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On the Milnor fiber of a real map-gem
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Abstract. We give an algebraic formula for a topological invariant of real analytic
singularities. We deduce from this formula a new proof of the topological invariance of
the Milnor number mod 2.
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1. Introduction

Let f= (f_{1}, . ., f_{k}) : (K^{n}, 0)arrow(K^{k}, 0) , with 1\leq k<n and K=C or
K=R, be an analytic germ defined in a neighborhood of the origin. We are
interested in computing topological invariants associated to the mapping f .

Let B_{\epsilon}\subset K^{n} be a small closed ball centered at the origin and let \delta\in

K^{k} be a small regular value of f . The Milnor fiber of f is f^{-1}(\delta)\cap B_{\epsilon} .
If k=1 , K=C and f has an isolated critical point at 0, Milnor [Mi2]
proved that f^{-1}(\delta)\cap B_{\epsilon} has the homotopy type of a bouquet of \mu spheres
of dimension n-1 . This number of spheres is called the Milnor number of
f , and according to Milnor [Mi2] and Palamodov [Pa],

\mu=\dim_{C}\frac{\mathcal{O}_{C^{n},0}}{(\frac{\partial f}{\partial x_{1}},\frac{\partial f}{\partial x_{n}})}\ldots,
, (1)

where \mathcal{O}_{C^{n},0} is the ring of germs of analytic functions defined at the origin.
This result was extended to the case 1<k<n by Hamm, who proved

that the Milnor fiber has the homotopy type of a bouquet of \mu spheres of
dimension n-k, and by L\^e [Le] and Greuel [Gr] who obtained the following
formula

\mu(f’)+\mu(f)=\dim_{C}\mathcal{O}_{C^{n},0}/I , (2)

where f’= (f_{1}, \ldots, f_{k-1}) and I is the ideal generated by f_{1} , . , f_{k-1} and
all k\cross k minors \frac{\partial(f1\cdots f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k}})},

, .
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In the real case, it is difficult to give such precise information about
the topology of the Milnor fiber. Nevertheless, it is possible to compute
some Euler characteristics. For example, if k=1 and f has an isolated
critical point at the origin, the Khimshiasvili’s formula ([Ar], [Fu2], [Kh],
[Wa] ) states that

\chi(f^{-1}(\delta)\cap B_{\epsilon})=1- sign(-\delta)^{n}\deg_{0}\nabla f ,

where \deg_{0}\nabla f is the topological degree of the gradient of f at the origin.
This formula can be viewed as a real version of the formula (1) above. The
aim of this paper is to give a real version of the L\^e-Greuel formula, i.e. the
formula (2) above.

We first introduce the situation. Let f= (f_{1}, . ., f_{k}) : (R^{n}, 0) -

(R^{k}, 0) , with n>k , be an analytic map and let g : (R^{n}, 0) – (R, 0) be
an analytic function. Let I be the ideal generated by f_{1} , . ., f_{k} and all
(k+1)\cross(k+1) minors \frac{\partial(g,f1\cdots f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})},

, in \mathcal{O}_{R^{n},0} , the ring of germs of analytic

functions at the origin. Let \delta\in R^{k} be a regular value of f and let \alpha\in R

such that |\alpha|<<|\delta| and (\delta, \alpha) is a regular value of (f, g) . Assuming that
\dim_{R}\mathcal{O}_{R^{n},0}/I<+\infty , we will prove the following result (see Theorem 3.8)

\chi(f^{-1}(\delta)\cap\{g\geq\alpha\}\cap B_{\epsilon})+\chi(f^{-1}(\delta)\cap\{g\leq\alpha\}\cap B_{\epsilon})

\equiv\dim_{R}\frac{\mathcal{O}_{R^{n},0}}{I} mod 2.

This theorem generalizes the case g=x_{1}^{2}+\cdot.+x_{n}^{2} which was already proved
by Dudzinski et al. in [DLNS], using fixed point theory and the L\^e-Greuel

formula. It is also a mod 2 generalization of the formulas for counting the
number of branches of a one-dimensional semi-analytic set given by Aoki et
al. ([AFNI], [AFN2], [AFS]) and by Szafraniec ([Szl]).

Now let us consider the complexification f_{C} : (C^{n}, 0) - (C^{k}, 0) of f .
Let \mu(f) be the Milnor number of f_{C} . Let L(f) be the link of f and let \psi(f)

be the semi-characteristic of L(f) . We recall that the semi-characteristic is
defined to be half the sum of the mod 2 Betti numbers. C.T.C Wall ([Wa])
showed that

\psi(f)\equiv 1+\mu(f) mod 2.

As a corollary, one gets that \mu(f) mod 2 is a topological invariant of f .
Wall’s proof is straightforward for the case k=1 . The case of arbitrary k

is more complicated; Wall gives a sophisticated topological argument using
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spectral sequence from fixed point theory. At the end of his paper, he
asks if there is a proof of this result more like the case for k=1 . Using
Theorem 3.8, we will supply a proof of this type (see Theorem 4.5).

The paper is organized as follows: in Section 2, we recall some facts
about Morse theory for manifolds with boundary; Section 3 is devoted to
the proof of our main formula; in Section 4, we give a new proof of the
topological invariance of the Milnor number mod 2. The author is very
grateful to Karim Bekka for his helpful remarks and comments.

2. Morse theory for manifolds with boundary

We recall the results of Morse theory for manifolds with boundary. Our
reference is [HL] where the results are given for a C^{\infty} manifold M with
boundary \partial M . For simplicity we will present the results for manifolds with
boundary of type M\cap\{g*0\} , *\in\{\geq, \leq\} , where M is a C^{\infty} manifold and
g:Marrow R a C^{\infty} function such that M\cap g^{-1}(0) is smooth. In fact this is
the case we need in the following sections.

Let M be a C^{\infty} manifold of dimension n . Let g : Marrow R be a C^{\infty}

function such that \nabla g(x)\neq 0 for all x\in g^{-1}(0) . This implies that M\cap

g^{-1}(0) is a smooth manifold of dimension n-1 and that M\cap\{g\geq 0\} and
M\cap\{g\leq 0\} are smooth manifolds with boundary. Let f : M - R be a
smooth function. A critical point of f_{|M\cap\{g\geq 0\}} (resp. f_{|M\cap\{g\leq 0\}} ) is a critical
point of f_{|M\cap\{g>0\}} (resp. f_{|M\cap\{g<0\}} ) or a critical point of f_{|M\cap g^{-1}(0)} .

Definition 2.1 Let q\in M\cap g^{-1}(0) . We say that q is a correct critical
point of f_{|M\cap\{g\geq 0\}} (resp. f_{|M\cap\{g\leq 0\}} ) if q is a critical point of f_{|M\cap g^{-1}(0)} and
q is not a critical point of f_{|M} .

We say that q is a correct non-degenerate critical point of f_{|M\cap\{g\geq 0\}}

(resp. f_{|M\cap\{g\leq 0\}} ) if q is a correct critical point of f_{|M\cap\{g\geq 0\}} (resp. f_{|M\cap\{g\leq 0\}} )
and q is a non-degenerate critical point of f_{|M\cap g^{-1}(0)} .

If q is a correct critical point of f_{|M\cap\{g\geq 0\}} (resp. f_{|M\cap\{g\leq 0\}} ) then \nabla f(q)\neq

\vec{0}., \nabla f(q) and \nabla g(q) are colinear and there is \tau(q)\in R^{*} with \nabla f(q)=\tau(q) .

\nabla g(q) .

Definition 2.2 If q is a correct critical point of f_{|M\cap\{g\geq 0\}} then

o \nabla f(q) points inwards if and only if \tau(q)>0 ,

o \nabla f(q) points outwards if and only if \tau(q)<0 .
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If q is a correct critical point of f_{|M\cap\{g\leq 0\}} then
o \nabla f(q) points inwards if and only if \tau(q)<0 ,
\circ \nabla f(q) points outwards if and only if \tau(q)>0 .

Definition 2.3 A C^{\infty} function f : M\cap\{g\geq 0\} -arrow R (resp. M\cap\{g\leq

O\}arrow R) is a correct function if all critical points of f_{|M\cap g^{-1}(0)} are correct.
A C^{\infty} function f : M\cap\{g\geq 0\} – R (resp. M\cap\{g\leq 0\}arrow R) is a Morse
correct function if f_{|M\cap\{g>0\}} (resp. f_{|M\cap\{g<0\}} ) admits only non-degenerate
critical points and if f admits only non-degenerate correct critical points.

Proposition 2.4 For all C^{\infty} manifold M and for all function g : Marrow R

such that \nabla g(x)\neq 0 for all x\in g^{-1}(0) , the set of C^{\infty} functions f : Marrow

R such that f_{|M\cap\{g\geq 0\}} and f_{|M\cap\{g\leq 0\}} are Morse correct functions is dense
in C^{\infty}(M, R) .

We will denote \chi(M\cap\{g*0\}\cap\{f?0\}) , where* , ?\in\{\leq, =, \geq\} , by \chi_{*}, ?

and we will use the following result:

Theorem 2.5 Let M be a C^{\infty} compact manifold of dimension n and let
g:Marrow R be a C^{\infty} function such that \nabla g(x)\neq 0 for all x\in g^{-1}(0) . Let
f : Marrow R be a C^{\infty} function such that f_{|M\cap\{g\geq 0\}} and f_{|M\cap\{g\leq 0\}} are Morse
correct. Let \{p_{i}\} be the set of critical points of f_{|M} and \{\lambda_{i}\} be the set of
their respective indices. Let \{q_{j}\} be the set of critical points of f_{|M\cap g^{-1}(0)}

and \{\mu_{j}\} be the set of their respective indices. Then we have

\chi\geq,\geq-\chi\geq,== \sum (-1)^{\lambda_{i}}+ \sum (-1)^{\mu_{j}} ,
i/f(p_{i})>0 j/f(q_{j})>0
g(p_{i})>0 \tau(q_{j})>0

\chi\geq,\leq-\chi\geq,==(-1)^{n} \sum (-1)^{\lambda_{i}}+(-1)^{n-1} \sum (-1)^{\mu_{j}} ,
i/f(p_{i})<0 j/f(q_{j})<0
g(p_{i})>0 \tau(q_{j})<0

and

\chi\leq,\geq-\chi\leq,== \sum (-1)^{\lambda_{i}}+ \sum (-1)^{\mu_{j}} ,
i/f(p_{i})>0 j/f(q_{j})>0
g(p_{i})<0 \tau(q_{j})<0

\chi\leq,\leq-\chi\leq,==(-1)^{n} \sum (-1)^{\lambda_{i}}+(-1)^{n-1} \sum (-1)^{\mu_{j}} .
i/f(p_{i})<0 j/f(q_{j})<0
g(p_{i})<0 \tau(q_{j})>0
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3. The main formula

In this section, we prove the result announced in the introduction for
a real map germ. We recall that f= (f_{1}, \ldots , f_{k}) : (R^{n}, 0) - (R^{k}, 0) is
an analytic germ, that g : (R^{n}, 0) - (R, 0) is an analytic function germ,
that I is the ideal generated by f_{1} , ., f_{k} and all (k+1)\cross(k+1) minors
\frac{\partial(g,f_{1},\ldots,f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})} in \mathcal{O}_{R^{n},0} and that \dim_{R}\mathcal{O}_{R^{n},0}/I<+\infty . Our proof differs
from [DLNS] because we shall not use neither fixed point theory nor the
L\^e-Greuel formula.

3.1. Characterization of a non-degenerate critical point
We study the following local situation. Let

f : (K^{n},p) arrow (K^{k}, \delta)

x \mapsto (f_{1}(x), ., f_{k}(x))

be an analytic germ defined near p (K=R or C) ; \delta is a regular value of f
so that f^{-1}(\delta) is an analytic manifold of dimension n-k and p\in f^{-1}(\delta) .
Let g:K^{n}arrow K be defined near p . We will find a condition for the point p
to be a non-degenerate critical point of g_{|f^{-1}(\delta)} .

Let

M(x)= \det[\frac{\partial f_{i}}{\partial x}..(x)]1\leq i,j\leq k

For shortness we write x=(x’, x’)=(x_{1}, . . , x_{k}; x_{k+1}, \ldots , x_{n}) . We can
assume that M(p)\neq 0 and apply the implicit function theorem in the
neighborhood of p. There exists an analytic mapping

\varphi : K^{n-k}arrow K^{k} , x^{\prime/}\mapsto\varphi(x’)

such that \varphi(p’)=p’ and f(\varphi(x’), x’)=f(p)=\delta . We write

G(x^{\prime/})=g(\varphi(x^{\prime/}), x^{\prime/}) ,

m_{j}(x)= \frac{\partial(g,f_{1},..,f_{k})}{\partial(x_{1},.,x_{k},x_{j})} for j\geq k+1 .

Let \mathcal{O}_{K^{n},p} be the ring of germs of analytic functions defined near p. Let I_{p}

be the ideal in \mathcal{O}_{K^{n},p} generated by all (k+1)\cross(k+1) minors \frac{\partial(g,f1\cdots,f_{kk})}{\partial(x_{i_{1}},\ldots,x_{i_{k1}})}

, .

Let C_{p}=V(I_{p}) be the set of the zeros of I_{p} . Let J_{p} be the ideal generated
by m_{k+1} , \ldots , m_{n} . We have the following lemmas:
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Lemma 3.1 The function g_{|f^{-1}(\delta)} has a critical point at p if and only if
\frac{\partial G}{\partial x_{k+1}}= = \frac{\partial G}{\partial x_{n}}=0 .

Proof. It is clear. \square

Lemma 3.2 The function g_{|f^{-1}(\delta)} has a critical point at p if and only if
p\in f^{-1}(\delta)\cap C_{p} .

Proof. It is clear. \square

Lemma 3.3 J_{p}=I_{p}

Proof. It is proved in [Sz2, p.349]. \square

Remark Szafraniec’s proof uses the L\^e-Greuel formula. We give a direct
proof in the appendix at the end of the paper.

Lemma 3.4 The function g_{|f^{-1}(\delta)} has a non-degenerate critical point if
and only if C_{p} is a regular complete intersection at p of dimension k and
C_{p} intersects f^{-1}(\delta) transversally at p .

Proof. Let A(\theta) be the following matrix

A(\theta)=\{\begin{array}{lll}\frac{\partial f_{1}}{\partial x_{1}}(\theta) \frac{\partial f_{1}}{\partial x_{n}}(\theta)\vdots \ddots \vdots\frac{\partial f_{k}}{\partial x_{1}}(\theta) \frac{\partial f_{k}}{\partial x_{n}}(\theta)\frac{\partial m_{k+1}}{\partial x_{1}}(\theta) \frac{\partial m_{k+1}}{\partial x_{n}}(\theta)\vdots \ddots \vdots\frac{\partial m_{n}}{\partial x_{1}}(\theta) \frac{\partial m_{n}}{\partial x_{n}}(\theta)\end{array}\}

As Szafraniec does in [Sz2, p.349-350], we obtain

det A(p)=(-1)^{k(n-k)}M(p)^{n-k+1} det [ \frac{\partial^{2}G}{\partial x_{i}\partial x_{j}}(p’)]_{k+1\leq i,j\leq n}

This result allows us to conclude because g_{|f^{-1}(\delta)} has a non-degenerate crit-
ical point if and only if
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det [ \frac{\partial^{2}G}{\partial x_{i}\partial x_{j}}]_{k+1\leq i,j\leq n}\neq 0 .

\square

3.2. A Morse approximation
We return to the real case and, using Morse theory for manifolds with

boundary, we relate

\chi(f^{-1}(\delta)\cap\{g\geq\alpha\}\cap B_{\epsilon})+\chi(f^{-1}(\delta)\cap\{g\leq\alpha\}\cap B_{\epsilon}) mod 2

to the number of critical points of a Morse approximation of g_{|f^{-1}(\delta)\cap B_{\epsilon}} .
We need the following result about correct critical points of g_{|f^{-1}(\delta)\cap B_{\epsilon}} .

Lemma 3.5 Let \delta be a small regular value so that the manifold with
boundary f^{-1}(\delta)\cap B_{\epsilon} is non-singular. Then

o At all correct critical points of g_{|f^{-1}(\delta)\cap B_{\epsilon}} where g>0 , the gradient
of g_{|F_{\delta}} points outwards.

\circ At all correct critical points of g_{|f^{-1}(\delta)\cap B_{\epsilon}} where g<0 , the gradient
of g_{|F_{\delta}} points inwards.

\circ There are no correct critical points of g_{|f^{-1}(\delta)\cap B_{\epsilon}} with g=0 .

Proof. We prove the first point. In order to prove the second one it is
enough to replace g by-g . Let \omega be the euclidian distance function and let

X=\{x\in(f^{-1}(0)\backslash \{0\})\cap\{g(x)>0\}|\exists\lambda(x) and \mu(x)

with \nabla g(x)=\lambda(x)\nabla f(x)+\mu(x)\nabla\omega(x) and \mu(x)<0\} .

It is a subanalytic set. If 0\in\overline{X} , we apply the curve selection lemma (cf.
[Mi2] ) . There exists an analytic arc \gamma : [0, \epsilon_{0}[arrow\overline{X} such that \gamma(0)=0 . Then
we have for all t\in[0, \epsilon_{0}[

\frac{\partial(go\gamma(t))}{\partial t}=\langle\nabla g(\gamma(t)), \gamma’(t)\rangle

and

\frac{\partial(g\circ\gamma(t))}{\partial t}=\lambda(\gamma(t))\langle\nabla f(\gamma(t)), \gamma’(t)\rangle+\mu(\gamma(t))\langle\nabla\omega(\gamma(t)), \gamma’(t)\rangle .

We have for all t\in[0, \epsilon_{0}[., \langle\nabla f(\gamma(t)), \gamma’(t)\rangle=0 for \gamma([0, \epsilon_{0}[)\subset f^{-1}(0) and
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since \langle\nabla\omega(\gamma(t)), \gamma’(t)\rangle\geq 0 for all t\in[0, \epsilon_{0} [, we will have

for all t\in[0, \epsilon_{0}[ \frac{\partial(go\gamma(t))}{\partial t}\leq 0 .

The function g\circ\gamma is decreasing and so, for all t\in[0, \epsilon_{0}[, go\gamma(t)\leq go

\gamma(0)=0 . But for all t\neq 0 , g\circ\gamma(t)>0 so 0\not\in\overline{X} . We can choose \epsilon

sufficiently small so that in f^{-1}(O)\backslash \{O\}\cap B_{\epsilon} , the gradient of g_{|f^{-1}(0)\backslash \{0\}} and
the gradient of \omega_{|f^{-1}(0)\backslash \{0\}} do not point in opposite directions in \{g>0\} .
Choosing \delta sufficiently close to 0, this implies that at all correct critical
points of g_{|F_{\delta}\cap\{g>0\}} , the gradient of g_{|f^{-1}(\delta)\cap B_{\epsilon}} will point outwards.

We prove the third point with the same ideas considering the sets

Y_{>}=\{x\in(f^{-1}(0)\backslash \{0\})\cap\{g(x)=0\}|\exists\lambda(x) and \mu(x)

with \nabla g(x)=\lambda(x)\nabla f(x)+\mu(x)\nabla\omega(x) and \mu(x)>0\}

and

Y_{<}=\{x\in(f^{-1}(0)\backslash \{0\})\cap\{g(x)=0\}|\exists\lambda(x) and \mu(x)

with \nabla g(x)=\lambda(x)\nabla f(x)+\mu(x)\nabla\omega(x) and \mu(x)<0\}

and proving that 0\not\in\overline{Y_{>}} and that 0\not\in\overline{Y_{<}} . \square

Now let \tilde{g} be a perturbation of g such that \tilde{g}_{|f^{-1}(\delta)\cap B_{\epsilon}} is a Morse correct
function then we have

Lemma 3.6 Let \delta be a small regular value so that the manifold with
boundary f^{-1}(\delta)\cap B_{\in}is non-singular. Let \alpha\in R such that |\alpha|<<|\delta|

and (\delta, \alpha) is a regular value of (f, g) then

\chi(f^{-1}(\delta)\cap\{g\geq\alpha\}\cap B_{\epsilon})+\chi(f^{-1}(\delta)\cap\{g\leq\alpha\}\cap B_{\epsilon})

is equal to the number of non-degenerate critical points of \tilde{g}_{|f^{-1}(\delta)\cap B_{\epsilon}} mod-
ulo 2.

Proof. For convenience, we denote f^{-1}(\delta)\cap B_{\epsilon} by F_{\delta} and f^{-1}(\delta)\cap\{g*\alpha\}

by F_{\delta}(g*\alpha)where*\in\{=, \geq, \leq\} .
Since \dim_{R}\mathcal{O}_{R^{n},0}/I<+\infty , g|f^{-1}(0)\backslash \{0\}\cap\{\omega\leq\epsilon\} admits no critical points.

This implies that for \epsilon sufficiently small, the levels of g intersect f^{-1}(0)

transversally on f^{-1}(0)\cap\{\epsilon/4\leq\omega\leq\epsilon\} . If we choose \delta such that |\delta|<<\epsilon ,
the levels of g will also intersect f^{-1}(\delta) transversally on f^{-1}(\delta)\cap\{\epsilon/4\leq\omega\leq
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\epsilon\} , because transversality is an open property. Thus g_{|f^{-1}(\delta)\cap\{\omega<\in\}} admits
its critical points on f^{-1}(\delta)\cap B_{\epsilon/4} and the critical points of g_{|f^{-1}(\delta)\cap\{\omega=\in\}}

are correct critical points of g_{|F_{\delta}} , because on \{\omega=\epsilon\} the levels of g and
f^{-1}(\delta) are transversal. Moreover correct critical points of g_{|F_{\delta}} where g>0
(resp. g<0 ) point outwards (resp. inwards) and there are no correct critical
points near \{g=0\} by the previous lemma.

We choose \alpha close to 0 such that 0 is the only possible critical value
of g_{|F_{\delta}} in [-|\alpha|, |\alpha|] and such that all correct critical points lie far from the
level \{g=\alpha\} . We apply the result of Morse theory to the manifold with
boundary F_{\delta}(g=\alpha) (see Theorem 2.5) and we get

\chi(F_{\delta}(g\geq\alpha), F_{\delta}(g=\alpha))=n_{+}(\tilde{g}_{\alpha})-n_{-}(\tilde{g}_{\alpha}) ,

where n_{+}(\tilde{g}_{\alpha}) (resp. n_{-}(\tilde{g}_{\alpha}) ) is the number of non-degenerate critical points
with even (resp. odd) index of \tilde{g}_{|F_{\delta}} lying in F_{\delta}(g\geq\alpha) . In the same way, we
have

\chi(F_{\delta}(g\leq\alpha), F_{\delta}(g=\alpha))=(-1)^{n-k}(n_{+}(\tilde{g}_{-\alpha})-n_{-}(\tilde{g}_{-\alpha})) ,

where n_{+}(\tilde{g}_{-\alpha)} (resp. n_{-}(\tilde{g}_{-\alpha}) ) is the number of non-degenerate critical
points with even (resp. odd) index of \tilde{g}_{|F_{\delta}} lying in F_{\delta}(g\leq\alpha) . Finally we
have

\chi(F_{\delta}(g\geq\alpha))+\chi(F_{\delta}(g\leq\alpha))

=n_{+}(\tilde{g}_{\alpha})+n_{-}(\tilde{g}_{\alpha})+n_{+}(\tilde{g}_{-\alpha})+n_{-}(\tilde{g}_{-\alpha}) mod 2,

hence

\chi(F_{\delta}(g\geq\alpha))+\chi(F_{\delta}(g\leq\alpha))

=number of non-degenerate critical points of \tilde{g}_{|F_{\delta}} mod 2.

\square

3.3. Study of \mathcal{O}_{R^{n},O}/I

We relate the dimension of \mathcal{O}_{R^{n},0}/I to the number of non-degenerate
critical points of a suitable Morse approximation of g_{|f^{-1}(\delta)\cap B_{\epsilon}} . Let J_{C} be
the ideal generated in \mathcal{O}_{C^{n},0} by all the (k+1)\cross(k+1) minors \frac{\partial(g,f1,\ldots,f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})}

and let I_{C}= (f_{1}, \ldots , f_{k};J_{C}) . Let C=V(J_{C}) . Saito has proved in [Sa] that
\frac{o_{c^{n},0}}{J_{C}} is a Cohen-Macaulay ring of dimension k and so C is equidimensional
of dimension k . A result about multiplicity from Serre (see [Se]) gives the
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following relation

\dim_{C}\frac{\mathcal{O}_{C^{n},0}}{I_{C}}=(f_{C}^{1}(0);C)_{0}=\gamma ,

where (f_{C}^{1}(0);C)_{0} is the intersection multiplicity of f_{C}^{1}(0) and C at 0.
Replacing g by a suitable perturbation if necessary, we can assume that C
and f_{C}^{1}(\delta) intersect transversally at regular points. We have

Lemma 3.7 The function g_{|f^{-1}(\delta)\cap B_{\epsilon}} is a Morse function and
dime \mathcal{O}_{R^{n},0}/I is equal to the number of non-degenerate critical points of
g_{|f^{-1}(\delta)\cap B_{\epsilon}} modulo 2.

Proof Write

C\cap f_{C}^{1}(\delta)=\{p_{1}, . , p_{r}\}\cup\{p_{r+1},\overline{p_{r+1}}, . ., p_{m},\overline{p_{m}}\} ,

where p_{1} , \ldots , p_{r} are real points. Hence

\gamma=\# C\cap f_{C}^{1}(\delta)=\#\{p_{1}, ., p_{r}\} mod 2.

One can choose \delta sufficiently small so that \{p_{1}, \ldots,p_{r}\}\subset B_{\epsilon} . Let us ex-
amine the situation at p_{i} for 1\leq i\leq r . Since f^{-1}(\delta)\cap B_{6} is regular, we
can assume that, for instance, M(p_{i})\neq 0 with M(x)= \det[\frac{\partial f_{i}}{\partial x}..(x)]_{1\leq i,j\leq k} .
Using Lemma 3.3 and its proof, we have

det [ \frac{\partial_{1}\frac{\partial f_{k}}{m_{k+}\partial x_{1}}(}{\partial x_{1}}.\cdot...\cdot(\theta)\frac{\partial m_{n}}{\partial x_{1}}(\theta)\frac{\partial f_{1}}{\partial x_{1}}(\theta)\theta) ..\cdot.| \frac{\partial_{1}\frac{\partial f_{k}}{m_{k+}\partial x_{n}}(}{\partial x_{n}}.\cdot...(\theta)\frac{\partial m_{n}}{\partial x_{n}}(\theta)\frac{\partial f_{1}}{\partial x_{n}}(\theta)\theta)]\neq 0 ,

because C and f_{C}^{1}(\delta) intersect transversally. From this we deduce that
C\cap R^{n} , which is the set of real points of C, and f^{-1}(\delta)\cap B_{\epsilon} intersect
transversally because all the coefficients involved in the above determinant
are real and p_{i} is a real point. Finally we get that g_{|F_{\delta}} is a Morse function
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and p_{1} , ., p_{r} are its non-degenerate critical points hence

\dim_{R}\frac{\mathcal{O}_{R^{n},0}}{I}\equiv r mod 2,

since \dim_{R}\frac{o_{R^{n},0}}{I}=dimc\frac{O_{C^{n},0}}{I_{C}} . \square

3.4. Main result and some corollaries
Now we are ready to state our main theorem.

Theorem 3.8 Let \delta\in R^{k} be regular value of f and let \alpha\in R such that
|\alpha|<<|\delta| and (\delta, \alpha) is a regular value of (f, g) . If \dim_{R}\mathcal{O}_{R^{n},0}/I<+\infty

then

\chi(f^{-1}(\delta)\cap\{g\geq\alpha\}\cap B_{\epsilon})+\chi(f^{-1}(\delta)\cap\{g\leq\alpha\}\cap B_{\epsilon})

\equiv\dim_{R}\frac{\mathcal{O}_{R^{n},0}}{I} mod 2.

Proof. It is a combination of Lemma 3.6 and Lemma 3.7. \square

Corollary 3.9 Let \delta\in R^{k} be regular value of f and let \alpha\in R such that
|\alpha|<<|\delta| and (\delta, \alpha) is a regular value of (f, g) . If \dim_{R}\mathcal{O}_{R^{n},0}/I<+\infty

then:

\chi(f^{-1}(\delta)\cap B_{\epsilon})+\chi(f^{-1}(\delta)\cap\{g=\alpha\}\cap B_{\epsilon})

\equiv\dim_{R}\frac{\mathcal{O}_{R^{n},0}}{I} mod 2.

Proof. Using the Mayer-Vietoris sequence, we find

\chi(f^{-1}(\delta)\cap B_{\epsilon})=\chi(f^{-1}(\delta)\cap\{g\geq\alpha\}\cap B_{\epsilon})

+\chi(f^{-1}(\delta)\cap\{g\leq\alpha\}\cap B_{\epsilon})

-\chi(f^{-1}(\delta)\cap\{g=\alpha\}\cap B_{\epsilon})

and it is easy to conclude. \square

Let L_{f} and L_{(f,g)} be the respective links of f and (f, g) . We define,
following Wall’s notation

\psi(f)=\frac{1}{2}\dim_{Z_{2}}(H_{*}(L_{f}, Z_{2})) ,

\psi((f, g))=\frac{1}{2}\dim_{Z_{2}}(H_{*}(L_{(f,g)}, Z_{2}))
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We have

Corollary 3.10

\psi(f)+\psi((f, g))\equiv\dim_{R}\frac{\mathcal{O}_{R^{n},0}}{I} mod 2.

Proof. We have L_{f}=f^{-1}(O)\cap S_{\epsilon} . For \delta sufficiently small, L_{f} is diffe0-
morphic to f^{-1}(\delta)\cap S_{\epsilon} . Now it is enough to apply the following relation

\frac{1}{2}\dim_{Z_{2}}(H_{*}(f^{-1}(\delta)\cap S_{\epsilon}, Z_{2}))\equiv\chi(f^{-1}(\delta)\cap S_{\epsilon}) mod 2,

which is well-known if n-k is odd and which is proved, for instance, in
[ASV] Proposition 3.4, if n-k is even. \square

4. Topological invariance of the Milnor number mod 2

We give here an alternative proof of the topological invariance of the
Milnor number mod 2 proved in [Wa]. Our proof does not use the methods
of fixed point theory.

Let f= (f_{1}, . ., f_{k}) : (R^{n}, 0) -arrow(R^{k}, 0) , with n>k , be an analytic
germ of finite singularity type and let f_{C} be the complexification of f . Then
according to Wall [Wa], f_{C} has an isolated singularity and we can define its
Milnor number \mu(f_{C}) . We define the Milnor number of f by \mu(f)=\mu(f_{C})

and we will prove that

\psi(f)=1+\mu(f) mod 2,

where \psi(f) is defined as in the previous section.
We need the following version of Sard’s lemma.

Lemma 4.1 Let N\subset M\subset R^{N} be analytic sets and let N_{C} and M_{C}

be their respective complexififications. Assume that M_{C}\backslash N_{C} is a smooth
complex manifold of dimension K Let \pi : R^{N}arrow R_{j}^{P} with P\leq K , be an
analytic mapping and let \pi_{C} be its complexifification. Then for almost all
\beta\in R^{P} , \pi_{C}^{-1}(\beta)\cap M_{C}\backslash N_{C} is a smooth manifold of dimension K-P.

Proof. Let \Sigma_{C} be the critical set of \pi_{C|M_{C}\backslash N_{C}} and let \Sigma be the critical set
of \pi_{|M\backslash N} . Then \pi_{C}(\Sigma_{C}) has at most dimension P-1 and \pi(\Sigma)\subset\pi_{C}(\Sigma_{C})\cap

R^{P} is a subanalytic set of dimension at most P-1 , so for \beta\in R^{P}\backslash \pi(\Sigma) ,
\beta\not\in\pi_{C}(\Sigma_{C}) which means that \beta is a regular value of \pi_{C} : M_{C}\backslash N_{C} – C^{P}

\square
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Lemma 4.2 Let f= (f_{1}, \ldots, f_{k}) : (R^{n}, 0) - (R^{k}, 0) , with n>k , be
an analytic germ of fifinite singularity type. There exists an analytic germ
g : (R^{n}, 0) - (R, 0) such that F_{C}=(f_{C}, g_{C}) : (R^{n}, 0) -arrow(R^{k+1},0) has an
isolated singularity or, equivalently, (f, g) is of fifinite singularity type.

Proof. Consider the following analytic map

H : (R^{n}\cross R^{n}, (0, 0)) arrow (R^{k+1},0)

(x, a) \mapsto (f_{1}, . ., f_{k}, a_{1}x_{1}+ +a_{n}x_{n}) .

The derivative of H at (x, a) is given by the following matrix

DH(x, a)=(\begin{array}{lllll}\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{1}}{\partial x_{n}} 0 0\vdots \ddots \vdots \vdots \ddots \vdots\frac{\partial f_{k}}{\partial x_{1}} \frac{\partial f_{k}}{\partial x_{n}} 0 0a_{1} a_{n} x_{1} x_{n}\end{array})

If (x, a)\in H^{-1}(0) and x\neq 0 then there exists i\in\{1, ., n\} with x_{i}\neq 0

and then rank DH(x, a)=k+1 since

rank (\begin{array}{llll}\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{1}}{\partial x_{n}} 0\vdots .. \vdots \vdots\frac{\partial f_{k}}{\partial x_{1}} \frac{\partial f_{k}}{\partial x_{n}} 0a_{1} a_{n} x_{i}\end{array})=k+1 .

So X=H^{-1}(0)\backslash (\{0\}\cross R^{n}) is an analytic manifold of dimension 2n-(k+
1) . Consider

\pi : H^{-1}(0) arrow (R^{n}, 0)

(x, a) \mapsto a

the projection map on the second component. Using the above lemma, we
can find a\in R^{n} such that X_{C}\cap\pi_{C}^{-1}(a) is a smooth analytic manifold of
dimension n-(k+1) , where X_{C}=H_{C}^{1}(0)\backslash (\{0\}\cross C^{n}) and \pi_{C} is the
complexification of \pi . This exactly means that (f_{C}, a_{1}x_{1}+, +a_{n}x_{n}) :
(C^{n}, 0)arrow(C^{k+1},0) has an isolated singularity. \square
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Lemma 4.3 Let f= (f_{1}, ., f_{k}) : (R^{n}, 0) - (R^{k}, 0) , with n>k , be an
analytic germ of finite singularity type and let g : (R^{n}, O)arrow(R, 0) be an
analytic germ such that F_{C}=(f_{C}, g_{C}) : (R^{n}, 0)arrow(R^{k+1},0) has an isolated
singularity then

\dim_{R}\overline{(f_{1},}.,
f_{k}, \frac{R^{n},0\partial(g,f_{1}\cdots,f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})},)\mathcal{O}<+\infty

.

Proof. Suppose that this vector space is not finite dimensional. Then 0\in

C^{n} is not isolated in

f_{C}^{1}(0) \cap(\bigcap_{1\leq i_{1}<\cdots<i_{k+1}\leq n}\{\frac{\partial(gc,f_{1C},..,f_{kC})}{\partial(x_{i_{1}},.,x_{i_{k+1}})}=0\})

Hence, by the curve selection lemma ([Mi2]), there exists a real analytic
curve P(t) : [0, \lambda) - C^{n} such that P(0) =0, f_{C}(P(t)) =0 and
, \frac{\partial(gcf_{1}c’\cdots,f_{kC})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})}(P(t))=0 for all (k+1)-tuple ( i_{1} . . ,^{i_{k+1})} . This means
that the vectors \nabla f_{jC} , j=1 , . ., k and \nabla gc are linearly dependent over C
at P(t) and there exist a_{1}(t) , . ., a_{k}(t) and b(t) such that

\sum_{j=1}^{k}a_{j}(t)\nabla f_{j_{C}}(P(t))=b(t)\nabla gc(P(t)) ,

and (a_{1}(t), ., a_{n}(t), b(t))\neq(0 , . ., 0) . Since f is of finite singularity type,
f_{C}^{1}(0) is a smooth (n-k)-dimensional complex manifold outside the origin
and \nabla f_{1C}(P(t)) , . , \nabla f_{kC}(P(t)) are linearly independent for t\neq 0 . This
implies that for all t \neq 0 , b(t)\neq 0 and

\overline{\nabla(gc)(P(t))}=\sum_{j=1}^{k}\overline{c_{j}(t)}\overline{\nabla f_{iC}(P(t))} ,

where c_{j}(t)= \frac{a_{j}(t)}{b(t)} . Therefore

\frac{\partial}{\partial t}(g\circ P(t))=\langle\frac{\partial P(t)}{\partial t} , \overline{\nabla(gc)(P(t))}\rangle ,

\frac{\partial}{\partial t}(goP(t))=\langle\frac{\partial P(t)}{\partial t} , \sum_{j=1}^{k}\overline{c_{j}(t)}\overline{\nabla f_{ic}(P(t))}\rangle



On the Milnor fiber of a real map-gem 315

= \sum_{j=1}^{k}c_{j}(t) \frac{\partial}{\partial t}(f_{j}oP(t))=0 ,

since \{P(t)\}\subset f_{C}^{1}(0) . Thus we have \{P(t)\}\subset\{g=0\} which contradicts
the fact that (f_{C}, g_{C}) has an isolated singularity. \square

Before proving our main result, we need to prove it in the case of curves.
Lemma 4.4 Let F : (R^{n}, 0) - (R^{n-1},0) be a complete intersection of
fifinite singularity type. Then

\psi(F)\equiv 1+\mu(F) mod 2.

Proof. We have

\mu=2\delta-r+1 ,

where r is the number of branches of the complex curve F_{C}^{1}(0) (see [BuG,
Mi2]). The complex conjugation acts on the set of branches: those inter-
changed in pairs do not yield a real branch, whereas those left invariant
yield a single real branch. Thus r\equiv s mod 2 where s is the number of real
branches of f^{-1}(0) . Now we just have to use the fact that

s \equiv\frac{1}{2}\chi(F^{-1}(0)\cap S_{\epsilon})\equiv\psi(F) mod 2.

\square

Now we are ready to state:

Theorem 4.5 Let f : (R^{n}, 0)arrow(R^{k}, 0) be an analytic germ of fifinite
singularity type then

\psi(f)\equiv 1+\mu(f) mod 2.

Proof. With Lemma 4.2 we construct n – k –1 functions g_{1} , . . ’ 9n-k-1
such that the n – k –1 mappings

F_{1}=(f, g_{1}) : (R^{n}, 0) arrow (R^{k+1},0) ,
F_{2}=(f, g_{1}, g_{2}) : (R^{n}, 0) arrow (R^{k+2},0) ,

...
F_{n-k-1}= (f, g_{1}, ., ^{gn-k-1}) : (R^{n}, 0) arrow (R^{n-1},0) ,
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are of finite singularity type. Applying Corollary 3.10, Lemma 4.3 and the
L\^e-Greuel formula, we find

\psi(f)+\psi(F_{1}) \equiv \mu(f)+\mu(F_{1}) mod 2,
\psi(F_{1})+\psi(F_{2}) \equiv \mu(F_{1})+\mu(F_{2}) mod 2,

..
\sim

\psi(F_{n-k-2})+\psi(F_{n-k-1})\equiv\mu(F_{n-k-2})+\mu(F_{n-k-1}) mod 2.

Adding them together leads to

\psi(f)+\psi(F_{n-k-1})\equiv\mu(f)+\mu(F_{n-k-1}) mod 2.

By the previous lemma, we know that \psi(F_{n-k-1})\equiv 1+\mu(F_{n-k-1}) mod 2
and it is easy to see that

\psi(f)\equiv 1+\mu(f) mod 2.
\square

5. Appendix: a direct proof of Lemma 3.3

We give here a direct, but rather technical, proof of Lemma 3.3.
We are in the following situation:

f : (K^{n},p) arrow (K^{k}, \delta)

x \mapsto (f_{1}(x), . , f_{k}(x)) ,

where \delta is a regular value of f so that f^{-1}(\delta) is an analytic manifold of
dimension n-k. Let

M(x)= \det[\frac{\partial f_{i}}{\partial x}..(x)]1\leq i,j\leq k

We adopt the notation f_{ix_{j}} for \frac{\partial fi}{\partial x}.

. \cdot We assume that M(p)\neq 0 which implies

that \frac{1}{M} is analytic at p and that for all x near p, M(x)\neq 0 . We have for
all j\in\{1, . ., n\}

m_{j}(x)=|\begin{array}{llll}g_{x_{1}}(x) g_{x_{k}}(x) g_{x_{j}}(x)f_{1x_{1}}(x) f_{1x_{k}}(x) f_{1x_{j}}(x)\vdots \ddots \vdots \vdots f_{kx_{1}}(x) f_{kx_{k}}(x) f_{kx_{j}}(x)\end{array}| ,
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hence, developing m_{j} along the first line and since M\neq 0 , and omitting
the x

g_{x_{j}}= \frac{(-1)^{k}}{M}(m_{j}+\sum_{i=1}^{k}(-1)^{i}g_{x_{i}}\frac{\partial(f_{1},\ldots,f_{k})}{\partial(x_{1},.,\hat{x}_{i},.,x_{k}\cdot x_{j})},) . (1)

Remark For all 1\leq j\leq k m_{j}=0 .
We have for all (i_{1}, . ., i_{k+1})

\frac{\partial(g,f_{1},.,f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})}=|\begin{array}{llll}g_{x_{i_{1}}} g_{x_{i_{k+1}}}f_{1x_{i_{1}}} f_{1x_{i_{k+1}}}\vdots \ddots ..\vdots \ddots -f_{k_{x_{i_{1}}}} f_{k_{x_{i_{k+1}}}}\end{array}|

We develop along the first line and get

\frac{\partial(g,f_{1},\ldots,f_{k})}{\partial(x_{i_{1}},.,x_{i_{k+1}})}=\sum_{l=1}^{k+1}(-1)^{l+1}g_{x_{i_{l}}}\frac{\partial(f_{1},..,f_{k}))}{\partial(x_{i_{1}},..,x_{\hat{i}_{l}},,x_{i_{k+1}})} .

Replacing g_{x_{i_{l}}} by the expression (1), we obtain

\frac{\partial(g,f_{1},.,f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k+1}})}

‘

= \sum_{l=1}^{k+1}\frac{(-1)^{k+l+1}}{M}\frac{\partial(f_{1},..,f_{k})}{\partial(x_{i_{1}},..,x_{\hat{i}_{l}},,xx_{i_{k+1}})}m_{i_{l}}+\sum_{i=1}^{k}\frac{(-1)^{k+1}g_{x_{i_{l}}}}{M}

( \sum_{l=1}^{k+1}(-1)^{l+1}\frac{\partial(f_{1},.,f_{k})}{\partial(x_{1},\ldots,\hat{x}_{i},..,x_{k;}x_{i_{l}})}\frac{\partial(f_{1},.,f_{k})}{\partial(x_{i_{1}},.,x_{\hat{i}_{l}},.,x_{i_{k+1}})})

It is enough to prove that each term between the big parenthesis is zero.
But one sees clearly that is the determinant of the following matrix

B=\{

\frac{\partial(f_{1},.,f_{k})}{\partial(x_{1},..,\hat{x}_{i},.,x_{k}\cdot x_{i_{1}})}

,

\frac{\partial f_{1}}{\partial x_{i_{1}}}

-.\cdot

\frac{\partial f_{k}}{\partial x_{i_{1}}}

... \frac{\partial(f_{1},.,f_{k})}{\partial(x_{1},..,,.,x_{k},x_{i_{k+1}}),\frac{\hat{x}_{i}\partial f_{1}}{\partial x_{i_{k+1}}}}\frac{\partial f_{k}}{\partial x_{i_{k+1}}}\cdot..\cdot, ]
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But we have for all l\in\{1, ., k+1\} ,

\frac{\partial(f_{1},..,f_{k})}{\partial(x_{1},.,\hat{x}_{i},\ldots,x_{k},x_{i_{l}})}\cdot=\sum_{j=1}^{k}(-1)^{j+k}\frac{\partial f}{\partial x_{i_{ll}}}.A_{j} ,

where

A_{j}= \frac{\partial(f_{1},.,\hat{f}_{j},.,f_{k})}{\partial(x_{1},.,\hat{x}_{i},\ldots,x_{k})} ,

and then

L_{0}= \sum_{j=1}^{k}(-1)^{j+k}A_{j}L_{j} ,

where L_{0} , L_{1} , . ., L_{k} are the lines of the matrix B , which allows us to con-
clude that det B=0 and \frac{\partial(g,f1,\ldots f_{k})}{\partial(x_{i_{1}},\ldots,x_{i_{k}})}

, belongs to the ideal generated by the

m_{i_{l}} , which is included in J_{p} .
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