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On Lagrangian surfaces in \bm{CP}^{\bm{2}}\bm{(}\tilde{\bm{c}}\bm{)}
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Abstract. Chen and Ogiue completely classified totally umbilical submanifolds in a
non-flat complex-space-form. However, the classification problem of pseud0-umbilical
submanifolds in a non-flat complex-space-form is still open. Very recently, Chen intr0-
duced the notion of Lagrangian H-umbilical submanifolds which is the simplest totally

real submanifolds next to the totally geodesic ones in a complex-space-form and and clas-
sified Lagrangian H-umbilical submanifolds in a complex-space-form. The author proved
that a Lagrangian H-umbilical surface M in a complex 2-dimensional complex projective
space CP^{2}(\overline{c}) is an isotropic surface in CP^{2}(\tilde{c}) if and only if M is a minimal surface in
CP^{2}(\overline{c}) . In this paper, firstly, we prove that a Lagrangian surface M in CP^{2}(\overline{c}) is an
isotropic surface in CP^{2}(\overline{c}) if and only if M is a minimal surface in CP^{2}(\overline{c}) . Secondly,

we classify Lagrangian non-totally geodesic pseud0-umbilical surfaces in CP^{2}(\tilde{c}) .
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1. Introduction

Let M be an n-dimensional submanifold of a complex ra-dimensional
Kaehler manifold \tilde{M} with complex structure J and Kaehler metric g . A
submanifold M of a Kaehler manifold \tilde{M} is said to be a totally real if each
tangent space of M is mapped into the normal space by the complex struc-
ture of \tilde{M} (see Chen and Ogiue [5]). The totally real submanifold M of \tilde{M}

is called Lagrangian if n=m. A Kaehler manifold of constant holomorphic
sectional curvature \tilde{c} is called a complex-space-form and will be denoted by
\tilde{M}(\tilde{c}) . Let CP^{m}(\tilde{c}) be a complex m-dimensional complex projective space
with the Fubini-Study metric of constant holomorphic sectional curvature \tilde{c} .

Chen and Ogiue [6] classified totally umbilical submanifolds in a non-
flat complex-space-form \tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0) and proved that a non-flat complex-
space-form \tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0)(m\geq 2) admits no totally umbilical, Lagrangian
submanifolds except the totally geodesic ones.

Very recently, Chen [1] introduced the notion of Lagrangian H-umbili-
cal submanifolds which is the simplest totally real submanifolds next to
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the totally geodesic ones in a complex-space-form \tilde{M}^{m}(\tilde{c}) and classified
Lagrangian H-umbilical submanifolds in a non-flat complex-space-form
\tilde{M}^{m}(\tilde{c}) . Further, Chen [2] [4] completely classified Lagrangian H-umbilical
submanifolds in a complex Euclidean space.

A Lagrangian H-umbilical submanifold of a Kaehler manifold \tilde{M}^{n} is
a non-totally geodesic Lagrangian submanifold whose second fundamental
form takes the following simple form;

\{

\sigma(e_{1}, e_{1})=\lambda Je_{1} , \sigma(e_{2}, e_{2})= =\sigma(e_{n}, e_{n})=\mu Je_{1}

(1.1)
\sigma(e_{1}, e_{j})=\mu Je_{j} , \sigma(e_{j}, e_{k})=0 , j\neq k , j=k=2, \ldots , n

for some suitable functions \lambda , \mu with respect to some suitable orthonormal
local frame field \{e_{i}\} .

Now, Matsuyama [9] proved that any non-totally geodesic, minimal
totally real submanifold M^{n} (n : even) in CP^{n}(\tilde{c}) which has at most two
principal curvatures in the direction of any normal is constant isotropic
submanifold in CP^{n}(\tilde{c})(n\geq 4) or minimal Lagrangian H-umbilical surface
in CP^{2}(\tilde{c}) . So, the author [13] showed the following.

Theorem 1.1 Let M be a Lagrangian H-umbilical surface in CP^{2}(\tilde{c}) .
Then M is an isotropic surface in CP^{2}(\tilde{c}) if and only if M is a minimal
surface in CP^{2}(\tilde{c}) .

Firstly, the aim of this paper is to show the following result which is a
generalization of Theorem 1.1.

Theorem 1.2 Let M be a Lagrangian surface in CP^{2}(\tilde{c}) . Then M is
an isotropic surface in CP^{2}(\tilde{c}) if and only if M is a minimal surface in
CP^{2}(\tilde{c}) .

Very recently, Chen [3] showed that non-totally geodesic minimal La-
grangian surfaces in any Kaehler surface are Lagrangian H-umbilical. Thus
we get

Corollary 1.1 A nonzero isotropic Lagrangian surface in CP^{2}(\tilde{c}) is a
minimal Lagrangian H-umbilical surface in CP^{2}(\tilde{c}) .

Now, the class of totally umbilical submanifolds in a non-flat complex
space-form \tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0) was completely classfied by Chen and Ogiue.
However, it is well known that the class of pseud0-umbilical submanifolds
in a non-fiat complex-space-form \tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0) is too wide to classify.
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The classification problem of pseud0-umbilical submanifolds in a non-flat
complex-space-form \tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0) is still open. Thus, it is reasonable
to study pseud0-umbilical submanifolds in a non-flat complex-space-form
\tilde{M}^{m}(\tilde{c})(\tilde{c}\neq 0) under some additional condition. Recently, the author [12]
proved that any pseud0-umbilical submanifold M^{n}(n\geq 2) with nonzero
parallel mean curvature vector in a non-flat complex-space-form \tilde{M}^{m}(\tilde{c})

(\tilde{c}\neq 0) is a totally real submanifold and satisfies m>n . Immediately, we
see that there exist no pseud0-umbilical surfaces with nonzero parallel mean
curvature vector in CP^{2}(\tilde{c}) . Thus, it is very interesting to study Lagrangian
pseud0-umbilical surfaces in CP^{2}(\tilde{c}) .

Secondly, the aim of this paper is to classify Lagrangian pseud0-umbili-
cal surfaces in CP^{2}(\tilde{c}) .

Theorem 1.3 Let M be a Lagrangian non-totally geodesic pseudO-umbili-
cal surface in CP^{2}(\tilde{c}) . Then M is a non-isotropic Lagrangian H-umbilical
surface in CP^{2}(\tilde{c}) with the Gauss curvature K=\tilde{c}/4 and the scalar normal
curvature K_{N}=0 .

Remark 1.1 Without loss of generality, CP^{2}(\tilde{c}) is equipped with the
Fubini-Study metric of constant holomorphic sectional curvature \tilde{c}=4 .
By Remark 6.1 in [3], we see that the warped metric tensor of such a La-
grangian H-umbilical surface of CP^{2}(\tilde{c}) in Theorem 1.3 is given by

g=(dx)^{2}+(1/H)^{2}(dy)^{2}

with respect to a coordinate system \{x, y\} , where H denotes the mean
curvature of M in CP^{2}(4) .

The author would like to express his hearty thanks to Professor Yoshio
Matsuyama for his valuable suggestions and encouragements. The author
also would like to thank the referees for giving many useful comments.

2. Preliminaries

Let M be an n-dimensional submanifold of a complex ra-dimensional
Kaehler manifold \tilde{M} with complex structure J and Kaehler metric g . Let
\nabla (resp. \tilde{\nabla} ) be the covariant differentiation on M (resp. \tilde{M} ). We denote
by \sigma the second fundamental form of M in \tilde{M} . Then the Gauss formula
and the Weingarten formula are given respectively by \sigma(X, Y)=\tilde{\nabla}_{X}Y-

\nabla_{X}Y_{:}\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi for all vector fields X , Y tangent to M and a
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vector field \xi normal to M, where -A_{\xi}X (resp. D_{X}\xi ) denotes the tangential
(resp. normal) component of \tilde{\nabla}x\xi . The covariant derivative \overline{\nabla}\sigma of the
second fundamental form \sigma is defined by (\overline{\nabla}_{X}\sigma)(Y, Z)=Dx(\sigma(Y, Z))-

\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z) for all vector fields X , Y and Z tangent to M. Let
\zeta=(1/n)trace\sigma and H=|\zeta| denote the mean curvature vector and the
mean curvature of M in \tilde{M} , respectively. The submanifold M of \tilde{M} is said
to be a \lambda -isotropic submanifold if |\sigma(X, X)|=\lambda for all unit tangent vectors
X at each point.

Let R (resp. \tilde{R}) be the Riemannian curvature for \nabla (resp. \tilde{\nabla} ). Then
the Gauss equation is given by

g(\tilde{R}(X, Y)Z , W)=g(R(X, Y)Z, W)+g(\sigma(X, Z) , g(\sigma(Y, W))

-g(\sigma(Y, Z) , \sigma(X, W)) (2.1)

for all vector fields X , Y , Z and W tangent to M.
The Riemannian curvature \tilde{R} of \tilde{M}(\tilde{c}) is given by

\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z}=(\tilde{c}/4)\{g(\tilde{Y},\tilde{Z})\tilde{X}-g(\tilde{X},\tilde{Z})\tilde{Y}+g(J\tilde{Y},\tilde{Z})J\tilde{X}

-g(J\tilde{X}, \tilde{Z})J\tilde{Y}+2g(\tilde{X}, J\tilde{Y})J\tilde{Z}\} (2.2)

for all vector fields \tilde{X} , \tilde{Y} and \tilde{Z} on \tilde{M}(\tilde{c}) .
Now, we prepare the following fundamental fact.

Lemma 2.1 Let M^{n} be a totally real submanifold in CP^{m}(\tilde{c}) . Then we
have

g(\sigma(X, Y) , JZ)=g(\sigma(X, Z), JY)

for all vector fields X , Y and Z tangent to Mr

Proof.
g(\sigma(X, Y) , JZ)=g(\tilde{\nabla}_{X}Y, JZ)

=-g(J\tilde{\nabla}_{X}Y, Z)

=-g(\tilde{\nabla}_{X}JY, Z)

=g(JY,\tilde{\nabla}_{X}Z)

=g(\sigma(X, Z), JY)

\square

Here, we prepare the following result.
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Theorem 2.1 (Maeda [8]) Let M be an n-dimensional real-space-form
of constant curvature c . If M is an isotropic Lagrangian submanifold of
CP^{n}(\tilde{c}) , then M is parallel Thus M is totally geodesic or n=2 and M is
locally congruent to a flat torus T^{2}(c=0) .

Now, we recall the following result.

Theorem 2.2 (Chen [3]) Let M be a non-totally geodesic Lagrangian
surface in a Kaehler maifold \tilde{M}^{2} . If M is a minimal surface in \tilde{M}^{2} , then
M is a Lagrangian H-umbilical surface in \tilde{M}^{2} .

3. Proof of Theorems

First, we shall show Theorem 1.2.
Let M be a Lagrangian surface in CP^{2}(\tilde{c}) . We choose a local orthonor-

mal frame field

e_{1} , e_{2} , e_{3}=Je_{1} , e_{4}=Je_{2}

of CP^{2}(\tilde{c}) such that e_{1} , e_{2} are tangent to M. The surface in CP^{2}(\tilde{c}) satisfies

\{\begin{array}{l}\sigma(e_{1},e_{1})=ae_{3}+be_{4}\sigma(e_{1},e_{2})=ce_{3}+de_{4}\sigma(e_{2},e_{2})=fe_{3}+ge_{4}\end{array} (3.1)

for some functions a , b , c , d , f and g with respect to the orthonormal local
frame field \{e_{i}\} .

By Lemma 2.1, we get

g(\sigma(e_{1}, e_{2}) , Je_{1})=g(\sigma(e_{1}, e_{1}), Je_{2}) (3.2)

g(\sigma(e_{2}, e_{1}) , Je_{2})=g(\sigma(e_{2}, e_{2}), Je_{1}) (3.3)

Thus by (3.1), (3.2) and (3.3) we obtain c=b and f=d. Therefore we
have

\{\begin{array}{l}\sigma(e_{1},e_{1})=ae_{3}+be_{4}\sigma(e_{1},e_{2})=be_{3}+de_{4}\sigma(e_{2},e_{2})=de_{3}+ge_{4}\end{array} (3.4)

for some functions a , b , d and g with respect to the orthonormal local frame
field \{e_{i}\} .
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If the surface is isotropic, we get (see O’Neill [11])

g(\sigma(e_{1}, e_{1}) , \sigma(e_{1}, e_{2}))=g(\sigma(e_{2}, e_{2}), \sigma(e_{1}, e_{2}))=0 (3.5)

By (3.4) and (3.5) we obtain

b(a+d)=0 (3.6)

d(b+g)=0 (3.7)

Now, for an isotropic surface we get

|\sigma(e_{1}, e_{1})|^{2}=|\sigma(e_{2}, e_{2})|^{2}

Thus we have

a^{2}+b^{2}=d^{2}+g^{2} (3.8)

Firstly, if b\neq 0 , by (3.6) we get

a+d=0 (3.9)

The case (I) [b\neq 0 and a+d=0]:
By (3.8) and (3.9), we have

b^{2}=g^{2} (3.10)

The case (I) [i] : If b=g(\neq 0) in (3.10), by (3.7) we get db=0 . Since
b\neq 0 , we have d=0. So we obtain a=0 by (3.9). Thus we get by (3.4)

\{\begin{array}{l}\sigma(e_{1},e_{1})=\sigma(e_{1},e_{2})=be_{3}\sigma(e_{2},e_{2})=\end{array} be_{4}be_{4} (3.11)

for some function b with respect to some suitable orthonormal local frame
field \{e_{i}\} .

Now, the Gauss curvature K is given by

K=g(R(e_{1}, e_{2})e_{2} , e_{1}) (3.12)

By (2.1), (2.2) and (3.12) we get the Gauss curvature

K= \tilde{c}/4+\sum_{\alpha=3}^{4}\{h_{11}^{\alpha}h_{22}^{\alpha}-(h_{12}^{\alpha})^{2}\} (3.13)

where h_{ij}^{\alpha}=g(\sigma(e_{i}, e_{j}) , e_{\alpha}) for i,j=1,2 and \alpha=3,4 .
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By (3.11) and (3.13), we have nonzero constant Gauss curvature K=
\tilde{c}/4 . Immediately from Theorem 2.1, we see that the surface is totally
geodesic. This is a contradiction for b\neq 0 .

The case (I) [ii] : If b=-g(\neq 0) in (3.10), we get by (3.4) and (3.9)

\{\begin{array}{l}\sigma(e_{1},e_{1})=ae_{3}+be_{4}\sigma(e_{1},e_{2})=be_{3}-ae_{4}\sigma(e_{2},e_{2})=-ae_{3}-be_{4}\end{array} (3.14)

for some functions a , b with respect to the orthonormal local frame field
\{e_{i}\} .

Thus we see that the surface is non-totally geodesic and minimal.
Secondly, if a+d\neq 0 , by (3.6) we get b=0 .

The case (II) [a+d\neq 0 and b=0]:
By (3.7) and (3.8) we obtain

dg=0 (3.15)

a^{2}=d^{2}+g^{2} (3.16)

The case (II) [i] : If d=0 and g\neq 0 in (3.15), we get b=d=0. So,
by (3.4) and (3.13) we have K=\tilde{c}/4 . Thus from Theorem 2.1, we see that
the surface is totally geodesic. This is a contradiction for g\neq 0 .

The case (II) [ii] : If d\neq 0 and g=0 in (3.15), by (3.16) we get a^{2}=d^{2} .
Since a+d\neq 0 , by (3.16) we get a=d. Since d=a and b=g=0, by (3.4)
and (3.13) we have K=\tilde{c}/4 . By the same argument as in the case (II) [i] ,
we see that this case does not occur.

The case (II) [iii] : If d=0 and g=0 in (3.15), by (3.16) we get a=0.
This is a contradiction for a+d\neq 0 .

Finally, we study the following case.

The case (III) [b=0 and a+d=0]:
By (3.8), we have g=0. Since d=-a and b=g=0, we get

\{\begin{array}{l}\sigma(e_{1},e_{1})=ae_{3}\sigma(e_{1},e_{2})=\sigma(e_{2},e_{2})=-ae_{3}\end{array} -ae_{4} (3.17)

for some function a with respect to the orthonormal local frame field \{e_{i}\} .
Thus we see that the surface is minimal.
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Conversely, if the surface is minimal, by Theorem 2.2 and Theorem 1.1
we see that the surface is isotropic.

This completes the proof of Theorem 1.2.
By (3.13) and (3.14), we get K=\tilde{c}/4-2(a^{2}+b^{2}) , b\neq 0 . And by (3.13)

and (3.17), we have K=\tilde{c}/4-2a^{2} . Thus we get

Corollary 3.1 An isotropic Lagrangian surface in CP^{2}(\tilde{c}) with the Gauss
curvature K<\tilde{c}/4 is a non-totally geodesic minimal surface in CP^{2}(\tilde{c}) .

By Theorem 2.2, we obtain

Corollary 3.2 An isotropic Lagrangian surface in CP^{2}(\tilde{c}) with the Gauss
curvature K<\tilde{c}/4 is a minimal Lagrangian H-umbilical surface in CP^{2}(\tilde{c}) .

Remark 3.1 A flat torus T^{2} in CP^{2}(\tilde{c}) has various properties (see
Ludden-Okumura-Yano [7], Naitoh [10], Maeda [8] ) . In fact, a flat torus
T^{2} is a totally real isotropic, non-totally geodesic minimal surface with par-
allel second fundamental form in CP^{2}(\tilde{c}) . A flat torus T^{2} in CP^{2}(4) satisfies
(see [7])

\{\begin{array}{l}\sigma(e_{1},e_{1})=\sigma(e_{1},e_{2})=-\lambda e_{3}\sigma(e_{2},e_{2})=\end{array} -\lambda e_{4}\lambda e_{4}

for \lambda=1/\sqrt{2} .

Secondly, we shall show Theorem 1.3. Now, we prepare the following
fact.

Proposition 3.1 Let M be a Lagrangian surface of a Kaehler manifold
\tilde{M}^{2} . Then the following two conditions are equivalent
(1) M is a non-totally geodesic pseudO-umbilical surface of \tilde{M}^{2} .
(2) M is a Lagrangian H-umbilical surface with \lambda=\mu in (1.1) of \tilde{M}^{2} .

Proof. Let M be a Lagrangian pseud0-umbilical surface in \tilde{M}^{2} . We choose
a local orthonormal frame field

e_{1} , e_{2} , e_{3}=Je_{1} , e_{4}=Je_{2}

of \tilde{M}^{2} such that e_{1} , e_{2} are tangent to M and e3 in such a way that its
direction coincides with that of the mean curvature vector \zeta . Since M is a
pseud0-umbilical surface, it is umbilic with respect to the direction of the
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mean curvature vector \zeta . Thus, the surface satisfies

\{\begin{array}{l}\sigma(e_{1},e_{1})=He_{3}+ae_{4}\sigma(e_{1},e_{2})= be_{4}\sigma(e_{2},e_{2})=He_{3}-ae_{4}\end{array} (3.18)

for some functions a , b with respect to the orthonormal local frame field
\{e_{i}\} .

By Lemma 2.1, we get

g(\sigma(e_{1}, e_{2}) , Je_{1})=g(\sigma(e_{1}, e_{1}), Je_{2}) (3.19)

g(\sigma(e_{2}, e_{1}) , Je_{2})=g(\sigma(e_{2}, e_{2}), Je_{1}) (3.20)

Thus by (3.18), (3.19) and (3.20) we obtain a=0 and b=H. Therefore
we have

\{\begin{array}{l}\sigma(e_{1},e_{1})=He_{3}\sigma(e_{1},e_{2})=\sigma(e_{2},e_{2})=He_{3}\end{array} He_{4} (3.21)

By (3.21), we see that M is a Lagrangian H-umbilical surface with \lambda=

\mu in \tilde{M}^{2} .
Conversely, let M be a Lagrangian H-umbilical surface with \lambda=\mu in

\tilde{M}^{2} . We choose a local orthonormal frame field

e_{1} , e_{2} , e_{3}=Je_{1} , e_{4}=Je_{2}

of \tilde{M}^{2} such that e_{1} , e_{2} are tangent to M. By (1.1), the surface in \tilde{M}^{2}

satisfies

\{\begin{array}{l}\sigma(e_{1},e_{1})=\mu e_{3}\sigma(e_{1},e_{2})=\sigma(e_{2},e_{2})=\mu e_{3}\end{array}

\mu e_{4} (3.22)

for some function \mu with respect to the orthonormal local frame field \{e_{i}\} .
By (3.22), we see that \mu=H and M is a Lagrangian pseud0-umbilical

surface in \tilde{M}^{2} . \square

The scalar normal curvature K_{N} is given by

K_{N}= \sum_{\alpha,\beta=3}^{4}\{\sum_{i=1}^{2}(h_{1i}^{\alpha}h_{2i}^{\beta}-h_{1i}^{\beta}h_{2i}^{\alpha})\}^{2} (3.23)
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where h_{ij}^{\alpha}=g(\sigma(e_{i}, e_{j}) , e_{\alpha}) for i , j=1,2 and \alpha=3,4 . By (3.21), (3.13)
and (3.23), we get K=\tilde{c}/4 and K_{N}=0 .

By (3.21), for any unit vector e=(ke_{1}+le_{2})/\sqrt{k^{2}+l^{2}} , where k , l are
some real numbers, we get

|\sigma(e, e)|^{2}=H^{2}+4k^{2}l^{2}H^{2}/(k^{2}+l^{2})^{2} (3.24)

|\sigma(e_{1}, e_{1})|^{2}=H^{2} (3.25)

If M is an isotropic surface, by (3.24) and (3.25) we have H=0, i.e., M is
a totally geodesic surface in CP^{2}(\tilde{c}) by (3.21).

This completes the proof of Theorem 1.3.
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