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A note on solvability of factorizable finite groups

Angel CAROCCA
(Received August 28, 2000; Revised February 14, 2001)

Abstract. Using theorems on the classification of finite simple groups, we give an exten-
sion of some results on the solvability of factorizable finite groups that are generalizations
of a well known theorem due to O. Kegel and H. Wielandt.
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1. Introduction

Groups that can be written as a product G=HK of two of its sub-
groups H and K have been studied by many authors. Based on Kegel-
Wielandt’s theorem [6, Satz 4.3, p.674], which states that a finite group is
solvable if it is the product of two nilpotent subgroups. Similar problems
on factorizable groups have been studied by various authors.

In [3] and [8], factorizable groups G=HK are studied, where H is
2-decomposable and K is nilpotent of odd order. Here a finite group H is
called 2-decomposable if it is the direct product of a Sylow 2-subgroup, with
O(H) the largest normal subgroup of H of odd order. When H is only a
product of O(H) with a Sylow 2-subgroup, it is called 2-nilpotent. In [1]
(also see [9]), we attempted to generalize the 2-decomposability of H to
2-nilpotency. However, we did not succeed completely. Imposing a stronger
restriction on K, we obtain the following result.

Let G=HP be a group such that H is 2-nilpotent and P is a p-group

of odd order. Then G is solvable.

The following is a generalization of the result above, which we obtain
by removing the restriction on K .

Theorem 1 Let G=HK be a finite group such that H is 2-nilp0tent
and K nilpotent of odd order. Then G is solvable.
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In Section 3, we give the proof which is based on the following outline.
Suppose the classification of finite simple groups (CFSG). The elaborate
work of Kazarin restricts the possible isomorphism type of the simple direct
factor N_{1} of a minimal normal subgroup N of a minimal counterexample
G=HK. Also, we may show that N_{1}\cap H is a 2-nilpotent subgroup of N_{1}

with nontrivial odd core. Using the divisibility of |Out(N_{1})||H\cap N_{1}||K\cap

N_{1}| by |N_{1}| (see Lemma 2.3 (b)), it is not difficult to reach a contradiction
with the self-centralizing property of a certain Sylow subgroup of N_{1} .

2. Preliminaries

In this section, we recall some results that are used in the proof of the
main theorem. If G is the product of two solvable subgroups, then it is
known that G is not necessarily solvable. Particular cases of finite groups
that are factorizable by two subgroups were studied by various authors.

We next state Kazarin’s result for the general case.

Lemma 2.1 (Kazarin [7]) LelG=HK be a group, where H and K are
solvable subgroups of G. If all composition factors of G are known groups,
then the nonabelian simple composition factors of G belong to the following
list of groups:

(a) PSL(2, q) , with q>3 ;
(b) M_{11;}

(c) PSL (3, q) , with q<9 ;
(d) PSp(4,3) ;
(e) PSU(3, 8) ;
(f) PSL(4, 2).

Remark 1 Consider a nontrivial r subgroup of PSL(2, p^{n}) , with p an odd
prime. When r=p or r divides \frac{(q\pm 1)}{2} , it is well known that the centralizer is,
respectively, elementary abelian of order p^{n} or a cyclic group of order \frac{(q\pm 1)}{2} ;
analogously, for the normalizer, it is, respectively, the semidirect product of
an elementary abelian group of order p^{n} by a cyclic group of order \frac{(q-1)}{2} or
a dihedral group of order q\pm 1 .

Lemma 2.2 Let G=HK=HN=KN be a group, where H and K are
solvable subgroups of G and N is the unique minimal normal subgroup of
G and N is nonsolvable. Then:
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(a) H is transitive on the set of direct factors of N , which are non-
abelian simple groups and H \cap N=\prod_{i}^{m}L_{i} , where N= \prod_{i}^{m}N_{i} (with N_{i}\cong

N_{j} simple) for every i , j\in\{1, ., m\} and L_{i}=N_{i}\cap H .

(b) |N_{1}| divides |Out(N_{1})||N_{1}\cap H||N_{1}\cap K| .

Proof. See Lemmas 2.3 and 2.5 of [4]. \square

Remark 2 The structure of Aut(PSL(2, p^{n})) is well known to be is0-
morphic to the semidirect product of PGL(2, p^{n}) by a cyclic group A of
order n (see [5, p.462]). Also, | Out(PSL(2, p^{n})) |=(2, p-1)n .

Lemma 2.3 Let G=HK be a finite group such that every proper quotient
as well as every subgroup containing H or K is solvable. Assume that there
is a prime divisor of (|H|, |K|) . If H and K have each a normal Sylow
p-subgroup, then G is solvable.

Proof. See [2]. \square

Lemma 2.4 Let G=HK be a finite group, with H and K subgroups
such that (|H|, |K|)=1 . Let R\underline{\triangleleft}H be a 2-decomposable subgroup with
|H : R|=2^{i} . Assume further that H/R is abelian or dihedral. If K is
nilpotent of odd order, then G is solvable.

Proof. See [3]. \square

3. Proof of main result

Proof of Theorem 1. Suppose to the contrary that G need not be solvable
and let G=HK be a counterexample of smallest order. Let N be a minimal
normal subgroup of G . Since the hypothesis is inherited by factor groups, as
well as by every subgroup which contains H or K , we conclude that G/N is
solvable and that G=HK=NH=NK by the minimality of |G| . Hence
G/N\cong K/(K\cap N)\cong H/(H\cap N) is nilpotent of odd order and H contains a
Sylow 2-subgroup of G . Also, H\cap N contains a Sylow 2-subgroup of H and
if O(H) is the normal 2-complement of H, then G=NO(H) . Therefore
G/N\cong O(H)/(O(H)\cap N) . Furthermore, N is the unique minimal normal
subgroup of G (obviously N is nonsolvable). \square

We have that O(H)\cap N=O(H\cap N)\neq 1 . For otherwise, O(H)\cong

O(H)/(O(H)\cap N)\cong G/N would be nilpotent and H would be the direct
product of O(H) with a Sylow 2-subgroup. Thus if (|H|, |K|)=1 , then
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we could apply Lemma 2.4, and if (|H|, |K|)\neq 1 , then we could apply
Lemma 2.3, a contradiction.

Let N_{1} be a simple direct factor of the minimal normal subgroup N .
Since N_{1}\cap H contains a Sylow 2-subgroup S of N_{1} , and since it follows,
according to Lemma 2.2 (a), that H \cap N=\prod_{i=1}^{m}(N_{i}\cap H) , we have that the
2-nilpotency of H\cap N_{1} implies H\cap N_{1}=O(H\cap N_{1})S with O(H\cap N_{1})\neq 1 .

Since (|S|, |O(H\cap N_{1})|)=1 , and since S acts on the solvable subgroup
O(H\cap N_{1}) , we conclude there is a Sylow p subgroup P of H\cap N_{1}=O(H\cap

N_{1})S , with S\leq N_{N_{1}}(P) for every odd prime divisor p of |H\cap N_{1}| , by [10,
Proposition 5.20, p. 113].

We suppose the classification of finite simple groups. Thus the hypoth-
esis of Kazarin’s result (Lemma 2.1) is satisfied by our minimal counterex-
ample G , and hence our simple group N_{1} is isomorphic to one of the groups
in the list of Lemma 2.1.

(a) Suppose N_{1}\cong PSL(2, q) , with q=p^{n} .

(i) Assume that q=p^{n}>3 , with p odd.
We choose \epsilon=\pm 1 , so that q\equiv\epsilon (mod 4). Hence \frac{(q+\epsilon)}{2} is odd. The

fact that the odd number q \frac{(q+\epsilon)}{2} divides n|H\cap N_{1}||K\cap N_{1}| follows from
Lemma 2.2 (a), since |Out(N_{1})|=2n .

We claim that q \frac{(q+\epsilon)}{2} is prime to |H\cap N_{1}| . For otherwise there would be
a prime r that divides both q \frac{(q+\epsilon)}{2} and |H\cap N_{1}| . Then there would exist a
Sylow r subgroup R(\neq 1) of O(H\cap N_{1}) normalized by a Sylow 2-subgr0up
S of N_{1} . If r=p, then N_{N_{1}}(R) would be contained in the normalizer of
a Sylow p-subgroup that is of order q \frac{(q-1)}{2} and does not contain a Sylow
2-subgroup of N_{1} . Therefore r divides \frac{(q+\epsilon)}{2} . However, in this case, N_{N_{1}}(R)

is contained in the normalizer of a cyclic group of order \frac{(q+\epsilon)}{2} , and whose
order is q+\epsilon and does not contain a Sylow 2-subgr0up

Hence both q and \frac{(q+\epsilon)}{2} divide n|K\cap N_{1}| .
If q is prime to |K\cap N_{1}| , then q divides n . In particular,

n\geq q=p^{n}>(1+1)^{n}\geq 1+n ,

which is impossible. Hence p divides |K\cap N_{1}| .
If \frac{(q+\epsilon)}{2} is prime to |K\cap N_{1}| , then similarly \frac{(q+\epsilon)}{2}\leq n . But this implies

that

2n+1\geq 2n-\epsilon\geq q=p^{n}\geq(1+2)^{n}\geq 1+2n .
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Hence the equality holds, and we have that q=p=3 and that n=1=-\epsilon .
But this contradicts q>3 . Thus there is a prime r dividing both \frac{(q+\epsilon)}{2} and
|K\cap N_{1}| .

Since q is prime to \frac{(q+\epsilon)}{2} , from the nilpotency of K\cap N_{1} and the remarks
above it follows that K\cap N_{1} contains an element of order pr . But this is
impossible, since the centralizer of an element of order p in N_{1}\cong PSL(2, q)

is of order q .
(ii) Assume that q=2^{n} .
By the remark above, if r is a prime divisor of O(H\cap N_{1}) , then there

is a Sylow r-subgroup R of H\cap N_{1}=O(H\cap N_{1})S with S\leq N_{N_{1}}(R) . But
this contradicts the fact that |N_{N_{1}}(R)|=2(q+\epsilon) (where \epsilon=\pm 1 ) which
implies that a Sylow 2-subgroup of N_{1} does not normalize the r-subgroup
R.

(b) Suppose N_{1} is isomorphic to some group of the following list: \{M_{11} ,
PSL(3, q) with q<9 (here q\neq 2 since PSL(3, 2)\cong PSL(2,7) ), PSp(4,3) ,
PSL(4, 2) or PSU(3, 8)\} .

Let p and q be the largest prime divisor of |N_{1}| , and the second largest
prime divisor of |N_{1}| , respectively. In each possible case for N_{1} , we may
check the following (consulting for example ATLAS):

\circ Both p and q are odd primes.
\circ A Sylow p-subgroup P of N_{1} is of order p and C_{N_{1}}(P)=P .
\circ |Out(N_{1})| is prime to both p and q .

By Lemma 2.2 (b), we have that p|Q| divides |O(H\cap N_{1})||K\cap N_{1}| , where
Q is a Sylow q-subgroup of N_{1} . If p divides |O(H\cap N_{1})| , then a Sylow
2-subgroup S normalizes P, a Sylow p-subgroup of O(H\cap N_{1}) [by the
fundamental property of coprime action and the fact H\cap N_{1}=O(H\cap N_{1})S] .
However, this implies that S is isomorphic to a subgroup of N_{N_{1}}(P)/P\leq

Aut(P), and hence S is cyclic because P is a cyclic group of odd order,
which contradicts the simplicity of N_{1} . Therefore p divides |K\cap N_{1}| .

If q divides |K\cap N_{1}| , then the nilpotency of K\cap N_{1} implies that
C_{N_{1}}(P)=P contains an element of order q , which is a contradiction. Thus
the order of a Sylow q -subgroup of N_{1} divides |O(H\cap N_{1})| , and hence
there is a Sylow q-subgroup of N_{1} (contained in O(H\cap N_{1}) ) normalized by
a Sylow 2-subgroup S of N_{1} . However, (consulting for example ATLAS) in
each possible case for N_{1} , it is easy to verify that the normalizer of a Sylow



348 A. Carocca

q-subgroup of N_{1} does not contain a Sylow 2-subgroup of N_{1} .
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