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Properties of some sets of sequences and
application to the spaces of bounded

difference sequences of order \bm{\mu}

Bruno de MALAFOSSE
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Abstract. We give some properties of the well-known operator \Delta^{\mu} , \mu being a given inte-
ger. Then we characterize the matrix transformations that belong to (s_{r}[(\triangle-\lambda I)^{\mu}] , s_{r}) ,
where s_{r}[(\Delta-\lambda I)^{\mu}]=\{X/(\Delta-\lambda I)^{\mu}X\in s_{r}\} .
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1. Introduction

The Ces\‘aro operator C_{1} has been studied by many authors such as
Reade [17], Maddox [7], Okutoyi [14] and de Malafosse [9]. Since there is
a relation between this operator and the 1st difference operator \triangle , many
authors have given results on this last operator, see for instance Malkowsky
[10], [11], Kizmaz [4], Qolak and Et [2]. These authors gave many charac-
terizations of the operators A which map the space (\triangle^{\mu})^{-1}(l^{\infty}) into l^{\infty} ,
that is A\in(l^{\infty}(\triangle^{\mu}), l^{\infty}) . Let us cite Mursaleen [13] for an application of
infinite matrices to Walsh functions. In this paper we establish a relation
between the resolution of an infinite linear system, (see [3], [5], [8], [12], [15]
and [16] ) and the summability theory.

The plan of this paper is organized as follows. In Section 2 we recall
the relation between an operator mapping a space of sequences into another
sequence space and an infinite matrix. This lead us to the study of infinite
linear systems. Then we give some spaces in which we shall solve these
systems in the following. An isomorphism \varphi is defined permitting to do
computations on infinite matrices belonging to an important class. Further
in Sections 3 and 4 we give some properties of the well-known operators
relatively to these new spaces. In the Section 5 we characterize the infinite
matrices belonging to the sets (s_{r}((\triangle-\lambda I)^{\mu}), s_{r}) , \lambda\neq 1 , (l^{\infty}(\triangle^{\mu}), l^{\infty})

and (s_{r}((\triangle^{+})^{\mu}), s_{r}) .

2000 Mathematics Subject Classification : 40C05,46A45 .
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2. Definitions and well-known results

E and F are two subsets of the space s of all the sequences. We are
interested in the study of some properties of an operator A mapping E into
F, which can be written A\in(E, F) . This operator can be represented by
an infinite matrix A=(a_{nm})_{n,m\geq 1} . For a given one column matrix X=
(x_{n})_{n\geq 1} , we define the product Y=AX=(y_{n})_{n\geq 1} , by

y_{n}= \sum_{m=1}^{\infty}a_{nm}x_{m} , (n=1,2, \ldots) (1)

when all the series defined in the second member are convergent. Such a
matrix A is often called too, a matrix transformation. For any subset E of
s we shall write

AE=\{Y\in s/\exists X\in E Y=AX\} (2)

and for any subset F of s , we shall denote by F(A) or A^{-1}F , the set of
the sequences X\in s , such that AX\in F . In the following we shall be
lead to use infinite linear systems. The resolution of such systems can be
formulated in the following way: B=(b_{n})_{n\geq 1} being a given sequence does
equation AX=B admit a solution in a given space of sequences. To solve
such matrix equation we need to define some particular spaces.

2.1. Spaces S_{c} and s_{c}

For a sequence c=(c_{n})_{n>1} , where c_{n}>0 , for every n , we define the
space S_{c} , (see [5], [6], [8] and \overline{[}9] ) of the infinite matrices A=(a_{nm})_{n,m\geq 1} ,
such that \sup_{n\geq 1}(\sum_{m\geq 1}|a_{nm}|\frac{c_{m}}{c_{n}})<\infty . S_{c} with respect to the norm:

||A||_{S_{c}}= \sup_{n\geq 1}(\sum_{m=1}^{\infty}|a_{nm}|\frac{c_{m}}{c_{n}}) ,

is a unital Banach algebra. We shall denote by I=(\delta_{nm})_{n,m\geq 1} , (where
\delta_{nm}=0 if n\neq m and \delta_{nm}=1 in the contrary case) the unit element. We
define, too, the Banach space s_{c} of one-column matrices, X=(x_{n})_{n\geq 1} , such
that \sup_{n\geq 1}(\frac{|x_{n}|}{c_{n}})<\infty , normed by:

||X||_{s_{C}}= \sup_{n}(\frac{|x_{n}|}{c_{n}}) (3)



Properties of some sets and application 285

If c=(c_{n})_{n} , and c’=(c_{n}’)_{n} are two sequences, such that: 0<c_{n}<c_{n}’\forall n ,
then:

s_{c}\subset s_{c’} .

If X\in s_{c} and A=(a_{nm})_{n,m\geq 1}\in S_{c} , the product AX\in s_{c} and

||AX||_{s_{c}}\leq||A||_{S_{c}}||X||_{s_{c}} (4)

This permits to say that A\in(s_{c}, s_{c}) . A particular case, very useful, is the
one where c_{n}=r^{n} , r>0 . We denote, then, by S_{r} and s_{r} , the spaces S_{c} ,
and s_{c} . When r=1 , we obtain the space of the bounded sequences l^{\infty}=s_{1} .

S_{c} being a unital algebra, we have the useful result:
if A verifies the condition ||I-A||_{S_{c}}<1 , A is invertible in the space

S_{c} , and for every B\in s_{c} , the equation AX=B admits one and only one
solution in s_{c} , given by:

X= \sum_{n=0}^{\infty}(I-A)^{n}B . (5)

2.2. Infinite matrices and power series
Let f(z)= \sum_{k=0}^{\infty}a_{k}z^{k} be the power series defined in the open disk

|z|<R . We can associate to f the upper triangular infinite matrix A=
\varphi(f)\in\bigcup_{0<r<R}S_{r} , defined by

\varphi(f)=(\begin{array}{lll}a_{0} a_{1} a_{2} a_{0} a_{1}O a_{0}\end{array})

Practically we shall write \varphi[f(z)] instead of \varphi(f) . It can be verified that

Lemma 1 i) The map \varphi : f -arrow A is an isomorphism from the algebra
of the power series defined in |z|<R , into the algebra of the corresponding
matrices \overline{A} .

ii) If f(z)= \sum_{k=0}^{\infty}a_{k}z^{k} , with a_{0}\neq 0 , and \frac{1}{f(z)}=\sum_{k=0}^{\infty}a_{k}’z^{k} admits
R’>0 as radius of convergence, then

\varphi(\frac{1}{f})=[\varphi(f)]^{-1}\in\cup S_{r}0<r<R’ .

It is easy to prove that for a given k\in N : the matrix \varphi(z^{k})=
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(a_{nm})_{n,m\geq 1} is defined by: a_{n,n+k}=1 for all n\geq 1 the other coefficients being
equal to 0. Then we can write I=\varphi(1) . We have of course \varphi(z^{k})\varphi(z^{l})=

\varphi(z^{k+l})=[\varphi(z)]^{k+l} for all k , l\in N and \varphi(\sum_{k=0}^{\infty}a_{k}z^{k})=\sum_{k=0}^{\infty}a_{k}\varphi(z^{k}) ,
since the power series defined by f(z)= \sum_{k=0}^{\infty}a_{k}z^{k} is convergent in a disk
D(0, R) . We shall use such results to calculate the product of several ma-
trices, or express the inverse of an infinite matrix belonging to \overline{A} .

3. Some new properties of the operator \Delta^{(\mu)}

The well-known operator \triangle(\mu) : sarrow s , where \mu is an integer \geq 1 , is
represented by the infinite lower triangular matrix \triangle^{\mu} , where

\triangle= (\begin{array}{lll}1 O-1 1 O \end{array})
( We have for every X=(x_{n})_{n\geq 1} , \triangle X=(y_{n})_{n\geq 1} ,

with y_{1}=x_{1} and y_{n}=x_{n}-x_{n-1} if n\geq 2 . If we suppose that \frac{c_{n-1}}{c_{n}}=O(1)

as narrow\infty , the product \triangle^{\mu} can be defined in any algebra S_{c} , since

|| \triangle||_{S_{c}}=\sup_{n\geq 2}(1+\frac{c_{n-1}}{c_{n}})<\infty

implies that \triangle\in S_{c} . As we have seen above, we shall consider the infinite
matrix \triangle^{\mu} instead of the operator \triangle(\mu) . Analogously we shall denote \triangle^{+}=

t\triangle . We can generalize the definition of \triangle^{\mu} , when \mu is a real. So, if \mu\in R-

N, we get

(1-z)^{\mu}=1+ \sum_{k=1}^{\infty}\frac{-\mu(-\mu+1)\cdots(-\mu+k-1)}{k!}z^{k} , for |z|<1 .

(6)

If we denote

\{ (\begin{array}{ll}-\mu+k -1k \end{array})(\begin{array}{ll}-\mu+k -1k \end{array})==1 ifk=0\frac{-\mu(-\mu+1)\cdot(-\mu+k-1)}{k!}

,

if k>0 ,

we have for any \mu\in R

( \triangle^{+})^{\mu}=\varphi[(1-z)^{\mu}]=\varphi[\sum_{k=0}^{\infty} (\begin{array}{ll}-\mu+k -1k \end{array}) z^{k}] for |z|<1 .
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We deduce that if \triangle^{\mu}=(\tau_{nm})_{n,m} ,

\tau_{nm}=\{ (\begin{array}{ll}-\mu+n-m -1n-m \end{array})0
ififm\leq nm>n’

.
(7)

We need at first a lemma based on the well-known property given in
Maddox [6]:

A\in(s_{1}, s_{1})\Leftrightarrow A\in S_{1} . (8)

Then we have for any r>0 ,

Lemma 2 A\in(s_{r}, s_{r}) if and only if A\in S_{r} .

Proof Denote for all scalars \rho>0 by P_{\rho} the matrix (\rho^{n}\delta_{nm})_{n,m>1} . We
have: X\in s_{r} if and only if P_{1/r}X\in s_{1} . A\in(s_{r}, s_{r}) if and only i\overline{f} for all
X=P_{r}X’\in s_{r} , with X’\in s_{1} one has A(P_{r}X’)\in s_{r} . This last assertion is
equivalent to the following one: \forall X’\in s_{1} we have P_{1/r}A(P_{r}X’)\in s_{1} . Thus
applying (8), A\in(s_{r}, s_{r})\Leftrightarrow P_{1/r}AP_{r}\in S_{1} , that is A\in S_{r} . \square

In the following we need to define the sequences e_{n}=(0, . , 1, . ) , 1
being in the nth position, for n\geq 1 and e= (1, 1, .) . We have:

Proposition 3 i) The operator represented by \triangle is bijective from s_{r} into

itself for every r>1 and \triangle^{+} is bijective from s_{r} into itself for all r , 0<
r<1 .

ii) \triangle^{+} is surjective and not injective from s_{r} into itself for all r>1 .
iii) \forall r\neq 1 and for every integer \mu\geq 1(\triangle^{+})^{\mu}s_{r}=s_{r} .
iv) We have successively

\alpha) If \mu is a real>0 and \mu\not\in N , then \triangle^{\mu} maps s_{r} into itself when
r\geq 1 but not for 0<r<1 .

If -1<\mu<0 , then \triangle^{\mu} maps s_{r} into itself when r>1 but not for
r=1 .

\beta) If \mu>0 and \mu\not\in N , then \triangle^{+\mu} maps s_{r} into itself when 0<
r\leq 1 but not if r>1 .

If -1<\mu<0 , then \triangle^{+\mu} maps s_{r} into itself for 0<r<1 but not

for r=1 .
v) For a given integer \mu\geq 1 , we have successively
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\{\forall r\in]0,1[.:A\in(s_{r}(\triangle^{+})^{\mu},s_{r})\Leftrightarrow\sup_{n\geq 1}(_{m}\sum_{=1}^{\infty}|a_{nm}|r^{m-n)<\infty}\forall r>1.A\in(s_{r}(\triangle^{\mu}),s_{r})\Leftrightarrow\sup_{n\geq 1}(_{m=1}\infty\sum|a_{nm}|r^{m-n})<\infty

,

.

vi) For evew integer \mu\geq 1

s_{1}\subset s_{1}(\triangle^{\mu})\subset s_{(n^{\mu})_{n\geq 1}}\subset\cap S_{r}r>1^{\cdot}

vii) If \mu>0 and \mu\not\in N then q is the greatest integer strictly less
than (\mu+1) . \forall r>1

Ker ((\triangle^{+})^{\mu})\cap s_{r}=span(V_{1}, V_{2}, \ldots, V_{q}) ,

where:

\{

V_{1}={}^{t}e , V_{2}=t(A_{1}^{1}, A_{2}^{1}, \ldots) , V_{3}=t(0, A_{2}^{2}, A_{3}^{2}, .) , . .
V_{q}=t (o, o, . ., A_{q-1}^{q-1}, A_{q}^{q-1}, . ., _{A_{n}^{q-1}}, \ldots) ;

(9)

A_{i}^{j}=. \frac{i!}{(i-j)!} , with 0\leq j\leq i , being the number of permutations of i things
taken J at a time.

Proof We deduce i) from the inequalities ||I-\triangle||_{S_{r}}=1/r<1 and
||I-\triangle^{+}||_{S_{r}}=r<1 .

Assertion ii). Consider the matrix (\triangle^{+})(-e_{1}) obtained from \triangle^{+} , by
addition of the supplementary row -e_{1} as the initial row. We have
-(\triangle^{+}) (-e_{1})=\triangle . Take now r>1 . We see that ||I+(\triangle^{+}) (-e_{1})||_{S_{r}}=

1/r<1 . Then (\triangle^{+})(-e_{1}) is bijective from s_{r} into itself. One deduces that
for all B\in s_{r} , equation (\triangle^{+})X=B admits in s_{r} infinitely many solutions

X=[(\triangle^{+})(-e_{1})]^{-1}B(u)=-u^{t}e-\Sigma.B(0)

for all scalars u (see [5]). Then (\triangle^{+})s_{r}=s_{r} . Elsewhere \triangle^{+} is not injective,
since (\triangle^{+})^{t}e=0 and {}^{t}e\in s_{r} . Using i) and ii ) we see that for all r\neq 1 ,
(\triangle^{+})s_{r}=s_{r} , what implies (\triangle^{+})^{\mu}s_{r}=s_{r} .

iv)\alpha) . Let now \mu>-1 , \mu\not\in N , and r>0 . Using (7), we obtain

|| \triangle^{\mu}||_{S_{r}}=\sup_{n\geq 1}(\sum_{m=1}^{n}| (\begin{array}{l}-\mu+n-m-1n-m\end{array}) |r^{m-n})
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= \sum_{k=0}^{\infty}| (\begin{array}{l}k-\mu-1k\end{array}) |r^{-k} .

If we put u_{k}(r)=| (\begin{array}{l}k-\mu-1k\end{array}) |r^{-k} , we see that the series \sum_{k}u_{k}(r) is

convergent for r>1 , and divergent for 0<r<1 , since \frac{u_{k+1}(r)}{u_{k}(r)}=|\frac{k-\mu}{k+1}|\frac{1}{r} -

\frac{1}{r} , as karrow\infty . When r=1 , we get

\frac{u_{k+1}(1)}{u_{k}(1)}=|\frac{k-\mu}{k+1}|=1-\frac{\mu+1}{k}+o(\frac{1}{k}) as karrow\infty

which proves that the series \sum_{k}u_{k}(1) is convergent when \mu>0 and diver-
ge t when -1<\mu<0 .

By an analogous reasoning, we obtain \beta), since we have then

|| \triangle^{+\mu}||_{S_{r}}=\sup_{n\geq 1}(\sum_{m=n}^{\infty}| (\begin{array}{ll}-\mu+m-n -1m-n \end{array}) |r^{m-n})

= \sum_{k=0}^{\infty}| (\begin{array}{ll}k-\mu -1k \end{array}) |r^{k} .

v) . We have ||I-\triangle||_{S_{r}}=1/r<1 , for all r>1 , hence \triangle^{\mu} is bijective
from s_{r} into itself. Thus s_{r}(\triangle^{\mu})=s_{r} and Lemma 2 gives the conclusion.
The second case follows similarly by the same way, using i).

Assertion vi). Let us show at first that s_{1}\subset s_{1}(\triangle) . For all X=
(x_{n})_{n\geq 1}\in s_{1} , we have \triangle X\in s_{1} , since x_{n}-x_{n-1}=O(1) , as narrow\infty . Hence
X\in s_{1}(\triangle) , what proves that s_{1}\subset s_{1}(\triangle) .

Let us prove that s_{1}(\triangle)\subset s_{(n)_{n\geq 1}} . Explicite, at first the matrix \triangle^{-1} .
From Lemma 1, we see that \triangle^{+}=\varphi(1-z) and since \Sigma^{-1}=\triangle , we deduce
that (^{t} \Sigma)^{-1}=\varphi(\frac{1}{1-z}) which implies that \Sigma is the lower triangular matrix
all of whose entries below the main diagonal are equal to 1. Suppose now
that X=(x_{n})_{n>1}\in s_{1}(\triangle) . We deduce that there exists a sequence B=
(b_{n})_{n\geq 1}\in s_{1}suc\overline{h} that x_{n}= \sum_{i=1}^{n}b_{i} , \forall n\geq 1 . Hence, there is K>0 , such
that |x_{n}|=| \sum_{i=1}^{n}b_{i}|\leq Kn , what proves that X\in s_{c} with c=(n)_{n\geq 1} and
s_{1}(\triangle)\subset s_{(n)} . Further on, suppose by induction that for an integer k , with
1\leq k\leq\mu-1:s_{1}\subset s_{1}(\triangle^{k})\subset s_{(n^{k})_{n>1}} . Then applying the operator \triangle^{-1}

to every term of the inclusions, we de\overline{d}uce that

s_{1}\subset s_{1}(\triangle)\subset s_{1}(\triangle^{k+1})\subset s_{(n^{k})}(\triangle) .
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And as above, we see that X\in s_{(n^{k})}(\triangle) implies that there exists a sequence
B=(b_{n})_{n\geq 1}\in s_{(n^{k})} such that X=( \sum_{i=1}^{n}b_{i})_{n\geq 1} . Thus, there is K>0 ,
such that | \sum_{i=1}^{n}b_{i}|\leq\sum_{i=1}^{n}|b_{i}|\leq nKn^{k} , wIiat proves that s_{(n^{k})}(\triangle)\subset

s(n^{k+1}) . It remains to prove that s_{(n^{\mu})} \subset\bigcap_{r>1}s_{r} . For this, consider any

real r>1 , we have \frac{n^{\mu}}{r^{n}}=o(1) as narrow\infty . Then \forall X=(x_{n})_{n\geq 1}\in s_{(n^{\mu})} ,
x_{n}=O(n^{\mu})=O(r^{n}) , as n - \infty , which proves that X\in s_{r} . Hence we
deduce vi).

Assertion vii). It is well-known (see [1]) that Ker (\triangle^{+})^{\mu} is the set of all
the sequences (P_{q-1}(n))_{n\geq 1} , P_{q-1} being an arbitrary polynomial of degree
less than or equal to (q-1) . Also it is well-known that dim Ker (\triangle^{+})^{\mu}=

q and since V_{1} , V_{2} , \ldots , V_{q}\in Ker(\triangle^{+})^{\mu}\cap s_{r} for r>1 and are linearly
independent, we conclude that Ker (\triangle^{+})^{\mu}\cap s_{r}=span(V_{1}, V_{2}, . ., V_{q}) .

\square

4. Spectra of the operators \Delta , \Delta^{+} and \Sigma relatively to the space
s_{r} .
We give here some spectral properties of several well-known operators.

Recall that C_{1}=(a_{nm})_{nm\geq 1} is the Ces\‘aro operator of order 1, defined by
the infinite matrix

\{
a_{nm}=1/n if m\leq n ,
a_{nm}=0 otherwise.

(see [3], [7], [9], [10] and [17]). We have seen in vi ) of Proposition 3, that \Sigma

denotes the operator \triangle^{-1} . There exists a relation between these operators.
Indeed if D=(n\delta_{nm})_{n,m\geq 1} then DC_{1}=\Sigma and \triangle(DC_{1})=I , which proves
that C_{1}^{-1}=\triangle D . In this section A is an operator mapping s_{r} into itself,
r being a given real >0 . We shall denote by \sigma(A) its spectrum, set of
complex numbers \lambda , such that (A-\lambda I) as operator from s_{r} into itself, is
not invertible. We can express the following results,

Theorem 4 We have,

\{\begin{array}{l}i) \sigma(C_{1})=\{0\}\cup\{ \},iii)ii) \sigma(\triangle)=\overline{D},1/r)\sigma(\triangle^{+})=(1,r)\frac{(1}{D}.,\end{array}
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Proof. The proof of i) is given in [9]. Let us set in the following \Lambda_{\lambda}(A)=

\frac{1}{\lambda-1}(\lambda I-A) , where A is a given matrix and \lambda any complex number distinct
from 1.

Assertion ii). Suppose that \lambda\not\in\sigma(A) , i.e. \lambda I-\triangle , \lambda\neq 1 , is bijective
from s_{r} into itself. Then \lambda I-\triangle is invertible, since it is a lower infinite
triangular matrix with non zero element on the main diagonal. (\lambda I-\triangle)^{-1}

is also bijective from s_{r} into itself, which implies that (\lambda I-\triangle)^{-1}\in S_{r} ,
from Lemma 2. We are lead to explicitly calculate the inverse of \lambda I-\triangle .
Indeed we have t(\lambda I-\triangle)=\varphi(\lambda-1+z) and t( \lambda I-\triangle)^{-1}=\varphi(\frac{1}{\lambda-1+z}) .
Since \frac{1}{\lambda-1+z}=\sum_{k=0}^{\infty} (-1)^{k} \frac{z^{k}}{(\lambda-1)^{k+1}} , with |z|<|\lambda-1| we deduce that
(\lambda I-\triangle)^{-1}=(\alpha_{nm})_{nm\geq 1} , where

\{\begin{array}{l}\alpha_{nm}=\frac{(-1)^{n-m}}{(\lambda-1)^{n-m+1}}\alpha_{nm}=0\end{array}

otherwiseifm\leq n,

.

The condition (\lambda I-\triangle)^{-1}\in S_{r} is then equivalent to

\chi=r\sup_{n\geq 1}(\sum_{m=1}^{n}\frac{1}{[|\lambda-1|r]^{n-m+1}})

=r \sup_{n\geq 1}\{\frac{(\frac{1}{|\lambda-1|r})^{n+1}-\frac{1}{|\lambda-1|r}}{\frac{1}{|\lambda-1|r}-1}\}<\infty . (10)

We see that (10) is equivalent to \frac{1}{|\lambda-1|r}<1 , which shows that \lambda\not\in\overline{D}(1,1/r) .

Conversely, assume that \lambda\not\in\overline{D}(1,1/r) . Then

|| \Lambda_{\lambda}(\triangle)-I||_{S_{r}}=\frac{1}{|\lambda-1|r}<1 ,

which implies that \lambda I-\triangle is bijective from s_{r} into itself.
Assertion iii). if \lambda I-\triangle+ is bijective from s_{r} into itself, we have

(\lambda I-\triangle^{+})^{-1}=(\alpha_{nm}^{+})_{nm\geq 1} , where

\{\begin{array}{l}\alpha_{nm}^{+}=\frac{(-1)^{m-n}}{(\lambda-1)^{m-n+1}}\alpha_{nm}^{+}=0\end{array}

otherwiseifm\geq n,

.
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The condition (\lambda I-\triangle^{+})^{-1}\in S_{r} is then equivalent to

\chi’=\sup_{n\geq 1}(\sum_{m=n}^{\infty}\frac{1}{|\lambda-1|^{m-n+1}}r^{m-n})<\infty ,

itself equivalent to \frac{r}{|\lambda-1|}<1 , which proves that \lambda\not\in\overline{D}(1, r) . Conversely
take \lambda\not\in\overline{D}(1, r) . Reasoning as above, we have \lambda I-\triangle^{+}=\varphi(\lambda-1+z) and

|| \Lambda_{\lambda}(\triangle^{+})-I||_{S_{r}}=||\frac{1}{\lambda-1}\varphi(-z)||_{S_{r}}=\frac{r}{|\lambda-1|}<1 ,

which proves that \lambda I-\triangle^{+} is bijective from s_{r} into itself. This achieves the
proof of iii). \square

Concerning the operator \Sigma we deduce the following.

Proposition 5 Let r>1 . We have
i) \frac{1}{\lambda}\in\overline{D}(1,1/r)\Leftrightarrow\lambda\in\sigma(\Sigma) .

ii) For all \lambda\not\in\sigma(\Sigma) , \lambda I-\Sigma is bijective from s_{r} into itself and if (\lambda I-

\Sigma)^{-1}=(\tau_{nm})_{n,m\geq 1} , then

\{\begin{array}{l}\tau_{nn}=\frac{1}{1-\lambda} \forall n\geq 1,\tau_{nm}=\frac{1}{(1-\lambda)^{2}}(\frac{-\lambda}{1-\lambda})^{n-m-1}\tau_{nm}=0\end{array}

ifm\leq notherwise.

’
(11)

Proof. i ). The well-known results on the spectrum of the inverse of an
operator permits us to deduce i) from ii) in Theorem 4. Indeed \Sigma and \triangle are
bijections from s_{r} into itself, for r>1 . We have t( \Sigma-\lambda I)=\varphi(1-\lambda+\frac{z}{1-z})

and

\frac{1}{1-\lambda+\frac{z}{1-z}}=\frac{1-z}{1-\lambda+\lambda z}=\frac{1}{1-\lambda}-\frac{1}{(1-\lambda)^{2}}\sum_{n=1}^{\infty}(\frac{-\lambda}{1-\lambda})^{n-1}z^{n}-

Hence we deduce the coefficients \tau_{nm} given by (11). \square

These results lead us to the study of the set (s_{r}(\triangle-\lambda I)^{\mu}, s_{r}) .



Properties of some sets and application 293

5. Properties of the set (s_{r}((\Delta-\lambda I)^{\mu}),s_{r}) for \lambda\neq 1 and for a
given integer \mu\geq 1 .
In this part, we shall study the operators which map the space s_{r}((\triangle-

\lambda I)^{\mu}) into s_{r} . In the case where r=1 and \lambda=0 , Malkowsky [11] introduced
the sequence (R_{nm}^{(\mu)})_{n,m\geq 1} , defined in the following way: R_{nm}^{(1)}=R_{nm}=

\sum_{j=m}^{\infty}a_{nj} , R_{nm}^{(s)}= \sum_{j=m}^{\infty}R_{nj}^{(s-1)}\forall s\geq 1 . He proved that A\in(s_{1}(\triangle^{\mu}), s_{1})

if and only if

\{\begin{array}{l}i) Foralln,theseries\sum_{m=1}^{\infty}m^{\mu}a_{nm}isconvergent,ii) \sup_{n}(\sum_{m=1}^{\infty}|R_{nm}^{(\mu)}|)<\infty.\end{array}

In [2], it is proved that A\in (s_{1}(\triangle^{+})^{\mu} , s_{1}) if and only if

\{\begin{array}{l}i) (a_{nm})_{n,m\geq 1}\in s_{1} \forall n=1,2,\ldots\mu.ii) (\sum_{m=1}^{\infty}m^{\mu}a_{nm})_{n\geq 1}\in s_{1}.iii) \sup_{n\geq 1}(\sum_{m=1}^{\infty}m^{\mu-1}|\sum_{j=m+1}^{\infty}a_{nj}|)<\infty.\end{array}

Here we shall characterize such matrix transformations, using another method
od based on the resolution of infinite linear systems. We need to recall the
following definitions. For any subset E of s , denote:

E^{\alpha}=\{a=(a_{n})_{n\geq 1}/\forall X=(x_{n})_{n\geq 1}\in E \sum_{n}|a_{n}x_{n}|<\infty\}

E^{\alpha} is the \alpha-dual of E (see [2] and [11]). It has been proved in [11], that:

(s_{1}( \triangle^{\mu}))^{\alpha}=\{a=(a_{n})_{n\geq 1}/\sum_{n=1}^{\infty}n^{\mu}|a_{n}|<\infty\} (12)

In the following we shall use the well-known result,

Lemma 6 If the double series \sum_{n}\sum_{m}|a_{nm}| < \infty , then the series
\sum_{n}\sum_{m}a_{nm} and \sum_{m}\sum_{n}a_{nm} are convergent and \sum_{n}\sum_{m}a_{nm} =
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\sum_{m}\sum_{n}a_{nm} .

Remark 1 We see that \sum_{n}\sum_{m}|a_{nm}|<\infty is equivalent to \sum_{m}\sum_{n}|a_{nm}|

<\infty .

For a given real r>0 , we have the next results.

Lemma 7 Let A=(a_{nm})_{n,m\geq 1} and P=(p_{nm})_{n,m\geq 1} be two infinite ma-
trices satisfying for all n\geq 1 :

\sum_{k=1}^{\infty}\sum_{m=1}^{\infty}|a_{nk}p_{km}|r^{m}<\infty . (13)

Then A(PX)=(AP)X for all X\in s_{r} .

Proof. If we set A(PX)=(y_{n})_{n\geq 1} , then for every n\geq 1 :

y_{n}= \sum_{k=1}^{\infty}a_{nk}(\sum_{m=1}^{\infty}pkm^{X}m)

The series intervening in the second member being convergent, since (13)
holds and X\in s_{r} . Using Lemma 6, condition (13) permits us to invert the
symbols \sum_{k} and \sum_{m} in the expression of y_{n} , which proves that A(PX)=
(AP)X . \square

We shall use the following condition on the matrix A=(a_{nm})_{n,m\geq 1}

verified for all n\geq 1 and \lambda\neq 1

\sum_{m=1}^{\infty}\sum_{j=0}^{\infty}
(\begin{array}{ll}\mu+j -1j \end{array}) \frac{|a_{n,m+j}|}{|1-\lambda|\mu+j}r^{m}<\infty . (14)

Remark 2 The previous condition can be replaced by

\sum_{m=1}^{\infty}\sum_{j=1}^{\infty}\frac{|a_{n,m+j}|}{|1-\lambda|\mu+j}j^{\mu-1}r^{m}<\infty and \sum_{m=1}^{\infty}\frac{|a_{n,m}|}{|1-\lambda|^{\mu}}r^{m}<\infty , (16)

for all n\geq 1 and \lambda\neq 1 . Indeed it can be proved that there are M_{1} and
M_{2}>0 such that for all j\geq 1 :

M_{1}j^{\mu}\leq(\begin{array}{l}\mu+jj\end{array}) \leq M_{2}j^{\mu}- (16)

We shall consider the matrix (\triangle-\lambda I)^{-\mu} in the case where \lambda does not
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belong necessarily to the resolvent set \rho(\triangle) , i.e. |\lambda-1|>1/r , (see ii ) in
Theorem 4). This means that (\triangle-\lambda I)^{-\mu} does not belong necessarily to
the space S_{r} . We can assert the next result:

Theorem 8 i) If |\lambda-1|>1/r , then

A \in(s_{r}((\triangle-\lambda I)^{\mu}), s_{r})\Leftrightarrow\sup_{n\geq 1}(\sum_{m=1}^{\infty}|a_{nm}|r^{m-n})<\infty .

ii) Take \lambda , such that |\lambda-1|\leq 1/r . There exists a real R>r ,
depending on \lambda , for which:

A \in(s_{R}((\triangle-\lambda I)^{\mu}), s_{R})\Leftrightarrow\sup_{n\geq 1}(\sum_{m=1}^{\infty}|a_{nm}|R^{m-n})<\infty .

iii) Assume that (14) holds. For every \lambda\neq 1 , we have successively:
\alpha) For all Y\in s_{r} A[(\triangle-\lambda I)^{-\mu}Y]=[A(\triangle-\lambda I)^{-\mu}]Y,
\beta) A\in(s_{r}((\triangle-\lambda I)^{\mu}), s_{r}) if and only if

\sup_{n\geq 1}[\sum_{m=1}^{\infty}|\sum_{j=0}^{\infty} (\begin{array}{ll}\mu+j -1j \end{array}) \frac{a_{n,m+j}}{(1-\lambda)^{\mu+j}}|r^{m-n}]<\infty . (17)

Proof i). If |\lambda-1|>1/r , using ii ) in Theorem 4, we see that \triangle-\lambda I is
bijective from s_{r} into itself. Then (\triangle-\lambda I)^{\mu} is bijective from s_{r} into itself
and it is the same for (\triangle-\lambda I)^{-\mu} From Lemma 2 we deduce (\triangle-\lambda I)^{-\mu}\in

S_{r} , hence s_{r}((\triangle-\lambda I)^{\mu})=s_{r} . Then A\in(s_{r}((\triangle-\lambda I)^{\mu}), s_{r}) if and only if
A\in(s_{r}, s_{r}) and we obtain the conclusion using Lemma 2.

ii) . Let \lambda\neq 1 such that |\lambda-1|\leq 1/r . There exists R>0 such that
1/R<|\lambda-1| . Doing as in Theorem 4, we have

|| \Lambda_{\lambda}(\triangle)-I||_{S_{R}}=\frac{1}{|\lambda-1|R}<1 .

This proves that (\triangle-\lambda I)^{-\mu}\in S_{R} and the conclusion follows as above.
Assertion iii) \alpha). Take \lambda\neq 1 . We explicitly calculate the infinite

matrix (\triangle-\lambda I)^{-\mu} Here, we see that:

{}^{t}(\triangle-\lambda I)^{\mu}=\varphi[(1-\lambda-z)^{\mu}]
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Thus

{}^{t}( \triangle-\lambda I)^{-\mu}=\varphi[\frac{1}{(1-\lambda-z)^{\mu}}]

= \varphi[\sum_{k=0}^{\infty}\frac{1}{(1-\lambda)^{\mu+k}} (\begin{array}{ll}\mu+k -1k \end{array}) z^{k}] ,

for |z|<|1-\lambda| . Whence, (\triangle-\lambda I)^{-\mu}=(\tau_{nm})_{n,m\geq 1} , with:

\tau_{nm}=\{\frac{1}{(1-\lambda)^{\mu+n-m},0},
(\begin{array}{ll}\mu+n-m -1n-m \end{array})

ififm>nm\leq n.

’

(18)

Set P=(\triangle-\lambda I)^{-\mu} in Lemma 7. Then condition (13) means that

\sum_{m=1}^{\infty}\sum_{k=m}^{\infty}\frac{|a_{nk}|}{|1-\lambda|\mu+k-m} (\begin{array}{ll}\mu+k-m -1k-m \end{array}) r^{m}<\infty . (19)

Letting j=k-m in (14), we see that (14) and (19) are equivalent. It is
then enough to apply Lemma 7 to conclude the proof of \alpha).

Assertion iii ) \beta). If A\in(s_{r}((\triangle-\lambda I)^{\mu}) , s_{r}) , then for all Y\in s_{r} ,

A[(\triangle-\lambda I)^{-\mu}Y]\in s_{r} ;

and using iii ) \alpha ) we deduce that [A(\triangle-\lambda I)^{-\mu}]Y\in s_{r} . From (8), we have
A(\triangle-\lambda I)^{-\mu}\in S_{r} . Denote, now, by p_{nm}(\lambda) the coefficients of the matrix
A(\triangle-\lambda I)^{-\mu} , using (18) we get that:

p_{nm}( \lambda)=\sum_{j=0}^{\infty}\frac{a_{n,m+j}}{(1-\lambda)^{\mu+j}} (\begin{array}{ll}\mu+j -1j \end{array}) (20)

Hence

\sup_{n\geq 1}(\sum_{m=1}^{\infty}|p_{nm}(\lambda)|r^{m-n})<\infty .

This proves the necessary condition.
Conversely, suppose that (17) is satisfied. Then A(\triangle-\lambda I)^{-\mu}\in S_{r} , i.e.

for all Y\in s_{r} , [A(\triangle-\lambda I)^{-\mu}]Y\in s_{r} . Using (14) we can apply Lemma 7,
as above, what gives: A[(\triangle-\lambda I)^{-\mu}Y]=[A(\triangle-\lambda I)^{-\mu}]Y , \forall Y\in s_{r} . The
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second term of the last identity belongs then to s_{r} , which proves that A\in

(s_{r}((\triangle-\lambda I)^{\mu}), s_{r}) . This achieves the proof of iii ) \beta . \square

Remark 3 We can generalize some results we have got above, considering
(\triangle^{+})^{\mu} for \mu\in C , (see [18]). Here (6) is true when \mu\in C-N , for |z|<1
and for all z\in C whenever \mu\in N . Then \triangle^{\mu} is given by (7) and iii ) in
Theorem 8 can be extended to the case when \mu\in C , if the series defined in
(14) is absolutely convergent.

Remark 4 We have seen in Theorem 4, that in the case where \lambda=0 , \triangle^{\mu}

is invertible when 0\not\in\overline{D}(1,1/r) , that is when r>1 . Analogously, (\triangle^{+})^{\mu}

is invertible when r<1 , since 0\not\in\sigma((\triangle^{+})^{\mu}) . These remarks lead to the
study of the important particular case r=1 . Indeed the space s_{1}=l^{\infty}

verifies the following properties: \bigcup_{0<r<1}s_{r}\subseteq s_{1}\subsetarrow\bigcap_{r>1}s_{r} . For the first
inclusion we see that e \in s_{1}-\bigcup_{0<r<1}s_{r} and if we write c=(n)_{n} , we have
c \in\bigcap_{r>1}s_{r}-s_{1} , for the second inclusion.

Assume that (14) is satisfied for \lambda=0 , that is

\sum_{m=1}^{\infty}\sum_{j=0}^{\infty}
(\begin{array}{ll}\mu+j -1j \end{array}) |a_{n,m+j}|<\infty . (21)

We get the next result.

Corollary 9 A\in(s_{1}(\triangle^{\mu}), s_{1}) if and only if

\sup_{n\geq 1} ( \sum_{=1}^{\infty}|\sum_{j=0}^{\infty} (\begin{array}{ll}\mu+j -1j \end{array}) a_{n,m+j}|)<\infty . (22)

Proposition 10 Suppose that (21) holds. Then for every n :

\sum_{m=1}^{\infty}m^{\mu}|a_{nm}|<\infty .

Proof. (21) is equivalent to

\sum_{m=1}^{\infty}\sum_{k=m}^{\infty} (\begin{array}{ll}\mu+k-m -1k-m \end{array}) |a_{nk}|

= \sum_{k=1}^{\infty}|a_{nk}|\sum_{m=1}^{k} (\begin{array}{ll}\mu+k-m -1k-m \end{array})=\sum_{k=1}^{\infty}|a_{nk}| (\begin{array}{ll}\mu+k -1k -1\end{array}) ,
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the interchange in order of summation being justified by Lemma 6 and the
result follows from (16). \square

Let us replace now the condition (21) by the following one

\sum_{s=1}^{\infty}r^{s}[\sum_{i=0}^{s-1} (\begin{array}{ll}\mu +i-1 i\end{array}) |a_{n,s-i}|]<\infty . (23)

Then we have

Proposition 11 Assume that condition (23) holds and let r be a real
strictly less than 1. A\in(s_{r}((\triangle^{+})^{\mu}), s_{r}) if and only if

\sup_{n\geq 1} ( \sum_{s=1}^{\infty}|\sum_{i=0}^{s-1} (\begin{array}{ll}\mu +i-1 i\end{array}) a_{n,s-i}|r^{s-n})<\infty . (24)

Proof. The proof is analogous to the one of Theorem 8, p_{nm}(\lambda) is replaced
by

p_{nm}^{+}= \sum_{k=1}^{m}a_{nk} (\begin{array}{ll}\mu+m-k -1m-k \end{array})

Further we must use the fact that the product A(\triangle^{+})^{-\mu} belongs to S_{r} is
equivalent to

\sup_{n\geq 1}(\sum_{s=1}^{\infty}|p_{ns}^{+}|r^{s-n})<\infty ,

itself equivalent to (24). \square

Remark 5 Corollary 9 and Proposition 11 are always true if we suppose
that \mu is a complex number for which the series defined in (21) and (23)
are absolutely convergent.
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