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Real hypersurfaces in complex space forms
which are warped products

Bang-Yen CHEN
(Received November 13, 2000; Revised April 6, 2001)

Abstract. It is proved in [6] that there do not exist real hypersurfaces in nonflat com-
plex space forms which are Riemannian products of Riemannian manifolds. By contrast,
using Legendre curves we construct in this article many examples of real hypersurfaces in
complex space forms which are warped products of Riemannian manifolds. Conversely,
we prove that our examples are the only real hypersurfaces in complex space forms which
are warped products of a complex hypersurface and a curve.
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1. Introduction

The study of real hypersurfaces in complex projective space CP^{n} and
complex hyperbolic space CH^{n} has been an active field over the past three
decades. Although these ambient spaces might be regarded as the simplest
after the spaces of constant curvature, they impose significant restrictions
on the geometry of their hypersurfaces. For instance, they do not admit
totally umbilical hypersurfaces and Einstein hypersurfaces.

On the other hand, several important classes of real hypersurfaces in
complex projective space have been constructed and investigated by many
geometers. For instance, H.B . Lawson investigated real hypersurfaces of
CP^{n} which lift to Clifford minimal hypersurfaces of S^{n1}-\dagger via Hopf fibra-
tion. R. Takagi [12] gave the list of homogeneous real hypersurfaces of CP^{n} .
Many geometers then study the geometry from the list of Takagi and ob-
tained various interesting geometric characterizations of homogeneous real
hypersurfaces in CP^{n} .

Another important class of real hypersurfaces in CP^{n} which contains
the list of R. Takagi is the class of Hopf hypersurfaces. Such hypersurfaces
are real hypersurfaces whose structure vector J\xi is a principal curvature
vector, where J is the complex structure and \xi is the unit normal vector
field. Examples and geometric characterizations of Hopf hypersurfaces have
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also been obtained by various geometers. It is known that in CP^{n} , M is
a homogeneous real hypersurface if and only if M is a Hopf hypersurface
with constant principal curvatures [8, 12] .

The study of real hypersurfaces in complex hyperbolic space CH^{n} has
followed developments in CP^{n} , often with similar results, but sometimes
with differences (see, for instance, [1, 10]).

Recently, B.Y . Chen and S. Maeda proved in [6] that there do not exist
real hypersurfaces which are the Riemannian products of Riemannian man-
ifolds, both in complex projective space and complex hyperbolic space. By
contrast, using Legendre curves in a hypersphere of the complex plane, we
construct explicitly in this article many real hypersurfaces in complex space
forms which are warped products of Riemannian manifolds. Conversely, we
prove that our examples are the only real hypersurfaces in complex space
forms which are warped products of a complex hypersurface and a curve.

2. Preliminaries

If N is a Riemannian k-manifold isometrically immersed in a Kaehler
manifold \tilde{M} with complex structure J . Then the formulas of Gauss and
Weingarten are given respectively by

\tilde{\nabla}_{X}Y=\nabla_{X}Y+\sigma(X, Y) , (2.1)

\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi , (2.2)

for vector fields X , Y tangent to N and \xi normal to N. where \tilde{\nabla} denotes
the Riemannian connection on \tilde{M} , \sigma the second fundamental form, D the
normal connection, and A the shape operator of N in \tilde{M} . The second funda-
mental form and the shape operator are related by \langle A_{\xi}X, Y\rangle=\langle\sigma(X, Y), \xi\rangle ,
where \langle . \rangle denotes the inner product on M as well as on \tilde{M} . The mean
curvature vector H is given by H=(1/k) trace \sigma . For an orthonormal ba-
sis e_{1} , ., e_{k} of the tangent bundle of N , the scalar curvature \tau is defined
by \tau=\sum_{i<j}K_{ij} , where K_{ij} denotes the sectional curvature of the plane
section spanned by e_{i} and e_{j} .

For a submanifold N of a Kaehler manifold \tilde{M} , the equation of Gauss
is given by

R(X, Y;Z, W)=\tilde{R}(X, Y;Z, W)+\langle\sigma(X, W), \sigma(Y, Z)\rangle

-\langle\sigma(X, Z), \sigma(Y, W)\rangle , (2.3)
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for X , Y., Z , W tangent to M and \xi , \eta normal to M, where R and \tilde{R} denote
the curvature tensors of N and \tilde{M}^{m} , respectively.

For the second fundamental form \sigma , we define its covariant derivative
\overline{\nabla}\sigma with respect to the connection on TM\oplus T^{\perp}M by

(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z) . (2.4)

The equation of Codazzi is given by

(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}h)(Y, Z)-(\overline{\nabla}_{Y}h)(X, Z) , (2.5)

where (\tilde{R}(X, Y)Z)^{\perp} denotes the normal component of \tilde{R}(X, Y)Z .
Let \tilde{M}^{n}(4c) denote a complex m-dimensional Kaehler manifold with

constant holomorphic sectional curvature 4c . Such Kaehler manifolds are
called complex space foms. It is known that the universal covering of a
complete complex space form \tilde{M}^{n}(4c) is the complex projective n-space
CP^{n}(4c) , the complex Euclidean n space C^{n} , or the complex hyperbolic
space CH^{n}(4c) , according to c>0 , c=0, or c<0 . The Riemann curvature
tensor of \tilde{M}^{n}(4c) satisfies

\tilde{R}(X, Y;Z, W)

=c\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle+\langle JX, W\rangle\langle JY, Z\rangle

-\langle JX, Z\rangle\langle JY, W\rangle+2\langle X, JY\rangle\langle JZ, W\rangle\} . (2.6)

Let B and F be Riemannian manifolds endowed with Riemannian met-
rics g_{B} and g_{F} , respectively, and f>0 a differentiate function on B.
Consider the product manifold B\cross F with its projection \pi : B\cross Farrow B

and \eta : B\cross F - F. The warped product M=B\cross_{f}F is the manifold
B\cross F equipped with the Riemannian structure such that

||X||^{2}=||\pi_{*}(X)||^{2}+f^{2}(\pi(x))||\eta_{*}(X)||^{2} (2.7)

for any tangent vector X\in T_{x}M . Thus, we have g=g_{B}+f^{2}g_{F} . The
function f is called the warping function of the warped product.

A submanifold N in a Kaehler manifold \tilde{M} is called a CR-submanifold
if there exists on N a differentiate holomorphic distribution D such that
its orthogonal complement D^{\perp} is a totally real distribution, i.e., JD_{x}^{\perp}\subset

T_{x}^{\perp}N . Real hypersurfaces of a Kaehler manifold are CR-submanifolds. A
CR-submanifold is called a CR-warped product if it is the warped product
N_{T}\cross fN\perp of a holomorphic submanifold N_{T} and a totally real submanifold
N_{\perp} of \tilde{M} , where f is the warping function (cf. [5]).
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We recall the following lemma from [2] for later use.

Lemma 2.1 Let M be a CR-submanifold in a Kaehler manifold \tilde{M} Then
we have

(1) \langle\nabla_{U}Z, X\rangle=\langle JA_{JZ}U, X\rangle ,

(2) A_{JZ}W=A_{JW}Z , and
(3) A_{J\xi}X=-A_{\xi}JX ,

for any vectors U tangent to M, X, Y in D, Z, W in D^{\perp} , and \xi in \nu .

For CR-warped products in Kaehler manifolds we have the following.

Lemma 2.2 For a CR-warped product M=N_{T}\cross_{f}N_{\perp}in any Kaehler

manifold \tilde{M} , we have
(1) \langle\sigma(D, D), JD^{\perp}\rangle=0 ;

(2) \nabla_{X}Z=\nabla_{Z}X= (X ln f) Z ;

(3) \langle\sigma(JX, Z), JW\rangle= (X ln f) \langle Z, W\rangle ;

where X, Y are vector fifields on N_{T} and Z, W are on N_{\perp}

Proof Since \tilde{M} is Kaehlerian, we have

J\nabla_{X}Z+J\sigma(X, Z)=-A_{JZ}X+D_{X}JZ , (2.8)

for any vector fields X , Y on N_{T} and Z in N_{\perp} . Thus, by taking the inner
product of (2.8) with JY_{J}\backslash we find

\langle\nabla_{X}Z, Y\rangle=-\langle A_{JZ}X, JY\rangle=-\langle\sigma(X, JY), JZ\rangle (2.9)

On the other hand, since M=N_{T}\cross_{f}N_{\perp} is a warped product, N_{T} is
a totally geodesic submanifold of M . Thus, we also have \langle\nabla_{X}Z, Y\rangle=0 .
Combining this with (2.9), we obtain statement (1).

Statement (2) can be found in [11].
By applying statement (2), Lemma 2.1 and statement (2), we get

\langle\sigma(JX, Z), JW\rangle=-\langle JA_{JW}Z, X\rangle=-\langle\nabla_{Z}W, X\rangle

=(X\ln f)\langle Z, W\rangle (2.10)

for X on N_{T} and Z, W on N_{\perp} . This proves statement (3). \square

A real hypersurface M of a complex space form \tilde{M} is called ruled if it
is foliated by complex totally geodesic hypersurfaces of \tilde{M} .
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3. Legendre curves and differential equations

A contact manifold is an odd-dimensional manifold M^{2n+1} with a 1-
form \eta such that \eta\wedge(d\eta)^{n}\neq 0 . A curve \gamma=\gamma(t) in a contact manifold
is called a Legendre curve if \eta(\beta’(t))=0 along \beta . Let S^{2n+1}(c) denote the
hypersphere in C^{n+1} with curvature c centered at the origin. Then S^{2n+1}(c)

is a contact manifold endowed with a canonical contact structure which is
the dual 1-form of J\xi , where J is the complex structure and \xi the unit
normal vector on S^{2n+1}(c) .

Legendre curves are known to play an important role in the study of
contact manifolds, e.g. a diffeomorphism of a contact manifold is a contact
transformation if and only if it maps Legendre curves to Legendre curves.

Let C^{n+1} denote the complex Euclidean (n+1)-space endowed with
metric g= \sum_{j=1}^{n+1}dz_{j}d\overline{z}_{j} , z_{j}=x_{j}+iy_{j} . We put

S^{2n+1}(c)=\{(z_{1}, \ldots, z_{n+1})\in C^{n+1} : \langle z, z\rangle=c^{-1}>0\} ,

where \langle , \rangle denotes the inner product induced from the metric.
The following lemma from [3] provide a simple relationship between

Legendre curves and a second order differential equation.

Lemma 3.1 Let c be a positive number and z=(z_{1}, z_{2}) : I - S^{3}(c)\subset

C^{2} be a unit speed curve where I is either an open interval or a circle. If
z : Iarrow C^{2} satisfifies

z’(t)-i\lambda\gamma(t)z’(t)+cz(t)=0 (3.1)

for some nonzero real-valued function \lambda on I , it defifines a Legendre curve
in S^{3}(c) .

Conversely, if z defifines a Legendre curve in S^{3}(c) , it satisfifies differen-
lial equation (3.1) for some real-valued function \lambda .

Remark 3.1 For any nonzero function \lambda(t) there is a (unit speed) Legen-
dre curve z=z(t) in S^{3}(c) satisfying equation (3.1). Such Legendre curve is
unique if one imposes the initial conditions: z(0)=z_{0}\in S^{3}(c) and z’(0)=u
for some unit vector tangent to S^{3}(c) (see [4, p.14]).

4. Warped product real hypersurfaces in C^{n+1}

The following theorem classifies completely real hypersurfaces of com-
plex Euclidean space which are warped products of a complex hypersurface
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and a real curve.

Theorem 4.1 Let a be a positive number and \gamma(t)=(\Gamma_{1}(t), \Gamma_{2}(t)) be a
unit speed Legendre curve \gamma : Iarrow S^{3}(a^{2})\subset C^{2} defifined on an open interval
I. Then

x(z_{1}, . , z_{n}, t)=(a\Gamma_{1}(t)z_{1}, a\Gamma_{2}(t)z_{1}, z_{2} , . , z_{n}), z_{1}\neq 0 (4.1)

defifines a real hypersurface which is the warped product C_{*}^{n}\cross_{a|z_{1}|} I of a
complex n-plane and I , where C_{*}^{n}= \{(z_{1}, \ldots, z_{n}) : z_{1}\neq 0\} .

Conversely, up to rigid motions of C^{n+1} , every real hypersurface in
C^{n+1} which is the warped product N\cross_{f} I of a complex hypersurface N and
an open interval I is either obtained in the way described above or given by
the product submanifold C^{n}\cross C\subset C^{n}\cross C^{1} of C^{n} and a real curve C in
C^{1} .

Proof Let N\cross_{f} I be a real hypersurface in C^{n+1} which is the warped
product N\cross_{f} I of a complex hypersurface N of C^{n+1} and an open interval
I . Without loss of generality, we may assume that I contains 0.

We obtain from Lemma 2.2 that

\sigma(D, D)=0 . (4.2)

Since N is totally geodesic in N\cross_{f}I , (4.2) implies that N is immersed as a
totally geodesic complex submanifold in C^{n+1} . Hence, N is holomorphically
isometric to a complex Euclidean n-space C^{n} .

Let z= (z_{1}, \ldots, z_{n}) be a natural complex coordinate system on C^{n} .
We put z_{j}=x_{j}+iy_{j} , j=1 , . , n . The warped product metric on N\cross_{f}I

is given by

g= \sum_{k=1}^{h}(d_{X_{k}+dy_{k})+f^{2}dt^{2}-}^{22} (4.3)

bom (4.3) and a straightforward computation we know that the Rie-
mannian connection on N\cross_{f} I satisfies

\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial x_{k}}=\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial y_{k}}=\nabla_{\frac{\partial}{\partial y_{j}}}\frac{\partial}{\partial y_{k}}=0 , j , k=1 , . , n , (4.4)

\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial t}=\frac{f_{x_{j}}}{f}\frac{\partial}{\partial t} , j=1 , ., n , (4.5)
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\nabla_{\frac{\partial}{\partial y_{j}}}\frac{\partial}{\partial t}=\frac{f_{y_{j}}}{f}\frac{\partial}{\partial t} , j=1 , \ldots , n , (4.6)

\nabla_{\frac{\partial}{\partial t}}\frac{\partial}{\partial t}=-f\sum_{k=1}^{n}(f_{x_{k}}\frac{\partial}{\partial x_{k}}+f_{yk}\frac{\partial}{\partial y_{k}}) , (4.7)

where f_{x_{j}}=\partial f/\partial x_{j} , f_{y_{j}}=\partial f/\partial y_{j} .
Using (4.4)-(4.7) we know that the Riemann curvature tensor of satisfies

R ( \frac{\partial}{\partial x_{j}} , \frac{\partial}{\partial t} ) \frac{\partial}{\partial x_{k}}=(\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}+\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial x_{k}})\frac{\partial}{\partial t}

R ( \frac{\partial}{\partial x_{j}} , \frac{\partial}{\partial t} ) \frac{\partial}{\partial y_{k}}=(\frac{\partial^{2}\phi}{\partial x_{j}\partial y_{k}}+\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial y_{k}})\frac{\partial}{\partial t} (4.8)

R ( \frac{\partial}{\partial y_{j}} , \frac{\partial}{\partial t} ) \frac{\partial}{\partial y_{k}}=(\frac{\partial^{2}\phi}{\partial y_{j}\partial y_{k}}+\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial y_{k}})\frac{\partial}{\partial t} ,

for j , k=1 , ., n , where \phi=\ln f .
From (3) of Lemma 2.2 we have

\sigma ( \frac{\partial}{\partial x_{j}} , \frac{\partial}{\partial t})=-\frac{\partial\phi}{\partial y_{j}}J(\frac{\partial}{\partial t}) ,

\sigma ( \frac{\partial}{\partial y_{j}} , \frac{\partial}{\partial t})=\frac{\partial\phi}{\partial x_{j}}J(\frac{\partial}{\partial t}) , j=1 , . ., n . (4.9)

We put

\sigma ( \frac{\partial}{\partial t} , \frac{\partial}{\partial t})=\lambda J(\frac{\partial}{\partial t}) , (4.10)

for some function \lambda=\lambda(z_{1}, . , z_{n}, t) .
By applying the equation of Gauss, (4.8), and (4.9), we obtain

\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}=\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial y_{k}}-\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial x_{k}} ,

\frac{\partial^{2}\phi}{\partial x_{j}\partial y_{k}}=-\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial x_{k}}-\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial y_{k}} , j , k=1 , . . , n , (4.11)

\frac{\partial^{2}\phi}{\partial y_{j}\partial y_{k}}=\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial x_{k}}-\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial y_{k}}

Clearly, every constant function \phi is a solution of the PDE system
(4.11). However, if \phi is constant, the warping function f is constant. In
this case, the hypersurface is a CR-product in the sense of [2]. Hence, by
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applying Theorem 4.6 of [2], we know that the real hypersurface is locally
the product submanifold obtained by the product of C^{n} and a curve in C^{1} .

Now, we search for non-constant solutions of the PDE system.

Lemma 4.2 The non-constant solutions \phi=\phi(x_{1}, y_{1}, ., x_{n}, y_{n}) of the
system of partial differential equations:

\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}=\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial y_{k}}-\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial x_{k}} , (4.12)

\frac{\partial^{2}\phi}{\partial x_{j}\partial y_{k}}=-\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial x_{k}}-\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial y_{k}} , j , k=1 , ., n , (4.13)

\frac{\partial^{2}\phi}{\partial y_{j}\partial y_{k}}=\frac{\partial\phi}{\partial x_{j}}\frac{\partial\phi}{\partial x_{k}}-\frac{\partial\phi}{\partial y_{j}}\frac{\partial\phi}{\partial y_{k}} (4.14)

are the functions given by

\phi=\frac{1}{2} ln \{ \langle\alpha, z\rangle^{2}+\langle i\alpha, z\rangle^{2}\} , (4.15)

where z= (x_{1}+iy_{1}, ., x_{n}+iyn) , \langle , \rangle is the standard Euclidean inner
product on C^{n} , and \alpha is a constant nonzero vector in C^{n} .

Proof. From (4. 13) we get

\frac{\partial}{\partial x_{1}}(\ln\frac{\partial\phi}{\partial y_{1}})=-2\frac{\partial\phi}{\partial x_{1}} . (4.16)

Solving (4. 16) yields

\frac{\partial\phi}{\partial y_{1}}=e^{-2\emptyset_{\psi(y_{1}, x_{2}, y_{2}} },.,^{x_{n}} , (4.17)

for some function \psi=\psi(y_{1}, x_{2}, y_{2}, . ., x_{n}, y_{n}) . Therefore

\phi=\frac{1}{2} ln (\eta(x_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n})+\mu(y_{1}, x_{2}, y_{2}, . ., x_{n}, y_{n})) , (4.18)

for some function \eta=\eta(x_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}) , where \mu=2\int^{y1}\psi dy_{1} . From
(4. 18) we find

\phi_{x_{1}}=\frac{\eta_{x_{1}}}{2(\eta+\mu)} , \phi_{y1}=\frac{\mu_{y1}}{2(\eta+\mu)} , (4.19)

\phi_{x_{1}x_{1}}=\frac{\eta_{x_{1}x_{1}}(\eta+\mu)-\eta_{x_{1}}^{2}}{2(\eta+\mu)^{2}} . (4.20)
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By (4. 12), (4. 19) and (4.20) we obtain

2 (\eta+\mu)\eta_{x_{1}x_{1}}=\eta_{x_{1}}^{2}+\mu_{y1}^{2} (4.21)

Similarly, from (4.14) with j=k=1 and (4.18), we also have

2 (\eta+\mu)\mu_{y_{1}y1}=\eta_{x_{1}}^{2}+\mu_{y1}^{2} (4.22)

By combining (4.21) and (4.22) we find \eta_{x_{1}x_{1}}=\mu_{y_{1}y1} . Since \eta and \mu are
independent of y_{1} and x_{1} respectively, we find

\eta_{x_{1}x_{1}}=\mu_{y_{1}y1}=2F(x_{2}, y_{2}, \ldots, x_{n}, y_{n}) , (4.23)

for some positive function F=F(x_{2}, y_{2}, \ldots, x_{n}, y_{n}) . Thus, after solving
(4.23), we obtain

\eta=F(x_{2}, \ldots, y_{n})x_{1}^{2}+G(x_{2}, . ., y_{n})x_{1}+H(x_{2}, \ldots, y_{n}) ,
\mu=F(x_{2}, \ldots, y_{n})y_{1}^{2}+K(x_{2}, . ., y_{n})y_{1}+L(x_{2}, . . , y_{n}) , (4.24)

for some functions G , H , K, L of 2n-2 variables. Substituting (4.24) into
(4.21) gives 4F(H+L)=G^{2}+K^{2} . Hence, by (4.24), we get

\eta+\mu=\frac{1}{4F}\{(2Fx_{1}+G)^{2}+(2Fy_{1}+K)^{2}\} (4.25)

Combining (4.18) and (4.25) yields

\phi=\frac{1}{2} ln \{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}\} , (4.26)

where a(x_{2}, . . , y_{n})=\sqrt{F}>0 , \beta(x_{2}, \ldots , y_{n})=\frac{G}{2\sqrt{F}} , and \delta(x_{2}, \ldots, y_{n})=

\frac{K}{2\sqrt{F}}

From (4.26) we find

\phi_{x_{1}}=\frac{a(ax_{1}+\beta)}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} ,

\phi_{y1}=\frac{a(ay_{1}+\delta)}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} ,

(4.27)
\phi_{x_{j}}=\frac{(ax_{1}+\beta)(a_{x_{j}}x_{1}+\beta_{x_{j}})+(ay_{1}+\delta)(a_{x_{j}}y_{1}+\delta_{x_{j}})}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} ,

\phi_{y_{j}}=\frac{(ax_{1}+\beta)(a_{y_{j}}x_{1}+\beta_{y_{j}})+(ay_{1}+\delta)(a_{y_{j}}y_{1}+\delta_{y_{j}})}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} ,
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for j=2 , . ., n . Hence, by applying (4.12) for \phi_{x_{1}x_{j}} , we obtain

(a_{x_{j}}(2ax_{1}+\beta)+a\beta_{x_{j}})((ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2})

-a(ax_{1}+\beta)[(ax_{1}+\beta)(a_{x_{j}}x_{1}+\beta_{x_{j}})+(ay_{1}+\delta)(a_{x_{j}}y_{1}+\delta_{x_{j}})]

=a(ay_{1}+\delta)[(ax_{1}+\beta)(a_{y_{j}}x_{1}+\beta_{y_{j}})+(ay_{1}+\delta)(a_{y_{j}}y_{1}+\delta_{y_{j}})]

(4.28)

By comparing the coefficients of x_{1}^{3} and y_{1}^{3} in (4.17) we find \partial a/\partial x_{j}=

\partial a/\partial y_{j}=0 for j=2, . , n . Hence a is constant. Thus, (4.27) and (4.28)
imply

\phi_{x_{j}}=\frac{(ax_{1}+\beta)\beta_{x_{j}}+(ay_{1}+\delta)\delta_{x_{j}}}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} ,

\phi_{y_{j}}=\frac{(ax_{1}+\beta)\beta_{y_{j}}+(ay_{1}+\delta)\delta_{y_{j}}}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}} , (4.29)

(ay_{1}+\delta)\beta_{x_{j}}-(ax_{1}+\beta)\delta_{x_{j}}=(ax_{1}+\beta)\beta_{y_{j}}+(ay_{1}+\delta)\delta_{y_{j}} . (4.30)

Since a is constant, (4.29) implies

\phi_{x_{j}yk}=\frac{\beta_{x_{j}}\beta_{yk}+\delta_{x_{j}}\delta_{yk}+(ax_{1}+\beta)\beta_{x_{j}yk}+(ay_{1}+\delta)\delta_{x_{j}yk}}{(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}}

-2 \frac{[(ax_{1}+\beta)\beta_{x_{j}}+(ay_{1}+\delta)\delta_{x_{j}}][(ax_{1}+\beta)\beta_{yk}+(ay_{1}+\delta)\delta_{yk}]}{[(ax_{1}+\beta)^{2}+(ay_{1}+\delta)^{2}]^{2}} ,

(4.31)

for 2\leq j , k\leq n . Hence, by applying (4.13) with j=k, (4.29) and (4.31),
we get

\beta_{x_{j}}\beta_{y_{j}}+\delta_{x_{j}}\delta_{y_{j}}+(ax_{1}+\beta)\beta_{x_{j}y_{j}}+(ay_{1}+\delta)\delta_{x_{j}y_{j}}=0 . (4.32)

Thus, we obtain \beta_{x_{j}y_{j}}=\delta_{x_{j}y_{j}}=0 for j=2, \ldots , n , by comparing the
coefficients of x_{1}^{3} and y_{1}^{3} in (4.32), respectively.

Similarly, by using (4.29) and by comparing the coefficients of x_{1}^{3} and y_{1}^{3}

in other equations from (4.12)-(4.14), we may also obtain \beta_{x_{j}x_{j}}=\beta_{x_{k}y_{j}}=

\beta_{x_{j}yk}=\delta_{x_{j}x_{j}}=\delta_{x_{k}y_{j}}=\delta_{x_{j}yk}=0 for 2\leq j , k\leq n . Therefore, there exist
constants a3, ., a_{2n} , b_{3} , \ldots , b_{2n} such that

\beta=a_{3}x_{2}+a_{4}y_{2}+ +a_{2n-1}x_{n}+a_{2n}y_{n} ,
\delta=b_{3}x_{2}+b_{4}y_{2}+\cdot +b_{2n-1}x_{n}+b_{2n}y_{n} . (4.33)
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Combining (4. 15) and (4.22) yields

\phi=\frac{1}{2}\ln\{(ax_{1}+a_{3}x_{2}+a_{4}y_{2}+) +a_{2n}y_{n})^{2}

+ (ay_{1}+b_{3}x_{2}+ +b_{2n}y_{n})^{2}\} . (4.34)

Finally, from (4.12) with j=1 and (4.34), we obtain a_{2k-1}=b_{2k} and
a_{2k}=-b_{2k-1} . Thus, we obtain from (4.34) that

\phi=\frac{1}{2}\ln\{(ax_{1}+a_{3}x_{2}+a_{4}y_{2}+\cdot\cdot+a_{2n-1}x_{n}+a_{2n}y_{n})^{2}

+ (ay_{1}-a_{4}x_{2}+a_{3}y_{2}- -a_{2n}x_{n}+a_{2n-1}y_{n})^{2}\} . (4.35)

If we put \alpha= (a, a_{3}+ia_{4}, \ldots, a_{2n-1}+ia_{2n}) and z=(x_{1}+iy_{1} , . ., x_{n}+

iy_{n}) , then (4.35) becomes (4.15) with a_{1}=a and a_{2}=0 . After applying a
suitable change of variable on z_{1} , we obtain Lemma 4.2. \square

Lemma 4.2 implies that \phi=\ln f is given by \phi=\frac{1}{2}\ln\{\langle\alpha, z\rangle^{2}+\langle i\alpha, z\rangle^{2}\}

for some vector \alpha\in C^{n+1} . By choosing a suitable Euclidean complex
coordinates on C^{n+1} , we may obtain \alpha= (b_{1}+ib_{2},0, \ldots , 0) . With respect
to this vector \alpha , we have f=\{(b_{1}x_{1}+b_{2}y_{1})^{2}+(-b_{2}x_{1}+b_{1}y_{1})^{2}\}^{1/2} , which
is nothing but

f=a\sqrt{x_{1}^{2}+y_{1}^{2}}, a=\sqrt{b_{1}^{2}+b_{2}^{2}} . (4.36)

From the formula of Gauss, (4.2), (4.4)-(4.7), (4.9) and (4.36), we know
that the immersion x of N\cross_{f} I in C^{m} satisfies

x_{x_{j}x_{k}}=x_{x_{j}yk}=x_{y_{j}yk}=0 , j , k=1 , \ldots , n , (4.37)

x_{x_{1}t}=\frac{x_{1}-iy_{1}}{x_{1}^{2}+y_{1}^{2}}x_{t} , x_{y_{1}t}=\frac{y_{1}+ix_{1}}{x_{1}^{2}+y_{1}^{2}}x_{t} (4.38)

x_{x_{j}t}=x_{y_{j}t}=0 , j=2 , \ldots , n , (4.39)

x_{tt}=-a^{2}(x_{1}x_{x_{1}}+y_{1}x_{y1})+i\lambda x_{t} . (4.40)

It is straightforward to verify from (4.37)-(4.40) that x_{x_{j}tt}=x_{ttx_{j}} ,
x_{y_{j}tt}=x_{tty_{j}} hold for j=1 , . , n if and only if \partial\lambda/\partial x_{j}=\partial\lambda/\partial y_{j}=0 and
x_{y_{j}}=ix_{x_{j}} for j=1 , . , n . Hence \lambda=\lambda(t) is a function of t and, moreover,
(4.40) reduces to

x_{tt}=-a^{2}z_{1}x_{x_{1}}+i\lambda(t)x_{t} , (4.41)
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Solving (4.37) gives

x=\sum_{k=1}^{n}\hat{A}^{k}(t)x_{k}+\sum_{k=1}^{n}\hat{B}^{k}(t)y_{k}+C(t) (4.42)

for some functions \hat{A}^{1} , \ldots , \hat{A}^{n},\hat{B}^{1} , . ., \hat{B}^{n} , C of t . Substituting (4.42) into
(4.38) gives

(x_{1}^{2}+y_{1}^{2}) \hat{A}_{t}^{1}=(x_{1}-iy_{1})\{\sum_{k=1}^{n}\hat{A}_{t}^{k}x_{k}+\sum_{k=1}^{n}\hat{B}_{t}^{k}y_{k}+C_{t}\} , (4.43)

for j=1 , ., n , which implies

\hat{A}_{t}^{k}=\hat{B}_{t}^{k}=C_{t}=0 , k=2 , ., n , (4.44)

\hat{B}_{t}^{1}=i\hat{A}_{t}^{1} . (4.45)

Condition (4.44) implies that \hat{A}^{2} , ., \hat{A}^{n},\hat{B}^{2} , \ldots , \hat{B}^{n} , C are constant
vectors. We may choose C=0 by applying a suitable translation if neces-
sary.

Solving (4.45) implies that there is a vector \delta_{1} so that

\hat{B}^{1}=i\hat{A}^{1}+i\delta_{1} . (4.46)

We put

\hat{A}^{1}=a\gamma+\delta_{1},\hat{A}^{k}=\beta_{k},\hat{B}^{k}=i\delta_{k} , k=2 , . , n . (4.47)

(4.42), (4,46) and (4.47) imply

x(z_{1}, \ldots, z_{n}, t)=a\gamma(t)z_{1}+\sum_{k=1}^{n}(\beta_{k}x_{k}+i\delta_{k}y_{k}) , (4.48)

where \beta_{1}=\delta_{1} .
From x_{y_{j}}=ix_{x_{j}} and (4.48) we find \delta_{k}=\beta_{k} , k=1 , ., n . Thus, (4.48)

gives

x(z_{1} , .,^{z_{n}}=a \gamma(t)z_{1}+\sum_{k=1}^{n}\beta_{k}z_{k} (4.49)

Substituting (4.49) into (4.41) yields \beta_{1}=\delta_{1}=0 and

\gamma’(t)-i\lambda(t)\gamma’(t)+a^{2}\gamma(t)=0 . (4.50)
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If we choose the initial conditions:

x_{x_{k}} ( 1, 0, . ,
0)=(0, ., 0, ^{k+1- th}\hat{1}, 0, ., 0)

, k=1 , . ., n ,

x_{t}(1, 0, \ldots, O)=(a, 0, ., 0) , (4.51)

we obtain from (4.49) and (4.51) that

\gamma(0)=(0, a^{-1},0, ., 0) , \gamma’(0)=(1,0, \ldots, 0) ,

\beta_{2}= (0, 0, 1, 0, \ldots, 0) , \ldots , \beta_{n}=(0 , ., 0, 1 ) . (4.52)

Combining (4.49) and (4.53) yields

x(z_{1}, ., z_{n}, t)=a\gamma(t)z_{1}+(0,0, z_{2}, . . , z_{n}) . (4.53)

Since \gamma(t) is a solution of the second order homogeneous linear equa-
tion (4.50), \gamma(t) can be expressed as \gamma(t)=c_{1}A_{1}(t)+c_{2}A_{2}(t) , where c_{1} ,
c_{2} are constant vectors in C^{n+1} and A_{1}(t) , A_{2}(t) are two independent s0-

lutions of (4.50). Thus, the image of \gamma(t) must lie in the complex plane,
say C^{2} , spanned by c_{1} , c_{2} . Clearly, C^{2} is the complex plane defined by
\{(w_{1}, w_{2},0, . ., 0) : w_{1}, w_{2}\in C\} . Hence, if we denote the curve \gamma by \gamma(t)=

(\Gamma_{1}(t), \Gamma_{2}(t)) , then the hypersurface is given by

x(z_{1}, \ldots, z_{n}, t)=(a\Gamma(t)z_{1}, a\Gamma(t)z_{1}, z_{2} , ., z_{n} ). (4.54)

From (4.53) we get \langle x_{t}, x_{t}\rangle=f^{2}|\gamma’(t)|^{2} . Comparing this with the
warped metric (4.3) of the hypersurface yields |\gamma’(t)|=1 . Thus, \gamma(t) is
of unit speed, so we have \langle\gamma’(t), \gamma’(t)\rangle=0 . Now, by taking the inner prod-
uct of \gamma’(t) with (4.50), we obtain \langle\gamma’(t), \gamma(t)\rangle=0 . Thus, \gamma(t) has constant
length. Therefore, by applying the first equation in (4.52), we get |\gamma(t)|=

1/a . Thus \gamma defines a unit speed curve in S^{3}(a^{2}) :

\gamma : Iarrow S^{3}(a^{2})\subset C^{2} . (4.55)

Case (a): \lambda=0 . In this case, the solution of the differential equation
(4.50) is given by \gamma(t)=c_{1}\cos(at)+c_{2}\sin(at) . So, if we choose the initial
conditions: \gamma(0)=(0, a^{-1},0, \ldots , 0) , \gamma’(0)=(1,0\ldots, 0) , we get

c_{1}= (0, a^{-1},0, ., 0) , c_{2}=(a^{-1},0, ., 0) .

Hence, we find

\gamma(t)=(a^{-1}\sin(at), a^{-1}\cos(at), 0 , ., 0), (4.56)
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which is a unit speed Legendre curve in S^{3}(a^{2}) .

Case (b): \lambda(t)\neq 0 . In this case, since \gamma=\gamma(t) satisfies the differential
equation (4.50) with \lambda(t)\neq 0 . Thus, Lemma 3.1 implies that \gamma=\gamma(t) is a
unit speed Legendre curve in S^{3}(a^{2}) .

Conversely, since \gamma(t)=(\Gamma_{1}(t), \Gamma_{2}(t)) is a unit speed Legendre curve in
S^{3}(a^{2}) , it is easy to verify that the real hypersurface defined by (4.1) is the
warped product C_{*}^{n}\cross_{a|z_{1}|} I of C_{*}^{n} and an open interval I. \square

Remark 4.1 The real hypersurface of C^{n+1} defined by (4.1) is a non-
complete ruled hypersurface. Moreover, a direct computation shows that
the squared mean curvature and scalar curvature of the real hypersurface
are given respectively by

|H|^{2}= \frac{\lambda^{2}}{(2n+1)^{2}a^{2}|z_{1}|^{2}} , \tau=-\frac{1}{|z_{1}|^{2}} (4.57)

where \lambda is the curvature of the unit speed Legendre curve \gamma(t)=(\Gamma_{1}(t) ,
\Gamma_{2}(t)) in S^{3}(a^{2}) . It follows from (4.57) that the hypersurface has non-
constant scalar curvature. Moreover, it has non-constant mean curvature
unless the Legendre curve \gamma is a geodesic in S^{3}(a^{2}) .

Example 4.1 If \lambda is constant, then the unique Legendre curve obtained
from the solution of the differential equation (4.50), which also satisfies the
initial conditions: \gamma(0)=(a^{-1},0) , \gamma’(0)=(0,1) , is given by

\gamma(t)=(\frac{e^{\frac{i}{2}\lambda t}}{a} ( cos ( \frac{bt}{2})-\frac{i\lambda}{b} sin ( \frac{bt}{2}) ), \frac{2e^{\frac{i}{2}\lambda t}}{b} sin ( \frac{bt}{2}))

b=\sqrt{4a^{2}+\lambda^{2}} . (4.58)

From (4.54) and (4.58) we see that the corresponding warped product hy-
persurface is given by

x=(\frac{e^{\frac{l}{2}\lambda t}}{a} ( cos ( \frac{bt}{2})-\frac{i\lambda}{b} sin ( \frac{bt}{2}) ) z_{1} , \frac{2e^{\frac{i}{2}\lambda t}}{b} sin ( \frac{bt}{2})z_{1} , z_{2} , . ., z_{n}).
(4.59)
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5. Warped product real hypersurfaces in CP^{n+1}

Let S^{2n+3} denote the unit hypersphere in C^{n+2} centered at the origin
and put U(1)=\{\lambda\in C : \lambda\overline{\lambda}=1\} . Then there is a U(1)-action on S^{2n+3}

defined by z\mapsto\lambda z . At z\in S^{2n+3} the vector V=iz is tangent to the flow of
the action. The quotient space S^{2n+3}/\sim , under the identification induced
from the action, is a complex projective space CP^{n+1}(4) which endows
with the canonical Fubini-Study metric of constant holomorphic sectional
curvature 4. The almost complex structure J on CP^{n+1}(4) is induced from
the complex structure J on C^{n+2} via the Hopf fibration: \pi : S^{2n+3} arrow

CP^{n+1}(4) . It is well-known that the Hopf fibration \pi is a Riemannian
submersion such that V=iz spans the vertical subspaces.

Let \phi : Marrow CP^{n+1}(4) be an isometric immersion. Then \hat{M}=\pi^{-1}(M)

is a principal circle bundle over M with totally geodesic fibers. The lift \hat{\phi} :
\hat{M}

– S^{2n+3} of \phi is an isometric immersion so that the diagram:

\hat{M}
\underline{\hat{\phi}}

S^{2n+3}

\pi\downarrow \downarrow\pi (5.1)

M arrow\phi CP^{n+1}(4)

commutes.
Conversely, if \psi : \hat{M}arrow S^{2n+3} is an isometric immersion which is in-

variant under the U(1)-action, then there is a unique isometric immersion
\psi_{\pi} : \pi(\hat{M}) - CP^{n+1}(4) such that the associated diagram (5.1) commutes.
We simply call the immersion \psi_{\pi} : \pi(\hat{M}) arrow CP^{n+1}(4) the projection of
\psi : \hat{M}arrow S^{2n+3} .

For a given vector X\in T_{z}(CP^{n+1}) and a point u\in S^{2n+2} with \pi(u)=

z , we denote by X_{u}^{*} the horizontal lift of X at u via \pi . There exists a
canonical orthogonal decomposition:

T_{u}S^{2n+3}=(T_{\pi(u)}CP^{n+1})_{u}^{*}\oplus Span\{V_{u}\} . (5.2)

Since \pi is a Riemannian submersion, X and X_{u}^{*} have the same length.
We put

S_{*}^{2n+1}=\{(z0, \ldots, z_{n}) : \sum_{k=0}^{n}z_{k}\overline{z}_{k}=1 , z_{0}\neq 0\} , CP_{0}^{n}=\pi(S_{*}^{2n+1}) .

The following theorem classifies completely real hypersurfaces of com-
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plex projective space which are warped products of a complex hypersurface
and a real curve.

Theorem 5.1 Suppose that a is a positive number and \gamma(t)=(\Gamma_{1}(t) ,
\Gamma_{2}(t)) is a unit speed Legendre curve \gamma : Iarrow S^{3}(a^{2})\subset C^{2} defifined on an
open interval I. Let x:S_{*}^{2n+1}.\cross Iarrow C^{n+2} be the map defifined by

x(z_{0} , .,^{z_{n}}(a\Gamma_{1}(t)z_{0}, a\Gamma_{2}(t)z_{0}, z_{1} , ., z_{n}), \sum_{k=0}^{n}z_{k}\overline{z}_{k}=1 .

(5.3)

Then
(i) x induces an isometric immersion \psi : S_{*}^{2n+1}\cross_{a|z_{0}|}Iarrow S^{2n+3} .
(ii) The image \psi(S_{*}^{2n+1}\cross_{a|z_{0}|}I) in S^{2n+3} is invariant under the action of

U(1) .
(iii) the projection \psi_{\pi} : \pi(S_{*}^{2n+1}\cross_{a|z_{0}|}I) - CP^{n+1}(4) of \psi via \pi is a

warped product hypersurface CP_{0}^{n}\cross_{a|z_{0}|} I in CP^{n+1}(4) .
Conversely, if a real hypersurface in CP^{n+1}(4) is a warped product

N\cross_{f} I of a complex hypersurface N of CP^{n+1}(4) and an open interval I ,
then, up to rigid motions, it is locally obtained in the way described above.

Proof. Statement (i) is easy to verify, since \gamma(t)=(\Gamma_{1}(t), \Gamma_{2}(t)) is a unit
speed Legendre curve in S^{3}(a^{2}) .

Statement (ii) follows from (5.3) and the definition of the U(1) action
Since \gamma=\gamma(t) is a Legendre curve in S^{3}(a^{2}) , (5.3) implies that, for

each z= (z_{0}, \ldots, z_{n}) with \sum z_{k}\overline{z}_{k}=1 , the curve \Gamma_{z} defined by

\Gamma_{z}(t)=(a\Gamma_{1}(t)z_{0}, a\Gamma_{2}(t)z_{0}, z_{1} , ., z_{n} )

is a horizontal curve in S^{2n+3} . Thus \pi : \Gamma_{z} - \pi(\Gamma_{z}) is isometric. Clearly,
the restriction of \pi on S_{*}^{2n+1} is also a Riemannian submersion. Hence, the
projection of \psi_{\pi} : \psi(S_{*}^{2n+1}\cross_{a|z_{0}|}I)arrow CP^{n+1}(4) of \psi : S_{*}^{2n+1}\cross_{a|z_{0}|}I -

S^{2n+3} is a warped product hypersurface CP^{n+1}(4)\cross_{a|z_{0}|} I in CP^{n+1}(4) .
Conversely, assume that M=N\cross_{f} I is a warped product hypersurface

of CP^{n+1}(4) , where N is a complex hypersurface of CP^{n+1}(4) and I is an
open interval. Then, according to [6], the warping function f cannot be a
constant function.

Let D_{1} and D_{2} denote the distributions on M spanned by vectors tan-
gent to the N and I , respectively. Trivially, D_{1} and D_{2} are integrable



Real hypersurfaces in complex space foms 379

distributions. From (1) of Lemma 2.2 we know that the second fundamen-
tal form \sigma of M in CP^{n+1}(4) satisfies \sigma(D_{1}, D_{1})=0 . Since N is totally
geodesic in N\cross_{f}I , N is thus totally geodesic in CP^{n+1}(4) . Hence, N is
holomorphically isometric to an open part of a CP^{n+1}(4) .

Let \hat{\nabla} and \nabla denote the Riemannian connections of \hat{M} and M respec-
tively. And let \hat{\sigma} denote the second fundamental form of \hat{M} in S^{2n+3} . Then
we have

\hat{\nabla}_{X}*Y^{*}=(\nabla_{X}Y)^{*}-\langle PX, Y\rangle V, (5.4)

\hat{\nabla}_{V}X^{*}=\hat{\nabla}_{X^{*}}V=(PX)^{*} , (5.5)
\hat{\nabla}_{V}V=0 , (5.6)

\hat{\sigma}(X^{*}, Y^{*})=(\sigma(X, Y))^{*} , (5.7)

\hat{\sigma}(X^{*}, V)=(FX)^{*} , (5.8)

\hat{\sigma}(V, V)=0 , (5.9)

for vector fields X , Y tangent to M, where PX and FX denote the tan-
gential and the normal components of JX , respectively.

Let \hat{D}_{1} denote the distribution on \hat{M}=\pi^{-1}(M) spanned by D_{1}^{*} and
V=iz, where D_{1}^{*}=\{X^{*} : X\in D_{1}\} . Since D_{1} is integrable, (5.4)-(5.6)
implies that \hat{D}_{1} is also integrable. From (5.7)-(5.9) we know that each leaf
of \hat{D}_{1} is totally geodesic in S^{2n+3} . Thus, each leaf of \hat{D} is isometric to an
open portion of the unit sphere S^{2n+1} .

Clearly, D_{2}^{*}=\{Z^{*}\in T\hat{M} : Z\in D_{2}\} is the orthogonal complementary
distribution of \hat{D}_{1} in T\hat{M} . Since D_{2}^{*} is of rank one, D_{2}^{*} is also integrable and
PD_{2}=\{0\} . Thus, it follows from (5.4) that

\hat{\nabla}_{Z^{*}}W^{*}=(\nabla_{Z}W)^{*} , Z, W\in D_{2} . (5.10)

On the other hand, for any vector field X in D_{1} , and Z, W in D_{2} , we
have [11]

\langle\nabla_{Z}W, X\rangle=-(X\ln f)\langle Z, W\rangle . (5.11)

Applying (5.10), (5.11), (\nabla_{Z}W)^{*}\perp V , and the fact that the Hopf fibration
is a Riemannian submersion, we obtain

\langle \hat{\nabla}_{Z^{*}}W^{*}, X^{*}\rangle=- (X ln f) \langle Z^{*}, W^{*}\rangle , \langle \hat{\nabla}_{Z^{*}}W^{*}., V\rangle=0
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which implies that each integral curve of \hat{D}_{2} is a circle in \hat{M} , i.e., a order
two Prenet curve with constant curvature in \hat{M} . Thus, a result of [7] implies
that locally \hat{M} is a warped product S^{2n+1}\cross_{\hat{f}}I_{J}. with warping function \hat{f} .

Let \dot{M} denote the punctured cone over \hat{M} with 0 as its vertex defined
by

\dot{M}=\{tw\in C^{n+2} : w\in\hat{M}=S^{2n\dagger 1}\cross_{\hat{f}}I\subset S^{2n+3}\subset C^{n+2}, t>0\} .

Since the tangent vector field \partial/\partial t on \dot{M} is parallel to the position vector
field of \dot{M} in C^{n+2} and V is tangent to the first component of S^{2n+1}\cross_{\hat{f}}I ,

we see that locally \dot{M} is the warped product C^{n+1}\cross_{t\hat{f}}I , where C^{n+1} is a
complex hyperplane of C^{n+2} . Since the warping function is non-constant,
Theorem 4.1 implies that, up to rigid motions, \dot{M} is given by

x(z_{1}, . , z_{n}, t)=(a\Gamma_{1}(t)z_{1}, a\Gamma_{2}(t)z_{1}, z_{2} , ., z_{n}), z_{1}\neq 0 , (5.12)

for some positive number a and a unit speed Legendre curve \gamma(t)=

(\Gamma_{1}(t), \Gamma_{2}(t)) in S^{3}(a^{2}) . Consequently, up to rigid motions, the warped
product hypersurface in CP^{n+1}(4) is the projection of \psi given by (5.3) via
the Hopf fibration. \square

Remark 5.1 The real hypersurface of CP^{n+1}(4) defined by (5.3) is a non-
complele ruled hypersurface. Moreover, a direct computation shows that
the squared mean curvature and scalar curvature of the real hypersurface
are given respectively by |H|^{2}=\lambda^{2}/(2n+1)^{2}a^{2}|z_{0}|^{2} , \tau=-1/|z_{0}|^{2} where
\lambda is the curvature of the unit speed Legendre curve \gamma(t)=(\Gamma_{1}(t), \Gamma_{2}(t))

in S^{3}(a^{2}) . Therefore, the hypersurface has non-constant mean curvature
unless the Legendre curve \gamma is a geodesic of S^{3}(a^{2}) ; moreover, the real
hypersurface defined by (5.3) has non-constant scalar curvature.

6. Warped product real hypersurfaces in CH^{n+1}

In the complex pseud0-Euclidean space C_{1}^{n+2} endowed with pseud0-
Euclidean metric 90=-dz_{0}d\overline{z}_{0}+\sum_{j=1}^{n+1}dz_{j}d\overline{z}_{j} , we define the the anti-de
Sitter space-time by

H_{1}^{2n+3}= \{(z_{0}, z_{1}, . ., z_{n+1}) : \langle z, z\rangle=-1\} .

It is known that H_{1}^{2n+3} has constant sectional curvature -1. There is a
U(1)-action on H_{1}^{2n+3} defined by z\mapsto\lambda z . At a point z\in H_{1}^{2n+3} , iz is
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tangent to the flow of the action. The orbit is given by z_{t}=e^{it}z with
\frac{dz_{t}}{dt}=iz_{t} which lies in the negative-definite plane spanned by z and iz .
The quotient space H_{1}^{2n+3}/\sim is the complex hyperbolic space CH^{n+1}(-4)

which endows a canonical K\"ahler metric of constant holomorphic sectional
curvature-4. The complex structure J on CH^{n+1}(-4) is induced from the
canonical complex structure J on C_{1}^{n+2} via the totally geodesic fibration:
\pi : H_{1}^{2n+3}arrow CH^{n+1}(-4) .

Let \phi : Marrow CH^{n+1}(-4) be an isometric immersion. Then \hat{M}=

\pi^{-1}(M) is a principal circle bundle over M with totally geodesic fibers.
The lift \hat{\phi} : \hat{M}arrow H_{1}^{2n+3} of \phi is an isometric immersion such that the
diagram:

\hat{M}
\underline{\hat{\phi}}

H_{1}^{2n+3}

\pi\downarrow
\downarrow\pi (6.1)

M arrow\phi CH^{n+1}(-4)

commutes.
Conversely, if \psi : \hat{M}

- H_{1}^{2n+3} is an isometric immersion which is
invariant under the U(1)-action, there is a unique isometric immersion \psi_{\pi} :
\pi(\hat{M})arrow CH^{n+1}(-4) , called the projection of \psi so that the associated
diagram commutes.

We put

H_{1*}^{2n+1}=\{(z_{0}, \ldots, z_{n})\in H_{1}^{2n+1} : _{Z_{n}}\neq 0\} ,
CH_{*}^{n}=\pi(H_{1*}^{2n+1}) . (6.2)

For warped product hypersurfaces in CH^{n+1} , we have the following
classification theorem.

Theorem 6.1 Suppose that a is a positive number and \gamma(t)=(\Gamma_{1}(t) ,
\Gamma_{2}(t)) is a unit speed Legendre curve \gamma : Iarrow S^{3}(a^{2})\subset C^{2} . Let y : H_{1*}^{2n+1}\cross

Iarrow C_{1}^{n+2} be the map defifined by

y(z0, ., z_{n}, t)=(z_{0}, \ldots, z_{n-1}, a\Gamma_{1}(t)z_{n}, a\Gamma_{2}(t)z_{n}) ,

z_{0} \overline{z}_{0}-\sum_{k=1}^{n}z_{k}\overline{z}_{k}=1 . (6.3)
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Then
(i) y induces an isometric immersion \psi : H_{1*}^{2n+1}\cross_{a|z_{n}|}Iarrow H_{1}^{2n+3}

(ii) The image \psi(H_{1*}^{2n+1}\cross_{a|z_{n}|}I) in H_{1}^{2n+3} is invariant under the U(1)-

action.
(iii) the projection \psi_{\pi} : \pi(H_{1*}^{2n+1}\cross_{a|z_{n}|}I) -arrow CH^{n+1}(-4) of \psi via \pi is a

warped product hypersurface CH_{*}^{n}\chi_{a|z_{n}|} I in CH^{n+1}(-4) .

Conversely, if a real hypersurface in CH^{n+1}(-4) is a warped product
N\cross_{f} I of a complex hypersurface N and an open interval I , then, up to
rigid motions, it is locally obtained in the way described above.

We omit the proof since it is very similar to the proof of Theorem 5.1.

Remark 6.1 A direct computation shows that the hypersurface in
CH^{n+1}(-4) obtained from (6.3) is a non-complete ruled hypersurface which
has non-constant scalar curvature \tau=-1/|z_{n}|^{2} and non-constant mean cur-
vature unless the Legendre curve \gamma is a geodesic in S^{3}(a^{2}) .
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