \rho) \\
\cos (2 \rho) & -\sin (2 \rho)
\end{array}\right) \\
& \binom{\left(\left(\frac{\beta}{3}-1\right)\left(S_{4}^{3}+d\left(x^{3}-\rho\right)\right)-\left(\frac{\beta}{3}+1\right) \omega_{2}^{1}\right)\left(e_{1}\right)}{\left(\left(\frac{\beta}{3}-1\right)\left(S_{4}^{3}-d\left(x^{3}-\rho\right)\right)-\left(\frac{\beta}{3}+1\right) \omega_{2}^{1}\right)\left(e_{2}\right)} \tag{24}
\end{align*}
$$

Remark 3 The frame $\left\{e_{1}, e_{2}\right\}$ used in Theorem 2 is uniquely (up to finitely many choices) defined unless $\mathrm{d} \boldsymbol{I}\left(e_{1}, e_{1}\right)(T N) \subset \operatorname{span}\left\{\mathrm{d} g\left(e_{1}\right), \mathrm{d} g\left(e_{2}\right)\right.$, $\left.\mathbb{I}\left(e_{1}, e_{1}\right), \Pi\left(e_{1}, e_{2}\right)\right\}$. Hence in this (generic) case, to each minimal immersion $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are non-degenerate circles we can uniquely (up to finitely many choices) assign an affine unit sphere $f: M \rightarrow \mathbb{R}^{4}$ which satisfies Chen's equality and vice versa.

If $\mathrm{d} \Pi\left(e_{1}, e_{1}\right)(T N) \subset \operatorname{span}\left\{\mathrm{d} g\left(e_{1}\right), \mathrm{d} g\left(e_{2}\right), \mathbb{I}\left(e_{1}, e_{1}\right), \mathbb{I}\left(e_{1}, e_{2}\right)\right\}$, then $N_{3}=N_{4}=0$ and we can reduce to an immersion $\hat{g}: N \rightarrow S_{2}^{4}$. Then the 1 -form valued matrix T_{+}is determined by

$$
\begin{aligned}
& \varphi(\theta)=-2 \theta+k \pi, \quad k \in \mathbb{Z}, \quad \lambda= \pm 2 M, \quad \alpha=0, \quad \beta=1, \\
& \binom{\gamma}{\delta}=-\frac{2}{3}\left(\begin{array}{cc}
-\sin (\theta) & \cos (\theta) \\
\cos (\theta) & \sin (\theta)
\end{array}\right)\binom{\left(S_{4}^{3}+2 \omega_{2}^{1}\right)\left(e_{1}\right)}{\left(S_{4}^{3}+2 \omega_{2}^{1}\right)\left(e_{2}\right)}, \\
& \omega^{1}=\frac{1}{2}\left(\sin \theta \mu^{1}-\cos \theta \mu^{2}\right), \quad \omega^{2}=\frac{1}{2}\left(\cos \theta \mu^{1}+\sin \theta \mu^{2}\right), \\
& \omega^{3}=\frac{1}{2}\left(S_{4}^{3}-\omega_{2}^{1}+3 \mathrm{~d} \theta\right),
\end{aligned}
$$

which follow directly from equations (7)-(16) and $N_{4}=0$.
Remark 4 The sub-case previously classified in [SSVV97] is the case where $\beta=0$ (cf. the discussion following Lemma 2). By equations (7), (12), this reduces to $N_{4}= \pm 1$. The function φ again depends only on θ. In the next section we will see that in this case the integrability conditions have an especially simple form.

4. Minimal immersions $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are circles

After we have reduced the problem to the classification of minimal immersions whose ellipses of curvature are circles, an investigation of this class will be done in the following. Consider a minimal immersion $g: N \rightarrow S_{3}^{5}$
with positive definite induced metric whose ellipses of curvature are nondegenerate circles. We can choose isothermal coordinates (u, v) and a frame G as defined in equation (6) such that $\mu^{1}=\sigma \mathrm{d} u, \mu^{2}=\sigma \mathrm{d} v$. Writing $\mathrm{d} G=$ $S G$ the integrability conditions $\mathrm{dd} G=0$ are equivalent to $\mathrm{d} S-S \wedge S=0$ and reduce to

$$
\begin{array}{ll}
{ }_{0}^{1}: & 0=\mathrm{d} \mu^{1}-\mu^{2} \wedge \omega_{2}^{1} \\
{ }_{0}^{2}: & 0=\mathrm{d} \mu^{2}+\mu^{1} \wedge \omega_{2}^{1} \\
{ }_{1}^{2}: & 0=-\mathrm{d} \omega_{2}^{1}+\mu^{1} \wedge \mu^{2}+2 M^{2} \mu^{1} \wedge \mu^{2} \\
\frac{3}{1}: & 0=\mathrm{d}\left(M \mu^{2}\right)-M \mu^{1} \wedge\left(\omega_{2}^{1}+S_{4}^{3}\right) \\
\frac{4}{1}: & 0=\mathrm{d}\left(M \mu^{1}\right)-M\left(\omega_{2}^{1}+S_{4}^{3}\right) \wedge \mu^{2} \\
{ }_{3}^{4}: & 0=-\mathrm{d} S_{4}^{3}+\left(2 M^{2}+\left(N_{3}\right)^{2}+\left(N_{4}\right)^{2}\right) \mu^{1} \wedge \mu^{2} \\
{ }_{3}^{5}: & 0=\mathrm{d}\left(N_{4} \mu^{1}-N_{3} \mu^{2}\right)+S_{4}^{3} \wedge\left(N_{3} \mu^{1}+N_{4} \mu^{2}\right) \\
{ }_{4}^{5}: & 0=\mathrm{d}\left(N_{3} \mu^{1}+N_{4} \mu^{2}\right)-S_{4}^{3} \wedge\left(N_{4} \mu^{1}-N_{3} \mu^{2}\right) .
\end{array}
$$

Since $M \neq 0$, the integrability conditions can be re-expressed as

$$
\begin{aligned}
& \omega_{2}^{1}=(\ln \sigma)_{v} \mathrm{~d} u-(\ln \sigma)_{u} \mathrm{~d} v, \quad S_{4}^{3}=a \mathrm{~d} u+b \mathrm{~d} v, \quad\left(\ln \left(\sigma^{2} M\right)\right)_{u}=b \\
& \left(\ln \left(\sigma^{2} M\right)\right)_{v}=-a, \quad(\ln \sigma)_{u u}+(\ln \sigma)_{v v}=-\left(1+2 M^{2}\right) \sigma^{2} \\
& -a_{v}+b_{u}=\left(2 M^{2}+\left(N_{3}\right)^{2}+\left(N_{4}\right)^{2}\right) \sigma^{2} \\
& \left(N_{3}\right)_{u}+\left(N_{4}\right)_{v}=-N_{3}\left(\ln \left(\sigma^{3} M\right)\right)_{u}-N_{4}\left(\ln \left(\sigma^{3} M\right)\right)_{v} \\
& \left(N_{3}\right)_{v}-\left(N_{4}\right)_{u}=-N_{3}\left(\ln \left(\sigma^{3} M\right)\right)_{v}+N_{4}\left(\ln \left(\sigma^{3} M\right)\right)_{u}
\end{aligned}
$$

Setting $\sigma^{3} M=A$, the system of differential equations is equivalent to the following determined system:

$$
\begin{align*}
& (\ln A)_{u u}+(\ln A)_{v v}=\sigma^{2}\left(\left(N_{3}\right)^{2}+\left(N_{4}\right)^{2}-1\right) \\
& (\ln \sigma)_{u u}+(\ln \sigma)_{v v}=-\left(\sigma^{2}+\frac{2}{\sigma^{4}} A^{2}\right) \tag{25}\\
& \left(A N_{3}\right)_{u}+\left(A N_{4}\right)_{v}=0, \quad\left(A N_{3}\right)_{v}-\left(A N_{4}\right)_{u}=0 \tag{26}
\end{align*}
$$

Lemma 7 Let $g: N \rightarrow S_{3}^{5}$ be a minimal immersion with positive definite induced metric whose ellipse of curvature is a non-degenerate circle. Then either N_{3} and N_{4} vanish identically, in which case the image of N is contained in a totally geodesic S_{2}^{4}, or except at isolated points there exist isothermic coordinates with $\sigma^{3} M N_{4}=1$ and $N_{3}=0$.

Proof. Let (\tilde{u}, \tilde{v}) be any system of isothermal coordinates and define the
complex coordinate \tilde{z} by $\tilde{z}=\tilde{u}+\mathrm{i} \tilde{v}$. Equations (26) are satisfied if and only if $\tilde{A}\left(\tilde{N}_{3}-\mathrm{i} \tilde{N}_{4}\right)$ is a holomorphic function with respect to \tilde{z}. It is straight forward to show that $\frac{1}{2} \tilde{A}\left(\tilde{N}_{3}-\mathrm{i} \tilde{N}_{4}\right)$ is just the G_{5} component of $\nabla I I\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}}\right)$. In fact, note first that

$$
\begin{aligned}
\mathbb{I}\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}\right) & =\frac{1}{4}\left(\mathbb{I}\left(\partial_{\tilde{u}}, \partial_{\tilde{u}}\right)-\mathbb{I}\left(\partial_{\tilde{v}}, \partial_{\tilde{v}}\right)-2 \mathrm{i} \Pi\left(\partial_{\tilde{u}}, \partial_{\tilde{v}}\right)\right) \\
& =\frac{1}{2} \tilde{\sigma}^{2} M\left(G_{4}-\mathrm{i} G_{3}\right) .
\end{aligned}
$$

Since $\nabla \mathbb{I}\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}}\right)=D_{\partial_{\tilde{z}}}^{\perp}\left(I\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}\right)\right)-2 \Pi\left(\nabla_{\partial_{\tilde{z}}} \partial_{\tilde{z}}, \partial_{\tilde{z}}\right)$, where $I\left(\nabla_{\partial_{\tilde{z}}} \partial_{\tilde{z}}, \partial_{\tilde{z}} \in\right.$ $\operatorname{span}\left\{G_{3}, G_{4}\right\}$, the projection pr_{5} of this vector to $\operatorname{span}\left\{G_{5}\right\}$ is given by

$$
\begin{aligned}
\operatorname{pr}_{5}\left(\nabla I I\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}}\right)\right) & =\operatorname{pr}_{5}\left(D_{\partial_{\tilde{z}}}^{\perp}\left(I\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}\right)\right)\right) \\
& =\frac{\tilde{\sigma}^{2} M}{4} \operatorname{pr}_{5}\left(D D_{\partial_{\tilde{u}}-\mathrm{i} \partial_{\tilde{v}}}^{\perp}\left(G_{4}-\mathrm{i} G_{3}\right)\right) \\
& =\frac{1}{2} \tilde{A}\left(\tilde{N}_{3}-\mathrm{i} \tilde{N}_{4}\right) G_{5} .
\end{aligned}
$$

Observe that in $T_{x} S_{3}^{5} \operatorname{span}\left\{\left(G_{5}\right)_{x}\right\}=\left(g_{*} T_{x} N \oplus \operatorname{Image}\left(\Pi_{x}\right)\right)^{\perp}$ which implies that $\pm G_{5}$ is invariant under coordinate transformations $(\tilde{u}, \tilde{v}) \mapsto(u, v)$. Since $\tilde{A}\left(\tilde{N}_{3}-i \tilde{N}_{4}\right)$ is a holomorphic function, it vanishes either identically or only at isolated points. In the first case, it follows immediately that G_{5} is a constant vector and hence N is contained in a totally geodesic S_{2}^{4}. In the other case, at a point where $\left(N_{3}, N_{4}\right) \neq 0$, it is now clear that there is a holomorphic coordinate z with respect to which

$$
\begin{aligned}
\frac{1}{2} A\left(N_{3}-\mathrm{i} N_{4}\right) G_{5} & =\operatorname{pr}_{5}\left(\nabla I\left(\partial_{z}, \partial_{z}, \partial_{z}\right)\right) \\
& =\left(\frac{\partial \tilde{z}}{\partial z}\right)^{3} \operatorname{pr}_{5}\left(\nabla I\left(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}}\right)\right)=-\frac{\mathrm{i}}{2} G_{5}
\end{aligned}
$$

Corollary 2 Let $(A, \sigma): N \rightarrow \mathbb{R}^{2},(u, v) \mapsto(A(u, v), \sigma(u, v))$ be positive functions such that $(\ln \sigma)_{u u}+(\ln \sigma)_{v v}=-\sigma^{2}\left(1+2 \sigma^{-6} A^{2}\right)$ and either
(i) $(\ln A)_{u u}+(\ln A)_{v v}=\sigma^{2}\left(\frac{1}{A^{2}}-1\right)$ or
(ii) $(\ln A)_{u u}+(\ln A)_{v v}=-\sigma^{2}$.

Then there is either a
(i) minimal immersion $g: N \rightarrow S_{3}^{5}$ or a
(ii) minimal immersion $g: N \rightarrow S_{2}^{4}$
with $g^{*}\langle\cdot, \cdot\rangle=\sigma^{2}\left(\mathrm{~d} u^{2}+\mathrm{d} v^{2}\right)$ whose ellipses of curvature are non-degenerate circles and whose curvature is given by $k=1+2 A^{2} \sigma^{-6}>1$.

Proof. Note that in case (i) $\left(A, \sigma, N_{3}=0, N_{4}=\frac{1}{A}\right)$ is a solution of the integrability conditions (25)-(26) while in case (ii) $\left(A, \sigma, N_{3}=0, N_{4}=0\right)$ is a solution of the integrability conditions.

Theorem 3 (i) Let $g: N \rightarrow S_{3}^{5}$ be a minimal immersion with positive definite induced metric whose ellipses of curvature are non-degenerate circles and denote its curvature by k. Then $k>1, B:=\Delta \ln \sqrt{k-1}-3 k+1 \geq$ 0 , and satisfies $B \Delta B-\|\operatorname{grad} B\|^{2}=-2 B^{2}(B-1)$.
(ii) Let $g: N \rightarrow S_{2}^{4}$ be a minimal immersion whose ellipses of curvature are non-degenerate circles and denote its curvature by k. Then $k>1$ and $\Delta \ln \sqrt{k-1}-3 k+1=0$.

Proof. We only prove the first case (i). The proof of (ii) is analogous.
Let g be such a minimal immersion. Remark that except at isolated points there exist isothermal coordinates with $\sigma^{3} M N_{4}=1$. Setting $A=$ $\sigma^{3} M$ the integrability conditions $(25)-(26)$ reduce to $(\ln A)_{u u}+(\ln A)_{v v}=$ $\sigma^{2}\left(\frac{1}{A^{2}}-1\right)$ and $(\ln \sigma)_{u u}+(\ln \sigma)_{v v}=-\sigma^{2}\left(1+2 \sigma^{-6} A^{2}\right)$. We only have to show that $A=1 / \sqrt{\Delta \ln \sqrt{k-1}-3 k+1}$. This follows from $k=1+2 M^{2}$ and

$$
\begin{aligned}
& (\ln (k-1))_{u u}+(\ln (k-1))_{v v} \\
& \quad=\left(\ln \left(2 M^{2}\right)\right)_{u u}+\left(\ln \left(2 M^{2}\right)\right)_{v v}=2\left((\ln M)_{u u}+(\ln M)_{v v}\right) \\
& \quad=2\left(\left(\ln \left(\sigma^{3} M\right)\right)_{u u}+\left(\ln \left(\sigma^{3} M\right)\right)_{v v}-3\left((\ln \sigma)_{u u}+(\ln \sigma)_{v v}\right)\right) \\
& \quad=2 \sigma^{2}\left(3\left(1+2 M^{2}\right)+\frac{1}{\left(\sigma^{3} M\right)^{2}}-1\right)
\end{aligned}
$$

To avoid the problems at isolated points, we now consider $B:=\Delta \ln \sqrt{k-1}-$ $3 k+1$, which then satisfies $B \Delta B-\|\operatorname{grad} B\|^{2}=-2 B^{2}(B-1)$

Theorem 4 (i) Let (N, \mathfrak{g}) be a 2-dimensional Riemannian manifold with curvature $k>1$ and $\Delta \ln \sqrt{k-1}-3 k+1>0$. If $A:=1 /$ $\sqrt{\Delta \ln \sqrt{k-1}-3 k+1}$ satisfies $\Delta \ln A=\frac{1}{A^{2}}-1$, then (N, \mathfrak{g}) can be realised as a minimal immersion $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are non-degenerate circles.
(ii) Let (N, \mathfrak{g}) be a 2-dimensional Riemannian manifold with curvature $k>1$ and $\Delta \ln \sqrt{k-1}-3 k+1=0$. Then (N, \mathfrak{g}) can be realised
as a minimal immersion $g: N \rightarrow S_{2}^{4}$ whose ellipses of curvature are nondegenerate circles.

Proof. We only prove the first case (i). The proof of (ii) is analogous.
Let $M=\sqrt{(k-1) / 2}$ and $\sigma=\sqrt[3]{A / M}$. Then the assertion follows from Corollary 2 applied to (A, σ).

Remark 5 We have pointed out in Remark 4 that the integrable case $\beta=0$ discussed in [SSVV97] is equivalent to $N_{4}= \pm 1$ (or $A= \pm 1$). In this case (N, \mathfrak{g}) also determines an affine unit 2 -sphere of mean curvature 1 with non-zero Pick invariant [SW93, Corollary 2.17]. Conversely, any affine unit 2 -sphere of mean curvature 1 satisfies $A=1$ and therefore determines a minimal immersion $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are non-degenerate circles by Theorem 3. Affine unit 2 -spheres with mean curvature 1 can therefore be considered as a proper subclass of minimal immersions $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are circles.

The following generalizes well known facts about affine unit spheres [LSZ93, paragraph 2.4].

Corollary 3 Any complete minimal immersion with positive definite induced metric $g: N \rightarrow S_{3}^{5}$ whose ellipses of curvature are circles must be compact.

Proof. Since $k=1+2 M^{2} \geq 1$ the assertion follows immediately from the Theorem of Myers.

Theorem 5 Let $g: N \rightarrow S_{3}^{5}$ be a compact minimal immersion with positive definite induced metric whose ellipses of curvature are circles. Then there exists a spacelike plane E through 0 such that $g(N)=S_{3}^{5} \cap E$. In particular, the circle of curvature is degenerate everywhere.

Proof. Clearly we may assume that N is orientable. We then recall the following integral formula from [Ros85]. Let T be a tensor field on a compact manifold N with unit tangent bundle $U N$ and let ∇T be the covariant derivative of T. Then $\int_{U N} \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}, v, v, \ldots, v\right)=0$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis at a point p. For simplicity we write $\nabla I I\left(X_{1}, X_{2}, X_{3}\right)=\nabla_{X_{1}} I\left(X_{2}, X_{3}\right)$ and by $\nabla^{2} I\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=$ $\left(\nabla_{X_{1}}(\nabla I I)\right)\left(X_{2}, X_{3}, X_{4}\right)$. Applying the above integral formula, to the tensor
field

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=\left\langle\nabla_{X_{1}} \Pi\left(X_{2}, X_{3}\right), I I\left(X_{4}, X_{5}\right)\right\rangle
$$

we obtain that

$$
\begin{aligned}
& \int_{U N}\left\langle\nabla^{2} I I(v, v, v, v), I(v, v)\right\rangle+\left\langle\nabla^{2} I I(u, u, v, v), I I(v, v)\right\rangle \\
& \quad+\langle\nabla I I(v, v, v), \nabla I I(v, v, v)\rangle+\langle\nabla I I(u, v, v), I I(u, v, v)\rangle=0
\end{aligned}
$$

where $v \in U N$ and u is the corresponding orthogonal vector such that $\{v, u\}$ are positively oriented. Since the induced metric on the normal space is negative definite it follows that

$$
\int_{U N}\left\langle\nabla^{2} I(v, v, v, v), I(v, v)\right\rangle+\langle\nabla I(u, u, v, v), I I(v, v)\rangle \geq 0
$$

Applying the Ricci identity for submanifolds in space forms,

$$
\begin{aligned}
& \nabla^{2} I I(X, Y, Z, W)-\nabla^{2} I(Y, X, Z, W) \\
& \quad=R^{\perp}(X, Y) \Pi(Z, W)-\Pi(R(X, Y) Z, W)-I(Z, R(X, Y) W)
\end{aligned}
$$

together with the fact that the immersion is minimal, we find that

$$
\left.\int_{U N}\left\langle R^{\perp}(u, v) \Pi(v, u)-\Pi(R(u, v) v, u)-\Pi(v, R(u, v) u)\right), \Pi(v, v)\right\rangle \geq 0
$$

Using now that the ellipse of curvature is a circle ((2), (3) and (4)) with radius M centered at the origin together with the Ricci equation, it follows that

$$
\begin{equation*}
\int_{U N}-2\left(M^{4}+k M^{2}\right) \geq 0 \tag{27}
\end{equation*}
$$

Since by the Gauss equation $k \geq 1$ the above equation implies that $0=M$. Hence the immersion g is totally geodesic.

References

[Bla23] Blaschke W., Vorlesungen über Differentialgeometrie II. Affine Differentialgeometrie. Springer-Verlag, 1923.
[Che93] Chen B.-Y., Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568-578.
[Hel78] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978.
[KV97] Kriele M. and Vrancken L., Lorentzian affine spheres with constant curvature. Trans. Amer. Math. Soc., to appear.
[LSZ93] Li A.M., Simon U. and Zhao G., Global Affine Differential Geometry of Hypersurfaces. W. De Gruyter, Berlin and New York, 1993.
[MR92] Magid M.A. and Ryan P.J., Affine 3-spheres with constant affine curvature. Trans. Amer. Math. Soc. 330 (1992), 887-901.
[Ros85] Ros A., A characterization of seven compact Kaehler submanifolds by holomorphic pinching. Annals of Mathematics 121 (1985), 377-382.
[SSVV97] Scharlach C., Simon U., Verstraelen L. and Vrancken L., A new intrinsic curvature invariant for centroaffine hypersurfaces. Beiträge zur Algebra und Geometrie 38(2), (1997), 437-458.
[SW93] Simon U. and Wang C.P., Local theory of affine 2-spheres. Proc. Symposia Pure Math. 54 (1993), 585-598.
[VLS91] Vrancken L., Li A.M. and Simon U., Affine spheres with constant sectional curvature. Math. Z. 206 (1991), 651-658.

Marcus Kriele

Technische Universität Berlin, Fachbereich Mathematik
Sekr. MA 8-3, Straße des 17. Juni 136
10623 Berlin, Germany
E-mail: kriele@sfb288.math.tu-berlin.de
Christine Scharlach
Technische Universität Berlin, Fachbereich Mathematik
Sekr. MA 8-3, Straße des 17. Juni 136
10623 Berlin, Germany
E-mail: cs@sfb288.math.tu-berlin.de
Luc Vrancken
Mathematisch Institut, Universiteit Utrecht
Budapestlaan 6
3584CD Utrecht, The Netherlands
E-mail: vrancken@math.uu.nl

[^0]: 1991 Mathematics Subject Classification: 53A15.
 *Partially supported by a research fellowship of the Alexander von Humboldt Stiftung, Germany

[^1]: ${ }^{1}$ In this terminology an ellipsoid is an elliptic and a hyperboloid a hyperbolic affine sphere.

[^2]: ${ }^{2}$ Scharlach, Simon et al. have actually studied the much more general case of arbitrary centro-affine hypersurfaces but proved that equality can only hold for centro-affine hypersurfaces which at the same time are affine unit spheres.

