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Perturbations of Weyl-Heisenberg frames
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Abstract. We develop a usable perturbation theory for Weyl-Heisenberg frames. In
particular, we prove that if (E_{mb}T_{na}g)_{m,n\in Z} is a WH-frame and h is a function which is
close to g in the Wiener Amalgam space norm, then also (E_{mb}T_{na}h)_{m,n\in Z} is a WH-frame.
We also prove perturbation results for the parameters a , b .
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1. Introduction

In 1952, Duffin and Schaeffer [10] introduced the notion of a frame for a
Hilbert space. A sequence (f_{i})_{i\in I} is a frame for a Hilbert space H if there
are constants A, B>0 satisfying,

A||f||^{2} \leq\sum_{i\in I}|\langle f, f_{i}\rangle|^{2}\leq B||f||^{2}
, (1.1)

for all f\in H . The constant A (respectively, B) is a lower (resp. upper)
frame bound for the frame. A frame (f_{i}) can be considered as a “generalized
basis” : using the fact that the frame operator Sf= \sum\langle f, f_{i}\rangle f_{i} is a
bounded invertible operator on H, every f\in H can be represented as a
convergent series

f=SS^{-1}f= \sum\langle f, S^{-1}f_{i}\rangle f_{i} .

(f_{n})_{n\in I} is a Riesz basic sequence if there exist constants A , B>0 such
that

A \sum_{i\in I}|c_{i}|^{2}\leq||\sum_{i\in I}c_{i}f_{i}||^{2}\leq B\sum_{i\in I}|c_{i}|^{2} , (1.2)

for all finite sequences \{c_{i}\}_{i\in I} . If also \overline{span}(f_{n})_{n\in I}=H.
, then (f_{n})_{n\in I} is

a Riesz basis. Alternatively, a Riesz basis is a frame which is at the
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same time a basis. In particular, all the frame results we prove below have
corollaries for Riesz bases.

One of the most important frames for applications, especially signal
processing, are the Weyl-Heisenberg frames. Given parameters a , b\in \mathbb{R} , we
define the translation operator (resp. modulation operator) on L^{2}(\mathbb{R}) by

T_{na}g(t)=g(t-na) , E_{mb}g(t)=e^{2\pi imbt} .

For g\in L^{2}(\mathbb{R}) and a , b>0 , we say for short that (g, a, b) is a Weyl-
Heisenberg frame for L^{2}(\mathbb{R}) if (E_{mb}T_{na}g)_{m,n\in \mathbb{Z}} is a frame for L^{2}(\mathbb{R}) . Suf-
ficient conditions for (g, a, b) to be a WH-frame can be found in e.g. [2]. For
the general theory of Gabor frames we refer the reader to Heil and Walnut
[14] or Casazza [1].

WH frames are extremely sensitive to even arbitrarily small changes in
the function g and the translation and modulation parameters. For example,
(E_{m}T_{n}\chi_{[0,1]})_{m,n\in \mathbb{Z}} is a frame for L^{2}(\mathbb{R}) , but for arbitrary \epsilon>0 , the functions
(E_{m}T_{n}\chi[0,1-\epsilon])_{m,n\in \mathbb{Z}} is not. As a result, there are few general theorems on
perturbations of WH frames and those that exist are often very technical
in nature (see [11], and the article of Christensen in [13]). In this note
we will obtain some very usable perturbation results for WH frames with
only elementary assumptions by using the Wiener Amalgam space norm
and by adding continuity assumptions to the function g . We will also give
examples to show that these results are best possible. Perturbation results
not involving the Wiener Amalgam space can be found in the recent paper
[16] by Sun and Zhou.

2. Preliminary Results

We begin with the perturbation result of Christensen and Heil [7].

Theorem 2.1 If (f_{i}) is a frame with frame bounds A , B and there exists
a constant R\in[0, A [ such that for all f\in H ,

\sum_{i}|\langle f, f_{i}-g_{i}\rangle|^{2}\leq R||f||^{2}
,

then (g_{i}) is a frame with bounds A(1-\sqrt{\frac{R}{A}})^{2} , B(1+\sqrt{\frac{R}{B}})^{2}

It is known that if (f_{i}) is a Riesz basis, then the condition in Theorem 2.1
implies that (g_{i}) is a Riesz basis, cf. [11]. In the rest of this section we
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concentrate on WH-frames. First we recall that the product ab decides
which properties a WH-system (g, a, b) can have; for a full discussion we
refer to Daubechies’ paper [8].

Proposition 2.2 If (g, a, b) is a frame, then
(i) ab\leq 1

(ii) (g, a, b) is a Riesz basis if and only if ab=1 .

Note that the assumption “ (g, a, b) a frame” is needed to ensure that
(g, a, b) is a Riesz basis for ab=1 .

To simplify the notation, given a function g\in L^{2}(\mathbb{R}) and a , b\in \mathbb{R} , we
define for k\in \mathbb{Z} the function

G_{k}(t)= \sum_{n\in \mathbb{Z}}g(t-na)\overline{g(t-na-k/b)}

It is not difficult to prove that the series defining G_{k}(t) converges abs0-
lutely for a.e . t . We will need the Weyl-Heisenberg Frame Identity (see [14],
Theorem 4.1.5, or [5] for a complete treatment).

Theorem 2,3 (WH-Frame Identity) If \sum_{n}|g(t-na)|^{2}\leq Ba.e . and f\in
L^{2}(\mathbb{R}) is bounded and compactly supported, then

\sum_{n,m\in \mathbb{Z}}|\langle f, E_{mb}T_{na}g\rangle|^{2}

=b^{-1} \sum_{k\in \mathbb{Z}}\int_{R}\overline{f(t)}f(t-k/b)\sum_{n}g(t-na)\overline{g(t-na-k/b)}dt

=b^{-1} \int_{R}|f(t)|^{2}\sum_{n}|g(t-na)|^{2}dt

+b^{-1} \sum_{k\neq 0}\int_{R}\overline{f(t)}f(t-k/b)G_{k}(t)dt .

We define the Wiener Amalgam space W(L^{\infty}, \ell^{1}) as the set of functions
g\in L^{2}(\mathbb{R}) for which for some a>0 ,

||g||_{W,a}:= \sum_{n}||g\cdot\chi_{[na,(n+1)a[}||_{\infty}<\infty .

It can be proved that if ||g||_{W,a} is finite for one value of a , it is automatically
finite for all a . Furthermore, ||g||_{W,a} defines a norm on W(L^{\infty}, \ell^{1}) .
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We need some elementary facts about the Wiener Amalgam space.
These can be found for example in [14], Proposition 4.1.7 and the proof
of Theorem 4.1.8. The importance of this space for WH-frames was care-
fully mapped out by Walnut [17].

Lemma 2.4 Let g\in W(L^{\infty}, \ell^{1}) .
(1) If 0<a\leq b then ||g||_{W,b}\leq 2||g||_{W,a} .
(2) ||g||_{W,a/2}\leq 2||g||_{W,a} .
(3) Given functions f, h\in W(L^{\infty}, \ell^{1}) ,

\sum_{k}||\sum_{n}|T_{na}f||T_{na+k/b}h|||_{\infty}\leq 4||f||_{W,a}||h||_{W,a} .

The next result follows from the proof of Theorem 2.3 from [9].

Lemma 2.5 For g\in L^{2}(\mathbb{R}) and bounded, compactly supported f , we have

\sum_{k\in \mathbb{Z}}\int|\overline{f(t)}f(t-k/b)\sum_{n\in Z}g(t-na)\overline{g(t-na-k/b)}|dt

\leq\int|f(t)|^{2}\sum_{k\in \mathbb{Z}}|G_{k}(t)|dt .

3. Perturbations

We start with a Proposition which contains the basic tool for our first
perturbation result. In light of Theorem 2.1 all we really need to show is that
the system (h-g, a, b) has a finite upper frame bound. More specifically:

Proposition 3.1 Suppose (g, a, b) is a WH-frame with frame bounds A, B
and let h\in L^{2}(\mathbb{R}) . If there exists R<A such that

\sum_{k\in \mathbb{Z}}|\sum_{n\in \mathbb{Z}}(h-g)(t-na)\overline{(h-g)(t-na-k/b)}|\leq bR , a.e. , (3.1)

then (h, a, b) is a Weyl-Heisenberg frame for H with frame bounds
A(1-\sqrt{\frac{R}{A}})^{2} , B(1+\sqrt{\frac{R}{B}})^{2} Moreover, if (g, a, b) is a Riesz basis for L^{2}(\mathbb{R}) ,
then (h, a, b) is also a Riesz basis.

Proof. Let f be bounded and compactly supported. By the WH-frame
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Identity and Lemma 2.5 we have:

\sum_{n,m\in \mathbb{Z}}|\langle f, E_{mb}T_{na}(h-g)\rangle|^{2}

= \frac{1}{b}\sum_{k\in \mathbb{Z}}\int_{\mathbb{R}}\overline{f(t)}f(t-k/b)\sum_{n\in \mathbb{Z}}(h-g)(t-na)\overline{(h-g)(t-na-k/b)}dt

\leq\frac{1}{b}\int_{\mathbb{R}}|f(t)|^{2}\sum_{k}|\sum_{n\in \mathbb{Z}}(h-g)(t-na)\overline{(h-g)(t-na-k/b)}|dt

\leq R||f||^{2}

The set of bounded compactly supported functions is dense in L^{2}(\mathbb{R}) , so the
above estimate actually holds for all functions f\in L^{2}(\mathbb{R}) . By Theorem 2.1,
we have that (h, a, b) is a frame with the given bounds, and (h, a, b) is a
Riesz basis if (g, a, b) is a Riesz basis. \square

In the paper of Jing [15] there is a section concerning perturbations of
WH-frames which at first glance appear to be similar to our results. For
example, in [15] one of the main perturbation results for WH-frames is that
if (g, a, b) is a WH frame and

|| \sum_{k,n\in \mathbb{Z}}|(g-h)(\cdot-na-k/b)|^{2}||_{\infty}<bA ,

then (h, a, b) is also a frame. However, it should be observed that if ab
is rational, this condition is only satisfied if g=ha.e. , i.e., the result is
not useful in that case. Suppose namely that (g-h)(x)\neq 0 . Since there
exist an infinite number of n , k\in \mathbb{Z} such that na+ \frac{k}{b}=0 , it follows that
\sum_{k,n\in \mathbb{Z}}|(g-h)(x-na-\frac{k}{b})|^{2}=\infty . However, Proposition 3.1 above applies
for any value of ab.

We will now show that our perturbation result works whenever g , h are
close in the Wiener Amalgam norm. Note that this result does not require
g to be in the Wiener Amalgam space.

Theorem 3.2 Suppose that (g, a, b) is a WH-frame with frame bounds
A, B. Let h\in L^{2}(\mathbb{R}) , and assume there exists R<A such that

||g-h||_{W,a}\leq\sqrt{\frac{bR}{4}} .
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Then (h, a, b) is a WH-frame with bounds A(1-\sqrt{\frac{R}{A}})^{2} , B(1+\sqrt{\frac{R}{B}})^{2} More-
over, if (g, a, b) is a Riesz basis for L^{2}(\mathbb{R}) , then (h, a, b) is also a Riesz basis.

Proof Using Lemma 2.4, we have

\sum_{k\in \mathbb{Z}}|\sum_{n\in \mathbb{Z}}(h-g)(t-na)\overline{(h-g)(t-na-k/b)}|

\leq\sum_{k}||\sum_{n}|T_{na}(g-h)||T_{na+k/b}(g-h)|||_{\infty}

\leq 4||g-h||_{W,a}||g-h||_{W,a}=4||g-h||_{W,a}^{2}\leq bR .

So the result follows from Proposition 3.1. \square

The condition R<A in Proposition 3.1 can not be relaxed. To see
this, fix \epsilon>0 and let

g=\chi_{[0,1]}+(1-\epsilon)\chi_{[1,2]} , h=\chi_{[0,2]} ,

(g, 1, 1) is a Riesz basis for L^{2}(\mathbb{R}) with lower frame bound \epsilon^{2} , since, for any
finite sequence of scalars (a_{mn})_{m,n\in \mathbb{Z}} we have

|| \sum_{m,n\in \mathbb{Z}}a_{mn}E_{m}T_{n}g||

\geq||\sum_{m,n\in \mathbb{Z}}a_{mn}E_{m}T_{n}\chi_{[0,1]}||-||\sum_{m,n\in \mathbb{Z}}a_{mn}E_{m}T_{n}(1-\epsilon)\chi_{[1,2]}||

= \epsilon||\sum_{m,n\in \mathbb{Z}}a_{mn}E_{m}T_{n}\chi_{[0,1]}||=\epsilon(\sum_{m,n\in \mathbb{Z}}|a_{mn}|^{2})^{1/2}

Also,

\sum_{k}|\sum_{n\in \mathbb{Z}}(h-g)(x-n)(h-g)(x-k-n) |=\epsilon^{2} , for a.e . x .

But (h, 1,1) is not a WH-frame. To see this, observe that

|| \sum_{k=0}^{2n-1}(-1)^{k}T_{k}h||=||\chi_{[0,1]}-\chi_{[2n-1,2n]}||=\sqrt{2}=\frac{\sqrt{2}}{2n}\sum_{k=0}^{2n-1}|(-1)^{k}|^{2} .

So (T_{k}h)_{k\in \mathbb{Z}} is not a Riesz basic sequence in L^{2}(\mathbb{R}) ; thus (h, 1,1) is not a
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Riesz basis, and by Proposition 2.2 this implies that (h, 1,1) is not a frame.

It is an open question which WH-frames are equivalent to compactly
supported WH-frames. That is, given a WH frame (g, a, b) , when is it pos-
sible to find a frame (h, c, d) with a compactly supported function h , such
that there exists a bounded invertible operator T for which TE_{mb}T_{na}g=

E_{mc}T_{nd}h , \forall m , n?
Also, it is another delicate question when we can restrict the function g

to a compact subset of \mathbb{R} and still have a WH frame for L^{2}(\mathbb{R}) . This question
goes directly to the heart of applications where compactly supported WH-
frames are used. Our next result shows that this is possible whenever g\in

W(L^{\infty}, \ell^{1}) .

Corollary 3.3 If g\in W(L^{\infty}, \ell^{1}) and (g, a, b) is a WH-frame, then there
is a natural number N so that (\chi_{[-na,na]}g, a, b) is a WH-frame whenever
n\geq N

Proof We assume that (g, a, b) is a WH-frame with frame bounds A , B .
Since g\in W(L^{\infty}, \ell^{1}) we have

\sum_{n\in \mathbb{Z}}||\chi_{[na,(n+1)a)}g||_{\infty}<\infty
.

Since || \chi_{[-na,na]}g-g||_{W,a}=\sum_{|m|\geq n}||\chi_{[ma,(m+1)a)}g||_{\infty} , we conclude that
there is an N so that for all n\geq N we have

||\chi_{[-na,na]}g-g||_{W,a}<\sqrt{\frac{bA}{4}} .

The Corollary now follows from Theorem 3.2. \square

Now we have a considerable strengthening of Proposition 3.1 for the
case a=b=1 .

Theorem 3.4 Let (g, 1,1) be a WH-frame with frame bounds A, B. Let
h\in L^{2}(\mathbb{R}) and 0<\lambda<1 satisfy

\sum_{n\in \mathbb{Z}}|(g-h)(x+n)|\leq\lambda\sqrt{A}
a.e .

Then (h, 1,1) is a WH frame for L^{2}(\mathbb{R}) with frame bounds

(1-\lambda)^{2}A and (1+\lambda)^{2}B .
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Proof. If Z is the Zak transform, we have

|Z(g)(x, y)-Z(h)(x, y)|

=| \sum_{n\in \mathbb{Z}}g(x+n)e^{2\pi iny}-\sum_{n\in \mathbb{Z}}h(x+n)e^{2\pi iny}|

\leq\sum_{n\in \mathbb{Z}}|(g-h)(x+n)|\leq\lambda\sqrt{A}\leq\lambda|Zg(x, y)| .

It follows that,

(1-\lambda)\sqrt{A}\leq(1-\lambda)|Z(g)(x, y)|\leq|Z(h)(x, y)|

\leq(1+\lambda)|Z(g)(x, y)|\leq(1+\lambda)\sqrt{B} .

So (h, 1,1) is a Weyl-Heisenberg frame for L^{2}(\mathbb{R}) with the stated frame
bounds (see [14], Theorem 4.3.3). \square

It is easily seen that we can not allow \lambda=1 in the inequality in TheO-
rem 3.4. For example, if g=\chi_{[0,1]} , h=\chi_{[0,2]} then (g, 1,1) is an orthonormal
basis for L^{2}(\mathbb{R}) and as we saw earlier, (h, 1,1) is not a frame. But,

\sum_{n\in \mathbb{Z}}|(g-h)(x+n)|=1 a.e .

We might hope for an even sharper result with the inequality in TheO-
rem 3.4 changed to

\sum_{n\in \mathbb{Z}}|(g-h)(x+n)|^{2}\leq\lambda A^{\alpha}
,

for some 0<\alpha\leq 1 . Unfortunately, this fails. For example, let

g=\chi_{[0,1]}

and

h= \frac{1}{2}\chi_{[0,2]} .

Then (h, 1,1) is not a frame (since (T_{n}h)_{n\in \mathbb{Z}} is not a Riesz basic sequence)
while (g, 1,1) is an orthonormal basis for L^{2}(\mathbb{R}) (and so A=B=1).
Finally,

\sum_{n\in \mathbb{Z}}|(g-h)(t+n)|^{2}=(\frac{1}{2})^{2}+(\frac{1}{2})^{2}=\frac{1}{2}=\frac{1}{2}A^{\alpha}-
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Now let (g, a, b) be a frame and we will look at perturbations of the
modulation and translation parameters to see when we can still be guaran-
teed to have a WH-frame. The main problem here is that we may not be
able to change a or b by any arbitrarily small amount and still get a frame.
This follows from a result of Feichtinger and Janssen [12]. They show that
there is a function g\in L^{2}(\mathbb{R}) so that (g, a, b) has a finite upper frame bound
only when a and b are rational. Therefore, no matter how close (a’, b’) is
to (a, b) , we still may not have a frame. The next technical difficulty occurs
if a=b=1 . If (g, 1,1) is a WH-frame, then we can never have a general
result of the form: |a’-a|<\epsilon implies (g, a’, 1) is a frame since if a’>1
then (g, a’, 1) is never complete. Despite these strong limitations, we can
obtain some satisfactory perturbation results which will guarantee that if
the translation parameters are close enough then we will have a frame for
all small b . In this result, as well as the rest of the results in this section, the
price we pay for being able to perturb in one parameter is that the other
parameter may change drastically.

Theorem 3.5 Let g\in W(L^{\infty}, \ell^{1}) with (g, a, b) a WH-frame with frame
bounds A, B and let 0<R<bA . There is an 0< \epsilon\leq\frac{a}{2} and b_{0}=b_{0}(\epsilon) so
that whenever |a-a’|<\epsilon and

\sum_{n}|g(t-na)-g(t-na’)|^{2}\leq R , a.e. ,

then (g, a’, b’) is a WH-frame whenever 0<b’<b_{0} .

Proof If (g, a, b) generates a WH-frame with frame bounds A, B then (see
Heil and Walnut [14], the proof of Proposition 4.1.4, page 649)

bA \leq\sum_{n\in \mathbb{Z}}|g(t-na)|^{2}\leq bB
, a.e .

Using the (reverse) triangle inequality we have

\sqrt{bA}-\sqrt{R}

\leq(\sum_{n}|g(t-na)|^{2})^{1/2}-(\sum_{n}|g(t-na)-g(t-na’)|^{2})^{1/2}

\leq(\sum_{n}|g(t-na’)|^{2})^{1/2}
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\leq(\sum_{n}|g(t-na)|^{2})^{1/2}+(\sum_{n}|g(t-na)-g(t-na’)|^{2})^{1/2}

\leq\sqrt{bA}+\sqrt{R}a.e .

For the rest, we borrow an argument from [14] (the proof of TheO-
rem 4.1.8). Fix 0<\epsilon\leq a/2 satisfying

\delta=:32\epsilon||g||_{W,a}+16\epsilon^{2}<[\sqrt{bA}-\sqrt{R}]^{2}

Now let N be so large that

\sum||g\cdot\chi_{[an,a(n+1))}||_{\infty}<\epsilon .
|n|\geq N

Let g_{0}=g\cdot\chi_{[-aN,aN]} and g_{1}=g-g_{0} , so that ||g_{1}||_{W,a}<\epsilon . Now if

b’ \leq\frac{1}{4aN}=b_{0}

then (with G_{k}’(t):= \sum_{n}T_{na’}g(x)T_{na’+k/b’}\overline{g(x)})

\sum_{k\neq 0}||G_{k}’(t)||_{\infty}=\sum_{k\neq 0}||\sum_{n}T_{na’}g\cdot T_{na’+k/b’}\overline{g}||_{\infty}

\leq\sum_{k\neq 0}||\sum_{n}|T_{na’}g||T_{na’+k/b^{\prime g1}}||_{\infty}

= \sum_{k\neq 0}||\sum_{n}|T_{na’}g_{0}+T_{na’}g_{1}||T_{na’+k/b’}g_{0}+T_{na’+k/b’}g_{1}|||_{\infty}

\leq\sum_{k\neq 0}||\sum_{n}|T_{na’}go||T_{na’+k/b’}g0|||_{\infty}+\sum_{k\neq 0}||\sum_{n}|T_{na’}g_{0}||T_{na’+k/b’}g_{1}|||_{\infty}

+ \sum_{k\neq 0}||\sum_{n}|T_{na’}g_{1}||T_{na’+k/b’}g0|||_{\infty}+\sum_{k\neq 0}||\sum_{n}|T_{na’}g_{1}||T_{na’+k/b’}g_{1}|||_{\infty}

\leq 0+8||g0||_{W,a’}||g_{1}||_{W,a’}+4||g_{1}||_{W,a’}^{2} .

Now, since \frac{a}{2}\leq a’\leq 2a , we can continue our inequality using Lemma 2.4, (1)
and (2) to get:

\sum_{k\neq 0}||G_{k}’(t)||_{\infty}=\sum_{k\neq 0}||\sum_{n}T_{na’}g\cdot T_{na’+k/b’}\overline{g}||_{\infty}
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\leq 8||g_{0}||_{W,a’}||g_{1}||_{W,a’}+4||g_{1}||_{W,a’}^{2}

\leq 32||g_{0}||_{W,a}||g_{1}||_{W,a}+16||g_{1}||_{W,a}^{2}

\leq 32\epsilon||g||_{W,a}+16\epsilon^{2}=\delta .

It follows by Lemma 2.5 that if |a-a’|<\epsilon and 0<b’\leq b_{0} then for all
bounded, compactly supported functions f\in L^{2}(\mathbb{R}) we have

\frac{1}{b}, | \sum_{k\neq 0}\int_{\mathbb{R}}\overline{f(t)}f(t-k/b’)G_{k}’(t)dt|

\leq\frac{1}{b}, \sum_{k\neq 0}||G_{k}’(t)||_{\infty}\int_{\mathbb{R}}|f(t)|^{2}dt\leq\frac{1}{b},\delta||f||^{2} .

Also, from the first part of the proof, for all f as above we have,

\frac{1}{b}, (\sqrt{bA}-\sqrt{R})^{2}||f||^{2}

\leq\frac{1}{b}, \int_{\mathbb{R}}|f(t)|^{2}\sum_{n\in \mathbb{Z}}|g(t-na’)|^{2}\leq\frac{1}{b}, (^{\sqrt{bA}}+\sqrt{R})^{2}||f||^{2} .

Finally, the WH-Frame Identity yields,

\sum_{m,n\in \mathbb{Z}}|\langle f, E_{mb’}T_{na’}g\rangle|^{2}=\frac{1}{b}, \int_{\mathbb{R}}|f(t)|^{2}\sum_{n\in \mathbb{Z}}|g(t-na’)|^{2}dt

+ \frac{1}{b}, \sum_{k\neq 0}\int_{\mathbb{R}}\overline{f(t)}f(t-k/b’)G_{n}’(t)dt .

Putting this altogether we have that

\frac{1}{b}, [(\sqrt{bA}-\sqrt{R})^{2}-\delta]||f||^{2}

\leq\sum_{m,n\in \mathbb{Z}}|\langle f, E_{mb’}T_{na’}g\rangle|^{2}\leq\frac{1}{b}, [(\sqrt{bA}+\sqrt{R})^{2}+\delta]||f||^{2} .

Since this inequality holds for all bounded compactly supported functions
f\in L^{2}(\mathbb{R}) , it holds for all f\in L^{2}(\mathbb{R}) , which completes the proof. \square

A general setting where the conditions of Theorem 3.5 will hold is when
g is continuous. This is just enough to offset the Feichtinger-Janssen exam-
ple [12].
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Corollary 3.6 If g\in W(L^{\infty}, \ell^{1}) is continuous and (g, a, b) is a frame,
then there is a \delta>0 and a b_{0}>0 so that (g, a’, b’) is a WH-frame whenever

|a-a’|<\delta ,

and 0<b’<b_{0} .

Proof We just need to verify that the conditions of Theorem 3.5 hold. Fix
R<bA . Since g\in W(L^{\infty}, \ell^{1}) , we can choose a natural number n_{0} so that

||(1- \chi_{[a(-n_{0}+1),an_{0}]})g||_{W,a}<\frac{R}{3} .

Since g is continuous on the compact set [-an_{0}, a(n_{0}+1)] , it is uniformly
continuous there. In particular, there is a \delta>0 so that if x , y\in

[-an_{0}, a(n_{0}+1)] then

|x-y|\leq\delta , \Rightarrow |g(x)-g(y)|^{2}< \frac{R}{3(2n_{0}+2)} .

Let \epsilon=\frac{\delta}{n_{0}} . Now, if |a-a’|<\epsilon and then for all -n_{0}\leq n\leq n_{0}-1 we have

|(t-na)-(t-na’)|=|n||a-a’|<|n| \epsilon=\frac{|n|}{n_{0}}\delta\leq\delta .

Hence, for t\in[0, a] ,

|g(t-na)-g(t-na’)|^{2}< \frac{R}{3(2n_{0}+2)} ,

It follows that

\sum_{n}|g(t-na)-g(t-na’)|^{2}

= \sum_{n=-n_{0}}^{n_{0}+1}|g(t-na)-g(t-na’)|^{2}+
n>n_{0}+’ 1 \sum_{n<-n_{0}}|g(t-na)-g(t-na’)|^{2}

\leq(2n_{0}+2)\frac{R}{3(2n_{0}+2)}+2||(1-\chi_{[a(-n_{0}+1),an_{0}]})g||_{W,a}

< \frac{R}{3}+\frac{2R}{3}=R .

The Corollary now follows by Theorem 3.5. \square
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We now have immediately the corresponding result for compactly sup-
ported functions.

Corollary 3.7 If (g, a, b) is a WH-frame where g is compactly supported
and continuous, then there is a \delta>0 and a b_{0}>0 so that (g, a’, b’) is a
WH-frame whenever

|a-a’|<\delta,

and 0<b’<b_{0} .

Continuity is necessary in the preceding results. A trivial example
occurs if we consider (\chi_{[0,1]}, 1,1) since no matter how close we have a’ to
a , if a<a’ . we cannot have a frame for any b since a necessary condition
for (g, a, b) to form a WH-frame with frame bounds A , B is that bA\leq

\sum_{n\in \mathbb{Z}}|g(t-na)|^{2}\leq bB , a.e . In light of this, it is more natural to ask for
(g, a’, b’) to form a frame for 0<a-a’<\epsilon , and all small b’r But again, the
above results will fail without the assumption of continuity. For example,
we can let

E_{1}=[0,1- \frac{1}{16}) ,

E_{2}= \cup[1-n=2\infty\frac{1}{2^{2n}}, 1- \frac{1}{2^{2n+1}}) ,

and

E_{3}= \cup[2-\frac{1}{2^{2n+1}},2-\frac{1}{2^{2(n+1)}})n=2\infty .

Let F=E_{1}\cup E_{2}\cup E_{3} and g=\chi_{F} . Then it is immediate that (g, 1,1) is an
orthonormal basis for L^{2}(\mathbb{R}) . Now, if

1- \frac{1}{2^{2n+1}}<a’<1-\frac{1}{2^{2(n+1)}}

then for all

1- \frac{1}{2^{2n+1}}<t\leq a’ ,

we have that g(t)=0, and for n\geq 1 , t - na’<0 so g(t-na’)=0. Also,
for n\geq 2 we have that 2<t+na’ and so g(t+na’)=0 . Finally, for n=1
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we have that

2- \frac{1}{2^{2n}}=1-\frac{1}{2^{2n+1}}+1-\frac{1}{2^{2n+1}}

\leq t+a’<1-\frac{1}{2^{2(n+1)}}+1-\frac{1}{2^{2(n+1)}}=2-\frac{1}{2^{2n+1}} .

Hence, g(t+a’)=0. It follows that

\sum_{n\in \mathbb{Z}}|g(t-na’)|^{2}=0
, for all 1- \frac{1}{2^{2n+1}}<t\leq a’ .

In particular, (g, a’, b) is not a frame for all 0<b . It follows that, given any
\epsilon>0 , there is an interval of points a’ with 0<a-a’<\epsilon so that (g, a’, b)

is not a frame for all 0<b .
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