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On pairs of regular foliations in the plane

R.D.S. OLIVEIRA and F. TARI
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Abstract. We classify in this paper germs of pairs of regular foliations in the plane. We
show that under some conditions, the topological type of a pair is completely determined
by the discriminant, which is the locus of points where the foliations are tangential. We
also classify all the \mathcal{K}^{*} -singularities of the discriminant that lie in the \mathcal{K}-simple singular-
ities.
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1. Introduction

In this paper we study germs of pairs of regular foliations in the plane.
Pairs of foliations have been studied by several authors with applications
to implicit differential equations ([2], [3], [5]) and control theory ([8]). See
also [11]-[15], [17], [18]. We shall assume here that the foliations are the
leaves of differential 1-forms \alpha and \beta . An important feature of the pair is
its discriminant, that is the locus of points where the form \alpha is a multiple
of \beta . If we are only interested in the singularities of the discriminant and
the way this curve bifurcates as the pair (\alpha, \beta) is deformed, we proceed as
in [6] as follows. Let (\alpha, \beta)=(a(x, y)dx+b(x, y) , c(x, y)dx+d(x, y)dy) ,
where a , b , c , d are germs of smooth functions. We associate to the pair the

family of matrices A=(\begin{array}{ll}a bc d\end{array}) (x, y) , which is a map-germ A:\mathbb{R}^{2},0arrow

M(2, \mathbb{R}) , where M(2, \mathbb{R}) is the set of 2\cross 2 matrices. Then the discriminant
of (\alpha, \beta) is the zero set of the determinant of the matrix A. Given the
matrix A above, and two other 2 \cross 2 matrices X and Y , whose entries are
smooth functions in (x, y) , and which are invertible at the origin, we can
consider the matrix valued function XAY Clearly its determinant vanishes
at precisely the set of points where the discriminant of A vanishes. Similarly
it is not hard to show that any smooth change of coordinates in the source
of A , via a diffeomorphism \phi , takes the discriminant of A to that of A\circ\phi .
All these changes of coordinates form a subgroup \mathcal{G} of the contact group
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\mathcal{K} acting on the space of families of matrices. So one can classify the \mathcal{G}-

singularities of A and obtain the singularities of the discriminant as well as
their versal deformations. This approach deals well with the singularities
of the discriminant, and in the case of regular foliations reduces to the \mathcal{K}

-

classification of function ([6]). However, the above changes of coordinates
do not preserve the foliations of (\alpha, \beta) . For example the pairs (dy, d(y-x^{2}))

and (dy, d(y+xy-x^{3})) are not topologically equivalent but have smooth
discriminants which are thus \mathcal{K} equivalent

We start in this paper by obtaining another classification of the singu-
larities of the discriminant that preserves some geometric information about
the pair of foliations. Without loss of generality, we can assume that, locally
at the origin, one foliation is given by the 1-form \alpha=dy and the other as
the level sets of a regular function f , that is \beta=df . A topologically stable
singularity of the pair occurs when the discriminant is smooth and the leaf
of \beta has 3-point contact with the leaf of \alpha at the origin. This is modelled
by (dy, d(y+xy-x^{3})) (denoted by 3_{1} in [14]) and occurs at isolated points
([8], [14]). Given a pair (dy, df) as above, we can calculate the maximum
number of 3_{1}-singularities that occur in a deformation of the pair. This
number is given by \# 3_{1}=\dim_{\mathbb{C}}\mathcal{O}_{2}/\langle f_{x}, f_{xx}\rangle , where \mathcal{O}_{2} denotes the set of
holomorphic germs \mathbb{C}^{2},0arrow \mathbb{C} . The singularity 3_{1} can also be characterized
by the discriminant being smooth and having ordinary tangency with the
leaf of \alpha=dy (and \beta). If we wish to model the singularities of the dis-
criminant where its tangency with the foliation of \alpha is preserved, we need
to classify germs of functions \mathbb{R}^{2},0arrow \mathbb{R} , 0 up to a subgroup of the contact
group \mathcal{K} , denoted by \mathcal{K}^{*} , where the changes of coordinates in the source
preserve the horizontal lines (the foliation of \alpha). This we do in Section 2
where we list all the \mathcal{K}^{*}-singularities of the discriminant that are inside the
\mathcal{K}-simple singularities.

We prove in Section 2 that for a large class of pairs of regular foliations,
the discriminant determines the topological type of the pair. More precisely,
pairs of regular foliations with a discriminant having at most two branches
in each half region delimited by the leaf of \alpha (or \beta) at the origin can be
classified topologically. We comment on the cases when the number of
branches is greater than two.
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2. \mathcal{K}^{*}-classification of the discriminant function

Let (\alpha, \beta) denote a germ at the origin of a pair of smooth 1-forms in
the plane. When the 1-forms are regular we can assume that the foliation
of \alpha is given by the horizontal lines and the foliation of \beta is the level sets
of a regular function f : \mathbb{R}^{2},0 - \mathbb{R} , 0. The discriminant of (\alpha, \beta) is the
set of points p where \alpha(p) is a multiple of \beta(p) , that is, points where \alpha\wedge

\beta vanishes. This is given by the zero set of f_{x}(x, y) , where the subscript
denotes the partial derivative with respect to x .

We say that a pair of 1-forms have kAppoint contact at the origin if the
leaves through the origin of the two forms have order of contact k at that
point.

Two pairs of foliations are smoothly (resp. topologically) equivalent if
there exists a diffeomorphism (resp. homeomorphism) taking the leaves of
one pair to the other. (Note that we can multiply a 1-form by non-vanishing
functions as this leaves its foliation unchanged.)

As highlighted in the introduction, we seek a classification of germs of
functions \mathbb{R}^{2},0arrow \mathbb{R} , 0 under the action of the subgroup \mathcal{K}^{*} of the contact
group \mathcal{K} , where the changes of coordinates in the source preserve the hor-
izontal lines, i.e. they are of the form (\phi(x, y) , \psi(y)) . The group \mathcal{K}^{*} is a
geometric subgroup of \mathcal{K}([7]) so all the results on determinacy of germs
apply here.

It is not hard to show that any smoothly equivalent pairs yield \mathcal{K}^{*}-

equivalent discriminants. Also, if \delta denotes the discriminant function of the
pair, then \# 3_{1}=dirn\mathbb{C}\mathcal{O}_{2}/\langle\delta, \delta_{x}\rangle and this number is \mathcal{K}^{*} invariant

The \mathcal{K}^{*} classification of germs \delta : \mathbb{R}^{2},0arrow \mathbb{R} , 0 is carried out inductively
on the jet levels of \delta . We use the complete transversal results in [4] to obtain
all the finitely \mathcal{K}^{*}-germs that are inside the \mathcal{K}-simple singularities A_{k} , D_{k} ,
E_{6} , E7, E_{8} . We also calculate the \mathcal{K}^{*}-codimension of \delta , the invariant \# 3_{1}

and the number of branches of \triangle=\delta^{-1}(0) in each half plane y>0 and
y<0 . This (unordered) pair of numbers, which is \mathcal{K}^{*}-invariant, is key in
determining the topological class of a pair of regular foliations.

Theorem 2.1 The finitely \mathcal{K}^{*} -determined germ \delta : \mathbb{R}^{2},0arrow \mathbb{R} , 0 that lie
in the \mathcal{K} -simple singularities are listed below.
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Normal form \mathcal{K} -class \mathcal{K}^{*} -codim \# 3_{1} #branches

x A_{0} 0 0 0, 0

y+x^{k} , 2\leq k A_{0} k-2 k-1 0, 2 (+)

1, 1 (-)

x^{2}+y^{k} , 2\leq k A_{k-1} k-1 k
0, 0 (+)
0, 2 (-)

x^{2}-y^{2k} , 1\leq k A_{2k-1} 2k-1 2k 2, 2

xy+x^{k} , 3\leq k A_{1} k-1 k
2, 2 (+)
1, 3 (-)

y^{2}+x^{k} , 2\leq k A_{k-1} 2k-3 2k-2 0, 0 (+)
1, 1 (-)

y^{2}-x^{2k} , 2\leq k A_{2k-1} 4k-3 4k-2 2, 2

y^{2}+x^{k}y+ax^{l} , 2\leq k<l<2k A_{l-1} 2l-4 2l-2 0, 0 (+, \pm)

1, 1 (-, \pm)

0, 4 (+, +)
y^{2}+x^{k}y+bx^{l} , 4\leq 2k<l A_{2k-1} l+2k-4 l+2k-2 1, 3 (-, \pm)

2, 2 (+, -)

y^{2}+x^{k}y-ax^{l} , 2\leq k<l<2k A_{l-1} 2l-4 2l-2 2, 2 (+, \pm)

1, 1 (-, \pm)

2, 2 (+, \pm)
y^{2}+x^{k}y-bx^{l} , 4\leq 2k<l A_{2k-1} l+2k-4 l+2k-2 1, 3 (-, \pm)

0, 0 (1)
y^{2}+x^{k}y+ax^{2k}+cx^{l} , 0, 4 (2)

A_{2k-1} 4k-3 4k-2
4\leq 2k<l\leq 3k-1 , a\neq 0 , \frac{1}{4} 2, 2 (3)

2, 2 (4)

0, 0 (1)
y^{2}+x^{k}y+ax^{2k} , 2\leq k , 0, 4 (2)

A_{2k-1} 4k-2 4k-2
a\neq 0 , \frac{1}{4} 2, 2 (3)

2, 2 (4)
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Normal form \mathcal{K} -class \mathcal{K}^{*} -codim \# 3_{1} #branches

x^{3}+axy^{2}+y^{3} , 1, 1 \eta>0
D_{4} 5 6

\eta=4a^{3}+27\neq 0 3, 3 \eta<0

xy^{2}+x^{k} , 3\leq k D_{k+1} 2k-1 2k
2, 2 (+)

1, 1 (-)

xy^{2}-x^{2k+1},2\leq k D_{2k+2} 4k+1 4k+2 3, 3

0, 2 (-, +)

x^{2}y+x^{k}+y^{l} , 4\leq k , 3\leq l D_{l+1} l+k-2 l+k 1, 1 (-, -)
0, 4 (+, +)
1, 3 (+, -)

2, 4 (-, +)

x^{2}y+x^{k}-y^{l} , 4\leq k , l D_{l+1} l+k-2 l+k 3, 3 (-, -)
2, 2 (+, +)
1, 3 (+, -)

xy^{2}+x^{k}y+ax^{l} , 2, 2 (+, \pm)
D_{l+1} 2l-3 2l

3\leq k<l<2k-1 1, 1 (-, \pm)

xy^{2}+x^{k}y+dx^{l} , 2, 4 (+, \pm)

D_{2k} l+2k-4 l+2k-1 3, 3 (-, +)
5\leq 2k-1<l

1, 5 (-, -)
xy^{2}+x^{k}y-ax^{l} , 2, 2 (+, \pm)

D_{l+1} 2l-3 2l
3\leq k<l<2k-1 3, 3 (-, \pm)

xy^{2}+x^{k}y-dx^{l} , 2, 4 (+, \pm)
D_{2k} l+2k-4 l+2k-15\leq 2k-1<l 3, 3 (-, \pm)

xy^{2}+x^{k}y+ax^{2k-1}+ex^{l} ,
5\leq 2k-1<l\leq 3k-3 , D_{2k}

a\neq 0 , \frac{1}{4}

1, 1 (1)
3, 3 (2)4k-5 4k-2 1, 5 (3)
3, 3 (4)

xy^{2}+x^{k}y+ax^{2k-1},3\leq k ,
D_{2k}

a\neq 0 , \frac{1}{4}

1, 1 (1)
3, 3 (2)4k-4 4k-2 1, 5 (3)
3, 3 (4)
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Normal form \mathcal{K} class \mathcal{K}^{*} -codim \# 3_{1} #branches

x^{3}+y^{4}\pm xy^{k} , 3\leq k E_{6}

y^{3}\pm x^{2}y^{2}+x^{4} E_{6}

y^{3}+x^{4} E_{6}

k+3 8 1, 1
7 9 0, 2
89 0, 2

x^{3}+xy^{3}+y^{5} E7 7 9 1, 3
x^{3}+xy^{3} E7 8 9 1, 3

2, 2 (+)
y^{3}+x^{3}y+x^{k}+ax^{k+1},5\leq k E7 k+4 k+6 1, 3 (-)

x^{3}+y^{5}\pm xy^{k} , 4\leq k E_{8}

y^{3}+x^{2}y^{2}+x^{5}+ax^{6} E_{8}

y^{3}+x^{5} E_{8}

k+4 10 1, 1
11 12 1, 1
11 12 1, 1

a=1+a_{1}x+ +a_{l-k-2}x^{l-k-2}

b=1+b_{1}x+ +b_{k-2}x^{k-2}

c=1+c_{1}x+ \cdot+b_{3k-l-1^{X^{3k-l-1}}}

d=1+d_{1}x+ +b_{k-3}x^{k-3}

e=1+e_{1}x+ +e_{3k-l-4}x^{3k-l-4}

l , k even (resp. odd) is represented by the sign+(resp. -) , so for example
(l, k)=(+, +) means both l and k are even.

(1) : a> \frac{1}{4};(2) : 0<a< \frac{1}{4} , (\pm, +);(3) : 0<a< \frac{1}{4} , (\pm, -) ;
(4) : a<0 .

Proo/. The classification follows by relatively straight forward calculations
that we omit here. We observe that the first three classes are known [10].
To calculate the codimension of the ideal \langle \delta, \delta_{x}\rangle in \mathcal{O}_{2} we use the results
in [1] for the non-trivial cases. \square

3. Topological classification of pairs of regular foliations

We show in this section that the discriminant determines the topological
type of a large number of pairs of regular foliations in the plane.

Theorem 3.1 Let (\alpha, \beta) be a pair of germs, at the origin, of regular 1-
forms in the plane. Suppose that the discriminant \triangle of the pair has at most
two branches in each semi-region defined by the leaf of \alpha (or \beta ) through the
origin.
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Fig. 1. Topological models of pairs of regular foliations (discriminant in
thick line).

Then the pair is topologically equivalent to one of the following:
(i) (dx, dy) , if \triangle is empty or is an isolated point;
(ii) (dy, d(y-x^{2})) , if \triangle has one branch in each half region’,
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(iii) (dy, d(y+xy-x^{3})) , if \triangle has two branches in one half region and none
in the other;

(iv) (dy, d(y+xy^{2}-x^{3})) , if \triangle has two branches in each half region.

See Figure 1. In particular, if \triangle is a regular curve then (\alpha, \beta) is topolog-
ically equivalent to

(a) (dy, d(y-x^{2})) , if the contact of \triangle with the leaf of \alpha (and \beta ) at
the origin is odd;

(b) (dy, d(y+xy-x^{3})) , if the contact of \triangle with the leaf of \alpha (and
\beta) at the origin is even.

Proof. Case (i) is not difficult and shall be omitted. We can suppose that
\alpha=dy and \beta=df , where f is a germ of a regular function. Note that away
from the origin the foliations have ordinary tangency on the discriminant,
and the pair is locally smoothly equivalent to (dy, d(y-x^{2}))([8]) . Let (\alpha, \beta’)

denote the pair of 1-forms that yield the foliations of the model.
(ii) The curve \triangle separates the plane into two regions. In one (open)

region the function f is increasing and in the other decreasing (Figure 2).
Choose a region, say region 1 as in Figure 2 and assume without loss of
generality that f is decreasing there. We orient the discriminant upwards.
Then a point q in region 1 is uniquely determined as the intersection of the
leaf of \alpha starting from a point q_{\alpha} on \triangle and the leaf of \beta starting from a
point q_{\beta} on \triangle . Observe that q_{\beta}\leq q_{\alpha} . Let \beta’=d(y-x^{2}) and \triangle’ be the
discriminant of (\alpha, \beta’) (oriented upwards). This discriminant also separates
the plane into two regions. Choose an increasing homeomorphism l from \triangle

to \triangle’

=

Fig. 2. Discriminant with one branch in each half plane.
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Since l is increasing l(q_{\beta})\leq l(q_{\alpha}) , so the leaf of \alpha starting from l(q_{\alpha})

and the leaf of \beta’ starting from l(q_{\beta}) intersect at a unique point in region 1’.
We define H(q) to be the intersection point. It is not hard to see that H
is a homeomorphism and takes the foliations of (\alpha, \beta) to those of (\alpha, \beta’) in
the chosen region. The same homeomorphism l defines H similarly from
region 2 to region 2’ The obtained map is the required homeomorphism
that takes the foliations of (\alpha, \beta) to those of the model. Note that H is
completely determined by its restriction to the discriminant.

(iii) Given the hypothesis on the discriminant, the contact of the leaf
of \beta with the x-axis at the origin is odd. The function f is decreasing
(or increasing) in the open region inside the discriminant and increasing
(or decreasing) in the region outside the discriminant. We assume here,
without loss of generality that f is decreasing inside the region delimited
by the discriminant. We shall split a neighbourhood of the origin into four
regions delimited by the discriminant and the leaf of \beta through the origin
(see Figure 4). We construct a homeomorphism from each region to its
corresponding one in the model in such a way that these coincide on the
boundary.

Region 1: Let p_{0} be a point on \triangle distinct from the origin (see Figure 3)
and denote by I_{1} the segment of \triangle between p_{0} and the origin oriented as
in Figure 3. Denote by I_{2} the other segment of \triangle from the origin to q_{0} ,
where q_{0} is the other point of intersection of the leaf of \beta from p_{0} with the
discriminant. We also give an orientation to I_{2} as in Figure 3.

The pair (\alpha, \beta) determines a decreasing homeomorphism h : I_{1}arrow I_{2}

by sliding along the leaves of \beta . It also determines an increasing home0-
morphism k : I_{1} -arrow I_{1} as follows. Given p\in I_{1} , we slide along the leaf of
\beta through p until reaching I_{2} and come back to k(p)\in I_{1} along the leaf of
\alpha through h(p) (Figure 3). Similarly, we obtain homeomorphisms h’ and
k’ associated to the model pair (\alpha, \beta’) . Suppose that there is a homeomor-
phism H_{1} from region 1 to region 1’ in the model. Then its restriction to
I_{1} determines an increasing homeomorphism l_{1} : I_{1} – I_{1}’ . As H_{1} preserves
the foliations, it is not hard to show that l_{1}ok=k’ol_{1} .

Conversely, any increasing homeomorphism l_{1} that conjugates k and k’

determines a homeomorphism H_{1} that sends the pair of foliations in region 1
to those in region 1’. For, any point q in region 1 is uniquely determined as
the intersection of a leaf of \beta starting from q_{\beta}\in I_{1} and a leaf of \alpha starting
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from q_{\alpha}\in I_{1} (Figure 4). We also have q_{\beta}\leq q_{\alpha}\leq k(q_{\beta}) (Figure 4). As l_{1} is
increasing, l_{1}(q_{\beta})\leq l_{1}(q_{\alpha})\leq l_{1}(k(q_{\beta}))=k’(l_{1}(q_{\beta})) , so the leaf of \beta’ through
l_{1}(q\beta) and that of \alpha through l_{1}(q_{\alpha}) intersect at a unique point, denoted by
H_{1}(q) . It is clear that H_{1} is a homeomorphism taking the pair of foliations
to those of the model. Now the homeomorphism l_{1} exists as k and k’ are
increasing (see for example [16], pp. 19-20).

Fig. 3. Homeomorphisms on a branch of the discriminant.

Region 2: (See Figure 4) Let J_{2} denote the segment of the leaf of \beta

through the origin that lives in the complement of the half plane where the
discriminant lies. We orient J_{2} as in Figure 4 and denote by I=I_{1}\cup J_{2} .
Let l_{2} : J_{2}arrow J_{2}’ be any increasing homeomorphism and l:Iarrow I such that
l|_{I_{1}}=l_{1} and l|_{I_{2}}=l_{2} . Any point in region 2 is uniquely determined as the
intersection of a leaf of \beta starting from q_{\beta}\in I_{1} and a leaf of \alpha starting from
q_{\alpha}\in I . We also have q_{\beta}\leq q_{\alpha} . As l is increasing, l(q_{\beta})\leq l(q_{\alpha}) , so the leaf
of \beta’ through l(q_{\beta}) and that of \alpha through l(q_{\alpha}) intersect at a unique point
H_{2}(q) . It is clear that H_{2} is a homeomorphism taking the pair of foliations
in region 2 to the pair in region 2’ and coincides with H_{1} on I_{1} .

Region 4: (See Figure 4) The homeomorphism l_{1} induces an increasing
homeomorphism g : I_{2}arrow I_{2}’ . A point in region 4 is determined by a pair of
points (q_{\alpha}, q_{\beta}) , where q_{\beta} (resp. q_{\alpha} ) is the intersection of a leaf of \beta (resp. q_{\alpha} )
through q with I_{2} . We have q_{\beta}\leq q_{\alpha} . As g is increasing and g(q_{\beta})\leq g(q_{\alpha}) ,
the leaf of \beta’ through g(q_{\beta}) and that of \alpha through g(q_{\alpha}) intersect at a
unique point H_{4}(q) . It is clear that H_{4} is a homeomorphism taking the pair
of foliations in region 4 to the pair in region 4’ and agreeing with H_{1} on I_{2} .

Region 3: (See Figure 4) Let J=J_{1}\cup J_{2} , then we have a homeomor-
phism m : J -arrow J’ defined by the restrictions of H_{2} to J_{2} in region 2 and H_{4}
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to J_{1} in region 4. Now any other homeomorphism from a segment of the
horizontal line (say, J_{3} ) to J_{3}’ produces a homeomorphism taking the pair
in region 3 to that in region 3’ (see Figure 4) and this map coincides with
H_{2} on J_{2} and H_{4} on J_{1} .

We can thus define a homeomorphism from a neighbourhood of the
origin taking the pair of foliations (\alpha, \beta) to the model, whose restriction
to each region are the homeomorphisms exhibited above. We observe that
the homeomorphism is completely determined by its restriction to a finite
number of curves in the neighbourhood of the origin, namely I_{1} , J_{2} and J_{3} .

Fig. 4. Discriminant with two branches in one half plane and none
in the other.

(iv) We follow the same approach as in case (iii). Here too we have
4 regions and in region 1 we proceed as in case (iii) for region 1. We then
construct a homeomorphism l_{2} in region 3 in the same way as for region 1.
Now we have an increasing homeomorphism l : Iarrow I’ with l|_{I_{1}}=l_{1} and
l|_{I_{2}}=l_{2} . A point in region 2 is determined by a pair of points (q_{\alpha}, q_{\beta}) ,
where q_{\beta} (resp. q_{\alpha} ) is the intersection of a leaf of \beta (resp. \alpha ) through q
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with I . We have q_{\beta}\leq q_{\alpha} . As l(q\beta)\leq l(q_{\alpha}) , the leaf of \beta’ through l(q\beta)

and that of \alpha through l(q_{\alpha}) intersect at a unique point H_{2}(q) . The map
H_{2} is a homeomorphism taking the pair of foliations in region 2 to those in
region 2’ and coincides with H_{1} on I_{1} and H_{3} on I_{2} . We construct in the
same way the homeomorphism H_{4} . Note that the resulting homeomorphism
taking the pair to the model is completely determined by its restriction to
the component I=I_{1}\cup I_{2} of the discriminant.

Fig. 5. Discriminant with two branches in each half plane.

\square

3.1. Applications
(1) Suppose that the leaf of \alpha and \beta have k+1-point contact at the

origin. If we set \alpha=dy and \beta=df , this means that f(x, 0) is \mathcal{R}-equivalent
to \pm x^{k+1} , which is an A_{k}-singularity and has a versal unfolding given by
F=\pm x^{k+1}+u_{k-1}x^{k-2}+\cdot.+u_{1}x+u_{0} . (We can multiply f by constants and
remove the sign\pm. ) As f(x, y) can be considered as an unfolding of f(x, 0) ,
there exist a change of coordinates of the form \Psi= (\psi(x, y) , y) , i.e. that
preserves the foliation of \alpha , and a map h(y)=(\phi_{k-1}(y), . , \phi_{1}(y), \phi_{0}(y)) ,
such that f\circ\Psi=h^{*}.F , that is,

f(\psi(x, y) , y)=x^{k+1}+\phi_{k-1}(y)x^{k-1}+ \cdot+\phi_{1}(y)x+\phi_{0}(y) .

As f is regular we can set \phi_{0}(y)=y . The discriminant is regular if \phi_{1}’(0)\neq

0 . Theorem 3.1 asserts that all pairs of foliations with f as above and
\phi_{1}’(0)\neq 0 can be classified topologically and the models are those in TheO-
rem 3.1 (a) and (b).
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(2) When k=2 above, the discriminant has an A_{s}-singularity, and
when s<\infty it is shown in [14] that for any large integer N , the N-jet of
the pair of 1-forms is smoothly equivalent to

(dy, d(y+xy^{2p+1}-x^{3})) , p\geq 0 ,
(dy, d(y+xy^{2}-x^{3})) or
(dy, d(y+x(\pm y^{2p}+\lambda^{5p-1}y)-x^{3})) , p\geq 2

where \lambda is a smooth modulus. It follows from Theorem 3.1 that the pairs
whose N-jets are equivalent to one of the above are respectively topologi-
cally equivalent to (dy, d(y+xy-x^{3})) , (dy, d(y+xy^{2}-x^{3})) or (dx, dy) .

(3) We can also deduce from Theorem 3.1 the topological class of
a pair whose discriminant is \mathcal{K}^{*}-equivalent to one of the normal forms in
Theorem 2.1 where the number of branches (last column) is either (0, 0) ,
(1, 1) , (0, 2) or (2, 2) .

3.2. The general case
When there are two branches of the discriminant in one half plane, we

have a homeomorphism k : I_{1} - I_{1} defined by sliding along the leaves of
\beta until reaching I_{2} and coming back to I_{1} along the leaves of \alpha (Figure 3).
We have seen that two pairs of foliations in this region are homeomorphic
if and only if the homeomorphism k and k’ are conjugate.

Suppose there are more then two branches of the discriminant in one
half plane. For simplicity, assume that there are three. Let k_{2} : I_{1}arrow

I_{1} denote the homeomorphism defined by sliding along the leaf of \beta until
reaching the branch I_{2} and coming back to I_{1} along the leaves of \alpha . Let k_{1} :
I_{1}arrow I_{1} denote the homeomorphism defined by sliding along the leaves of \beta

until reaching I3 and coming back to I_{1} along the leaves of \alpha (see Figure 6,
right). If there exists a homeomorphism that sends the pair of foliations to
a model it must induce a homeomorphism l : I_{1}arrow I_{1} such that k_{1}’\circ l=

lok_{1} and k_{2}’ol=lok_{2} , where k_{1}’ and k_{2}’ are the homeomorphisms defined
on the model in the same way as k_{1} and k_{2} . That is, l must conjugate
simultaneously the pairs (k_{1}, k_{1}’) and (k_{2}, k_{2}’) . Such an l does not exist in
general.

Remark 3.2 When dealing with deformations of vector fields in the plane
one can adopt the notion of fibre topological equivalence for such families
([9]). Two families X_{t} and Y_{s} are fibre topologically equivalent if there exist



536 R.D.S. Oliveira and F. Tan

Fig. 6.

a homeomorphism s=\psi(t) between the parameter space and a family of
homeomorphisms of \mathbb{R}^{2} depending on the parameter t , say h_{t} , such that
for all t , h_{t} is a topological equivalence between X_{t} and Y_{\psi(t)} . The map
h_{t} is not required to be continuous in t . This definition of equivalence can
be used for pairs of foliations in the plane. However, it follows from above
that for a pair of regular foliations with contact \geq 4 at the origin any two
families of the pair are in general not fibre topologically equivalent (see
Figure 6). As the discriminant is a key feature of the configuration of the
pair, one could introduce a weak equivalence relation for the deformations
using the discriminant and define two deformations to be equivalent if their
discriminants are \mathcal{K}^{*}-equivalent as deformations.
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